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1 Introduction

The purpose of this paper and its sequel is to determine the homotopy groups of the
spectrum THH(`). Here p is an odd prime, ` is the Adams summand of p-local connec-
tive K-theory (see for example [25]) and THH is the topological Hochschild homology
construction introduced by Bökstedt in [3]. In the present paper we will determine the
mod p homotopy groups of THH(`) and also the integral homotopy groups of THH(L)
(where L denotes the periodic Adams summand). In the sequel we will investigate the
integral homotopy groups of THH(`) using our present results as a starting point.

The THH construction appears to be of basic importance in algebraic K-theory
because it combines two useful properties: it can be used to construct good approxi-
mations to the algebraic K-theory functor, and it is very accessible to calculation. We
shall review what is known about the first property in a moment; the second property
was demonstrated by Bökstedt’s calculation, in his paper [4], of the homotopy groups of
THH(HZ/p) and THH(HZ) (here HZ/p and HZ denote the evident Eilenberg-Mac
Lane spectra). It is natural to ask about THH(R) for other popular ring spectra R, and
our work is a first step in this direction. We pay special attention to the connective case
because this is the case which is likely to be relevant in applications (see Subsection 1.4
below).

The calculation which we present in this paper is a homotopy-theoretic one which
uses the Adams spectral sequence (hereafter abbreviated ASS). This calculation has
several interesting features; in particular it is a pleasing example of an ASS calculation
in which, although there are infinitely many differentials, it is still possible to get the
complete answer.

Here is a summary of the contents of the paper. In Section 2 we review the facts
we need to know about ordinary Hochschild homology. In Section 3 we do the same
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for topological Hochschild homology. In Section 4 we calculate the mod p homology of
THH(`) and use it to find the E2 term of the ASS converging to π∗(THH(`);Z/p).
This section also contains a quick calculation, which was pointed out to us by Larry
Smith and Andy Baker, of the homotopy groups of THH(BP ), where BP is the Brown-
Peterson summand of complex cobordism. In Section 5 we calculate the mod p K-
theory of THH(`) and use it to determine the “v1-inverted” homotopy of THH(`).
In Section 6 we work backwards from this result to determine the behavior of the v1-
inverted ASS for THH(`). In Section 7 we show that the behavior of the v1-inverted
ASS completely determines that of the ASS itself, thereby completing the calculation of
π∗(THH(`);Z/p). In Section 8, which depends only on Sections 2, 3, and 5, we calculate
π∗THH(L). In Section 9 we confess that our definition of the spectrum ` is not the usual
one; on the other hand we show that it agrees with the usual one up to p-adic completion.
Our definition has the advantage that it provides an E∞ structure for `; this implies that
` has an A∞ structure, which is necessary in order for THH(`) to be defined, and it
also provides extra structure for THH(`) which will be used in the sequel to determine
differentials and extensions in the ASS converging to π∗THH(`).

Acknowledgements: We would like to thank everyone who has discussed this sub-
ject with us, especially Andy Baker, Marcel Bökstedt, Nick Kuhn, and Friedhelm Wald-
hausen.

In the remainder of the introduction we shall give a short summary of some things
which are known or suspected about algebraic K-theory; these provide motivation for
the THH construction, but none of what follows will actually be used in our work.

1.1 The Dennis Trace Map

The simplest way in which Hochschild homology is related to algebraic K-theory is via
the Dennis trace map, which is a natural transformation

τ : K∗S → HH∗S;

here S is a discrete ring and HH∗S denotes ordinary Hochschild homology. (See [26,
pages 106–114] or [27, Section II.1] for a discussion of τ). Unfortunately, the map τ
usually loses too much information to be useful for purposes of calculation. It is, however,
possible to improve τ by factoring it through one of the variants of cyclic homology: that
is, there is a commutative diagram

K∗S

HC−∗ S

HH∗S-τ

Q
Q
Q
Q
Q
Q
QQs

π
6

α
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(see [27, page 364] for the definitions of HC− and π and [27, Section 2.3] for the definition
of α). The following basic theorem, due to Goodwillie [27, Theorem II.3.4], says that
the map α can be used to calculate rationalized relative algebraic K-theory in certain
situations.

Theorem 1.1 If S1 → S2 is a surjection with nilpotent kernel then

α⊗Q : K∗(S1 → S2)⊗Q→ HC−∗ (S1 → S2)⊗Q

is an isomorphism.

See [27, pages 365 and 373] for the definitions of HC− and α in the relative situation.
The most important application of Theorem 1.1 is to Waldhausen’s functor A(X).

For this, one needs to generalize Theorem 1.1 to apply to simplicial rings S. This can
be done (see [27]), and in this generality the hypothesis of Theorem 1.1 is replaced by
the much less stringent hypothesis that the map

π0S1 → π0S2

be a surjection with nilpotent kernel (see [27]). Now given a space X, it is easy to con-
struct a simplicial ring whose K-theory agrees rationally with A(X), and thus Theorem
1.1 can be applied to calculate A(X → Y )⊗Q whenever X → Y is a 2-connected map
(see [27, pages 348–349]).

1.2 Algebraic K-theory of Ring Spectra

The reason for introducing topological Hochschild homology is to try to formulate and
prove an analog of Theorem 1.1 which holds integrally and not just rationally. One can
get a hint as to how to do this by recalling that one of the basic principles of Waldhausen’s
work on algebraic K-theory is that the K-functor should be applied not just to rings
but to ring spectra (also called “brave new rings”). Waldhausen gave a sketch of how
to do this in [28], and a precise construction was given by May in [29] (also see [30]).
For technical reasons one must restrict to A∞ ring spectra, but in practice this is not an
inconvenience. We shall refer to this functor as Waldhausen K-theory and denote it by
KW ; when R is an A∞ ring spectrum, KW (R) is a spectrum whose homotopy groups
will be denoted by KW

∗ (R). The functor KW
∗ generalizes both K∗ and A(X), for when

R is the Eilenberg-Mac Lane spectrum HS associated to a discrete ring S one has the
equation

KW
∗ HS = K∗S;(1)

and when R is the sphere spectrum S0, or more generally the suspension spectrum
Σ∞(ΩX)+, one has

KW (S0) = A(∗)
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and
KW (Σ∞(ΩX)+) = A(X)

(here (ΩX)+ denotes the space obtained by adding a disjoint basepoint to the loop space
of X).

1.3 Topological Hochschild Homology

In view of what has been said so far, it is natural to try to approximate KW
∗ R by means

of a Hochschild homology construction which can be applied to A∞ ring spectra R. This
is what topological Hochschild homology THH(R) is. It is clear enough in principle how
one should construct THH(R) (see Section 3), although the technical details are quite
complicated (see [3] and [10]). THH(R) is a spectrum and we shall denote its homotopy
π∗THH(R) by THH∗(R).

There is a natural transformation

τ ′ : KW
∗ R→ THH∗R

which is analogous to the Dennis trace map. (See [3, Section 2] for the construction of
τ ′).

In the special case R = HS it is important to note that the analog of equation (1)
does not hold for THH∗; that is, it is not true that THH∗(HS) agrees with HH∗(S)
for a discrete ring S. Instead, there is a commutative diagram which shows that τ ′ gives
a second way of lifting the Dennis trace map:

K∗S -τ HH∗S

?

τ ′

THH∗HS
�
�
�
�
�
�
��3

φ

(See Remark 3.5 for a hint about the construction of the map φ). In the special case S =
Z, Bökstedt has shown that τ ′ is nonzero in infinitely many dimensions; more precisely,
what he shows is that for each prime p the localization of τ ′ at p is an epimorphism in
dimension 2p− 1 (see [5]). Note that this cannot be true for τ for the trivial reason that
HH∗Z is zero in all positive dimensions.

In the cases R = S0 and R = Σ∞(ΩX)+ mentioned above one can give explicit
descriptions of THH(R):

THH(S0) = S0

and
THH(Σ∞(ΩX)+) = Σ∞(ΛX)+,

where Λ denotes the free loop space; the first equation is obvious from the definition in
Section 3 and the second follows from that definition and [31, Theorem ?].
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Probably the most important fact about τ ′ is that it can be identified with the map
from KW to its first Goodwillie derivative; more precisely we mean the derivative “at
X = S0 ” of the functor

X 7→ KW (R ∧ (ΩX)+)

from pointed spaces to spectra ([32]; also see [33] for the definition of the derivative and
the proof of this fact in the special case R = S0). This fact is significant in two ways: it
implies that THH is a “first order” approximation to KW in much the same way that
stable homotopy is a first order approximation to unstable homotopy, and it can be used
to obtain a “higher order” approximation, as we explain in the next subsection.

1.4 Topological Cyclic and Epicyclic Homology

The next step is to consider functors which combine the desirable properties of HC−

and THH. For example, one can define topological cyclic homology THC− by observing
that the spectrum THH(R) has a natural cyclic structure and therefore has an S1 action
(at least if everything works as in the category of spaces— cf. [31]), and letting

THC−∗ R = π∗THH(R)hS
1

,

where hS1 denotes the homotopy fixed-point spectrum (cf. Remark 3.5). Unfortunately
it is known that this functor cannot satisfy an integral version of Theorem 1.1 (see [34,
Section 7]). On the other hand, there is considerable evidence for the following conjecture

Conjecture 1.2 It is possible to construct a functor THE, related to THH and THC−,
and a natural transformation

τ ′′ : KW (R)→ THE(R)

which induces an equivalence of derivatives.

The notation THE stands for “topological epicyclic homology”; see [34, Section 6].
It is possible that THE can be taken to be the functor defined in [35].

If the conjecture is true then the calculus of functors will imply the following integral
version of Theorem 1.1: the induced map

τ ′′ : KW
∗ (R1 → R2)→ THE∗(R1 → R2)

is an isomorphism for any map R1 → R2 of A∞ ring spectra such that

πiR1 → πiR2

is an isomorphism for i ≤ 0.
This explains the statement we made earlier that connective spectra are of particular

importance for the potential applications.
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We conclude with one further remark about the potential applications of THH. In
[23], Waldhausen has proposed an interesting program for studying the relative KW

theory of the map
S0 → HZ

by means of the intermediate spectra KW (Ln(S
0)) and KW (Ln(S

0)c), where Ln(S
0)

denotes the Ln-localization of the sphere (see [36]) and Ln(S
0)c is the associated connec-

tive spectrum. When n = 1 the spectrum L1(S
0)c is the connective image-of-J spectrum

j. It seems likely that the results and methods of our work are a good way to obtain
information about THH(j).

2 A Brief Review of Hochschild Homology

In this section we recall the facts we need about ordinary (algebraic) Hochschild homol-
ogy. Our basic reference for this subject is [8, Chapters IX and X].

If S is a graded algebra over a ground field k, its Hochschild homology HH∗(S) is
defined to be the homology of the Hochschild complex [8, page 175]

...
↓

S ⊗ S ⊗ S
↓

S ⊗ S
↓
S,

(2)

in which the differential is given by the formula

d(t0 ⊗ · · · ⊗ tn) =
n−1∑
i=0

(−1)it0 ⊗ · · · ⊗ titi+1 ⊗ · · · ⊗ tn

+(−1)n(−1)|tn|(|t0|+···+|tn−1|)tnt0 ⊗ t1 ⊗ · · · ⊗ tn−1.

As one might expect, HH∗(S) can also be described in terms of Tor; it is

TorS⊗S
op

(S, S),

where the first factor of S ⊗ Sop acts on S by multiplication on the left and the second
factor by multiplication on the right [8, page 169]. The reader may perhaps wonder
why one uses this definition for the homology of S instead of the “obvious” definition
TorS(k, k). For our purposes, the answer is that the latter is the appropriate definition
for the category of augmented algebras, but we need to work more generally; the functor
HH∗(S) is closely related to TorS(k, k), but it is defined for arbitrary algebras S.
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There is an evident natural map

ι : S → HH0(S),

which is an isomorphism when S is commutative. There is also a “suspension” map

σ : S → HH1(S)

which takes t ∈ S to the class of 1⊗ t. If S is commutative there is a product

HHi(S)⊗HHj(S)→ HHi+j(S),

which gives HH∗(S) the structure of a commutative graded S-algebra (see [8, page 217]);
moreover ι is a ring homomorphism and σ is a derivation:

σ(st) = sσ(t) + (−1)|s||t|tσ(s).(3)

It will not surprise the reader to find that there are times when we actually need to
compute the ring HH∗(S). The following result is sufficient for our purposes.

Proposition 2.1 If S has the form

Z/p [x1, x2, . . .]⊗ Λ(y1, y2, . . .),

then HH∗(S) has the form

S ⊗ Λ(σ(x1), σ(x2), . . .)⊗ Γ(σ(y1), σ(y2), . . .),

where the inclusion of the first factor is the natural map

ι : S
∼=→ HH0(S)

and σ is the suspension map
S → HH1(S).

Proof. Let
ϕ : S → S ⊗ S

be the ring map which takes xi and yj to

xi ⊗ 1− 1⊗ xi

and
yj ⊗ 1− 1⊗ yj,

respectively. By [8, Theorem X.6.1], ϕ induces an isomorphism

TorS(Sϕ,Z/p)→ TorS⊗S(S, S) = HH∗(S),
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where Sϕ denotes the S-module structure on S obtained by pulling back its S⊗S-module
structure along ϕ. In our case S is commutative, so that Sϕ has the trivial S-module
structure, and we conclude that there is an isomorphism

S ⊗ TorS(Z/p,Z/p) ∼= HH∗(S).(4)

But it is well known that

TorS(Z/p,Z/p) ∼= Λ(σ′(x1), σ
′(x2), . . .)⊗ Γ(σ′(y1), σ

′(y2), . . .),

where Γ denotes a divided polynomial algebra and σ′ is the suspension map

S → TorS1 (Z/p,Z/p);

and it is not hard to check that the isomorphism (4) takes σ′(xi) to σ(xi) and σ′(yj) to
σ(yj). ♣

3 Introduction To Topological Hochschild Homol-

ogy

In this section we turn to the topological version of Hochschild homology. Our references
for the foundations are [3] and [10], and we refer to those sources for all technical details.

Roughly speaking, topological Hochschild homology is constructed by replacing the
algebra S in the Hochschild complex (2) by a ring spectrum R. We will show how to
carry this idea out when the multiplication in R is strictly associative (which is the case
considered in [3, Section 1]), but in fact it can be done whenever R has an A∞ structure
(see [10]).

First we must reformulate the definition of HH∗(S). Let HH•(S) be the simplicial
abelian group

...
↓↑↓↑↓↑↓
S ⊗ S ⊗ S
↓↑↓↑↓
S ⊗ S
↓↑↓
S.

Here the face maps ∂i and degeneracy maps si are given by the formulas

∂i(t0 ⊗ · · · ⊗ tn) =


t0 ⊗ · · · ⊗ titi+1 ⊗ · · · ⊗ tn if 0 ≤ i < n

tnt0 ⊗ t1 ⊗ · · · ⊗ tn−1 if i = n,
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and
si(t0 ⊗ · · · ⊗ tn) = t0 ⊗ · · · ⊗ ti ⊗ 1⊗ ti+1 ⊗ · · · ⊗ tn.

Clearly the Hochschild complex is the chain complex associated to this simplicial abelian
group. But for any simplicial abelian group, the homology of its associated chain complex
is the same as the homotopy of its geometric realization (see [15, Theorem 22.1]), so in
our case we conclude

HH∗(S) = π∗|HH•(S)|.
We now define the topological Hochschild homology spectrum THH(R) associated to

a ring spectrum R to be the geometric realization of the simplicial spectrum

...
↓↑↓↑↓↑↓
R ∧R ∧R

THH•(R) = ↓↑↓↑↓
R ∧R
↓↑↓
R.

The face map

∂i :

n+1︷ ︸︸ ︷
R ∧ · · · ∧R→

n︷ ︸︸ ︷
R ∧ · · · ∧R

is defined by the following equation (suitably interpreted):

∂i(r0 ∧ · · · ∧ rn) =


r0 ∧ · · · ∧ riri+1 ∧ · · · ∧ rn if 0 ≤ i < n

rnr0 ∧ r1 ∧ · · · ∧ rn−1 if i = n.

The degeneracy map

si :

n+1︷ ︸︸ ︷
R ∧ · · · ∧R→

n+2︷ ︸︸ ︷
R ∧ · · · ∧R

is defined to be the composite

n+1︷ ︸︸ ︷
R ∧ · · · ∧R ∼=→

i+1︷ ︸︸ ︷
R ∧ · · · ∧R∧S0∧

n−i︷ ︸︸ ︷
R ∧ · · · ∧R 1∧e∧1−→

n+2︷ ︸︸ ︷
R ∧ · · · ∧R,

where e is the unit map S0 → R; thus the i-th degeneracy inserts a unit in the (i+ 1)-st
position. (Our assumption that the multiplication in R is strictly associative is necessary
in order that the maps ∂i and si defined in this way satisfy the simplicial identities).

We shall write
ι̃ : R→ THH(R)

for the inclusion of the 0-th simplicial filtration in THH(R). If the multiplication in R
is sufficiently commutative then THH(R) inherits a ring-spectrum structure and ι̃ is a
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ring map (see [3, Section 2]). If R is an E∞ ring spectrum then THH(R) inherits an
E∞ ring structure and ι̃ is an E∞ ring map (see [10]). Our definition of the spectrum `,
which is given in Section ??, automatically implies that ` is an E∞ ring spectrum, so we
conclude that THH(`) is also.

Now suppose that we are given a homology theory h∗ with a multiplication and
that we want to know h∗(THH(R)). In [4], Bökstedt introduced the following spectral
sequence for this sort of calculation.

Proposition 3.1 If h∗ satisfies the strict Künneth formula

h∗(X ∧ Y ) ∼= h∗X ⊗h∗S0 h∗Y

then there is a spectral sequence

HH∗(h∗(R))⇒ h∗(THH(R)),(5)

where HH∗ is defined with respect to the ground ring h∗S
0. For each x ∈ h∗(R) the

element
ι∗(x) ∈ HH0(h∗(R))

survives to
ι̃∗(x) ∈ h∗(THH(R)).

We warn the reader that there is no Hopf algebra structure in this spectral sequence.
It is likely, although we shall not attempt to prove it, that Proposition 3.1 holds

without the assumption that h∗ satisfies the strict Künneth formula (cf. [19, Theorem
13.1]).

Proof of Proposition 3.1. For any simplicial spectrum X•, we may apply the
theory h∗ to the simplicial filtration of |X•| in the usual way to obtain a spectral sequence
converging to h∗(|X•|) (cf. [16, Theorem 11.14]). If X• is “proper” then the E2 term of
this spectral sequence is the homology of the complex

· · · → h∗(Xn)→ · · · → h∗(X1)→ h∗(X0),(6)

with differential
d =

∑
(−1)i(∂i)∗.

Now when X• is THH•(R) and h∗ satisfies the strict Künneth formula this complex is
just the Hochschild complex for h∗(R), and we conclude that

E2
∼= HH∗(h∗(R))

as required. ♣

At the end of the next section we shall need to have somewhat tighter control of the
spectral sequence (5). The information we need is provided by our next result.
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Proposition 3.2 There is a natural transformation

σ̃ : ΣR→ THH(R)

such that the element
σ∗(x) ∈ HH1(h∗(R))

survives to
σ̃∗(Σx) ∈ h∗(THH(R)).

for each x ∈ h∗(R).

Proof. Before we can define the natural transformation σ̃ we need some preliminary
constructions. Let S•(R) be the simplicial spectrum obtained by “replacing all ∧’s in
THH•(R) by ∨’s.” More precisely, the n-th simplicial degree of Sn(R) is

n+1︷ ︸︸ ︷
R ∨ . . . ∨R .

The i-th face operator

∂i :

n+1︷ ︸︸ ︷
R ∨ . . . ∨R→

n︷ ︸︸ ︷
R ∨ . . . ∨R

is defined by the equation

∂i ◦ Ij =



Ij−1 if i < j

Ij if i ≥ j and j < n

I0 if i = j = n;

here
Ij : R→ R ∨ . . . ∨R

is the inclusion of the j-th wedge summand. The i-th degeneracy map si is defined by
the equation

si ◦ Ij =


Ij+1 if i < j

Ij if i ≥ j.

We pause to determine the homotopy type of |S•(R)|.

Lemma 3.3 |S•(R)| ' R ∨ ΣR
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Proof of Lemma 3.3. Clearly we have

|S•(R)| ∼= |S•(S0)| ∧R.

Now S•(S
0) can be obtained by adding a disjoint basepoint to the standard simplicial

decomposition of S1 (see [3, page 20]), and so we have

|S•(R)| ∼= (S1)+ ∧R.

But for any space X, the space X+ obtained by adding a disjoint basepoint splits stably
as S0 ∨X, so finally we have

|S•(R)| ' (S0 ∨ S1) ∧R ' R ∨ ΣR

as required. ♣

For each n we can define a map

ωn :

n+1︷ ︸︸ ︷
R ∨ . . . ∨R→

n+1︷ ︸︸ ︷
R ∧ . . . ∧R

by letting the restriction of ωn to the j-th wedge summand be the composite

R
∼=→

j︷ ︸︸ ︷
S0 ∧ S0 ∧R ∧

n−j︷ ︸︸ ︷
S0 ∧ S0 e∧1∧e−→

n+1︷ ︸︸ ︷
R ∧ . . . ∧R .

Taken together, the ωn give a map

ω• : S•(R)→ THH•(R).

By passing to geometric realizations and using Lemma 3.3 we obtain a map1

ω : R ∨ ΣR→ THH(R)

The restriction of ω to the R summand is the map

ι̃ : R→ THH(R)

defined earlier. We can now define

σ̃ : ΣR→ THH(R)

to be the restriction of ω to the ΣR summand.

1In [3, Section 3] and [4, Section 2] this map is denoted by λ.
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To complete the proof of Proposition 3.2 it only remains to show that the transfor-
mation σ̃ has the desired relation to the spectral sequence (5).

Let C∗(X•) denote the chain complex (6). A straightforward calculation shows that
the homology of C∗(S•(R)) vanishes in all dimensions except 0 and 1, and in particular
the spectral sequence associated to S•(R) collapses. For each x ∈ h∗(R) the element

I1∗x ∈ h∗(R ∨R)

is a 1-dimensional cycle in C∗(S•(R)) which represents a class x in E2(S•(R)). If we
write J for the inclusion of ΣR as a wedge summand in |S•(R)|, then x survives to

J∗(Σx) ∈ h∗(|S•(R)|).

It follows that the image of x in E2(THH•(R)) survives to ω∗J∗(Σx), which by defi-
nition is σ̃(Σx), in h∗(THH•(R)). But the image of I1∗x in the Hochschild complex
C∗(THH•(R)) is 1 ⊗ x, and so the image of x in E2(THH•(R)) is σx. We have now
shown that σx survives to σ̃(Σx), as required to finish the proof of Proposition 3.2. ♣

We conclude this section with some remarks which will not be used in the rest of the
paper.

Remark 3.4 Alan Robinson has defined a “topological” analog of TorS(M,N),
which he denotes by E ∧R F (see [19]). In analogy with the equation

HH∗S = TorS⊗S
op

(S, S)

one presumably has
THH(R) ' R ∧R∧Rop R.

Remark 3.5 There is another way to relate Robinson’s work to THH. Given a
sufficiently good map of ring spectra T → R, it should be possible to define a spectrum

THHT (R)

(i.e., “topological Hochschild homology over the ground ring T ”) by replacing all the
smash products in the definition of THH(R) by ∧T products. In particular, if R = HS
for a discrete ring spectrum S one should have a formula

π∗THHHZHS = HH∗S

relating ordinary Hochschild homology to topological Hochschild homology; this would
give one way to construct the map φ mentioned in Subsection 1.3 of the introduction. It
should also be the case that

π∗(THHHZHS)hS
1

= HC−∗ S;
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cf. Subsection 1.4.

Remark 3.6 Here is one more way to motivate the THH construction. If G is a
topological group, its classifying space BG is the geometric realization of the following
simplicial space.

...
↓↑↓↑↓↑↓
G×G
↓↑↓↑↓
G

↓↑↓
∗

The face and degeneracy maps are given by the equations

∂i(g1, . . . , gn) =


(g2, . . . , gn) if i = 0
(g1, . . . , gigi+1, . . . , gn) if 0 < i < n
(g1, . . . , gn−1) if i = n

and
si(g1, . . . , gn) = (. . . , gi, 1, gi+1, . . .).

The same construction can be applied when G is merely an associative monoid.
It would be natural to try to apply this construction to an associative ring spectrum

R, replacing the G’s by R’s, the ×’s by ∧’s, and ∗ by S0. If one attempts to carry this
out, however, it becomes apparent that there is no sensible way to define the first and
last degeneracy maps ∂0 and ∂n. Further reflection shows that this is because there is
no sensible way to define an augmentation map R → S0. This brings us back to the
observation made at the beginning of Section 2: in the analogous algebraic situation, one
compensates for the lack of an augmentation by using the Hochschild complex instead
of the bar construction. Thus one can think of the THH construction as being the
closest one can come to imitating the classifying space construction for a ring spectrum
R. (The analogy is not precise, however, and in particular if the analog of the Hochschild
construction is applied to a topological group G the result is not BG but instead is the
free loop space Map(S1, BG); see [11]).

4 Calculation of the E2-term of the Adams spectral

sequence

We remind the reader that p denotes an odd prime.
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Let M denote the Moore spectrum S0 ∪p e1. By definition we have

π∗(X;Z/p) = π∗(X ∧M))

for any spectrum X, and we accordingly write

Er(X;Z/p)

for the classical Adams spectral sequence converging to π∗(X ∧M). We will index this
spectral sequence as usual, so that

Et−s,s
2 (X;Z/p) = Exts,tA∗(Z/p,H∗(X ∧M;Z/p)).

The differentials dr have bidegree (−1, r), and Et−s,∗
∞ is the associated graded of a fil-

tration on πt−s(X;Z/p). The Moore spectrum M is a ring spectrum (since p is odd),
and it follows that the spectral sequence has a multiplicative structure (see [18, Theorem
2.3.3]).

The case X = ` is of particular importance for our work. In this case it is well known
(cf. [18, page 75], and also see the proof of Theorem 4.1 below) that

E2(`;Z/p) ∼= Z/p [a1] ∼= E∞(`;Z/p),

where a1 is an element in bidegree (2p− 2, 1) representing v1 ∈ π2p−2(`;Z/p). We shall
also write a1 for the image of this element under the map

E2(`;Z/p)→ E2(THH(`);Z/p)

induced by the inclusion ι̃ : `→ THH(`).
The purpose of this section is to prove the following theorem.

Theorem 4.1 E2(THH(`);Z/p) has the form

Z/p [a1]⊗ Λ(λ1, λ2)⊗ Z/p [µ],

where λ1 is in bidegree (2p − 1, 0), λ2 is in bidegree (2p2 − 1, 0), and µ is in bidegree
(2p2, 0).

This, in turn, is a consequence of our next result. As usual, we write A∗ for the dual
of the Steenrod algebra.

Proposition 4.2 As an algebra, H∗(THH(`);Z/p) has the form

H∗(`;Z/p)⊗ Λ(λ1, λ2)⊗ Z/p [µ],
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where λ1 is in degree 2p− 1, λ2 is in degree 2p2− 1, µ is in degree 2p2, and the inclusion
of the first factor is the natural map

ι̃∗ : H∗(`;Z/p)→ H∗(THH(`);Z/p).

The A∗-coaction

ν : H∗(THH(`);Z/p)→ A∗ ⊗H∗(THH(`);Z/p)

is determined by the equations
ν(λi) = 1⊗ λi

and
ν(µ) = 1⊗ µ+ τ0 ⊗ λ2.

Proof of Theorem 4.1. We need to calculate

ExtA∗(Z/p,H∗(THH(`) ∧M;Z/p)).

We shall do this by using a standard change-of-rings theorem:

ExtΓ(Z/p,Γ2ΣN) ∼= ExtΣ(Z/p,N)(7)

(see [18, Theorem A1.3.12]). Here Γ denotes a Hopf algebra, Σ a quotient Hopf algebra,
and N a Σ-comodule; the 2-product is defined on page 311 of [18]. (See pages 337–339
of [1] for a dual version of the following argument which avoids the 2-product).

First we observe that if N is actually a Γ-comodule (more precisely if the Σ-comodule
structure on N is induced by a Γ-comodule structure) then the map

Γ⊗N → Γ⊗N

which takes g ⊗ n to ∑
i

ggi ⊗ ni

(where, as usual, we have written

n 7→
∑
i

gi ⊗ ni

for the Γ-coaction on N) induces an isomorphism

(Γ2ΣZ/p)⊗N → Γ2ΣN

(where the domain has the diagonal Γ-coaction). We can therefore rewrite (7) in this
situation as follows:

ExtΓ(Z/p, (Γ2ΣZ/p)⊗N) ∼= ExtΣ(Z/p,N).(8)
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Now let Γ be A∗, let Σ be the Hopf-algebra quotient of the inclusion

H∗(` ∧M;Z/p)→ H∗(Z/p;Z/p) = A∗,

and let N be
Λ(λ1, λ2)⊗ Z/p [µ].

Proposition 4.2 implies

H∗(THH(`) ∧M;Z/p) ∼= H∗(` ∧M;Z/p)⊗N,

and we have
Γ2ΣZ/p ∼= H∗(` ∧M;Z/p)

by [18, Lemma A1.1.16], so finally we have

H∗(THH(`)∧M;Z/p) ∼= (Γ2ΣZ/p)⊗N.

We can therefore conclude from equation (8) that

ExtA∗(Z/p,H∗(THH(`) ∧M;Z/p)) ∼= ExtΣ(Z/p,N).

But
Σ = Λ(χτ1),

and in particular Proposition 4.2 shows that the Σ-coaction on N is trivial. Thus we
have

ExtΣ(Z/p,N) ∼= ExtΣ(Z/p,Z/p)⊗N,
and by [18, Lemma 3.1.9] this is

Z/p [a1]⊗N
as required. ♣

Proof of Proposition 4.2. Of course, the first step in the proof of Proposition
4.2 is to calculate H∗(THH(`);Z/p) as an algebra by using the spectral sequence of
Proposition 3.1. We shall denote this spectral sequence by

Êr(R)

in order to distinguish it from the Adams spectral sequence. To carry out the spectral
sequence calculation, all we have to do is modify the proof of [4, Theorem 1.1].

Since
Ê2(`) ∼= HH∗(H∗(`;Z/p)),

we must begin by remembering what H∗(`;Z/p) is. In order to describe it we recall from
[1, Lemma 16.8] that the canonical map

ε : `→ HZ/p
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(i.e., the map which represents the generator of H0(`;Z/p)) induces a monomorphism

H∗(`;Z/p)→ H∗(HZ/p;Z/p) = A∗

with image
Z/p [χξ1, χξ2, . . .]⊗ Λ[χτ2, χτ3, . . .];

here χ is the canonical anti-automorphism of A∗
2.

We can now apply Proposition 2.1 of Section 2 to conclude that

Ê2(`) ∼= H∗(`;Z/p)⊗ Λ[σ(χξ1), σ(χξ2), . . .]⊗ Γ[σ(χτ2), σ(χτ3), . . .],

where H∗(`;Z/p) is in filtration-degree 0, σ(χξi) has bidegree (2pi−2, 1), and σ(χτi) has
bidegree (2pi − 1, 1).

The next step is to determine the differentials in the spectral sequence Êr(`). This is
easily done by comparing it with the spectral sequence Êr(HZ/p), whose behavior has
been completely determined in [4]. We shall show in Section ?? that the map ε is an E∞
ring map (more precisely, we should say that there is an E∞ ring map in its homotopy
class). In particular, it is an A∞ ring map, and thus it induces a map

ε∗ : Êr(`)→ Êr(HZ/p).

A calculation similar to that for Ê2(`) shows that

Ê2(HZ/p) ∼= A∗ ⊗ Λ[σ(χξ1), σ(χξ2), . . .]⊗ Γ[σ(χτ0), σ(χτ1), . . .].

By [4, Lemma 1.3], the only nontrivial differential in Êr(HZ/p) is given by the formula

dp−1 γj(σ(χτi)) = σ(χξi+1) · γj−p(σ(χτi)) if j > p;

here we have written γj(σ(χτi)) for the j-th divided power of σ(χτi). The same formula
therefore holds in Êp−1(`) for i ≥ 2, and we conclude that

Êp(`) ∼= H∗(`;Z/p)⊗ Λ[σ(χξ1), σ(χξ2)]⊗ TPp[σ(χτ2), σ(χτ3), . . .],

where TPp denotes a truncated polynomial algebra of height p (cf. [4, page 6]). Since
all indecomposables in Êp(`) are in filtrations 0 and 1 we can further conclude that

Êp(`) = Ê∞(`).

Proposition 3.2 implies that the elements σ(χξi) and σ(χτi) in Ê∞ are represented in
H∗(THH(`)) by σ̃∗(Σ(χξi)) and σ̃∗(Σ(χτi)) respectively.

2We need to use χ in this description where Adams does not because we are thinking of H∗(`;Z/p)
as π∗(HZ/p ∧ `) instead of π∗(` ∧HZ/p).
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Next we need to determine the multiplicative extensions in H∗(THH(`);Z/p). For
this we use Dyer-Lashof operations. As we have seen in the previous section, THH(`)
is an E∞ ring spectrum, and so its homology supports Dyer-Lashof operations

Qi : Hn(THH(`);Z/p))→ Hn+2i(p−1)(THH(`);Z/p)),

(see [21]). If x is an element of dimension 2s then Qsx = xp, ([21, Theorem 1.1(4)]) so
in particular we have

(σ̃∗(Σ(χτi)))
p = Qpiσ̃∗(Σ(χτi)).

But Bökstedt shows that the map

σ̃∗Σ : Hn(R;Z/p)→ Hn+1(THH(R);Z/p)

commutes with Dyer-Lashof operations (see [4, Lemma 2.9]), and Steinberger has calcu-
lated the action of the Qi in H∗(`;Z/p):

Qpiχτi = χτi+1

(see [21, Theorem 2.3]). We conclude that

(σ̃∗(Σχτi))
p = σ̃∗(Σχτi+1)

for all i ≥ 2, and hence that

(σ̃∗(Σχτ2))
pi = σ̃∗(Σχτi+2)

for all i ≥ 0. If we denote σ̃∗Σ(χξ1) by λ1, σ̃∗Σ(χξ2) by λ2, and σ̃∗Σ(χτ2) by µ, we have
now shown that

H∗(THH(`);Z/p) ∼= H∗(`;Z/p)⊗ Λ(λ1, λ2)⊗ Z/p [µ]

as an algebra.
To complete the proof of Proposition 4.2 we need to determine the A∗-coaction on

λ1, λ2, and µ. We shall give the calculation of ν(λ2); the others are similar.
Since the map σ̃∗Σ commutes with ν, we have

ν(λ2) = (1⊗ σ̃∗Σ)ν(χξ2).

Now ν(χξ2) is determined by Milnor’s calculations: it is

1⊗ ξ2 + ξ1 ⊗ ξp1 + ξ2 ⊗ 1

(see [18, Theorem 3.1.1]). We therefore conclude that

ν(λ2) = 1⊗ λ2 + ξ1 ⊗ σ̃∗Σ(ξp1) + ξ2 ⊗ σ̃∗Σ(1)

19



and it remains to show that the second and third terms are zero. But σ̃∗Σ(ξp1) represents
the element σ(ξp1) in the spectral sequence, and this element is zero because σ is a
derivation (equation (3) of Section 2). It follows that σ̃∗Σ(ξp1) is an element in filtration
0 with dimension 2p2−2p+1, and an inspection of the spectral sequence shows that the
only such element is 0. Similarly, σ̃∗Σ(1) is an element in filtration 0 with dimension 1,
and again the only such element is 0. This completes the proof of Proposition 4.2. ♣

Remark 4.3 (Andy Baker and Larry Smith) Let us assume that the Brown-
Peterson spectrum BP has an E∞ structure. Starting from the equation

H∗(BP ;Z/p) = Z/p [χξ1, χξ2, . . .],

it is easy to see that Ê2(BP ) has the form

H∗(BP ;Z/p)⊗ Λ[σ(χξ1), σ(χξ2), . . .].

For dimensional reasons there cannot be any differentials, and we conclude that

H∗(THH(BP );Z/p) = H∗(BP ;Z/p)⊗ Λ(λ1, λ2, . . .),(9)

where
λi = σ̃∗Σ(χξi).

A similar calculation in rational cohomology, starting from the equation

H∗(BP ;Q) ∼= Q[v1, v2, . . .],

shows that
H∗(THH(BP );Q) = H∗(BP ;Q)⊗ Λ(λ′1, λ

′
2, . . .),(10)

where
λ′i = σ̃∗Σ(vi).

Comparing equations (9) and (10) dimensionwise shows that H∗(THH(BP );Z(p)) must
be torsion free. Now equation (9) and Theorem 1.3 of [38] imply that THH(BP ) is a
wedge of suspensions of BP and that

π∗THH(BP ) ∼= π∗BP ⊗ Λ(λ1, λ2, . . .).

5 Localized mod-p homotopy of THH(`)

The object of this section is to prove the following result, which we will use in later
sections to determine the differentials in the Adams spectral sequence Er(THH(`);Z/p)
for the mod-p homotopy of THH(`).
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Theorem 5.1 The inclusion
ι̃ : ` −→ THH(`)

induces an isomorphism

ι̃∗ : v−1
1 π∗(`;Z/p)

∼=−→ v−1
1 π∗(THH(`);Z/p).

The v1-inverted mod p homotopy of an `-module X with structure map α : `∧X −→
X is defined as a direct limit:

v−1
1 π∗(X;Z/p) = lim

v1
π∗(X;Z/p),

where the maps v1 in the direct system

πn(X;Z/p) −→ π2(p−1)+n(X;Z/p)

send the homotopy class [f ] of a stable map f : Sn −→ X ∧M to the homotopy class of
[α ◦ (v1 ∧ f)], using v1 also to denote a representative map v1 : S2(p−1) −→ ` and M to
denote the mod p Moore spectrum.

This result is in some sense anticipated by Bökstedt’s results on THH(Z(p)) in [4].
(Actually he discusses THH(Z) and not THH(Z(p)), but it is clear that the results in
[4] have parallels for THH(Z(p)).) It is an easy consequence of his computations that
the inclusion of spectra

ι : Z(p) −→ THH(Z(p))

induces an isomorphism in homotopy tensored with Z[1/p]. In other words, inverting
p in homotopy kills the difference between the Eilenberg-MacLane spectrum Z(p) and
THH(Z(p)). Our theorem states that something like this persists for THH(`) if we
consider multiplication by v1 in mod-p homotopy instead of multiplication by p in p-
local homotopy.

This theorem is a consequence of the following proposition.

Proposition 5.2 The inclusion

ι̃ : ` −→ THH(`)

induces an isomorphism

ι̃∗ : K(1)∗(`)
∼=−→ K(1)∗(THH(`)).

The homology theory K(1) is the first Morava K-theory, with

π∗(K(1)) = Z/p [v1, v
−1
1 ],
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where the dimension of v1 is 2(p− 1). For an odd prime p K(1) is the Adams summand
of mod p periodic K-theory, and we therefore have an isomorphism

K(1)∗(X) ∼= v−1
1 π∗(` ∧X;Z/p)

where ` is the Adams summand of complex K-theory, π∗(`) = Z(p)[v1].

Proof of Theorem 5.1. We start by choosing some notation: Take ` with the usual
`-module structure µ : `∧ ` −→ ` and THH(`) with α : `∧ THH(`) −→ THH(`) being
just the restriction of the multiplication on THH(`).

Observe that we can make a commutative diagram

π∗(l;Z/p)
ι̃∗−→ π∗(THH(l);Z/p)

↓ h ↓ h
π∗(l ∧ l;Z/p) ι̃∗−→ π∗(l ∧ THH(l);Z/p)

↓ µ∗ ↓ α∗
π∗(l;Z/p)

ι̃∗−→ π∗(THH(l);Z/p)

where the h’s denote Hurewicz maps. What is important here are the facts that the
compositions µ∗ ◦ h and α∗ ◦ h are identities, so that α∗ is a surjection, among other
things. We can also localize the lower square in this diagram (but not the upper square !)
to obtain the following diagram.

v−1
1 π∗(l ∧ l;Z/p) ι̃∗−→ v−1

1 π∗(l ∧ THH(l);Z/p)

↓ µ∗ ↓ α∗
v−1

1 π∗(l;Z/p)
ι̃∗−→ v−1

1 π∗(THH(l);Z/p)

As we have observed that

K(1)∗(X) = v−1
1 π∗(` ∧X;Z/p)

Proposition 5.2 states that the upper arrow here is an isomorphism. As the localization
of an epimorphism is an epimorphism, the right hand arrow α∗ in the new diagram is an
epimorphism, so we conclude that the lower ι̃∗,

ι̃∗ : v−1
1 π∗(`;Z/p) −→ v−1

1 π∗(THH(`);Z/p),

is also surjective.
Now we must prove the lower ι̃∗ is injective. Suppose that x ∈ ker(ι̃∗). By definition

of localization we can find an integer m such that vm1 x = x′ ∈ π∗(`;Z/p). By choosing
m larger if necessary we can arrange that

ι̃∗ : π∗(`;Z/p) −→ π∗(THH(`);Z/p)
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carries x′ to zero. By commutativity of the upper square of the first diagram,

ι̃∗(h(x
′)) = 0,

so that injectivity of the localized ι̃∗ implies there is m′ such that

vm
′

1 h(x′) = 0.

Then

0 = µ∗(v
m′
1 h(x′))

= vm
′

1 µ∗(h(x
′))

= vm
′

1 x′

in π∗(`;Z/p) so that in v−1
1 π∗(`;Z/p)

0 = vm+m′
1 x.

We conclude that x = 0, so that

ι̃∗ : v−1
1 π∗(`;Z/p) −→ v−1

1 π∗(THH(`);Z/p)

is also injective. ♣

To prove Proposition 5.2 we need the following lemma.

Lemma 5.3 The Hochschild homology of K(1)∗(`) with respect to the ground ring π∗(K(1))
is

HH
π∗(K(1))
i (K(1)∗(`)) =

{
K(1)∗(`) if i = 0.
0 if i > 0.

Proof of 5.2. The inclusion of simplicial spectra l −→ THH(l) induces a morphism
of the spectral sequences for K(1)∗(`) and K(1)∗(THH(`)) arising from the simplicial
filtrations. For ` the spectral sequence is trivial, and for THH(`) we can evaluate the
E2-term according to Proposition 3.1, since we know the homology theory K(1) has a
good Künneth theorem [18, page 133]. We find that the E2-term of the spectral sequence
is identified with the Hochschild homology of K(1)∗(`) over π∗(K(1)). Then we have

K(1)∗(`) ∼= E∞0,∗ = E2
0,∗ −→ E2

i,∗
∼= HH

π∗(K(1))
i (K(1)∗(`)).

But, according to the lemma above,

HH
π∗(K(1))
i (K(1)∗(`)) =


K(1)∗(`), if i = 0

0, if i > 0.

23



Thus we have an isomorphism of spectral sequences at the E2-level and this fact imme-
diately implies the proposition. ♣

The structural information about the algebra K(1)∗(`) which we need to prove Lem-
ma 5.3 is supplied by the following result.

Proposition 5.4 K(1)0(`) is a direct limit of semisimple Z/p-algebras. In fact,

K(1)0(`) = lim
n≥0

pn∏
Z/p ,

where the n+1-st map in the direct system is the pn-fold power of the diagonal embedding

Z/p −→
p∏

Z/p.

With this kind of hold on the structure of the algebra K(1)∗(`) it is easy to prove
Lemma 5.3.

Proof of Lemma 5.3. Recall the fact that Hochschild homology commutes with
direct limits, the fact ([8, Theorem 5.3, page 173]) that for k-algebras A and B

HHk
∗(A×B) ∼= HHk

∗(A)×HHk
∗(B),

and the elementary computation

HHk
i (k) =

{
k, if i = 0.
0, if i > 0.

Since
K(1)∗(`) = π∗(K(1))⊗K(1)0(`),

the structural results of Proposition 5.4 imply K(1)∗(`) is a limit of products of π∗(K(1))
with itself. Putting these facts together yields the proof of the Lemma immediately. ♣

We will give two proofs of Proposition 5.4, the first being an elementary computation
suggested by the methods of [1]. Generally speaking, the background for the first proof
is contained in [1, Part III, Chapter 17], where results are proved for the prime two and
stated for odd primes. In the years since [1] was published notations and conventions
have crystallized in ways that are not always compatible with the original source. The
methods we use are adapted from the calculation of E(1)∗(`), where E(1) is the homology
theory v−1

1 l with coefficients π∗(E(1)) = Z(p) [v1, v
−1
1 ].

First Proof of Proposition 5.4. Note first that

K(1)∗(X) ∼= E(1)∗(X;Z/p)
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so that a normal universal coefficients theorem gives K(1)∗(X) from E(1)∗(X). In our
case E(1)∗(`) is torsion-free [1, Proposition 17.2, page 354] so that we obtain

K(1)∗(`) = E(1)∗(`)/pE(1)∗(`).

Now we can use Adams’ explicit description of E(1)∗(`) as a subalgebra of

Q[v1, v
−1
1 , w] = E(1)∗(`;Q),

where v1 and w both have degree 2(p − 1). (At odd primes Adams uses up−1 and vp−1

where we will be using v1 and w, respectively.) Translating [1, Proposition 17.6, page 358]
and its extension to odd primes into our notation we find that if one defines polynomials

f0(v1, w) = 1,

f1(v1, w) =
w − v1

(p+ 1)− 1
,

...

fr(v1, w) =
(w − v1)

((rp+ 1)− 1)
· (w − (p+ 1)v1)

((rp+ 1)− (p+ 1))
· · · (w − ((r − 1)p+ 1)v1)

(rp+ 1)− ((r − 1)p+ 1)

= (prr!)−1(w − v1)(· · ·)(w − ((r − 1)p+ 1)v1)

then one obtains E(1)∗(`) embedded as a subalgebra of Q[v1, v
−1
1 , w] as the free Z(p)[v1, v

−1
1 ]

module on {f0, f1, . . . , fr, . . .}. By using techniques of the proof of this result one can
figure out the structure of the ring K(1)∗(`).

First we will prove the identity

fr · fs =
r∑
i=0

(
s

r − i

)(
s + i

s

)
vr−i1 fs+i

in E(1)∗(`) for r ≤ s. Once we know the special case

f1 · fr =

(
r

1

)
v1fr +

(
r + 1

r

)
fr+1

the general case will be proved by induction on r for fixed s.
To prove the special case, we note, following [1], that f1 · fr is homogeneous of total

degree 2(r + 1)(p− 1), so it has an expansion

f1 · fr = c0v
r+1
1 + c1v

r
1f1 + · · ·+ crv1fr + cr+1fr+1,

where ci ∈ Z(p). ¿From the definition of fr it is clear that

fr(1, sp+ 1) =

(
s

r

)
,
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where the binomial coefficient is interpreted as 0 if s < r, so that successively substituting
v1 = 1, w = sp + 1 for 0 ≤ s ≤ r + 1, we can determine the coefficients ci. The answers
are

c0 = · · · = cr−1 = 0,

and

cr =

(
r

1

)
,

cr+1 =

(
r + 1

r

)
.

To prove the general case, suppose that for r < s we have

fr · fs =
r∑
i=0

(
s

r − i

)(
s+ i

s

)
vr−i1 fs+i.

Then (
r

1

)
v1frfs +

(
r + 1

r

)
fr+1fs = (f1fr)fs

= f1(frfs)

=
r∑
i=0

(
s

r − i

)(
s+ i

s

)
vr−i1 f1fs+i

Hence(
r + 1

r

)
fr+1fs =

r∑
i=0

(
s

r − i

)(
s+ i

s

)
vr−i1 f1fs+i −

(
r

1

)
v1frfs

=
r∑
i=0

(
s

r − i

)(
s+ i

s

)
vr−i1

[(
s+ i

1

)
v1fs+i +

(
s+ i+ 1

s+ i

)
fs+i+1

]

−
(
r

1

)
v1

 r∑
j=0

(
s

r − j

)(
s+ j

s

)
vr−j1 fs+j


=

(
r + 1

r

)
r+1∑
i=0

(
s

r + 1− i

)(
s + i

s

)
vr+1−i

1 fs+i

after patient fiddling with the binomial coefficients, and we can cancel the extra factor
to get the identity we want.

Using the mod-p reduction of this identity we can prove that the reduction of

{f1, fp, . . . , fpi, . . .}
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generates K(1)∗(`). To prove fs is a polynomial in the fpi for pi ≤ s suppose that the
p-adic expansion of s begins

s = sjp
j + sj+1p

j+1

where 1 ≤ sj ≤ p− 1 and sj+1 ≥ 0. If s− pj = 0, there is nothing to do, so suppose that
s− pj > 0. By our identity

fpj · fs−pj =
pj∑
i=0

(
s− pj
pj − i

)(
s− pj + i

s− pj

)
vp

j−i
1 fs−pj+i

so that (
s

pj

)
fs = fpj · fs−pj −

pj−1∑
i=0

(
s− pj
pj − i

)(
s− pj + i

s− pj

)
vp

j−i
1 fs−pj+i.

But the coefficient of fs has nonzero reduction mod-p, since it is a p-adic unit by [13,
page 115], [9, page 270], [20], or by hand, so induction on s proves the assertion. Thus
we have a surjection

m : Z/p [v1, v
−1
1 ]⊗ Z/p [f1, fp, . . .] −→ K(1)∗(`).

Now we determine the relations satisfied by the fpj in K(1)∗(`) and get generators
for the kernel of m following similar strategy. In Q[v1, v

−1
1 , w] we have

(fpj)
p = c0v

pj+1

1 + c1v
pj+1−1
1 f1 + · · ·+

cpjv
pj+1−pj
1 fpj + · · ·+ cpj+1fpj+1

Substituting v1 = 1, and then successively w = (sp+ 1) for 0 ≤ s ≤ pj we get

0 = c0 = · · · = cpj−1 , 1 = cpj .

Substituting v1 = 1, and then successively w = (sp+ 1) for pj + 1 ≤ s ≤ pj+1 we find(
s

pj

)p
=

(
s

pj

)
+ cpj+1

(
s

pj + 1

)
+ · · ·+ cs

so that p|cs for s in this range, by induction on s. Thus, the relation satisfied by the
residue class fpj ∈ K(1)∗(`) is

(fpj)
p = vp

j+1−pj
1 fpj .

Introduce the degree zero Laurent polynomial

gpj = v−p
j

1 fpj

and the relation takes the form
(gpj)

p = gpj .
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We can finally state that m induces a surjection

m : Z/p [v1, v
−1
1 ][gpj : j ≥ 0]/(gppj − gpj : j ≥ 0) −→ K(1)∗(`)

and we claim this is an isomorphism. It suffices to consider the restriction

m0 : Z/p [gpj : j ≥ 0]/(gppj − gpj : j ≥ 0) −→ K(1)0(`).

We suppose x ∈ ker(m0). Then there is an n ≥ 0 such that

x ∈ An = Z/p [gpj : n ≥ j ≥ 0]/(gppj − gpj)

which is a Z/p-vector space of dimension pn+1. The image m0(An) is the subspace of

K(1)0(`) spanned by {f0 = 1, . . . , v−p
n+1+1

1 fpn+1−1}. This space supports pn+1 indepen-
dent functionals φs where

φ0(fi) = δi0

and
φs(f) = f(1, sp+ 1) mod p

for 1 ≤ s ≤ pn+1 − 1, so it is also of dimension pn+1. It follows that x = 0. Hence
ker(m0) = 0. Since we retrieve m by tensoring with Z/p [v1, v

−1
1 ], m is also an isomor-

phism.
Since it is well known that

Z/p [x]/(x− xp) ∼=
p∏
i=1

Z/p,

the isomorphisms m0 and m can be unwound to give the rest of the proof. ♣

Our second proof of Proposition 5.4 follows a suggestion of M.J. Hopkins that a proof
could be extracted from a result of Miller and Ravenel [17] in stable homotopy theory.
We follow the exposition in [18] between pages 223 and 226. Obviously the prerequisites
for this proof are much more demanding than those for the first proof, but we can also
prove more.

Second Proof of Proposition 5.4. In the language of BP -theory, we want to
calculate K(1)∗(BP 〈1〉), and it is not much more work to calculate all the rings

K(n)∗(BP 〈n〉) = v−1
n k(n)∗(BP 〈n〉)

for all n ≥ 1. The coefficient rings of the spectra here are

BP 〈n〉∗ = Z(p)[v1, . . . , vn]
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where degree vk = 2(pk − 1),
k(n)∗ = Z/p [vn],

and
K(n)∗ = Z/p [vn, v

−1
n ].

BP 〈n〉 may be constructed from the spectrum BP ,

BP∗ = Z(p)[v1, . . . , vn, . . .],

by a Baas-Sullivan construction

BP −→ BP 〈n〉
which realizes the quotient map

Z(p)[v1, . . . , vn, . . .] −→ Z(p)[v1, . . . , vn, . . .]/(vn+1, vn+2, . . .)

on coefficients. One has that

BP∗BP = BP∗[t1, t2, . . .]

so that the dual form of one of the universal coefficients theorems for generalized homol-
ogy theories [1, Proposition 13.5, page 285] gives

k(n)∗(BP ) ∼= k(n)∗ ⊗BP∗ BP∗BP
= Z/p [vn][t1, t2, . . .]

and

k(n)∗(BP 〈n〉) ∼= k(n)∗ ⊗BP∗ BP∗(BP 〈n〉)
= Z/p [vn][t1, t2, . . .]/(ηR(vn+1), ηR(vn+2), . . .),

by definition of BP 〈n〉 and by definition of the right unit ηR. Now we have also for k ≥ 1
the congruence

ηR(vn+k) ≡ vnt
pn

k − vp
k

n tk modulo (ηR(vn+1), . . . , ηR(vn+k−1))

in k(n)∗(BP ) [18, page 224]. It follows that

k(n)∗(BP 〈n〉) ∼= Z/p [vn][t1, t2, . . .]/(vnt
pn

k − vp
k

n tk : k ≥ 1)

and
K(n)∗(BP 〈n〉) ∼= Z/p [vn, v

−1
n ][t1, t2, . . .]/(vnt

pn

k − vp
k

n tk : k ≥ 1).

When n = 1 we can introduce new variables of degree 0

u1 = v−1
1 t1, . . . , uk = v−p

k−1−···−1
1 tk, . . . ,

whereupon the presentation changes to

K(1)∗(BP 〈1〉) ∼= Z/p [v1, v
−1
1 ][u1, u2, . . .]/(u

p
k − uk : k ≥ 1),

which is what we had before. ♣
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6 The localized Adams spectral sequence

This section contains the last of the preliminary computations we need before we compute
π∗(THH(`);Z/p) with the classical Adams spectral sequence, denoted Er(THH(`);Z/p)
in section ??. ¿From here on this is the only spectral sequence we will be dealing with, so
for the rest of the paper we simplify the notation to just Er. In theorem 4.1 we computed
the E2-term of the spectral sequence and the result is

E∗,∗2 = Ext∗,∗A∗(Z/p,HZ/p∗(THH(l) ∧M)),
∼= Z/p [a1]⊗ Λ(λ1, λ2)⊗ Z/p [µ],

where bidegree a1 = (2(p − 1), 1), bidegree λi = (2pi − 1, 0), and bidegree µ = (2p2, 0).
As a1 is a permanent cycle, this is a spectral sequence of Z/p [a1]-algebras, so we can
invert a1 to obtain a spectral sequence of Z/p [a1, a

−1
1 ] algebras, which we will denote

a−1
1 Er. Though we make no assertion concerning the convergence of the localized spectral

sequence, the isomorphism

v−1
1 π∗(`;Z/p) ∼= v−1

1 π∗(THH(`);Z/p)

established in Theorem 5.1 determines a−1
1 E∞. Since we have inverted only bihomo-

geneous elements a−1
1 Er is still bigraded, and this extra fact enables us to identify the

pattern of differentials which gives the required E∞-term.

Theorem 6.1 In the localized spectral sequence a−1
1 Er one has

a−1
1 E2

∼= Z/p [a1, a
−1
1 ]⊗ Λ(λ1, λ2)⊗ Z/p [µ]

and
a−1

1 E∞ ∼= Z/p [a1, a
−1
1 ].

The pattern of differentials may be described recursively as follows: The n-th nonzero
differential occurs in

a−1
1 Er(n)

∼= Z/p [a1, a
−1
1 ]⊗ Λ(λn, λn+1)⊗ Z/p [µp

n−1

]

and is given by the formulas

dr(n)(λn) = 0, dr(n)(λn+1) = 0, and dr(n)(µ
pn−1

)
.
= a

r(n)
1 λn.

The r(n) are given recursively by the definitions

r(1) = p, r(2k) = p r(2k − 1), and r(2k + 1) = p r(2k) + p,

and the λn are defined for n ≥ 3 by λn = λn−2µ
pn−3(p−1).
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We use the symbol
.
= for equality up to a multiple by a nonzero element of Z/p.

For example, this says that the first few steps in the spectral sequence are

Ep ∼= Z/p [a1, a
−1
1 ]⊗ Λ(λ1, λ2)⊗ Z/p [µ],

when dp(µ)
.
= ap1λ1;

Ep2 ∼= Z/p [a1, a
−1
1 ]⊗ Λ(λ2, λ1µ

p−1)⊗ Z/p [µp],

when dp2(µp)
.
= ap

2

1 λ2;

Ep3+p
∼= Z/p [a1, a

−1
1 ]⊗ Λ(λ1µ

p−1, λ2µ
p2−p)⊗ Z/p [µp

2

],

when dp3+p(µ
p2

)
.
= ap

3+p
1 λ1µ

p−1; and

Ep4+p2 ∼= Z/p [a1, a
−1
1 ]⊗ Λ(λ2µ

p2−p, λ1µ
p3−p2+p−1)⊗ Z/p [µp

3

],

when dp4+p2(µp
3
)
.
= ap

4+p2

1 λ2µ
p2−p.

Proof. As we have said in the opening remarks, we will show that the isomorphism

v−1
1 π∗(`;Z/p) ∼= v−1

1 π∗(THH(`);Z/p)

of Theorem 5.1 determines the E∞-term of the spectral sequence and that there is exactly
one way to obtain this E∞-term from the given E2-term.

According to Theorem 5.1,

ι̃ : ` −→ THH(`)

induces an isomorphism

ι̃∗ : v−1
1 π∗(`;Z/p)

∼=−→ v−1
1 π∗(THH(`);Z/p).

Therefore we have a commutative diagram

π∗(l;Z/p) −→ π∗(THH(l);Z/p)

↓ ↓
v−1

1 π∗(l;Z/p)
∼=−→ v−1

1 π∗(THH(l);Z/p),

where the vertical arrows are the localization maps. As the righthand localization map
is injective, we conclude that

ι̃∗ : π∗(`;Z/p) −→ π∗(THH(`);Z/p)
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is injective.
In section ?? we showed that

ι̃ : ` −→ THH(`)

induces a map of Adams spectral sequences, which may be identified with the canonical
algebra inclusion

Z/p [a1] −→ Z/p [a1]⊗ Λ(λ1, λ2)⊗ Z/p [µ]

on E2-terms. The domain spectral sequence has no differentials, so we have

Z/p [a1] −→ E∗,∗∞ ,

and this map is injective, since we have just observed that the map on homotopy is. Now
we use the surjectivity of the induced map on localized homotopy. This implies that if
x ∈ π∗(THH(`);Z/p), then there is a natural number N such that vN1 x lies in the image
of π∗(`;Z/p) in π∗(THH(`);Z/p). Multiplication by v1 in homotopy is represented by
multiplication by a1 in the Adams spectral sequence [1, Lemma 17.11(ii), page 361], so
we can draw conclusions about the spectral sequence Er. Take an infinite cycle ξ ∈ En,s

∞
, not already in Z/p [a1], (Thus 2(p − 1) < n.), representing x ∈ πn(THH(`);Z/p),
which is itself not in the image of πn(`;Z/p). If vN1 x lies in the image of π∗(l;Z/p),
then aN1 ξ = 0 in the spectral sequence. This is not saying that the homotopy element
represented by ξ becomes zero when multiplied by vN1 , but rather that a jump in the
Adams filtration degrees has occurred as we multiplied by higher and higher powers of
v1. All we can say is that vN1 x is now represented by an infinite cycle in En′,s′

∞ , where
now 2(p− 1)s′ = n′. We believe that the reader will find it helpful to sketch the spectral
sequence at this point. These remarks are then most conveniently expressed in terms of
the localized spectral sequence a−1

1 Er as the assertion

a−1
1 E∗,∗∞

∼= Z/p [a1, a
−1
1 ].

Now we claim that the pattern of differentials which delivers this E∞-term can only
be that pattern described in the statement of the theorem. Before we argue this point,
recall that we have already mentioned the fact that the localized spectral sequence retains
its bigrading, since the multiplicative set

S = {ai1 : i ≥ 0}

of elements we have inverted consists of bihomogeneous elements. One checks easily that
defining the bidegree of the fraction m/ai1 to be (n− 2i(p− 1), s− i), if the bidegree of
m is (n, s), leads to a well defined notion of bidegree in the localized spectral sequence.
Most importantly, we still have

dr : a−1
1 En,s

r −→ a−1
1 En−1,s+r

r .
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Start with the localized E2-term

a−1
1 E2

∼= Z/p [a1, a
−1
1 ]⊗ Λ(λ1, λ2)⊗ Z/p [µ],

where the bidegrees of a1, λi, and µ are (2(p−1), 1), (2pi−1, 0) and (2p2, 0), respectively.
Since the bidegree of dr is (−1, r), λ1 is an infinite cycle. Considering the bigrading again,
we see that dr(λ2) = 0, for all r, except possibly when r = p + 1. But if dp+1(λ2) is
not zero, we have dp+1(λ2)

.
= ap+1

1 , where
.
= means equal up to a nonzero scalar factor,

which is not consistent with the expression for the E∞-term. Therefore λ2 is also an
infinite cycle. Since we have a spectral sequence of algebras, we can conclude that µ is
not an infinite cycle, and that the first nonzero differential in the spectral sequence is
determined by what it does on µ. By bigrading considerations the only possible nonzero
differential on µ is

dp(µ)
.
= ap1λ1.

Then one easily calculates

a−1
1 Ep+1 = Z/p [a1, a

−1
1 ]⊗ Λ(λ2, λ3)⊗ Z/p [µp],

where λ3 = λ1µ
p−1, as in the statement of the theorem. Notice that the bidegrees of the

new Z/p [a1, a
−1
1 ]-algebra generators are (2p2−1, 0), (2p3−2p2 +2p−1, 0) , and (2p3, 0).

We have already argued that λ2 is an infinite cycle, and a calculation of bidegrees
shows there is one possible differential which could be nonzero on λ3, namely, dp2+1(λ3)

.
=

ap
2+1

1 . But this is also ruled out, since it would contradict what we know about the E∞-
term. Thus λ3 is an infinite cycle, and, therefore, µp cannot be an infinite cycle, and we
need to determine which differential takes µp out of the spectral sequence.

Since r ≥ p+ 1, dr(µ
p) = ar1λ3 is impossible, and the only possibility is that for some

r
dr(µ

p)
.
= ar1λ2.

Calculating bidegrees, we find that this can only happen, and, in fact, must happen,
when r = p2.

Proceeding inductively, assume that the first n−1 differentials in the localized spectral
sequence occur at the times specified in the theorem and are given by the formulas. Then
we find that

a−1
1 Er(n−1)+1

∼= Z/p [a1, a
−1
1 ]⊗ Λ(λn, λn+1)⊗ Z/p [µp

n−1

],

The argument that the next differential is dr(n) follows the same pattern as the argument
given for the second differential. One will have to note that the bidegree of λm is
(2pm− 2pm−1 + · · ·+ 2p− 1, 0) if m is odd, and (2pm− 2pm−1 + · · ·+ 2p2 − 1, 0), if m is
even. Also one will need to know that

r(n) = pn + pn−2 + · · ·+ p,
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if n is odd, and
r(n) = pn + pn−2 + · · ·+ p2,

if n is even. By inductive hypothesis one knows that λn is an infinite cycle. Then one
argues that the only way λn+1 could fail to be an infinite cycle is if dr(n)(λn+1)

.
= a

r(n)+1
1 ,

which is impossible since E∞ = Z/p [a1, a
−1
1 ]. These two facts imply that for some

r > r(n − 1), dr(µ
pn−1

) 6= 0, and calculating bidegrees one more time one sees the only
possibility is

dr(n)(µ
pn−1

)
.
= a

r(n)
1 λn.

This completes the proof of the theorem. ♣

7 The mod p homotopy of THH(`)

In the following theorem we show how the differentials in the localized Adams spectral
sequence determine the differentials in the Adams spectral sequence itself. One of the
interesting things about this example is that the spectral sequence has infinitely many
non-zero differentials, and that we can determine them all. Notice that if one removes the
explicit arithmetic from the proof below one has a general result on the Adams spectral
sequence for the mod-p homotopy of an `-module spectrum X. This result is stated at
the end of the section.

Theorem 7.1 Let Er be the Adams spectral sequence convergent to the mod p homotopy
of THH(`). Then the nonzero differentials in Er are exactly the dr(n), where the function
r(n) is as in Theorem 6.1.

Moreover, the E∞-term is a direct sum of cyclic Z/p [a1]-modules with the following
generators. 1 ∈ E0,0

∞ generates a free Z/p [a1] module summand of E∞, and all the
generators of Z/p [a1]-torsion summands of E∞ arise in the following way.

If the p-adic expansion of m > 0 starts m = mn−1p
n−1+mnp

n, where p−1 > mn−1 > 0
and mn ≥ 0, then

λnµ
pn−1(mn−1−1)µp

nmn and λn+1λnµ
pn−1(mn−1−1)µp

nmn

are generators of the summands of E∞ isomorphic to Z/p [a1]/(a
r(n)
1 ). There is no torsion

present other than a
r(n)
1 -torsion for every n.

Proof. Put r(0) = 1, put S0 = { }, and take the other notation from the preceding
theorem. P (n) is the following statement:

There is a set
Sn ⊂ E∗,0r(n)+1
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such that the Z/p [a1]-module E∗,∗r(n)+1 may be decomposed as an internal
direct sum

E∗,∗r(n)+1 = 〈Sn〉 ⊕ Z/p [a1]⊗ Λ(λn+1, λn+2)⊗ Z/p [µp
n

],

where 〈Sn〉 is the Z/p [a1]-module generated by Sn. For each x ∈ Sn we have

a
r(n)
1 x = 0

so that
〈Sn〉 ⊂ ⊕0≤s<r(n)E

∗,s
r(n)+1.

Concerning the differentials in the spectral sequence, Er(n)+1 = Er(n+1), and
dr(n+1) is determined by the formulas

dr(n+1)(x) = 0 for x ∈ Sn ∪ {λn+1, λn+2}
dr(n+1)(µ

pn) = a
r(n+1)
1 λn+1.

As one proves the statements P (n), one reexamines each inductive step in the proof
and unwinds what has happened to get the decomposition of E∞ into cyclic Z/p [a1]-
modules.

Remark: It will be clear from the proof of P (n) that 〈Sn〉 is also an ideal of E∗,∗r(n)+1,
and that the elements of Sn are all of square zero. A second glance shows that there are
many more multiplicative relations satisfied by the elements of Sn so that the Er(n)+1-
term is complicated as an algebra. The algebra structure on E∞ is therefore very com-
plicated, and we have not tried to explicitly determine it.

The part of the statement P (0) concerning the algebraic structure of the E2-term of
the spectral sequence is the content of theorem 4.1, so we have to discuss the differential.
As E2 is a1-torsion free, the natural map

E2 −→ a−1
1 E2

is injective and preserves the bigrading, so the first nonzero differential in the domain
is determined by the first nonzero differential in the target. Referring to the preceding
theorem we get that the first nonzero differential in the Adams spectral sequence is dr(1)

and that the following formulas are valid:

dr(1)(λ1) = 0, dr(1)(λ2) = 0, and dr(1)(µ) = a
r(1)
1 λ1.

This proves P (0).
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To get the feel for the induction step, let us work out the proof of P (1) with some
care. Recall that r(1) = p, so that by P (0) we may calculate the differential on a typical
element

λε11 λ
ε2
2 µ

pm1+m0 ∈ E∗,0p ,

where εi = 0 or 1 and 0 ≤ m0 ≤ p− 1, obtaining

dp(λ
ε1
1 λ

ε2
2 µ

pm1+m0)
.
= λε11 λ

ε2
2 µ

pm1(m0µ
m0−1ap1λ1),

Then it is clear that λε11 λ
ε2
2 µ

pm1+m0 is a cycle if ε1 = 1, or if m0 = 0. We also see that
the Z/p [a1]-generators of the a1-torsion submodule of E∗,∗p+1 may be taken to be

S1 = {λε22 λ1µ
pm1, λε22 (λ1µ)µpm1, . . . , λε22 (λ1µ

p−2)µpm1,where m1 ≥ 0} ⊂ E∗,0p+1

In fact, in Ep+1 a
p
1x = 0 for each x ∈ S1, so that

〈S1〉 ⊂ ⊕0≤s<pE
∗,s
p+1,

since a1 has bidegree (2(p− 1), 1). Cycles which generate the Z/p [a1]-free part of Ep+1

are of the form
z = λε22 λ

ε3
3 (µp)m1 ,

where λ3 = λ1µ
p−1, εi = 0 or 1, and m1 ≥ 0. This gives us our Z/p [a1]-module

decomposition
E∗,∗p+1 = 〈S1〉 ⊕ Z/p [a1]⊗ Λ(λ2, λ3)⊗ Z/p [µp]

Now we can consider the next differential in the spectral sequence. The submodule
〈S1〉 complementary to the subalgebra

Z/p [a1]⊗ Λ(λ2, λ3)⊗ Z/p [µp]

is a torsion module, and the subalgebra is torsion-free. Subsequent differentials are the
dr for r > p, have bidegree (−1, r), and are derivations of Z/p [a1]-algebras. Since

〈S1〉 ⊂ ⊕0≤s<pE
∗,s
p+1,

so that there are no nonzero elements of 〈S1〉 of filtration degree greater than p, and
since algebra demands that dr(〈S1〉) ⊂ 〈S1〉, we find that the elements of 〈S1〉 are cycles
for dr for every r > p. Algebraic reasons do not rule out the possibility that the next
nonvanishing differential on an element of the complementary subalgebra

Z/p [a1]⊗ Λ(λ2, λ3)⊗ Z/p [µp]

has a component in 〈S1〉, but the filtration argument does in fact rule this out. Thus
〈S1〉 is a Z/p [a1]-submodule of E∞ annihilated by ap1. We will show that the higher
differentials introduce higher a1-torsion so that S1 is a set of Z/p [a1]-module generators
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for the summands of E∞ isomorphic to Z/p [a1]/(a
p
1) as claimed in the theorem. Also,

we have concluded that the next nonvanishing differential on

Z/p [a1]⊗ Λ(λ2, λ3)⊗ Z/p [µp]

has only a torsion-free component, so it is detected in the localized spectral sequence.
Putting this discussion together with the preceding theorem we obtain the rest of P (1),
namely, that Ep+1 = Er(2), and that the formulas

dr(2)(x) = 0 for x ∈ S1 ∪ {λ2, λ3}

and
dr(2)(µ

p) = a
r(2)
1 λ2

determine the next differential.
The argument for deducing P (n) from P (n− 1) is in outline exactly the same as the

argument we have just finished, so we will just quickly repeat the steps. According to
P (n− 1) we have the decomposition

E∗,∗r(n) = 〈Sn−1〉 ⊕ Z/p [a1]⊗ Λ(λn, λn+1)⊗ Z/p [µp
n−1

],

and we can calculate Er(n)+1 from P (n− 1), first deriving the formula

dr(n)(λ
εn
n λ

εn+1

n+1 µ
pnmn+pn−1mn−1)

.
= λεnn λ

εn+1

n+1 µ
pnmnmn−1(µ

pn−1

)mn−1−1(a
r(n)
1 λn),

where εi = 0 or 1, 0 ≤ mn−1 ≤ p − 1, and mn ≥ 0. One finds that the a1-torsion
submodule of E∗,∗r(n)+1 is spanned by

Sn = Sn−1∪
{λεn+1

n+1 λnµ
pnmn , λ

εn+1

n+1 (λnµ
pn−1

)µp
nmn , . . . , λεn+1

n+1 (λnµ
pn−1(p−2))µp

nmn ,where mn ≥ 0}
⊂ E∗,0r(n)+1

and that each x ∈ Sn−Sn−1 generates a submodule isomorphic to Z/p [a1]/(a
r(n)
1 ). This

gives us
〈Sn〉 ⊂ ⊕0≤s<r(n)E

∗,s
r(n)+1

The complementary a1-torsion-free submodule is seen to be the algebra

Z/p [a1]⊗ Λ(λn+1, λn+2)⊗ Z/p [µp
n

],

where λn+2 = µp
n−1(p−1)λn. Then one argues with the filtration of 〈Sn〉 and the bidegree

of dr that the next differential is determined in the localized spectral sequence. By
reference to theorem 6.1 we obtain Er(n)+1 = Er(n+1) and the desired formulas for dr(n+1),
completing the proof of P (n).

Thus, by the stage E∞ the torsion-free subalgebra has been reduced to Z/p [a1] and
one has seen that the inductive steps from P (n − 1) to P (n) present E∞ as a sum of
cyclic modules over Z/p [a1] of the required a1-order. ♣
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[25] unexplained. AA

[26] unexplained. II

[27] unexplained. GG

[28] unexplained. WW

[29] unexplained. MM

[30] unexplained. SV

[31] unexplained. Jones

[32] unexplained. Wlecture

[33] unexplained. GoCal

[34] unexplained. GoLet

[35] unexplained. BHM

[36] unexplained. RavAmJ

[37] unexplained. Einfty

[38] unexplained. BrownPet
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