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In the invitation to speak at the seminar, S.-T. Yau stated the intent of the
lectures and the accompanying publication to be that a graduate student,
having heard the lecture and read the manuscript, should be able to start
research of his or her own on the subject. He added that it was desirable if
the manuscript contained some new original results as well. I do not know if
this is possible to achieve in a single paper, but it is a noble goal. The present
blend between a traditional expository article and a detailed exposition of
the subject is in any case my attempt at this goal.
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1 Introduction

The present paper is an attempt to give an overview of topological cyclic
homology and its relation to algebraic K-theory. In the ‘classical’ setting, al-
gebraic K-theory associates to a ring A a space K(A). The homotopy groups
of K(A) are Quillen’s higher K-groyps. They have proved very difficult to
calculate, and are, for example, to this day not even known for the ring of
~ rational integers.

The homology of (a component of) K(A) is the group homology of the
group GLy (A) of invertible matrices of the ring. This was early on used by
Quillen and Borel to evaluate K-theory of finite fields and the torsion free part
of K-theory of algebraic integers, respectively. Later Suslin evaluated the
homotopy groups with finite coefficients of K-theory of algebraically closed
fields, or what amounts to the same thing, the profinite completion K (F)".
In particular he showed that K (C)" is equivalent to the profinite completion
of the space which classifies complex vector bundles. Bott periodicity then
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calculates 7; K (C)" to be a copy of the profinite integers when i is even and
zero for 7 odd.

This development inspired another calculational approach to the K-
groups, namely via étale K-theory, introduced by Friedlander.

Given a Galois extension F' C E with group G, K(F) ~ K(E)¢. This
is no big calculational help, but if one replaces the actual fixed sets by the
socalled homotopy fixed sets, a construction introduced by Sullivan in the
sixties in connection with his solution of the Adams conjecture, then cal-
culations become possible. The homotopy fixed set is the function space
(spectrum)

K(E)"¢ = Mapg(EG, K(E))

where EG is the contractible free G space, and where Map, denotes the
space of G-mappings. The filtration of EG by its skeleta induces a spectral -

sequence
H*(G,K.(E)) = m.K(E)"¢

which in favorable situations can be determined. The étale K-theory of a
field F is, very roughly speaking, the homotopy fixed set of I (F)"*C where
F" is the closure of F'. In the characteristic zero situation K(F)* ~ K(C)"
by Suslin, so the calculation of étale K-theory of fields is intimately tied to
Galois cohomology. There has been a lot of efforts by many people to evaluate
étale K-theory, and in particular by W. Dwyer, E. Friedlander, S. Mitchell
and Bob Thomasson. But the basic question remains: how close is

K(F) - K*(F)

to be a (profinite) homotopy equivalence? In one formulation, the
Lichtenbaum-Quillen conjecture asserts this to be the case (above dimen-
gsion 1) for number fields.

For small values of 7, K;(fields) have been extensively calculated in work
of Merkurjev and Suslin. The reader is referred to Suslin’s address at the
ICM 1990. _

In another direction, Waldhausen generalized Quillen’s K-theory of rings
to include certain ‘rings up to homotopy’, such as 2*°5*(QX,). The re-
sulting functor A(X) is intimately related to the space of automorphisms
(homeomorphisms or diffeomorphisms) of X when it is a (high dimensional)
manifold.

The approach to K-theory (of rings or spaces) in this paper is to study a
certain trace type invariant

tre: K(A) - TC(A).

The target is a topological version of Connes’ cyclic homology; We call it
topological cyclic homology but maybe trace homology was a better word.
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From a superficial viewpoint the cyclotomic trace records the traces of all
powers of matrices, so could also be called the characteristic polynomial in-
~variant. It works equally well for Waldhausen’s K-theory of spaces, and was
introduced in joint work with M. Bokstedt and W.-C. Hsiang [BHM] in order
to solve the K-theory analogue of Novikov’s conjecture about homotopy in-
variance of the higher signatures of manifolds. The construction was inspired
by ideas of T. Goodwillie. Here however, I shall be mostly concerned with
the situation for rings.

There is a map from TC(A) to another functor denoted THH(A), the
topological Hochschild homology of R, and trc is a lifting of this topological
Dennis trace.

Let me briefly sketch the construction of THH(A) Consider the simplicial
abelian group

Zo(A): - ARARAT ARATA

where the face operators sends a; ® as ® a3 into a1a; ®as, a; ®aqa3, aza; ®as
etc. The homotopy groups of Z,(A), or what is the same thing, the homology
groups of the associated chain complex, are the Hochschild homology groups
HH,(A). .

The basic idea, suggested by T. Goodwillie, is to replace A by the
Eilenberg-MacLane spectrum it generates, and ® by smash product of spec-
tra. This was carried out by Bokstedt, and leads to a simplicial space
THH(A). The extra structure in Z,(A) which comes from the cyclic ro-
tation of the tensor factors is also present after the indicated substitutions,
and via Connes’ theory of cyclic sets, it implies a circle action on THH(A).

Connes initially defined cyclic homology by replacing Z.(A) by the com-
plex C.(A) whose n'th term is Z,(4)/C,.+1, the quotient group by the cyclic
rotation of factors. It is crude construction to divide out a non-free group
action—usually one gets a better theory by instead taking the Borel quotient.
This was done in papers of Loday-Quillen and Feigin-Tsygan who replaced
the quotients A®"/C, by W(™ @  A®" where W(™ is the standard free
Z[Cy,] resolution of Z. In the topological situation of THH(A) it is better to
take fixed sets THH(A)C for the various subgroups of the circle. Had the
circle action on THH(A) been free, the fixed sets would have been the Borel
orbits THH(A)nc = THH(A) Ac EC,.. This is not the case, and the fixed
sets THH(R)® is a mixture of Borel quotients, one for each strata of the
action. In our topological situation it turns out that there'is a certain map

R: THH(A)®» — THH(A)%™

whenever m divides n, which one does not see in the linear setting. This map
mixes the stata. We also have the inclusion of fixed sets

F: THH(A)% — THH(A)%.
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The topological cyclic homology TC(A) is defined to be the homotopy
theoretical limit of THH(AL)C'u over the maps R and F' as C,, varies over all
cyclic subgroups. The basic theory of THH(A) and TC(A) is described in
chap. 2 below, where we also recall the construction of

tre: K(A4) = TC(A). (L.1)

Actually, both K (A), TC(A) and THH(A) are spectra in the sense that there
are sequences of spaces K(A)gn etc. so that K(A) is equivalent to the n'th
based loop space of K(A)r~ etc., and trc preserves this structure. I write
TH(A) for the spectrum {THH(A)gr~»} but do not introduce special notation
for the spectra K(A) and TC(A).

The following chap. 3 presents results of Dundas, Goodwillie and Mc-
Carthy. The following theorem is proved in sect. 3.4.

Theorem 1.2 (McCarthy). For a surjection of rings f: A — A with nilpo-
tent kernel,

K(A) <5 TC(A)
K(A) —= TC(A)

becomes a homotopy Cartesian diagram after profinite completion.

In particular, the relative homotopy groups with finite coeflicients of the
two vertical maps agree. Earlier results of this nature have appeared in
[G4], [G5], [BCCGHM]. The proof is based upon Goodwillie’s “calculus of
functors”; it is very indirect, and does not in any way produce an explicit
inverse from TC(A —+ A) to K(A = A).

The trace (1.1) cannot in general induce an isomorphism of (profinite)
homotopy groups. Here is one reason: TC(A) is constructed out of Eilenberg-
MacLane spectra H(A). Now H(A)" ~ H(A) since H(A) is characterized
by its homotopy groups. This persists to TC,

TC(A)® ~ TC(A ® Z)

at least if A is finite over Z. However, it is well known that K-theory does
not have this property. Thus (1.1) has little chance of inducing isomorphism
on profinite homotopy unless one restricts attention to complete rings.

There is an extension due to B. Dundas of theorem 1.2 to the setting of
Waldhausen'’s functor A(X), namely the following result which is outlined in
sect. 3.5.
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Theorem 1.3. (Dundas). For any space X the diagram

Ay =3 TOEH

! !

K(Z[mX])) —=— TC(Z[mX))

becomes homotopy Cartesian after profinite completion.

Let k be a finite field of characteristic p # 0, and let W (k) be its ring of
Witt vectors. Chap. 4 outlines the proof of the following joint result with
L. Hesselholt

Theorem 1.4 ([HM]) For finitely generated W(k)-algebras,
tre: K (A)y — TC(A))

is a homotopy equivalence (in positive dimensions).

Chapter 4 also gives a new (simpler) proof of one of the main results from
[BHM], namely that the assembly map

K(Z)A BTy -+ K(ZT)

is a rational equivalence for a large class of big groups, e.g. for the groups I
which have finitely generated Eilenberg-MacLane cohomology in each dimen-
sion. The simplification of the original proof is made possible by theorem 1.3.
Chapter 4 further calculates TC(X)" in terms of more traditional functors
in algebraic topology; these involve the free loop space of X.

The functor TC(A) is not very easy to calculate, but it does lent itself to
analysis by classical methods of algebraic topology. The basic approach, so
far, has been to use the following diagram of (co)fibrations (in the category
of spectra)

TH(A)so,n — TH(A)O" —E— TH(A)Tm-1
” lr lf*
TH(A)ro,n ——r TH(A)*Ce» — 3 F(Cpn, TH(A))

The lower cofibration is usually called the norm cofibration. In order to define
it one uses that the spectrum TH(A) can be extended to an S'-equivariant
spectrum T'(A). Roughly speaking this means that there are spaces T'(A)v,
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one for each finite dimensional representation V of S* such that TH(A) ~g
Map(SV,T(A)v). Here SV denotes the one-point compactification of V with
its induced S'-action. The construction of the norm cofibration is due to
J. Greenlees and J. P. May.

The point of the diagram is firstly that there are spectral sequences which
approximates the terms in the bottom sequence, e.g.

H*(Cyn; m TH(A)) = w544 H(Cpn TH(A))

where H*® denotes Tate cohomology. Secondly, it turns out that the maps T
and I in many situations are homotopy equivalences in non-negative degrees.
This is reminisant of the Segal conjecture (which corresponds to TH(2%°5))
where T and I' are actual homotopy equivalences. In particular one expects
T, I to give equivalence (in positive degrees) for integers in local number -
fields with non-zero residue characteristic.

This has been verified in the unramified situation, 4 = W ([, ), where
the calculation of TC has been carried through. In erder to describe the
result, let im J;, be the homotopy fiber in

hn-—
im J, = (BU x Z), " BU,

where 9% is the Adams operation for an integer & which generates the units
in Z/p*Z, i.e. a topological generator of the units of the p-adic integers Z,.
The bottom homotopy group of im J,, is a copy of Zy, and

Z[p*""t) ifn=0(p—1)

man-1(im Jp) = {0 if not

while ma,(im J,) = 0 for n > 0. (v,(—) denotes the p-adic valuation). Let
Bim J, denote the delooping of im J,, with m;(Bim Jp) = m;_1(im Jp). Then
one has:

Theorem 1.5. ((BHM2]). Let . be the finite field with p® elements and
Ay = W (Fp. ) its Witt-vectors. Then for p odd,

TC(As)p ~imJp X Bim J, x SUY x Up) x --- x U (s — 1 copies of U)
where SU is the special unitary group, and U the unitary group,
The proof of theorem 1.5 is a long and complex calculation which requires
a thorough knowledge of homotopy theory. It was in fact the first calculation

made of the TC functor applied to rings. The general calculational scheme
developed in this case was later exploited in a number of less complicated
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situations. Theorem 1.5 in conjunction with the Dwyer-Mitchell calculation
of K°(A,), [DM], verifies the conjecture of Lichtenbaum and Quillen for
these rings.

The first three sections of chapter 5 give other éxamples of TC-
calculations in situations where theorem 1.4 applies. Sect. 5.1 studies K-
theory of group rings of finite groups. In terms of concrete calculations the
main result is:

Theorem 1.6. Let k be a finite field of characteristic p > 0, and let C be a
cyclic group of p-power order. Then the p-primary part of K -theory is given
by

Kon-1(k[C)(p) = K1 (K[C](y

and Kz, (k[C])(p) =0 for n > 0.

The next two sections 5.2 and 5.3 outline joint work with L. Hesselholt.
The main result is the following

Theorem 1.7. Let k be a perfect field of characteristic p > 0. Then
Kom—1 (k[m]/(:r")) o Wam-1(k)/VaWm_1(k)

and Kom (E[z]/(z™))(p) = 0 for n > 0.

Here W (k) denotes the big Witt-vectors, that is, W(k) = (1 + E[[£]])*,
the multiplicative group of power series begmnmg with 1, W,.(k) is the cor-
responding truncated version

W (k) = (14 K[[E])*/Q + R[],

and V, is the Verschiebung map which takes a power series f(t) to f(&%).
Sect. 5.3 is just an example; it evaluates the groups Nil,(A) for the rings of
theorem 1.7. :

Finally it is in order to point out that TC(A) only contains information
about K -theory at the residue characteristic. The [-primary part of K(A)
for I # p is however, for the rings under consideration, already known by
theorems of Gabber and Suslin et. al.: one may divide out the radical, cf. [Su],
which also contains a thorough account on low dimensional calculations.

It is a pleasure to acknowledge the help I have had from M. Bokstedt,
B. Dundas and L. Hesselholt in preparing this paper.
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2 Topological cyclic homology

This chapter sets the notation to be used in the rest of the paper, reviews the
definition of the functors to be discussed and gives the basic constructions.

2.1 Cyclic constructions.

Let G be a topological monoid and E a two sided G space. For technical
reasons we assume that the unit 1 € G is a “good” base point, i.e. {1} C G
be a cofibration. ‘The cyclic bar construction of G with coefficients in F is
the simplicial space N£¥(G; E) with r-simplices

NY(G;E)=E x G (2.1.1)

and simplicial structure maps

(8911921"' 19!")1 A t=0
di(e,gl,...,gr)= (3:91:---;9i9:‘+1,---a9r), 0<i<r
(greagla'“ sgr-l); =7

si(eagls-” 3gr) = (e:gls'“ 1gl'-—1'|llgis°" :gi‘)r 0 < 1 <r.

Two special cases have particular interest for us, namely ¥ = % and E =
G (with its natural two sided G-structure). In these cases we shorten the

notation to
N,G = NF¥(G;*), NIG= NI G;G).

The simplicial space N¢¥G has extra structure; it is a eyclic set in the sense
of Connes: one has the cyclic permutation

tr: NﬁYG‘ = N:-:yGr tr(gﬂr R ,gr) = (g'l"] Goy .- - 197‘—-1)
with the following extra relations, as the reader can easily check,

ditr = tr—ldi—lg LSS T

dﬂtr — dr

Sity = tpgq 84—y, 1SEST (2.1.2)
tH=1

o "

Let A be the usual simplicial category with objects [r] = {0, ... ,r} and order
preserving maps, so that a simplicial space is a functor from A°P to {spaces}.
It is contained in a category A with the same objects but with

A([r],[s]) = A([r], [s]) % Cra
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where C,4; is the cyclic group of order r+ 1. A cyclic space is just a functor
from A°P to {spaces}, see e.g. [J] for further information.

For a simplicial space X, we let |X.| denote the usual topological real-
ization, .

|X‘| = H AT x Xr/ il (diu,a:) ~ (ur dim): (siu:x) ~ (‘U’., Siz)l

r=0

where d: A™! —+ A", s': A™ — A" are the face and degeneracy operators
of the standard simplex. The realization of the cyclic r-simplex Afr]e =
A([e],[r]) can be calculated to be

AT2R/Z x AT=8"x A". (2.1.3)

It is a cocyclic space, that is a functor from A into {spaces}. There are two
good choices of the homeomorphism in (2.1.3). One can either choose it so
that

(i) t"(8,uo0,-.. ,ur) = (@ — up,u1,... ,ur,up) or so that

(i) 27(0,00,:« yUr) = (6— 1/(r+1),u1,... , U, Ug).

In case (i), the cosimplicial maps d*, s* are Ids: x d?, Ids1 x s* with di,s*
being the usual cosimplicial maps on A®; in case (ii) d* and s* depends on
the circle coordinate. The realization of cyclic spaces comes equipped with a
natural action of St. Indeed it is easy to see for a cyclic space Z, that

PAE ﬁ AT x Z, [~ o (2.1.4)

r=0

where the identifications = are
(d*u, 2) = (u,d;z), (s'u,2) = (u,8:2), (t"u,z)=(u,t.2).

The S'-action on the circle factor of A" descents to the claimed S*-action on
|Z,|. For further information on cyclic spaces we refer the reader to [C], [J],
[DHK].

The homotopy theory of spaces X equipped with an action of a group G
is governed by the homotopy theory of its fixed sets X HCG (H closed if
G is Lie). In particular a G-map f: X — Y is a weak homotopy equivalence
if and only if its induced map on H-fixed set is for all (closed) H C G. Thus

BACERAC L e L gy

e e s L
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it is important to be able to calculate fixed set |Z,|C for the realization of
a cyclic set, where C is finite cyclic or C = S*. It is not hard to see from
(2.1.4) that

1Z|5" ={z € Zo | 50z = 1502}

but it is harder to use (2.1.4) to get information about |Z,|® when C C S*
is finite.

There is however a simple devise, edgewise subdivision, which can be used
to effectively calculate [Z.|C. Let X, be any simplicial space, and C a cyclic
group of order ¢. We consider X,.: A°° — {spaces} and define

sdo: A -+ A
sdg[r]=[r]II---1I[r], c¢= summands (2.1.5)
sdog = ¢11---1 ¢, ¢ € A([r],[s]).

The composition X, o sdg: A°P — {spaces} is the subdivided simplicial
space, denoted sdgX,. Its space of r-simplices is equal to X (r41)—1-

The diagonal inclusion of AT into the ¢ fold join AT % ... % AT induces a
(non-simplicial) map D from the realization of sdz X, into the realization of
X,. If X, is a cyclic space then |sdgX,| has a natural R/cZ action, which
restricts to a simplicial Z /cZ action. Indeed t;;';il)_l acts simplicially on the
r-simplices of sdgX,. From [BHM], sect. 1 we have:

Lemma 2.1.6. The map D: |sdcX,.| —+ |X.| is 2 homeomorphism. More-
over, if X, is cyclic then D is S'-equivariant when R/cZ is identified with
the circle in the usual way. O

For a cyclic space Z,, the action of the (r + 1)’st power t’;?;il)_l is
a simplicial map of sdgZ, of order ¢, so induces a simplicial C-action on
|sdc Z,|, and hence via D an action of C on |Z,|. For example it is not hard
to gsee that

sdeNJY(G) = NJY(E,G°)

where E = G° (c fold Cartesian product) with its componentwise left G°-
action, and right G®-action given by

(911 see )gc)(elg see gy e’c) = (9(:3119162’ vee 1Q'c-lec)'

The action of C on sdgN®(G) corresponds under the above identification
to the cyclic permutation action on E and G¢, so there is a homeomorphism

Ag: N¥(G) =3 sdoN¥ (G)° (2.1.7)

with A induced from the diagonal map G — G°.
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We now suppose that our topological monoid is group-like, that is, myG
is a group. In this case s
BG = |N,G|

and the canonical map G — QBG is a weak homotopy equivalence, in sign:
1BG ~ G. Moreover, -
B¥G = |NJG]

is equivalent to the free loop space ABG of BG. Indeed, the projection
NJY(G;G) =+ NJY(G; %)
induces a map from BG to BG and the adjoint of the map
5! x BYG —+ B¥G -+ BG
defines the equivalence (cf. [G1],[BF])
q BY@G ir ABG. (2.1.8)

This is not a (weakly homotopy) equivalence of S*-spaces since the S!-fixed
sets do not agree. However, for each finite subgroup C C S?,

¢: (B¥G)° =4(ABG)® (2.1.9)

is an equivalence. This follows easily upon using (2.1.7) and the obvious
homeomorphism

- Ag: ABG3(ABG)®, AM)(z) = A\z°).

Indeed, g€ identifies with g under the identifications induced from A¢ and
A, (cf. [BHM], proposition 2.6). Let me give the proof of (2.1.8) when G is
a group, and refer to [BF], [G1] for the group-like case. One starts with a
rewriting of N (G), namely via the bijection

. f: N¥(G) =3 AdG xg E.G,

where AdG denotes G with conjugation action, and E,G is the left acyclic
bar construction whose k-simplices are g[g1] - - - |gx]; the map is defined as

f(goy---9k) =gk g190[01] - - * |g—1]-

The topological realization of FE,G is the free contractible G-space, and
AdG xg EG ~ ABG. Indeed a loop A(t) € ABG is mapped into (gx, A(1))
where A(#) is a lift of A: [0,1] = BG and gy is the holonomy: gy-A(0) = A(1).
When G is compact Lie one needs a connection in EG — BG, and A will be
a parallel curve in EG.
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The above have generalizations to the nerve and cyclic nerve of a category
C. The nerve N,C is the simplicial set with

N = {c,. -f—ribc,-...l—}"'-f—l)'Co},

the set of r composable maps. Similarly Ng¥(C) has r-simplices

Nf"C:{g f'}c,._l f‘:co f“:cr}

and boundary maps similar to (2.1.1). For categories with only one object,
monoids, this agrees with the above constructions. If we restrict the mor-
phisms of C to be isomorphisms we obtain a subcategory iC, and (2.1.8)

generalizes to
|NS¥(iC)| ~ A|NL(iC)|.

These more general concepts will be used in the next chapter.

We close this section with a rewriting of N,G, due to Waldhausen, [W2],
in the special case where G is a semi-direct product. Let (V, +) be an abelian
monoid equipped with a two-sided action of the monoid I'. Denote by G =
V % I the semi-direct product with multiplication

(v1,91)(v2, 92) = (V192 + G172, G192).

Let N,V be the bar construction of (V,+). It inherits a simplicial two sided
action of I', and we can form the bisimplicial set

[r], [s] = NF(T; N,V).

Its diagonal simplicial set with r-simplices N (I'; N,.V) is denoted
SNS¥(T; N, V). Consider the simplicial map

u: NF(T,NV) =+ N (V «uT)
given on r-simplices by
u(‘uli“‘ !1)1'171!"‘ !'YT') =

(7 - w17, 1) (v - - Wrv2m Y2, ¥2)s - oo 5 (Be0P ML= Y ) -

The map u© can be understood as the composition of two maps: one
starts with a rewriting of the left hand side, similar to the above f, and then
rearranges factors upon using the semi-direct product. When I' is a group u
is a bijection. In general one has from [W2], lemma 2.3.1:

Lemma 2.1.10. IfT is a group-like monoid then u induces a weak homotopy
equivalence of topological realizations. O
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The map u will be used in the next chapter for I' = GLi(R), V = Mg(V),
where R is a unital ring and V' is an R-bimodule. In this case the semi-direct
product ring V' » R has ;

GLi(V % R) = Mi(V) % GLi(R).

2.2 Simplicial spaces.

We have already in sect. 2.1 used simplicial sets and spaces. This will continue
" even more extensively in later sections, and it is in order to collect some of
the relevant properties of simplicial sets and spaces.

Let us first point out that we use the word space to mean a based com-
pactly generated Hausdorff space, and that all constructions are to be taken
in this category.

A map f: X =Y is called k-connected if it induces an isomorphism on
homotopy groups in degrees less than k and an epimorphism in degree k, i.e.
if the homotopy fiber is (k—1)-connected. The convention is that every space
is (—2)-connected, non-empty spaces are (—1)-connected and path connected
spaces are 0-connected. It is an equivalence if it is k-connected for all %k, and

‘in general two spaces X and Y are called equivalent (X ~ Y') if they can be
connected by a string of equivalences. In almost all cases to be considered,
our spaces will have the homotopy type of CW complexes, and in-this case
X ~ Y iff they are homotopy equivalent in the ordinary sense. The homotopy
groups of a simplicial space (or set) X, will mean the homotopy groups of
the topological realization ||X.| below.

This is the bigger realization, sometimes called the fat realization, which
only depends on the face operators in X,, i.e. on the functor

) Xo: AP — {spaces}

where A,, C A is the subcategory of injective maps in A. Such a functor is
called a A-space, [RS], and a presimplicial space in [DM2]. Its realization

(e 9]
1%.0 = T A" x X, /(d*u, z) ~ (u,d;z) (2:2.1)
r=0
has |X,| as a quotient when X, is simplicial.
For simplicial sets,
1 Xell = |Xa|
is an equivalence, but this is not always true for simplicial spaces.
A simplicial space X,: A°® — {spaces} is called “good” (or “proper”),
[Sel] (or [May1]) if the inclusion of its degenerate simplices

r—1

U Si(Xr-I) Cc X,

=0
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is a cofibration (an NDR-pair). For such, the two realizations | X,| and || X.||
are equivalent, cf. [Sel], appendix.

Any bisimplicial set (functor from A° x A°P into sets) give rise to two
“good” simplicial spaces

[r] = [ Xrels  [8] = [ Xesl.

Their realizations are each homeomorphic to the realization of the diagonal
simplicial set d.X, o, and similarly for multisimplicial sets.

The homotopy fiber of a map f: X = Y of spaces with respect to * € Y
is the space

hF(f) = {(z,)) € X x Y | f(z) = A(0),* = A(1)}
and there is a long exact sequence of homotopy groups
o mX o mY = ﬂ','...]_(hF(f)) ~ M1 X = oo

so f is k-connected precisely if hF(f) is (k — 1)-connected (for each choice of
*).

Given a map of simplicial spaces, fo: Xos =+ Y, and a base point *, € Y,
there is a natural map

|[r] = hF(X, = Y;)| = hF (| X.| = [Y3]). (2.2.2)

This is an equivalence if each Y, is 0-connected, provided X, and Y, both
are “good”. In particular |f,| is an equivalence when each f.: X, — Y} is
an equivalence. The associated fat realizations are equivalent without the
goodness assumption.

The homotopy fiber and the dual notion of homotopy cofiber,

COf(f) = (Y XI)H.X/(_f((I?) ~ (y11)1*~ (y10)>

are special cases of the homotopy limit and the homotopy colimit functor
from a small category into spaces, cf. [BK], [G4].

Let us next consider function spaces between pointed spaces X and Y.
Denote by F(X,Y) the function space (in the compact open topology) of
pointed maps from X to Y.

Suppose X is a pointed CW complex, e.g. the realization of a simplicial
set, and that dim X < n. There is a natural map

¢: |[r] = F(X, ;)| = F(X, |Y.)). (2.2.3)

If Y, is a “good” simplicial space and each Y; is (dim X — 1)-connected, then
¢ is an equivalence. In particular, the loop space of a “good” simplicial space
Y, with each Y, O-connected can be computed degreewise:

Q.| ~ |[r] = OY;]
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cf. [Mayl], sect. 12.

Given based simplicial sets there is a sxmplxaa.l version Fq(X,,Y,) of the
mapping space which we shall occasionally use. Its r-simplices consists of the
simplicial maps

d(Alr]e x Xo) 2 Y,

which maps Afr]s X #, to the base point of ¥,. Here A[r], is the simplicial
r-simplex with Afr], = A([s],[r]). More generally, for each based K.,

Map(K., Fa(Xs, Yo)) = Map(6(Ks A X.), Y2)

where Map denotes the set of based simplicial maps. In particular, we see
for Y, = sin, Y, the singular complex of Y, that

sine F'(| X.|,Y) & F,(X.,sin, Y)

(take Ko = A[r]s). Since Y, ~ sin, |Y,| when Y, is fibrant (Kan complex)
we see in this case that ’

Let us finally remind the reader that a simplicial group, X,: A°P — {groups},
is always a Kan complex. For simplicial abelian groups A, and B,, the
function complex ssAb(4,, B,) has the property that

SeAb(A., B,) = s,Ab(8A, ® Z(ST), aA; ® Z(S7)).

In particular, 64, ® Z(S™) is a deloop of A,. Here Z(S?) is the free abelian
group of the simplicial n-sphere modulo the relations A*, =0 and 0-z = 0.
The reader is referred to [Q1] and [May?2] for further details on simplicial
sets.

Many constructions later in the paper are functors of fixed sets of the
topological realizations of cyclic sets and spaces. Examples have already ap-
peared in sect. 2.1.- A map of cyclic sets (spaces) fo: Xs — Y. induces
an Sl'-equivariant map. It is an S'-equivariant homotopy equivalence if
f€: X€ = YL induces an equivalence for all closed subgroups of S*. This
includes S? itself. But for some purposes of the paper, the ST fixed set is

exceptional, and only the C-fixed sets for finite C matters. We therefore .

introduce the notions X ~¢, Y resp. X ~g,. Y to mean that X and V
can be connected with a sequence of S'-maps which induce equivalences on
all Cy, fixed sets, resp. Cp~ fixed sets.
In the rest of the paper we shall tacitly assume that our simplicial spaces
e “good”. This will sometimes have to be verified, but we shall not go into
such details below. '

1x b e o it
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2.3 Topological Hochschild homology.

Given a unital ring A and an A-bimodule V we can form its cyclic consiruc-
tion Z.(A; V). It is a simplicial abelian group with r-simplices

Z(A;V) =V ® AT (2.3.1)

and face and degeneracy operators

12 ®Ra ® - R ay, i=0
di(v®a; ® - ®a,)=¢v® - ®ai0i41 Q---Va, 0<i<r
a,v®0; ®--®ar-3, § =y

5i(v®a;1®---®a,) =v®-- Qa1 ®1®---®a,, 0Li<r
cf. (2.1.1). When V = A this becomes a cyclic set upon defining
tr(a® --®ar)=a,®a @ ar-1.

The topological realization of Z,(A; V') is denoted HH(A4; V) or when V = A
just HH(A). Its homotopy groups are the Hochschild homology groups,

HH;(A;V) = w;ﬁH(A; V).

Indeed for any simplicial abelian group Z, the homotopy groups of |Z,| can
be calculated as the homology of the associated chain complex Z, with

d: Zi = Zicy, dz=) (-1)'dy(2)

v=0

and Z.(A;V) is the standard Hochschild complex. The space HH(A) is the
topological realization of a cyclic set, so comes equipped with a natural action
of S, which keeps the base point invariant. Hence it gives a map

A: 8% AHH(A) — HH(A)

which is the identity on the subspace HH(A). Exterior product with the
generator [S'] € m 5! induces a map from HH,(A) to HH,4;(A). This is
Connes’ B-operator, cf. [HI].

T. Goodwillie suggested a decade ago to define the topological Hochschild
homology analogously by replacing A with the Eilenberg-MacLane spectrum
it generates, and the tensor product by smash product of spectra. Some
care is needed in order to make these substitutions because smash products
of spectra are not easily made strictly associative. M. Bokstedt in [B1] got
around this difficulty in a way we now describe; see also [Br], appendix.
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Let Top, denote the category of based spaces and continuous maps, and
let L: Top, — Top, be a continuous functor such that L(x*) = #, that is, the

function
, F(X,Y) = F(L(X), L(Y))
is continuous and maps the constant map to the constant map. Given X,Y €

Top,, we have maps -
LY) = L(XAY)

for each = € X, induced from the corresponding inclusion of Y in X AY, so
altogether a function

oxy:X /\L(Y) -+ L(X AY)

and the assumptions on L implies that this is continuous; o is called the
assembly map. ¥

Definition 2.3.2. (Bokstedt). A functor with smash product (FSP) is a
functor L with an assembly map together with natural transformations
Ix: X = L(X)
pxy: LX)ALY) + L(X AY)

such that

(i) pxyo(lxAidyy)) =oxy
px,y o (idrx)Aly) =L(m)ooyxom
(i) pxav,zo (px,y Aidyz) = px,yaz o (idpx) A py,z)

where 7 switches factors.

The FSP is called O-connected if it maps n-connected spaces into n-
connected spaces and if

ox: §' AL(X) = L(S') A L(X) = L(S* A X)

is 2n — ¢ connected whenever X is n-connected (¢ independent of n).

Any unital ring A induces a 0-connected FSP which we denote A. It takes
a based space X into the Dold-Thom construction: the configuration space
of particles in X with labels in A:

AX) = {Baiz; | 7: € X,a; € A} /(a-#=0,0-z = *). (2.3.3)

It is a 0-connected FSP and A(S™) is the Eilenberg—MacLa.ne space of type
(4,n) as S
TF,'A(X) = H,(X,A.)

T I ——
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A topological monoid G induces a 0-connected FSP G, namely
G(X)=XAGy (2.3.4)

with the obvious 1x and px,y.

Definition 2.3.5. A functor with smash product is called commutative if

px,y om = L(w) o py x

where 7 switches factors.

The FSP’s A and G above are commutative when A and G are commuta-
tive. Let I denote the category of finite sets and injective maps. Its objects
are the sets n = {1,...,n} with 0 = . A morphism f € I(n,m) can be
written as g oi where o € T, and i is the standard inclusion. The Cartesian
products I™*! form a cyclic category in that there are structure maps

di: 'l I", sp:IF I, . T

given by
T ;I z S 0<i<n
di(mﬂ,-.. ,zr)= ( 0,y 1 i+1y ’ !’) e =
(zn D 20,%1,... ,Tr) i=n
51(:[70,... ,SG,-) = (:L'o,... ,:1:,'_1,0,:1’:,',... ,m,.)

T o— R (VR TR N A

For © € I we let S* be the one point compactification of R*. For a based
space X, consider the functor

GX(L): I"*! — {spaces}
given by
GX(L,zo,...,3;) = F(S™ A--- A 8%, L(S™) A--- A L(5*) A X),

where F' denotes the pointed function space. Using the properties of L we
find maps

d,': Gf(L,ZD, o ,I!:,-) — G;}'_l(L, d,-(a:o, o ,:r:,.))
8;i: GX_ (L,zo,... ,Tr-1) =+ GX (L, si(z0,- .. ,Tr-1))
ti: GX(L,xg,... ,2r) = GX(L,ti(z0,... ,Zr))
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similar to the maps of sect. 2.1, and we can define a cyclic space THHZ (L)

by setting '
THHX(L) = hggmG;? (L). (2.3.6)
Jr+1

The realization of THHZ (L) is denoted THHX (L); if X = S° we just write
THH(L).

Lemma 2.3.7. ([B1]) For a 0-connected FSP L and given integer i,
| o THHY (L) = mGX (L, zo,... ,Z¢)

provided zg, ... , T, are sufficiently large.

Proof. Here is Bokstedt’s argument. The category I of finite sets and injec-
tive maps has the following structure:

an associative product p: I'x I =TI (1)
natural transformations between p and the two projections (2)
a decreasing filtration F;I with p(FiI, F;I) C Fipi1 (3)

Indeed, p(n,m) =n+m and F;I = {n | n > i}. Such a category is called a
good limit category. These are preserved under Cartesian product, so I™+!
is also a good index category. :

-For x = (zq,... , o), write G(x) instead of GX(L,x). To each A > 0
there exists an 7 so that G.(x) = G,(y) is A connected for each x — ¥y
in F; = F.I""'. Now it suffices to prove that the following two maps are
A-connected:

ho_li{.n Gp(x) = hﬂ}m Gr(x) (a)
xEF; xelr+l
Gi(y) » holim G, (x),  yER, (b)
xEF;

The map in (a) is an equivalence; an inverse is induced from pu(y,—): I"*! =
F; for some fixed y € F;. This uses property (2) above. To show that (b)
is a A-equivalence, one first argues that the space BF; (=realization of the
nerve) is contractible. Indeed, p induces a product on BFj;, and by (2) it has
a homotopy unit. Condition (2) also yields that myBF; = 0. But a connected
H-space has a homotopy antipode:

~1d: BF; - BF;, )

-l

A Pt e - o

T —————
———-
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with
BF;:-2; BF; x BF; % BF; x BF, £+ BF,
homotopy to a constant. Since by (2),
i~ pro: BF; x BF; - BF;
we conclude that BF; is contractible. Finally the projection

p: ho_li)m G.(x) = BF;
xeF;

is a A-quasifibration in the sense that G.(y) = p~!(y) is A-equivalent to the
homotopy fiber. This follows from the last lemma in sect. 1 of [Q2] upon
passing to the A-coskeleton of G, (x). O

An FSP L induces a ring (pre)spectrum L° whose n’th term is L(S™).
We note that THHX (L) only depends on LS in the sense that if L; —+ Lg is
a map of FSP’s so that L — Lj is a homotopy equivalence of (pre)spectra
then THHX (L;) ~ THH* (L,).

A 0-connected FSP L gives rise to a ring mpL by linearization, namely

ol = lilnpr,,(L(S"))

(moA = A), and the map
Gr(L,z0y... yZr) = TG (L, Toy... ,Tr)
induces a map THH(L) — HH(mpL) since
FagtottnG(Li Ty -« - 1 Bp) = Hogorta (L{SON) - -+ A L(S™"))
=m(L) ® - -- ® mo(L).

As THHX (L) is a cyclic space, the realization THHX (L) inherits a continuous
action of 51, sect. 2.1, which will be of fundamental importance later in the

paper.

There are a number of variations of the construction. First, we may define
THH(L, M) when M is an L-bimodule. This is a functor from pointed spaces
to itself with an assembly map

oxy: XAM(Y) =+ M(XAY)
and structure maps

Ixy: LIX)AM(Y) = M(XAY)
TX,Y: MX)ALY) + M(X AY),
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satisfying the obvious compatibility relations which we leave for the reader
to explicate. One defines

THHX (L; M) = hgl_i)mF(S’”“A- +AS®, M(S™)AL(S®) A+ - AL(S*) AX)

Jr+l

and gets a simplicial space with realization THHX (L; M) and a linearization
map
THH(L; M) = HH(mo L, moM). (2.3.8)
This is a rational equivalence when L= A, M = V.
Second, we may vary the concept of FSP to the simplicial setting and
consider simplicial endo-functors of based simplicial sets

Lg: 8.8ets, — sesets,

with properties ahalogous to the ones given in definition 2.3.2. In this setting
the FSP A associated to a ring A is simply

A(XS) = A[X)/A #a =0

where A[X,] denotes the simplicial abelian group whose k-simplices is the
free A-module with basis X;. One defines THH,(L,) by using the simpli-

cial function space, assuming L,(S]') be fibrant, or one can follow L, by
realization, and use the above construction.
Third, there is a variation of THH(L) which defines THH(C) of an additive

category, cf. [DM2]. The definition is as follows. Consider the functor
C.,: 5,5ets, —+ (8, Ab)C™XC
which to a :-’.implicial set X, associates the functor from C°P x C to s,Ab
C.(X.)(c1,c2) = Home(eg, €2) ® Z(X.)
Write x'= (0.« . »Zo)s

vWCx) = \/  Cu(ST)(co,cr) A-r A Ca(S)er er1)

(COyere 16n) ECTH1

and ~
@ (C,x) = Fu(SZ0 A +++ A 5%, VolC, x)).

Here S2° is, say the zg-fold smash product of the simplicial circle S =
A,[1]/8A.[1], and F, is the simplicial mapping space. Then, as before,

THH. (C) = holim Ga (€3 x) (2.3.9)

Jet+1

e i s S
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with realization THH(C).

If C is the category of free A-modules of a given rank n, then THH(C)
is obviously equal to THH(M,(4)). By Morita invariance, cf. proposition
2.6.5 below, this is equivalent to THH(A). If C = F4, the category of free
A-modules, then the k-simplices of THH(C) consists of matrices of varying
sizes. By adding zeros in a suitable way to get them to have equal size, one
does not change anything up to homotopy, so THH(C) ~ THH(A) also in
this case. (The reader can easily supply the argument by constructing the
required homotopies, step by step). More generally, if C = P, is the category
of finitely generated projective modules, then by adding complements to
modules and zero homomorphisms, one gets (as pointed out in [DM2]):

Lemma 2.3.10. For the category of finitely generated projective modules
THH(P4) ~ THH(A). . o

The construction THH,(C) is clearly a cyclic set, so THH(C) has an S*-
action. The equivalence in the above lemma is actually a C, equivalence.
This can be seen upon using subdivisions and lemmas 3.10-12 of [BHM].

In general one may associate to C the simplicial FSP:

LeX) =[] V CeX)(ewic2).

c1€EC eaeC

Then THH(C) ~ THH(L¢) cf. [DM], lemma 1.6.22, so (2.3.9) is not really a
generalization. It is however a very convenient formulation, as we shall see
in the next chapter, and L¢(X) is not functorial in C.

Remark 2.3.11. The ring (pre)spectrum L° associated to an FSP is very
special: it has a strictly associative multiplication, and for commutative L
it is strictly commutative. Most of the (pre)spectra which otherwise appear
in algebraic topology do not have such a “strict” structure—they are merely
“homotopy everything associative” (Aso-spectra) or “homotopy everything
commutative” (E-spectra). Recently Elmendorf, Kriz, Mandell and May
have recast the category of Ao and E.-spectra into what they call L-rings
and commutative L-rings, [EKMM]. Such an animal F has an associative
product pg: E Ag E =+ E. There is no (strict) unit for pg, but one may
still define THH(E) by imitating the algebraic construction Z,(A) of (2.3.1),
forgetting the degeneracy operators, cf. (2.2.1). ([EKMM] also introduces
S-rings and product ps: E As E —+ E with a unit, and show that the two
categories are equivalent, so for S-rings one has THH, (E) with degeneracies).
~ More importantly for this paper, Jeff Smith has pointed out that each L-ring

a
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E gives rise to an FSP. Thus FSP’s are rich in supply also from the point of
view of A, and E,-spectra.

In the rest of the paper all FSP’s will be assumed to be 0-connected.

2.4 Cyclotomic spectra.

This section constructs from THH(L) an equivariant S*-spectrum with extra
structure, a socalled cyclotomic spectrum.

Let G be a compact Lie group. For any finite dimensional G-
representation space V we write SV for its one point compactification, and
if X is a G-space, NV X for the (based) mapping space F(SV,X) with its
conjugate G-action. .

Roughly speaking a G-spectrum T' is a G-space T with a specific delooping
T(V) for each G-representation, so that T and QYT (V) are G-equivalent (or
even G-homeomorphic). However, due to the many G-automorphisms of V,
some real care is needed to make consistent definitions. (For example, the
signs which show up for spectra when G = 1 blow up to become elements in
the Burnside ring of G).

We shall here follow the approach to G-spectra given in [LMS], and we
give a brief account before introducing the concept of cyclotomic spectra. Let
G be a compact Lie group and I/ a “complete G-universe”, i.e. an infinite
dimensional G-vector space with a G-invariant inner product which contains
each finite dimensional representation of G.

A G-prespectrum indexed on I is a collection of G-spaces £(V), one for
each finite dimensional G-space V' C U together with a transitive system of
G-maps :

o: t(V) = QV-Vyw)

Here W — V denotes the orthogonal complement of V in W. It is a G-
spectrum if the structure maps o are all homeomorphisms. A map f: ¢t — ¢t/
of G-prespectra consists of G-maps f(V): t(V) — (V) which commute
strictly with the structure maps. The category of G-prespectra indexed on
U is denoted GPU and GSU denotes the full subcategory of G-spectra. The
forgetful functor {: GSU — GPU has a left adjoint L. It is given by the
colimit over the structure maps

Li(V) = lim QV-Viw),
weu

provided that each o is an inclusion, i.e. induces a homeomorphism onto its
image. (This can always be arranged by thickening up ¢, to such a prespec-
trum 7, cf. [HM)], appendix A).
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Suppose C is a closed subgroup in G with quotient J and T' € GSU{. There
are two possible notions of an associated fixed point spectrum in JSUC, in

[A], [LMS] denoted T° and ®“T respectively. Their V’th spaces are

T(V) =T(V)°, &°T(V)= lim Q" -VT(W)°, Vv=vC (241)
wcu

and the structure maps are the evident ones. Since T'(V) = QW-VT(W)
when V C W the replacement of a C-equivariant map from SW~V to T'(W)
with its induced map on C-fixed sets induces a map sg: TC — ®°T. If
T = Lt, then ®°T(V) = lim QWC‘Vt(W)c, see e.g. [HM], lemma 1.1.

In the case G = 1, the concept of prespectra differ from the usual one
in that it is indexed on finite dimensional vector spaces, rather than on just
the positive integers n (or R™). But the two categories are equivalent; the
relationship is similar to the relation between a category and its skeleton
category. The category of spectra is similar to what used to be called -
spectra, where one just demanded that ¢ be a homotopy equivalence. The
functor T' +— LT brings us from {2-spectra to spectra.

We need a few further results. It can all be found in [LMS], chap. 1-2,
but the reader which is not accustomed with spectra should first consult [A]
to get oriented in the subject.

Let G C H be a closed subgroup. There is a pair of adjoint functors

i*: GSU = GSUH,  i.: GSU® - GSu
with 7* the obvious restriction, and -

s < ] —yH

i (T)(W) =1_ugn" ¥(r(vE)YasY-V").

Here V runs over the finite dimensional G subspaces which contain W. Given
a based G-space X, Z°(X) € GSUC denotes its suspension spectrum, i.e.
the spectrum associated with the prespectrum V — SY A X for V c UC.
Then i,(£*°X) = EFX is the corresponding equivariant spectrum in GSU.
Maybe the most important construction in the category of spectra is the
transfer. Given T' € GSU and a free G-space E, the transfer is a map

7: j*T Ag Ey —+ §*(E~MOIT A EL)C.

Here j: U9 — U, Ad(G) the adjoint representation and £~47T is the func-
tion spectrum F(S4, T') or the equivalently internal delooping (Z—AT)(V) =
T(A@V). It follows from [LMS], theorem I1.7.1 that 7 is a homotopy equiv-
alence. Indeed, IL.7.1 proves the result when T = j,Tp, To € GSUC. The
general case follows because the natural G-map

JJ"TANEL =2 TAE;
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is a non-equivariant homotopy equivalence, hence as E is G-free a G-
equivariant one. .
The second result we need is that “induction” and “coinduction” agree,
cf. [LMS], theorem IL6.2. Let T € GSU¥H, and let L = Ty (G/H) be
the tangent space at the base point {H}, with its H-action. There is a
G-equivalence
w: F(G4,5ET? =3 G/H, AT.

See also [HM], sect. 7. In our applications G = S or is finite, and H C G is
finite. In this case we get the equivalences

7: BT Ag By = §*(T A B4 ),

) - (2.4.2)
w: X F(G/H+,T) -—}G/H.l. AT

with A=R if G = 5!, and A =0 if G is finite.

The smash products above are to be taken in the category of spectra: if
X is a G-space and ¢ a G-prespectrum then £ A X is the prespectrum whose
V'th term is ¢(V) A X4. If T is'a G-spectrum then T'A X = L(X4 AIT).
It is worth pointing out that

3T A Xy) ~c B°T A XS,

This follows from the equivalence #°T ~¢g ®€t, mentioned above.

We will now fix G to be the circle group S'. Write C(n) for the one-
dimensional representation where z € S acts as multiplication with 2™, and
take

U= P Cna.

neZ,aeN
If C c S! is cyclic of order ¢ then Y€ C U is precisely the summands with
n € cZ. -
Next we consider the homotopy fiber of sg: T¢ — ®CT when C is a
cyclic p-group. Let j: U® = UC be the inclusion of the G-trivial universe
and let D be a J-spectrum. We call *T with its J-action forgotten for the

underlying non-equivariant spectrum D. The following is proved in [HM],
sect. 1 or in [BHM]:

Proposition 2.4.3. Suppose C is a cyclic p-group. For any S'-spectrum T
there is a cofibration sequence of non-equivariant spectra

. $1C
Tho — TC 224 (8CT)C/CF;

Here Thc = ECy Ac¢ j*T is the homotopy orbit spectrum. O




Ib Madsen 217

The cofibration sequence of proposition 2.4.3 is the C fixed point of T' A
(ECy — 8% — ‘_.:‘:Z":E') One identifies the terms by use of (2.4.2) and the easy
fact that (T A EC)® —3 &% T, cf. lemma 4.1.2 below.

The circle G = S! has the nice property that any S!/C-space X can be
viewed as an S'-space by identifying §* with S*/C via the |C|'th root map
pc: St -E}SI/O. We call this S'-space p5(X). We can also use pe to view
S' /C-spectra as S'-spectra. Indeed, given an S*/C-spectrum D indexed on
UC we have the S'-spectrum p% D indexed on p5UC, with

pED(V) = pgD((p5")* (V).
In our case
el = @ Clnfe)=U
acEN,neci

S0 pﬁD becomes an S'-spectrum, again indexed on /.

Definition 2.4.4. A cyclotomic spectrum is an S'-spectrum indexed on U
together with an S-equivalence
Peiz pﬁ@cT - T

for every finite C' C S, such that for any pair of finite subgroups the diagram

pﬁ‘_ $Cr p?i $C.T pﬁu GCraT
pg" ‘pcr Tos l TCra l

rou

pg ST T

commutes.

The cyclotomic condition is analogous to the property of free loop spaces:
(AX)® = AX, and indeed the S'-suspension spectrum X33 (AX) is easily
seen to be cyclotomic.

More generally, THH* (L) induces a cyclotomic spectrum for every FSP.
We proceed to explain this. Let us write THH(L; V) instead of THHSV(L).
It is the realization of a cyclic space, so gets an S1-action from this structure.
On the other hand, being a functor in V (or SV) it has a second S-action,
and altogether an S x S'-action. We write ¢(L)(V) = THH(L; V) equipped
with the diagonal S*-action. This defines an S*-prespectrum and we let T'(L)
be the associated equivariant spectrum, T'(L) = Li(L).

Actually, it is not very hard to see that the adjoint of the natural map

SY ANTHH(L; W) — THH(L; V & W)
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is a C-equivalence for each finite subgroup of the circle, so that T'(V) ~¢
THH(L; V), cf. [HM], proposition 1.4.

In order to describe the cyclotomic structure maps rc we use the sub-
division operator sdg introduced in sect. 2.1. For a cyclic space Z,, sdgZ,
has a simplicial C-action, and its realization |sdgZ.| an R/¢Z action which
extends the C = Z /cZ action. The homeomorphism

D: |sdcZa| = | 2|

becomes an S'-map when R/cZ is identified with R/Z = S* by division with
c. .
We now define a simplicial map

rb: sdoTHH,(L; V)© — THH, (L; VC)

for each cyclic subgroup C C S'. Let ¢ = |C|. With the notation of sect. 2.3,
the r-simplices of sdcTHH(L; V) is the homotopy colimit

sdocTHH,(L; V) = holim G{ ).y (L;x)

xeIlr+1)e
- where

GY(L;x) = F(S®™ A--- A 5%, L(S*) A--- AL(S*) A SV).
The c-fold diagonal A,: I™! — J{*+1)¢ gives a C-equivariant inclusion

ho_li:}n GZEr-i—l)—l (L)oo Ac = hgl_i_;n G't‘ff("+1)—1 (L)
e+l Jlr+1)e

which induces a homeomorphism of C-fixed sets, and for x € I™+1,

Grs1)-1 (D) (Ac())
= F((5%) A ... A (55r)E), L(S%0) O A ... A L(SZ)) A SY)

where Y(¢) is the c-fold smash power, and the action of C is by cyclic per-
mutation of factors; then (Y(?))€ is the diagonal copy of Y, -

The above formula is quite similar to the identification of sdgNg* (G) =
NJ¥(BE; G°) explained in sect. 2.1, but this time there is no diagonal homeo-
morphism '

Ac: N¥(G) —(sde NS (G))°.

Even in the linear case of Z,(R) we do not have such a map since A(r) =
T®---®r is not linear. However there is a map in the other direction. Indeed,
given any two pointed C-spaces Y; and Y; one has the obvious map

rot F(Y,Y2)° = F(Y°, YY)
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which restricts a C-equivariant map to the induced map on the C-fixed points.
This gives a map

c
r'C’: GE:'-{-l)c—l(L: Ag(x)) = Gf (Ix), xE€ i
and induces a simplicial map
4 : sdgTHH,(L; V)€ — THH,(L; V°).

Taking realization and composing with the inverse of the homeomorphism D
we have obtained

ro: THH(L; V)¢ — THH(L; V°).

This is S'-equivariant, when one identifies the S*/C-action in the domain
with the Sl-action via pg, so induces an S'-map from

pe2CHL)(W) = lim Qv -WTHH(L; V)
vcu
into .
T(L)(W) = lim Qv -WTHH(L; V°).
Veu
Since ®°T(L) = ®°t(L), we do get a map

ro: ph®CT(L) - T(L)

of S*-spectra. This is an S'-equivalence by [HM], proposition 1.5, so we have

Theorem 2.4.5. For every FSP the S'-spectrum T'(L), induced from the
prespectrum THH(L; V), is cyclotomic. O

The essential point in this and the next chapter is the spectrum T'(L),
but only considered as a spectrum in the usual sense equipped with an action
of S'. To separate out this, let me introduce the notation TH(L) for this
weakened form,

TH(L) = T(L) |US" = j*T(L), j:US —=U.

The reason for introducing the extra notation is to underline the fact that
TH(L)AE; and j*(T'(L)AE}), j: U® — U are quite different. If for example
E is S'-free then (TH(L)A E4)¢ ~ 0 whereas (T(L)AEL)C ~ TH(L)Ac B4
by (2.4.2).

We shall continuously use the following special case of proposition 2.4.3;
we call it the fundamental cofibration sequence

TH(L)nc, — TH(L)%" 22 TH(L)Cwm-1. (2.4.6)
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2.5 Cyclic homology of cyclotomic spectra.

Given any FSP we saw in the last section that the S*-spectrum T'(L) associ-,

ated to the prespectrum THH(L; SV) comes equipped with an S'-equivalence
To! pﬁ@CT(L) —T(L). '

We now use this structure to define a new functor TC(L), the topological
cyclic homology of L, initially defined in [BHM].

Let I be the category where objects are the natural numbers, obl =
{1,2,3,...}, and with two morphisms R,, F,.: n = m, whenever n = rm,
subject to the relations

Rl = Fl = id“
R.R,=R,,, F,F,=F,, (2.5.1)
R.Fy = F,R,.

For a prime p, we let I, be the full subcategory with obl, = {1,p,7%,...}.
A cyclotomic spectrum T' defines a functor from I to the category of non-
equivariant spectra. Indeed when n = Im we have two commuting maps

Ry, Fy: TC» — TCm,

Here T°" and TCm are considered as ordinary (non-equivariant) spectra.
The map Fj, called the Frobenius map, is simply the inclusion of fixed points
(Cn C Cyp). The map R, called the restriction map, is the composite

Ry: T = (p§TC)0n 2% (s 8°T)Om 22 T

where C = C; and sg: TC — &CT is the map from (2.4.10), and where ¢
is the cyclotomic structure map.

Definition 2.5.2. If T is a cyclotomic spectrum, then

. -_— ] Cp’ — i Chn
TC(T,p)—h‘olI_unT . TC(T) h{o:_lmT .

For a functor with smash product L, we write TC(L) = TC(T(L)) and
sithilarly for TC(L; p).

The homotopy limit which defines TC(T'; p) may be formed in two steps.
First we can take the homotopy limit over Fy, (resp. Rp). Since R, and F,
commute, R, (resp. F},) induces a self-map of this homotopy limit, and we
may take the homotopy fixed points. More precisely, let

TR(T;p) = h%li_m TC», TF(T;p) = h?Fim O, (2.5.3)
P P

T AT

RSP T,

e

TSR
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Then F, induces an endomorphism of TR(T'; p) and R, an endomorphism of
TF(T;p), and

TC(T; p) = TR(T; p)* e} = TF(T; p)*{F),

The homotopy inverse limit of a string of maps -+ =+ X, =+ X,y —+--- i5a
homotopy equivalent to the categorical limit provided each map is a fibration.
Here (F}) is the free monoid on F,, and X"F ») denotes the (Fp)-homotopy
fixed points of X, or in other words, the homotopy fiber of id — F,,. This was
the definition used for TC(T'; p) in [BHM].

There is a similar description of TC(L). Let

. o Gn _ . Cn
TR(T)_h%mT . TF(T) _.hg%mT , (2.5.4)

then
TC(T) = TR(T)*F = TF(T)"E,
where hF' denotes the homotopy fixed set of the multiplicative monoid of

natural numbers acting of TR(T") through the maps Fj, s > 1. The inclusions
{1} c I, c T induce maps

TC(T) — TC(T,p) - T.

The following theorem, basically due to Goodwillie, cf. [HM], sect. 3, tells us
that TC(L) is not really a stronger functor than the collection TC(L, p) for
all primes p.

Theorem 2.5.5. The projections TC(T') =+ TC(T'; p) induce an equivalence
of TC(T) with the fiber product of the TC(T;p)’s over T. Moreover, the
functors agree after p-adic completion, TC(T)Q = TC(T'; p)3- O

Remark 2.5.6. T. Goodwillie has introduced the following alternative defi-
nition of TC(L) which has the advantage of allowing an integral description
of Waldhausen’s reduced A-theory, cf. [G5].

The fixed set TH(L)“» has the natural S /Cy-action so each pé TH(L)C~
is a spectrum with an S'-action (an S!-spectrum indexed on U° ’ ). En=rm
then

Fy: pf TH(L)®" — pf TH(L)m

satisfies
F.("z) =0F.(z), 0¢€ St

Let M be the semi-direct product
M={(r0)|reN, 88, or=16"}.
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It acts on
TR(L) = holim pé_ TH(L)C~.
R 3
Goodwillie defines:

TC(L) = TR(L)*™ = (TR(L)"S" )™,
and shows that its p-adic completion is equivalent to TC(L, p);.

In later chapters we shall be concerned with the calculation of TC(L)
primarily for the FSP A associated to a ring, cf. (2.3.3). In this case we write
T'(A) and TC(A) etc. instead of T'(A) and TC(A).

Since T(L) and its fixed points are (—1)-connected spectra, TC(L) is
always (—2)-connected. In [HM], sect: 2 we calculated the component groups
moT(A)%", and in particular:

Theorem 2.5.7. For a commutative ring A, there is a natural isomorphism
I:W(A,p) = mTR(A,p)

where W (A, p) denotes the p-typical Witt vectors. Moreover, the self map F

on TR(A, p) corresponds to the Frobenius map of Witt-vectors.

It follows that we have the exact sequence
TCo(A,p) — W (A,p) = W(A,p) — TC—1(4,p) —0
for the two lowest dimensional homotopy groups of TC(A4,p). The left hand

arrow is often injective, but not always.

Addendum 2.5.8. For finite subgroups H C K of the circle, there is a
map LR (S'/K;) - ZR(S'/H,), namely the Thom collapse map of an
equivariant embedding G/H C G/K x V. It induces a map of spectra

F(S2(SY/H,), T(A)) » F(SS(S'/K4),T(4)%

that is a map
' V: T(A)7 = T(A)%,

well-defined up to homotopy. In particular we get

V: meT(A)%" = mT(A)%m+,
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Theorem 2.5.7 extends to the statement that there is an isomorphism
I: T (A)%" = Wa(4,p)

into the p-typical Witt vectors of length n + 1 with moF', mo R and moV corre-
sponding to Frobenius, Restriction and Verschiebung, cf. [HM], theorem 2.3.

We close with two remarks of homotopy theoretic nature.

Remark 2.5.9. Given an L or S-ring E (cf. 2.3.11), the direct construction
THH(E) from [EKMM] is not cyclotomic. The price one pays for making
the spectrum multiplication p: E Ag E —+ E associative is that there are no
“diagonal fixed points” under the cyclic group action on the S-smash powers,
and this prevents the cyclotomic property. Passing to Jeff Smith’s associated
FSP E is one way around this. There might be other ways.

Remark 2.5.10. For a commutative FSP L, one can iterate the construction
TC(L) to obtain TC™ (L) for each n > 1, cf. [HM], sect. 3.6. In view of the
calculational results of sect. 4 below it is an interesting challenge in homotopy
theory to study TG (F,) and TC™)(Z,).

2.6 The cyclotomic trace.

We begin by defining the K-theory of an FSP. Given L we can consider the
associated infinite loop space

QL = lim Q°L(57).

The components
QL = li_m)'n'IL(S”)

is a ring, and we denote by aL; (L) € QL the subspace of invertible compo-
nents. This is by definition a group-like monoid.
We let M, (L) be the FSP of n x n matrices over L defined as

Mn(L)(X) = F(ny,ny A L(X)), n= {11 ,Tl-]'

and set GL,(L) = GL; (My(L)), again a group-like monoid. Direct sum of
matrices give maps

GLA(L) % GLim(L) =+ GLuym(L)
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which induces a monoid structure on the disjoint union of the BGLy(L). Its
group-completion is K (L), that is:

K(L) = QB(ﬁ Bé'i.,,(L)) ~ BGLoo(L)* x Z, (2.6.1)
n=0

where the superscript + is Quillen’s plus construction.
If A is a unital ring, and A the associated FSP, cf. (2.3.3), then mpQ(4) =
A, and the natural map QA —+ A is an equivalence. It follows that

BGL,(A) —+ BGL,(4)
is an equivalence, and in turn that
K(A) - BGL(A)t x Z = K(A)

is an equivalence. Thus K (A) is just another model for Quillen’s K (A4)-space
(the version where Ky(A) = Z, rather than the projective class group).

If L is the FSP G of (2.3.4) associated to a topological group-like monoid
G, then K(G) is a model for Waldhausen’s A(BG), again the version with
moA(BG) = Z.

The space K (L) is an infinite loop space, that is, it is the zero’th space
of a connective spectrum which again will be denoted K(L). The deloopings
are not as concrete as the deloopings of TH(L) and TC(L) above. One has to
use the abstract machinery of Segal’s I'-spaces or the equivalent machinery
May’s operads, or the original approach of Boardman-Vogt.

The cyclotomic trace from [BHM] is a spectrum map

trc: K(L) = TC(L).

It is highly technical to construct, so I shall here only give a rough outline of
the ideas involved to the extend it throws light on the definition of TC(L).
The interested reader can consult the original source, and [HM], sect. 1.6 for
the equivalence of the abstract I-space delooping of TC(L) and the concrete
one above.

I begin by recalling K. Dennis’ trace map in the linear situation,

Tr: K(A) - HH(A) (2.6.2)

Remember here that HH(A) denotes the topological realization of the stan-
dard cyclic abelian group Z,(A). We proceed simplicially, and consider

N.GLn(A4) 223 N (GLn(A4)) =25 Zo(Mn(A4)) (2.6.3)
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with
I(g1,++ ,9r) = (90,91,-+-19r) Go=1(91..-9r)""
S(g0,-++:9r) =90 ® - ® gn.
We have the simplicial map
Te™ : Zo(Mn(4)) = Z.(4),

TI.‘S,") (XO R ® Xr) = Z Xg(ig, 21) ® Xr(ir: iﬂ)'
(2.6.4)

It induces a homotopy equivalence
(™ : HH(M,(4)) =+ HH(A). (Morita invariance)

Indeed, if i: A = M, (A) is the inclusion which maps a € A into the matrix
with @ on the (1,1) entry and zero elsewhere, then the simplicial map

Zo(1): Zo(A) = Za(Mp(4))

induces a map from HH(A) to HH(M,(A4)) which is an inverse to Tr(™,
Consider the composition of (2.6.3) and (2.6.4):

Tre: No(GLn(A)) = Zo(A)
Tr, =Tt 0 S, 0 I, — s,(;'_l] (n)

where sp is the degeneracy operator in Z,(A). It is easy to check that

No(GLn(4)) + No(GLn41(4))
\'I‘r.‘ "I‘r/
Zo(4A)
is commutative, so the topological realization of Tr, induces the map in

(2.6.2).
The above linear trace map can be generalized to give

tr: K(L) — THH(L)

for each FSP, but two issues have to be addressed: é‘I‘..u(L) has no strict
inverses and (2.6.3) does note make sense a priori in THH, (L).

There is a standard way to get around the lack of strict inverses by group
completing the monoid, see below. For now we simply use (2.1.8):

|N BGL,(L)| ~ ABGL,(L)
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and replace |I,| by the inclusion of BGL, (L) into the free loop space as the
constant Ioops. The second map

Se: NYGLn(L) - THH,(L)

maps a string (go, ... ,gr) into the smash product go A--- A g, € THH,(L)
upon thinking of each g; as a limit of maps S¥ — M, (L)(S%). Finally we
have Morita invariance: ,

Recall our convention that two S'-spaces are called Coo-equivariant if they
are connected by a string of S*-maps which induce equivalences of C-fixed
sets for every finite subgroup of S*.

Proposition 2.6.5. For every FSP there is a C,-equivalence
THH* (M,(L)) ~ THH* (L)
which defines a Cm-eQMMmce of the associated equivariant spectra

T(M,(L)) and T(L).

Proof. I briefly sketch a proof, modelled upon the linear case treated above.
This approach is different from the one of [BHM]. Details can be found in a
forthcoming paper by C. Schlichtkrull, [Sch]. See also [DM2]. We can rewrite

Ma(L)(X) = [TV Z(x)

and have the subfunctor

nn
Wa(L)(X) =/ L(X).
It is an “FSP without unit”. We can restrict the simplicial space
THH.(L; V): A — spaces (THH,(L;V) = THHS (L))

to the subcategory of injective maps in A°P, i.e. we forget degeneracy opera-
tors and consider THH,(L; V') only as a A-space (presimplicial space) in the
sense if [RS]. Then THH, (W,(L); V) is defined, and the inclusion of A-sets

THH.(W,(L); V) = THH, (M, (L); V)

induces an equivalence upon applying the realization.functor || - || of A-sets.
On the other hand, the projection

ITHHe (Mn(L); V)| = |THHe (Mo (L); V)
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is a C-equivalence.
Second, suitable evaluation defines a map from W, (L) to L, analogous to
the linear situation

ev: Hom4(A®" A) ® A®™ — 4,
and we can imitate the map of (2.6.4) to get
tr(™ : THH,(W,o(L); V) = THH,(L; V),

This induces the required equivalence. O

The resulting trace map, valid for any FSP, tr: K(L) - THH(L), is
Bokstedt’s topological version of Dennis’ trace map. It is far from obvious,
however, that tr is a map of spectra. See the final paragraph of this section.

It is time to explain how to lift the topological Dennis trace into the
fixed sets TH(L)® of the finite subgroups C C S'. Suppose first that G is a

(topological) group.
The simplicial map (cf. 2.1.7)

dg: Na(G) =2 N (G) 23 sdo N (G)°
has topological realization homotopic to
b.: BG -3 ABG =5(ABG)®, A.(\(8)) = \6°)

where ¢ = |C| and I is the inclusion into the constant loops.

For a subgroup Cy C C, the composition of é, with the inclusion of
(ABG)€ into (ABG)®° is equal to &, since A. leaves constant loops in-
variant. On the simplicial level it is therefore not surprising that there is a
natural homotopy between dc, and the composition

[Nu(G)] 22 [sdaNE¥ (G)|C 2} [sdo NS (G)]|% -2 |sde, NE¥ (G)| %0
where D is the subdivision homeomorphism of lemma 2.1.6. Thus if we write

Fojcyt |8deN& (G)|€ — |sdg, N&¥ (G)| %
Ro/cq: sdaNSY (G)|° =+ |sda, N (G)|%°,  Reye, = Ag)g,

we have
FC/Cn ° 60 st 600! RC/CD o 60 - JCQ (2.6.6)
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with a specified homotopy in the first relation. There results a diagram

lim |sdeNE¥ (G)|°
o ‘R l
F

~g

IN.(G)|

}i_:i lsde NS (G)|°
which is homotopy commutative via a specified homotopy equivalence and

thus a map

hF

8: |No(G)| = (_{E |sdngY(G)[C) (2.6.7)
R

into the homotopy fiber of F' — id.

We want to apply (2.6.7) to G = GL: (L), so must generalize to group-like
topological monoids where I, a priori does not exist. '

The standard way to overcome the lack of strict inverses is to group
complete the topological monoid: there are functors G ~ GY and G — G*,
and natural transformations G + GY — G” which induces equivalences of
the constructions N.( ) and N.¥( ) when G is group-like. Here GV is a free
monoid and G” is a topological group, cf. [BF, p. 331] or [G2], sect. 1.1.8.

Consider the homotopy pull-back

B'G — holim |sdeNE¥(GV)|¢
R

[ &
[N.(GY)| —— holim [sde Ng¥ (G1)|°

R

where " is the composition of § with the inclusion of lim into holim.
&
When G = GL; (L), the simplicial map
St N (GLi(L)) — THH. (Mx(L))
is cyclic in the sense of Connes, and the induced maps on C-fixed sets com-
mute with the F' and R-maps. One gets a map

. T e . CIhF
h%m sdo NS (GLi (L)) | —rh%:_mlsdgTHH.(Mk(L)) e

The target is TC(M(L)). It is by (2.6.5) and (2.4.6) equivalent to TC(L).
Thus we have for each k a string of maps

tre: BGLy ¢~ B'GLi(L) — TC(Mi (L)) =+ TC(L)

e L e b e o e e
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which in turn induces a map from K (L) to TC(L), the cyclotomic trace.

In order to see that trc is in fact a map of spectra, one uses e.g. Segal’s
I-structure on IIBGL (L) and a corresponding structure on IITHH(M(L)),
cf. [BHM], sect. 4. Finally, the associated abstract delooping of TC(L) and
the concrete one from sect. 2.5 agree by [HM], sect. 1.6. I return to a different
solution to this in the next chapter, but it is in order to mention that the
I-space approach is based upon the following

Proposition 2.6.8 ([BHM]). For a product of FSP’s there is a Cuo-
equivalence
TH(L1 X Lg) ~ TH(L]_) X TH(LZ) |

3 The relative theorems

The end result of this chapter is a proof of the following conjecture from [G5]:
Let f: Ly — Ly be a map of FSP’s such that mpL; —+ mgL2 is a surjection of
rings with nilpotent kernel. Then

! !

RK{ls) — "TO{Es)

becomes homotopy Cartesian after profinite completion. |

The proof proceeds in three steps, due to Dundas-McCarthy [DM1], Mc-
Carthy [Mc] and Dundas [D], respectively, and uses Goodwillie’s black magic:
calculus of functors, [G3], [G4]. The exposition is based on these papers and
on [DM2]. I have had invaluable help from B. Dundas with some of the
details below.

3.1 Calculus of functors.

Calculus of functors is a general procedure, devised by Goodwillie, for proving
relative theorems as above. The reader is referred to [G3], [G4] for more
details.

We shall consider certain functors

F': s.sets — {prespectra}

from the category of simplicial sets (or spaces) to the category of prespectra.

I here use prespectra indexed only on R"™, not the coordinate free ones of
May.
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The functors we consider are supposed to satisfy the following two axioms:

—

(i) A homotopy fi: X3 — X, induces a natural homotopy
F(ft): F(X1) = F(X»).

(ii) For each X € sesets and each prime p, the mod p homotopy groups
satisfy
mi(F(X);Fp) = lim mF(X ;)

where X(®) runs over the finite subcomplexes of X.

Condition (i) implies that F' is a homotopy functor; (ii) is called the p-limit
axiom. : ; 2
Given such an F' and a fixed (X, z) € s.sets, there is a new functor on
Sesets,, namely
d(Y)=1b(F(X VY) = F(X)).

Consider the commutative diagram
(YY) —— @(C:Y)
B(C_Y) —— P(STAY)

where CLY are the two cones in the reduced suspension S AY. The standard
retractions of the cones induce retractions of the two off diagonal terms, and
in turn a map

B(Y) = Q@(SIAY). - (3.1.1)

" The homotopy colimit of these maps is called the differential of F' at
(X, z). More importantly for our purpose we have

Definition 3.1.2. The derivative of F' at (X, z) is the prespectrum whose
n’th term is

0. F(X)(R") = @(5")

and with structure maps
S' A O F(X)(R") — 8,F(X)(R™H)

being the adjoints of (3.1.1).

L e e i
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For example the derivative of the functor
F(X) = 3(X})

of the suspension spectrum of the n-fold Cartesian power of X is

n

8 F(X)=\/Z=(X1™")

We next define Goodwillie’s concept of analytic functors. The simplest
ones are the linear functors. They are the homotopy functors which map a
homotopy coCartesian square

Yg _— Y{p,}
Yy — Y
into a homotopy Cartesian square
L(Ys) —— L(Y())
L(Y.{l}) ) L(Y{l,z}),

and has F'(x) ~ *.
Here homotopy Cartesian and homotopy coCartesian means that the
canonical maps

Yo —+ holim(Yi1y = Y12y ¢ Vi)
Yi1,23 ¢ holim(¥pay + Yo =+ Yizy)

are equivalences.
To define the concept of analytic functors, one needs to consider n-
dimensional cubes of spaces and spectra, i.e. functors

X: P(S) = C, C = s,sets, {spectra}

from the category of posets of the finite set S. If S = n, then X is called an
n-cube. Generalizing the above, X is called k-Cartesian or k-coCartesian if

x(0) —%h{c&mx, Py = P(S) — {0}
Po(S)

%(S) holim%, P, =P(S) - {S}
P1(S)
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are k-equivalences.
Given U C T C S the face X is the T'— U cube given by~

OFEWVE(V UD).

We shall consider strongly coCartesian cubes, that is, cubes X where each
2-dimensional face %% is k-coCartesian for all k. This implies in particular
that the total cube is homotopy coCartesian.

Definition 3.1.3. A functor F': s,sets —+ {spectra} is called stably n-excisive
if the following statement E,,(c, ) is true for some numbers ¢ and «:

Zn(c,k): Given any strongly coCartesian (n + 1)-cube X with X(0) — X({s})
ks-connected and k, > &, then the (n + 1)-cube F(X) is (—c + Xk,)-
Cartesian.

Definition 3.1.4. A homotopy functor F' is called p-analytic if for some g,
independent of n, F' satisfies E,(np — q,p + 1) for all n.

Let (A, P) be a pair of a unitary ring and an A bimodule P. For each
based simplicial set Y, € s.sets, we have the simplicial ring

(Ax P)(¥.) = A®@P(Y.), P(Y.)= P[¥.]/Pls.]
with multiplication

(a1,p1)(az,p2) = (a1a2,01p2 + praz).
We shall see in sect. 3.3 below that the realization of the simplicial functors

[r] = hF(K(A® P(Y,-)) —+ K(A))

[r] = hF(TC(A ® P(Y;)) = TC(A))

both satisfies E,(—2 — n,0) for all n; thus they are (—1)-analytic; hF =
homotopy fiber.
The main theorem of Goodwillie’s about analytic functors is the following

(3.1.5)

Theorem 3.1.6. Suppose 8: F — G is a natural transformation between
p-analytic functors such that 8,0(X): 8, F(X) — 8:G(X) is an equivalence
of prespectra. Then for every (p + 1)-connected map Y — K in s,Sets,, the
diagram )

FY) — G(Y)

! !

F(K) — G(K)
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is homotopy Cartesian.

The cyclotomic trace of sect. 2.6 defines a natural transformation between
the two functors in (3.1.5), which turns out to satisfy the conditions of the
above theorem after profinite completion, cf. sect. 3.2 and sect. 3.3 below, so
theorem 3.1.6 implies that

K(A® P(Y.)» —— TC(A® B (V)"

l l (3.1.7)

K(A)» ——  TCAA

is homotopy Cartesian, where the upper horizontal line is calculated degree-.
wise. Indeed, the homotopy fibers of the vertical arrows are the relative
theories of (3.1.5), and they vanish for Y, = *,, so agree by the theorem.

3.2 K- and THH of additive split exact categories.

In this section C is an additive split exact category, e.g. the category of
projective modules P4 over a ring, or its subcategory F, of free modules.
Recall that Waldhausen in [W3] associated to C a simplicial set (in fact
a simplicial category) S,C. The r-simplices of objects in S,C is the set of
diagrams
Ci— Cy— C3—---— C,

1 4 1
012H013H"'H Glr'
I '
Cag = +-- = Oy (3.2.1)
3
4
Cr—l.r

with
0~+C,-,-—}C’,-k —}C_-,';,-, =0

a (split) exact sequence. Thus S,.C = 0 for r = 0, S;C = C, and in general
S.C is the category of flags involving r objects with choice of quotients.

The objects of S,C form a simplicial set where dp forgets the first row
(divides out Cy) and where d; contracts the flag by forgetting C; and the row
Ci.. The degeneracy operator s; inserts an extra Cj;, so for example sq and
81 from S5;C = C to S2C sends C to 0 — C and C - C, respectively.
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The nerve of the isomorphism category iS,(C) of flags defines a bisimipli-
cial space
(], [r] = N4(iS:C).

The loop space of its realization is Waldhausen’s definition of K(C),
K(C) = QIN,.(iS.C)| (3.2.2)

(of course, Waldhausen’s definition applies to much more general situations).
In order to relate this to the previous definition of K-theory, recall from
gect. 2.2 that we can realize the double complex in two steps. Let us first
realize the r-direction. There is an obvious map

Al x N,(i51(C)) = |Ns(iS.C)|
(the inclusion of the 1-skeleton), and since SoC = {0}, it factors over
a: S A N,(iS1C) = |N4(iS4C)).
Realizing the s-direction and aajoining o we get a map
IN.(C)| "X Q. (5.0)] (3.2.3)

which turns out to be a group completion, cf. [W3], sect. 1.6. When C = F4
then

cO
IN.(F4)| = [ ] BGLn(4)
n=0
so the above definition of K-theory agrees with the earlier one from sect. 2.6
in this case. )
The iterated degeneracy operator in the s-direction defines a map

8: No(iSeC) = Ny(iS.C)
with a one-sided inverse djj, and gives a map
81 |No(iSeC)| = | No(iSeC))- (3.2.4)

Corollary 1.4.1 of [W3] states that (3.2.4) is an equivalence. Thus one can
recast (3.2.2) as
K(C) = Q|ob S.C| = Q|[r] =+ S,.C|. (3.2.5)

When C = P4, the projective modules, then (3.2,4), and (3.2.6) below, implies
that "
Ko(P4) = 1| obSePa| = Hi(ob S.Pa) = Ko(A),

the projective class group of the ring A.
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The S, construction can be iterated, and defines a (—1)-connected spec-
trum whose (n — 1)’st term is 02| ob S{™¢ |. The natural maps

lobS{" e - QlobsiMe] (3.2.6)

are equivalences for n > 1, cf. [W3], proposition 1.5.3, so the S,-construction
deloops K (C) beyond the first step

K(C) ~9"obS™e|, n>1.

We now turn to THH(C), following [DM2]. We have already presented
the definition in (2.3.9), and can try to imitate the two key results above,
(3.2.3) and (3.2.4), for N.(—) replaced by THH.(—). In fact, since THH(-)
is already a spectrum, one expects that (3.2.3) be an equivalence, and this
indeed happens. Here are some details.

We can think of (3.2.2) as

K(C) = Q|[r] = |Nu(iS:C)||
and can similarly consider the simplicial space
[r] = THH(S,C) = |THH.(S,C)|
which we denote for short THH(S.C). There are maps

o: S ATHH(C) — THH(S.C)
s: THHy(S,C) —+ THH,(S,C)

defined as above.

Theorem 3.2.7. ((DM2]) The maps o and s define equivalences

(i) THH(C) =% Q|THH(S,C)|
(i) lim Q"|THH, (88e)| = lim Q™| THH(S{™C))

Proof of (i) (sketch). The proof is modelled upon [W3], proposition 1.53.

Consider the functor S,C — C™ which to the flag (3.2.1) associates the n-
tuple (Cy,Ci2,... ,Cn-1,n). It induces an equivalence

THH(S,C) —~ THH(C)".

This is an application of Morita invariance and (2.6.8): the trace of a trian-
gular matrix only depends on the diagonal entries.

Now recall for any simplicial space X, the simplicial path space con-
struction P, X,. It has n-simplices P, X, = X+ and face and degeneracy

-~
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operators are shifted up by 1. The extra degeneracy sg: X, — Xn4+1 not
used in P, X, gives an equivalence |P,X,| ~ Xp, s0 |P,X,| is contractible
when X consists of a single point. Moreover we have a sequence

X; =2 B X, -9 X,

of simplicial sets upon considering X; the constant simplicial space. We now
have for each r the diagram

THH(C) —— THH(FP,S.C) —— THH(S,C)
THH(C) —— THH(C)"** ——— THH(C)"
so the sequence
THH(C) — THH(P.S;C) — THH(S,C)

is a degreewise homotopy fibration, and hence becomes a homotopy fibration
after realization, since THH(—) is equivalent to an abelian group complex,
see (3.2.8) below. Finally [THH(P.S.C)| ~ *. O

The proof of (ii) is more delicate and requires some rewritings of THH(C)
which we now present. We have for each number z the simplicial abelian

group i )
C%(eq, 1) = Home(cp, 1) ® Z(S7) = C(za, 1) @ Z(S7)

and associated simplicial sets, one for each r,

Vie(Cx)= \/  8(C*(co,cr) AC™(c1,00) A+ -+ AC" (cr, 1))

€Qyee sCr EC
where & denotes the diagonal in the stated multisimplicial set. There are
simplicial maps
Vr'. (C, X) _di')' Vr—]_" (C, dix)
V;‘.'(Cl x) i) 1,1'4-1.' (Ca s,-x)

and we let

THH,,0(C) = holim 5.C(352° A -+ A 52", Vr,e(C, ).

IEI"+1 -

Here s,C is the simplicial mapping space. This gives a bisimplicial set
THH, ,(C) whose realization is the THH(C) defined in sect. 2.3.
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We now vary the definition by replacing V;. (C,x) by
ViR, x)
= P c*(co,cr) ®Z(C (c1,00) A+ AC*"(er, Cr1))

COyqees sCrEC

= P C=(co,e) L™ (e1,00)) @+ ® Z(C (cry &) (3.2.8)

and write THH®,(C) for the corresponding bisimplicial abelian group. The
inclusion of V; +(C,x) in V,8,(C,x) induces a simplicial map

6.: THH,(C) — THH®(C) (3.2.9)

which is an equivalence. This follows from lemma 2.3.7, the well-known |
isomorphisms

mM(Y) 2 Hy(Y; M) & mipa (Y A M(S%), i<z,

and because the inclusion of the wedge in the product (direct sum) is 2Xz, —1
connected.

Recall that S,C is the category of (split) exact sequences in C. The
morphisms are commutative diagrams

0 —— Gy y C) + Ch + 0
lﬁ- lh lh
0 —— Cj » Cf y C) y 0

We use the notation (fg, f1, f2) for this morphism. The simplicial functors
do,dy,da: SaC = C = 5:C
induce simplicial maps
do,dy,ds: THH®(S,C) - THH®(C)

and we have (in preparation for the proof of theorem 3.2.7 (ii))

Lemma 3.2.10. For each r, there are natural transformations
T): THH®(C) - THH®(S.C), v =1,2
such that

dTM =id, dTV =0=dyT®, 4TV =d, TP, T = s} odj.
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Proof. Given objects ¢ = (g, ... ,¢r) € C""! and morphisms aqg € C(cp, cr),
ar € C(cg,cr—1) for k =1,...,r we define objects Af,:) = Af:') (c, ) of S»C

AY: 0 —C,C 00 20— 0

Agz):o—-}c,&gc,@ckm" e —s0

where fr = agy1-rarfor 0< k <r and §, = 1.
With these notions we define )
t(): 5,C (ST, VE(C,x)) = 8.C(ST, V2 (5:C;x))
t2): 5,C(S%,VE(C;x)) = 54C(SY,VE(S:C;y))
wherey = (zo+:-++Zr, 1+ + Try... ,2r) and S¥ = STOA---AST. If
(zo,---,z+) = (0,...,0) the formulas are:
t(o®- - ® )

=(L(& )2 @ L (5&4),m) e (i), a)
t,(,.z)(ao®---®cu,.)

= (0o (@ m)10) @ (L (6w ) )@@ (L (5a ) ).

For general x, one needs to replace C*(c, d) by the equivalent 5.C(c, d® Z(5%))
and one must use suitable suspension maps

5eC(c, d) 3 5.C(c ® Z(SY), d ® Z(SY))

in order to define both AE) (c,) and #{*). Details are left for-the reader to
carry out, who can also consult [DM2]. We set

T®) = holim t): THH®(C) — THH®(S.C).
Jr+1

These are the required maps, and the required relations are obvious to check.
O

We assumed C to be an additive split exact category, so 'SgC is equiva-
lent to € x C: there are functors both ways whose composites are naturally
isomorphic to the identity. Indeed,

S P e v ¢ xe® s

are the two functors. One composite is the identity; the other sends each
object to an isomorphic object, and one may easily construct the required
natural isomorphism.
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Functors such as THH®(C) does not map equivalent categories into ho-
motopy equivalent spaces (check e.g. r = 0). However the composite functor
THH®(S.C) does have this property.

Lemma 3.2.11. Let go, g1 : C =+ D be naturally isomorphic functors between
exact categories. Then there is a simplicial functor

G: A[l]e X SsC = S.D
which restricts to S. fo and S, fi at the two ends. Here A[l], is the simplicial

1-simplex considered as a discrete category. O

The lemma is proved in [W3], although only stated on objects. Since
simplicial homotopies are preserved by functors, the induced maps

THH®(S5.C) = THH® (S, D)
are homotopic. In particular
THH®(S,5,C) ~ THH®(S,C x 5,0).

Consider a functor X from additive exact categories to simplicial or topo-
logical groups with X (0) = 0 and X(C x D) — X(C) x X(D). Let Y(C) =
Y (S.C), a bisimplicial abelian group. Then

dy ~dy+dy = Y(S:C) = Y(C) (3.2.12)

where d; = Y'(d;). This follows from the homotopy commutative diagram

Y(5:¢) 29N yie x ) Y (S:C)

%‘ ]lﬁ%

Y(C) x Y(C)

Y (s08s2)

The right hand triangle homotopy commutes because it does so after com-
posing with the equivalence dy x da, dasg = 0 = dgs;. The left hand triangle
commutes because 7, X pF, is a homotopy inverse to i; +i,. Finally the hori-
zontal composite is homotopic to the identity by lemma 3.2.11, and d; (5p+51)
is equal to addition.

The functor THH®(C) does not: preserve product, but the functor

X (C) = lim Q*THHZ(5{c) (3.2.13)

e
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does. This is formal and true for any functor Z with Z(0) = 0 as the map of
multisimplicial sets

z(8¥e x 3¢y = z(sPe)x z(sMe)

is an isomorphism when the sum of the 2k simplicial degrees is less than 2k
(because SpC = 0). In particular the map is 2k-connected.

Proof of theorem 3.2.7 (ii). With the notation from (3.2.13) have from
(3.2.12)
dy ~dp +ds: X,-(S.SzC) —$ X,-(S.C)

Lemma 3.2.10 can be applied to X, as well as to THH?, and shows that the‘

composition
X,(€) 2 Xo(C) % X, (C)
is homotopic to the identity. Indeed

id = doTt™ + &, TV = 3, TH® ~ GyTe® 4 BT = dfsp,.

The other composition is obviously the identity.
Thus X,(C) is a simplicial space in which the simplicial structure maps
are all homotopy equivalences; for such Xo(C) ~ | X.(C)| ; O

Theorem 3.2.7 allows a slick definition of the topological Dennis trace

tr: K(C) - THH(C),
namely as th;a composite
0|S.C| = QTHHo(S.C)| = QITHH(S.C)| ~ THH(C) (3.2.14)

where the first map is induced from sending an object C € S,C into id¢ €
Homs.c(c, C). ' :

We can introduce the spectrum TH(C) either by iterating the S,-
construction or by introducing a dummy variable similar to what we did
in the case of THH(L). The corresponding deloops (spectra) are equivalent
by the standard argument which makes use of both deloops:

THH(S{™¢) ~ Q*THHS" (5{™C) ~ THHS" (C)

(cf. [BM] sect. 1).

If we use the iteration of the S,-construction to define the spectrum, then
it is obvious that the map in (3.2.14) is'a map of spectra.
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Later in the chapter we shall consider THH®(C; M) where M : C° x C —
Ab. Tt is defined by replacing V.5, (C,x) by

ValC M, x) = @M“’”(co,cr)tgzczl(cl,cg)& - ®ZC® (cp, cro1). (3.2.15)

If C is the catetegory of projective or free modules and M is an A-bimodule
then
M:l'.'ﬂ (CU: cr) = HOII].A(CO, Cr ®A M)

extends to a functor on S,C, and the proof of theorem 3.2.7 extends word for
word to give

THH®(A, M) ~ lim Q7 (ITHH (57D 4, M))).

p

Moreover, in this linear situation, one can omit the homotopy colimit over
o in the definition of THHY. Indeed, for any number =

Homy (a,b) — 5.P4(a ® Z(ST),b® Z(ST))
=5 5.5ets. (SZ, 5P a(a, b ® Z(S7)))
where S = Al[z]./0 is the simplicial z-sphere, and Hom 4 (a, b) is considered
the constant simplicial group, cf. [Q1]. We have proved

Corollary 3.2.16. For an A-bimodule M,

THEH(A, M) ~ lim Q7
p

@ Hom(c,c@M)’. |
cESip)IPA

Remark 3.2.17. If we let x = 0 in (3.2.15) we obtain a bisimplicial abelian
group V& (C, M, 0) which is constant in the s-direction. Following [DM1] we
write
Fr(CsM) =Vr.U(ClM:0) = @ M(cp, c;)-
Cp=t-+—cgENC

The homotopy groups of |F,(C, M)|, or equivalently the homology groups
of the associated chain complex F,(C, M), is usually denoted H.(C; M) and
is called the (non-additive) homology of C with coefficients in M. Dundas
and McCarthy proves theorem 3.2.7 for this functor by an argument almost
identical to the above. The diagram

Q| F, (S0P 4; M)| —— Q=|THH® (S P 4; M)

I [~

Q| Fp(S2°P 4; M)| —=— Q°|THH2(S{®)P4; M)|
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then shows that w,THH(A; M) = H,(P4,M). This is a special case of a
theorem due to Pirashvili and Waldhausen, [PW].

3.3 Stable K- and TC-theory.

Let A be a ring, V' an A-bimodule and A x V' the semiproduct ring. We
may replace V by the (n — 1)-connected simplicial .A-bimodule V(S?) and
consider the simplicial ring A x V(S?). This can be thought of as a small
deformation of A. We want to measure the difference between K(A) and
K(Ax V(SD).

Recall from [W1] that K-theory of a simplicial ring R, is defined as

K(R,) =QB (]_[ Bé“L,,(R.)) =7 x BGLoo(R.)* (3.3.1)

where éin(R.) C Mn(R.) is the group like simplicial monoid of ma-
trices which map to invertible matrices in Mp(moR.), and BGLa(R.) =
| Ne(GLp(R.))|- Alternatively we can use (2.6.1) for the FSP

Ro(X) = |[p] =+ Rp(X)|

Indeed K(R,) ~ K(R,). There is another, more straightforward possibility,

namely to consider the simplicial monoid GL(R.) with p-simplices GL(R,).

This leads to degreewise K-theory, |[p] -+ K (Rp)l, which however is not a -

homotopy invariant of R,, and does not agree with (3.3.1) in general.
For a map of (simplicial) rings R, =+ S, we write

K(R. = S.) = hF(K(R.) = K(S.)).

Lemma 3.3.2 ([G2]). Let R, be a simplicial ring and I, C R. a (degreewise)
square zero ideal. T{:en

K(Re =+ Ro/I,) ~ |[p) = K(Rp = Rp/L,)|- -

(There is a little gap in the argument from [G2], lemma 1.2.2 where it was
used without proof that the diagram

BGL(R,) ——+ BGL(R.)

! !

BGL(R,)* —— BGL(R.)* (Quillen’s plus)
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is homotopy Cartesian. This was repaired in [FOV]).

Definition 3.3.3 ([W2]). The stable K-theory K*(A;V) is the functor
K*(4;V) = lim Q"MK (A x V(S?) = A)

n
The limit system in the definition, i.e. the maps from K (A®V (SF) -+ A)
to QK (A®V(Spt!) — A), are the ones given in (3.1.1). K°*(4;V) is a
spectrum whose k’th space may be given by replacing the (n + 1)’st loop
space in the definition by the (n + 1 — k)’th loop space.
The lemma above shows that we might as well have defined the stable
K-theory degreewise as

K*(A,V) = lim Q" [r] = K (A x V(SF) =+ A)] (3.3.4)

which is the point of view to be used below.
The reader can note the resemblance of K* with the algebraic “tangent
space” of K-theory:

TK(A,V)=K(AKV = A).

In K*(A,V) one has further made V' “small” by passing to the simplicial
setting, where one can make V' “close to the 0-module” upon replacing it
with V(S?), which “approaches 0” in the homotopy sense as n — co. Further
details on stable K-theory can be found in [K].

The above can be generalized to the setting of FSP’s. Indeed, let L be
an FSP and M a module over L as in sect. 2.3. One defines

(L x Mn])(X) = LX)V (S™ A M(X))

(one could also use L(X)V M(S™ A X) as the two definitions give stably
equivalent FSP’s).

K*(L; M) = li_m}ﬂ“HK(L x M[n] = L)

. — (3.3.5)
TC*(L; M) = lim Q TC(L x M[n] —+ L).
The topological Dennis trace

tr: K(L, M) - TH(L, M)

factors over K*(L, M) and long ago, Waldhausen conjectured that the re-
sulting map
K*(L; M) -5 TH(L; M) (3.3.6)

-
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is an equivalence.

The rest of the section is a presentation of the Dundas-McCarthy proof
of (3.3.6) in the linear situation, corresponding to L = A, M = V, the FSP’s
associated with a ring and a bimodule, and of Hesselholt’s corresponding
result for TC.

Consider the category P(A, V) of pairs (P, ) of a projective A-module
P and an A-linear homomorphism a: P -+ P ®4 V. The morphisms from
(P,a) to (P',a') are maps f: P —+ P’ such that

are commutative.
The K-theory of P(A,V) will be denoted KY(A;V); in the simplicial
setting we make the following

Definition 3.3.7. For a simplicial A-bimodule V4,

K% (A;Va) = |[r] = K(P(4;Vr))|-

Clearly, K (A4;0) = K(A) and we set K%(4;V,) = }_iF(I{(A;V;) —F
K(A)). Lemma 3.3.8. There are homotopy equivalences

(i) K(Ax Ve — A) ~ K (4;6V.(SL))
(i) K*(A4;V) ~ hﬂ}mﬂ“”‘lf-{cy(fl, V{szt)). )

n

Proof. The second statement follows from the first since N,V (X,) = V(S:A
X.), so we have left to prove (i).

Since we are considering the relative groups, we may replace P(A,V) by
F(A,V) in the definitions. But

N,(iFy) ~ [] Ne(imsFv) (3.3.9)
k=1

where m; Fy is the full subcategories of pairs (A¥,a), @ € My (V) and where
i indicates that we are only considering isomorphisms. An r-simplex of
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No(impF(A,V)) is determined by a string (ap; fi,. .. , fx) with f; € GLg(A)
and ap € Mi(V). Thus

N, (impF(A, V)) = N (GLy(A); Mg (V) (3.3.10)

upon sending (ao; fi,... , fx) into ((f1 <« fx)™%; fi,--- » f&), cf. (2.1.1). From
(2.1.10) we have

SN (GLy(A), NaMi(V)) 2 No(GLk(A x V) (3.3.11)

so, extending (degreewise) to simplicial modules V,, and taking group com-
pletions, the result follows. O

Theorem 3.3.12 ([DM1]). For any A-bimodule M, the trace defines an
equivalence
K*(A,M) = THH(A, M).

Proof. We use the model THH® for THH. Indeed corollary 3.2.16 gives

( P Homgu(C,C®4 M))

cesiPp,

THEH(4, M) ~ lim Q

By definition

K (A; M) = QP|K (S P(A, M))| = QP

l

( H Homssp) (C,C®a M))

cesi?p

with P = P4. We shall compare these definitions when M is replaced by
the simplicial bimodule W, = M(S7'), M applied to the simplicial n-sphere.
Both functors are defined degreewise

THH(A, W,) = |[r] = THH(4; W,)|
KY(A,W,) =[r] = K¥ (A4 W,)].

Actually, we are interested in the relative functor K (A4, W,). Consider the
coCartesian diagram

IHCESS.’)T HOmS?) (C, C®a W.)I —_— ISSP)?I

l—/is&”ﬂ l—/lSEP’?l

IVCESS"’:P Homyn (C,C®4 Wo)| — =




246 Algebraic K-theory and traces

Each of the spaces are at least (p — 1)-connected, since the S,-construction
applied to any category adds one to the connectivity. It follows the vertical
homotopy fiber is (2p — 2)-equivalent to the space I.S'Ep ) P| which was divided
out, and hence that the vertical homotopy fibers agree in the same range.
Since p > 2n, it follows that

K% (A; W.) ~iap QP V Homgi (C,C @4 WL)|. -
cesPp .‘

It is clear from the definition of trace given in (3.2.11) that it (under the
equivalences above) corresponds to the natural inclusion

V Hom ) (C,C ®4 We) = &b Hom ) (C, C ®4 We).
cesiPp cesi®p

This map is (p + 2n)-connected. Indeed, the inclusion of a wedge of n-
connected spaces into the product is 2n-connected, so the corresponding map
indexed over SV is (2n + 1)-connected. Thus the homotopy fiber of the
map in question is a bisimplicial set F, o with |Fy.e| (2n + 1)-connected for
r > p and | X, .| contractible for r < p (since |.‘5'£p ) | is (p — 1)-connected. The
standard spectral sequence

H,- (H, (F.‘.)) = Hr+s(6F-,-)

is zero for 7 < p and s < 2n + 1, so gives the connectivity conclusion. The
theorem now follows from the equivalences

K*(A; M) = holim Q" K (4; M(57*))
TH(4; M) = holim QUHITH(A; M(SPH)). O

We remark that the above proof also contains a proof of

Addendum 3.3.13. For a simplicial A bimodule Vj,

() E(4V.)=lim a°| \/ Homgg)(C,C®4Ve)
P CesiPp

(i) K%(4V(X.)) = lim Q7 \V/ Homg» (C,C®4Va)™(Xs))|-
P cesi?p
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| Theorem 3.3.14 ([H1]). For any FSP L and L-bimodule M, the profinite

completions of TC®(L; M) and TH(L; M) are equivalent.

| Proof (sketch). Recall from (3.3.5) that

TC*(L; M) = lim Q"' TC (L & M[n] L)

1 where L x M([n] is the FSP

(L x M[n])(X) = L(X) Vv (S™ A M(X)).

{ We may decompose

(L(5%°) vV M[n](S™)) A -+ A (L(S™") V M{n](5%"))

into a wedge, and collect the factors which contain a given number of copies
of M[n](5%). This gives a decomposition of cyclic spaces

TH(L x M[n]) = \/ Ta(L; M[n])

a=0

with To(L; M[n]) = TH(L). Moreover Ti(L; M[n]) is a simplicial spectrum
whose k-simplices has exactly one copy of M|[n], but sitting at any of the
(k + 1) positions available, i.e.

Ti(L; M[n])x = Cry1 4 A TH(L; M[n]).

The realization of this cyclic space is S} ATH(L; M[n]) with its natural action

{ of S (in the first factor), so

Ty(L; M[n]) = S} A TH(L; M[n)).

| The cyclotomic structure map R, maps

Rp: To(L; M[n])C = Tya/p(L; Mn])Com=
if pla and trivially otherwise. By (2.4.6) this map is (na — 1)-connected.
Hence if (k,p) =1

Tpor(L; M) %" ~ipn1 Te(L; Mn]) %,
and again by (2.4.6), Ti(L; M[n])%~* ~ Ty(L; M[n])nc,, ., which is (kn —
1)-connected (as T} contains k copies of the (n — 1)-connected M|[n]).

We are only interested in the range < 2n, so Tkps(L; M[n])®*" can be
disregarded when k > 1. Thus by theorem 2.5.5,

I, 8=0

- G\ D
TC (L x M([n] =+ L), ~an—1 (h?ljn (V Type (L; M[n])) ) :
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Moreover,
R : Ty (L; M[n])%%" ~anoy To(L; M) forr > s

and Tys (L; M[n])®*" ~gp—1 0 if r < 5. Hence

00 Cpr
(V TP'(L;M[H])) ~an—1 V T1(L M[ ) pt = HTl(L M[n])c ¢

=0 t=0 t=0

(as we work with spectra, there is no difference between finite wedges and
finite products). The R,-map corresponds to projection on the first r factors,
SO

fore) Cpr (o]
holim (\/ T (Ls M[n])) = [[ Ta.(L; M[n))“

R, 5=0 t=0

and by (2.5.4) one concludes that

TC(L x M[n] — L); ~ (h{ql_ianl(L;M[n])cp‘) :
F, )

The action of S? (and hence Cpt) on
Ty(L; M[n]) = Sk A TH(L; M[n])
is free, and in this case the action can be divided out, so

hgfgqn Ty (L; M[n])%»t ~ olim (5*/Cpe A TH(L; Mn]))

where the limit on the right is via transfers (in the suspension spectrum
£%°(S/Cye4.)). If we identify S*/Cpe = S* then we obtain a (co)fibration of
limit systems:

TH(L; M[n]) —— S} ATH(L; M[n]) —— S* A TH(L; M[n])
J» |5 o
TH(L; M[n]) —— S} ATH(L; M[n]) —— S* A TH(L; M[n])
This implies a cofibration in the limit. Since

holim(TH(L; Mln), p)} ~ 0

we are finished. . ' O
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3.4 McCarthy’s theorem.

The presen{:ation in this section is my writeup of lectures given by McCarthy
in Aarhus, July 1994.

Theorem 3.4.1 (McCarthy). Let R — S be a surjection of rings with
nilpotent kernel. Then the diagram

K(R)» —— TC(R)M
K(S)N —— TC(S"
of profinitely completed spectra is homotopy Cartesian. In particular
K(R— S)* ~TC(R = S

The obvious induction shows that it suffices to prove the theorem when
the kernel is a square zero ideal; this will be assumed in the rest of the section.
Associated to a simplicial ring R, we have the FSP

Ro(X) = I[s] " R,(X)|.

We write TC(R,) instead of TC(R,). If R, =+ R., isa simplicial equivalence
(i.e. [Ro| — |R,| @ homotopy equivalence) then the induced map of FSP’s
R. = R. is a stable equivalence in the sense that

lin}ﬂ"( o(S™)) = hm Q™(R.(S™))

n ﬂ

is an equivalence, and in this case
TC(R,) — TC(R.)

cf. sect. 2.6, so TC(R,) only depends on the homotopy type of R,. On the
other hand, we have the possibility of calculating TC degreewise. In contrast
to K -theory where the two definitions do not agree in general we have

Proposition 3.4.2. TC(R,) - |[s] = TC(Rs)|.

Proof. Since

Qrot-tne [rg] y B (S™O) A --e A Ry(S™)| ~

Jls] = Qnet-to Ry (57) A - A Ro(5™))|
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we see that the topological Hochschild spectrum TH(R ) can be calculated
degreewise:

TH(R,) ~ |[s] — TH(%,)|.

The fundamental cofibration sequence of proposition 2.4.3 then shows that
the same assertion is true for fixed sets

TH(R,)®™ ~ |[s] = TH(R,)®>"

and upon taking inverse limit

TF(fs,p) ~ [ls] - TF(&s,p)|

cf. (2.5.3) for notation. There is a salient point here: realization does not
in general commute with homotopy inverse limits; however in the above sit-
uation it does as TH(R,) ~ QTHH(R,;S"), so TH(R,) is equivalent to a
Kan simplicial set. For such, reahzatlon do commute with homotopy inverse
limits.

Finally the homotopy fibrations

TC(Ra,p) — TF(Ra,p) 23T

TC(RS rp) — TF(RS ’ p)

(R- ,P)

R,— IdTF(R,,p)

show that TC(R,,p) can be Ealculated degreewise. Now apply theorem 2.5.5
to obtain the result for TC(R,). O

Lemma 3.4.3 ([G2]). If the theorem is true in the special case where R i a
semi-direct product ring R = A x M and S = A then it is true in general.

Proof. Goodwillie associates to S a simplicial ring ®,(S) with a simplicial
map D,(S) = S (when S is regarded as the constant simplicial ring) such
that

(i) @.(S) is free associative for each r
(ii) [®e(S)] 2, Sisan equivalence.

Indeed, ®,(S) is the simplicial ring with ®.(S) = (FG)"*(S) where G is
the forgetful functor from rings to sets and F its left adjoint free functor:
®,(S) is the “bar-construction”, cf. [G2], sect. I.1.6. Write A. = ®,(S) and
consider the (degreewise) pull-back

B, — A.
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Then M = ker(B, —+ A.) is the constant ideal M = ker(R — S). Since ¢,
and hence ¢, is an equivalence

K(R— S)~ K(B, =+ A,).
The latter can be calculated degreewise by lemma 3.3.2,
K(B, =+ A.) ~|[r] = K(B, = A,)|.

Now A, is free, so B, —+ A, is a split surjection, and hence B, = M, K A,.
With the assumption,

K(B, = A)" ~ TC(B, = A.)"
8o in conclusion
K(B = A" ~ |[r] = TC(B, — A,)"| ~ TC(B = A"
by the previous proposition. O
The idea behind the proof of theorem 3.4.1 is to use calculus of functors
on the cyclotomic trace
tre: K (A w M(X.) = A) -+ TC (A w M(X.) — A)

cf. sect. 3.1. First we need:

Proposition 3.4.4. For any ring A and bimodule M,

(i) X.— K(Ax M(X,))
(i) X.— TC(A x M(X,))

are (—1)-analytic as functors from based simplicial sets to spectra.

Proof. For K-theory we can use the equivalence of lemma 3.3.8(i),
K (A% N(X.) - A) ~ R (A, F (X, A S1))
and the general fact that a functor
F': sosets, —+ {spectra}

is p-analytic if (and only if) F'((=)AS?) is (p—1)-analytic. The latter follows
directly from the definition of analyticity. Indeed if F' is say 0-analytic, and X
is a strictly coCartesian (n+1)-cube with £(0) — X(s) k,-connected (k, > 0)

-
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then the suspended cube has X(@) A S* = X(s) A S* (ks + 1)-connected, so
by assumption )

a: F(X®) A S*) = holim F(%(S) A sT)
S50

is (q 4+ (ks + 1))-connected. Hence if F' satisfies the condition En(—g,1)
then F((—=) A S!) satisfies E,(—n — ¢ — 1,0), so is (—1)-analytic.

To see that K (A, M(X,)) is O-analytic we use the description of adden-
dum 3.3.13:

I?CY(A,M(X.)) ~ hO].iIll np ( V Homss,,)(c, C @A M)N(X.)) .
cesPp

Given a strongly coCartesian (n + 1)-cube X. For given C € sir ), the cube

Homy (C,C ®4 M)™ (%)

is homotopy Cartesian for each p: this is true for M (X) for any abelian M.

It follows from the dual Blaker-Massey theorem, [G4], theorem 2.6 that
the above strongly Cartesian cube is also n+ Xk, coCartesian. Taking wedge
over C € S we obtain an (n + p + Xk,)-coCartesian cube. (The extra p
appears because 5 ig (p — 1)-connected, cf. the last part of the proof for
theorem 3.3.12). By [G4], theorem 2.5, the cube

\V/ Homgu (C,C®4 M.)™(X)
Ces{P P,

is (p + Xk,)-Cartesian, and looping down p times there results a (Zk;)-
Cartesian cube. This proves (i).

The FSP associated to the simplicial ring A x M (X,) is equivalent to the
FSP which sends Y, to A(Y,)V M(X,AY,). Thus we have the decomposition
of spectra

TH (A x F(X.)) ~ G T, (4; 0% (X-))
n=0

also used in the proof of theorem 3.3.14. )
One now first shows that the functor M (X,) = M(X¢) A --- A M(X,)

is (—1)-analytic. This is a non-trivial task. The functor T}, (A,M (X.))
involves n smash copies of M (X,) in each degree, and is thus (—1)-analytic as
well. Hence TH (A x M (X.)) is (—1)-analytic. The cofibrations of spectra
(2.4.6)

TH(A x M(Xa))hc,. — TH(A x M (Xa))%" — TH(A x M(X.))Crm-
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then give (inductively) that each of the.fixed sets is (—1)-analytic. Taking
inverse limit we see that

Xo = TF(A x M(X.),p)
is (—1)-analytic, and then that TC(A x M(X,),p) has the same property.
Apply theorem 2.5.5 to complete the proof. O

Lemma 3.4.5. The functors
X, = K(Ax M(X,))
Xo = TC(A x M(X,))
satisfies the p-limit axiom (ii) of sect. 3.1 for each prime p. O
This is well-known for K-theory. The proof for TC follows the scheme
of the previous lemma: first do TH and then induct over the fundamental
cofibrations, (2.4.6).

‘We next evaluate the differential 8, F of the two functors in question, cf.
definition 3.1.2.

Lemma 3.4.6. The functors K (A x M(X.,)) and TC(A x M(X.))} have as
differentials the spectrum |[p] &+ TH(A x M(X,); M)| and its p-completion,
respectively. '

Proof. This is really a consequence of results in the previous section, namely
theorems 3.3.12 and 3.3.14.
8. K (A x NI(X.)) = lim Q*H K (A x M(XoV S7) —+ A x M(X.)) .

But M (X, V S?) = M(X,) ® M(S?) and thus
Ax M(X.VS™) = (A x M(X.)) x M(SP)

where on the right hand side the action is through the projection A x
M(X,) =+ A. Write B, = A x M(X,). The analogue of lemma 3.3.2 for
bisimplicial rings shows that

K (B. x H(S}) -+ B.) ~ |[p] ~ K (Bp w NI(ST) = B,,)|
and by 3.3.8(i) and 3.3.12
lim Q" K (B, x H(S7) -+ By) ~
lim Q™ K (B,, F(S2+)) ~ TH(By; M).
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Similarly,
lim Q"*'TC(B, x M(S3)5 ~ TH(By; M)h

by theorem 3.3.14, and proposition 3.4.2 supplies the conclusion. O

Finally, one must check that the p-completion of 8, trc induces the equiv-
alence. This follows from the following homotopy commutative diagram of
spectra, where M, = M(S") for an B-bimodule M:

TG(B @ M.)} "2 holim 5 /Cpry. A TH(R, M.}

tre 4 ‘[ l

K(B®M)) ——— TH(Be M,)) +—=— S} ATH(R, M.);

tr
o432

TH(B; M.(SY))} S' A TH(R, M)}

~Im

The two upper vertical maps are the natural ones which map a homotopy
inverse limit into its initial term. The right-hand vertical composition is an
equivalence (cf. the proof of theorem 3.3.14), and the notation is

KBeM)=K(Bo®M,— B)

etc. This completes McCarthy’s proof of theorem 3.4.1, as I have understood
his Aarhus lectures.

Addendum 3.4.7. (McCarthy) Suppose fe: Re —+ Se is a map of simplicial
rings and that mo(|f.]) is surjective and has nilpotent kernel. Then

K(R,)* —— TC(R.)"

! !

K(S.)» —— TC(S.)"

is homotopy Cartesian.

The proof is the same with the exception of lemma 3.4.3 where one has
to add an extra step, passing from nilpotency on the mg-level to nilpotency
on the simplicial ring level, cf. [G2], lemma 1.3.3.
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3.5 Dundas’ theorem.

This section gives a brief outline of the proof from [D] of Goodwillie’s con-
jecture:

Theorem 3.5.1. (Dundas). Let f: Ly = Lo be a map of FSP’s with mo(f)
surjective and ker wo(f) nilpotent. Then the diagram

I{(Ll)A — TC(L1)A

! !

K(L)» —— TC(L2)N

is homotopy Cartesian.

The general idea is to approximate the FSP’s L; by FSP’s coming from
simplicial rings, and then use McCarthy’s theorem 3.4.7 to derive the con-
clusion. This is similar in spirit to the cosimplicial resolution of a space
(simplicial set) by Eilenberg-MacLane spaces.

Let X be a (k — 1)-connected space (simplicial set) with & > 1. By
the Hurewicz theorem, mpX = HiX and Tr+1X —+ Hpy1 X is surjective.
In other words, the linearization map X —ZX is (k + 1)-connected. The
relative version of this is as follows. Suppose f: X — Y is a (k+1)-connected
map and X is (k — 1)-connected. Then the 2-cube

x L, v

l,, l" (3.5.2)
7x 2, gy
is (k + 2)-Cartesian in the sense of sect. 3.1.
Indeed, let C be the (homotopy) cofiber of f, and let F' be the homotopy

fiber. Then F' is k-connected and C is (k + 1)-connected, and the left hand
vertical map is the diagram

F y X y Y
| [
QcC y % y C

is (k 4+ 2)-connected. (This follows for example from the Serre spectral se-
quence of the involved homotopy fibrations). On the other hand, Z(—) sends
a cofibration into a fibration, so hF(Zf) ~ QZC: apply Z the the right
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hand coCartesian square above. Since C is (k + 1)-connected, 2C — QZC
is (k + 2)-connected. Thus F' —+ hF(Zf) is (k + 2)-connected; its homotopy
fiber is equal to the homotopy fiber of

a: X — holim (ZX B, T e 1’)
.{_—
o (3.5.2) is (k + 2)-Cartesian. Roughly the same argument proves

Lemma 3.5.3. ([D]). Let X be an (n + k)-Cartesian n-cube, k > 1 suc:.h~ that
each sub m-cube is (m + k)-Cartesian. Then the (n + 1)-cube X — ZX is
(n + 1 + k)-Cartesian. O

Starting now with a (k — 1)-connected space, one can inductively define
n-cubes 3,(X) as follows:

_ X X, IX
@ ={X 22X},  3(X)={ | om| ¢4

Fx Thx, 77x

and in general _
3(X) = {3-1(X) = Z@a-1 (X)) } -

The lemma tells us that 3,(X) is (n + k)-Cartesian. For an FSP L, each
vertex 3,(L(X))s defines a new FSP 3,(L)s with L = 3,(L)p, and with

ar,(X): L(X) = holim 3, (L)s(X)
S#0

(n + k)-connected when X (hence L(X)) is (k — 1)-connected.

One could similarly start with the functor Z? = Z o - -- o Z instead of Z.
It is still true that X — Z9X is (k+ 1)-connected for a (!u 1)-connected X,
and one obtains corresponding cubes 3%(L) with a} (X) (n + k)-connected.

Proposition 3.5.4. The map ay, induces a map

TC(L)p —+ holim TC(3n(L)s)p
S#0

which is (n — 1)-connected.

Proof. Here is Dundas’ argument. It is enough to show that

TH(L) — holim TH(3n(L)s)
S5#£0
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is n-connected, since inductive use of the fundamental cofibration then gives
the same conclusion for all Cpn-fixed sets, hence for TF(L, p), and finally for
TC(L, p) with n replaced by n — 1.
Now TH(L) is the prespectrum {|THH.(L;S™)|}m, and it suffices to
argue that
THH,.(L; S™) =+ h{oﬂ_mTHH,.(Bn(L)g; ™)
S50

is (n + m)-connected for all r. This is lemma 3.5.2 when r = 0. In general,
THH, (3(L)s; S™) ~ 35+ (THH(L; S™)) 5 - (2)
The map is induced from the natural map
o: ZIL(S™) A --- ALIL(S%) = ZU+) (L(S%) A --- A L(S™)).
In turn, o is constructed from iterated use of the ass_embly map X AZY —
Z(X AY). For example, ZX A ZY -+ Z(X AZY) 25 Z (z(x A 1f)). The
equivalence statement (2) amounts to the easy fact that X AZ(S™) — Z(X A

S™) is (2n — 1)-connected. To finish the proof one applies (3.5.3) with ar,
replaced by af. O

The next result is of similar complexity but I refrain from giving the proof,
and refer the reader to [D].

Proposition 3.5.5. The map

K (L) ~+ holim K (3,(L)s)
S#0

is (n + 1)-connected. d

For § # 0, 3,(L)s is equivalent to an FSP associated to a simplicial ring,
namely to a simplicial version of li_m)ﬂ",}n(L)s(S") and mp3(L)s = moL, 50
k
theorem 3.4.7 applies to show that

K (3n(L1)s = 3n(L2)s) A ~ TC (3n(L1)s = 3n(L2)s)"

when S # (. The two previous propositions combine to give the same for
S = (. This completes my outline of theorem 3.5.1.

Let G be a topological (or simplicial) monoid homotopy equivalent to
QX, and G the corresponding FSP, so that K(G) is Waldhausen’s A(X).
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The theorem applies to G — mG = m X, and to m X — Z[m1.X]™, so gives
a homotopy Cartesian diagram

AX)N ——  TOXN

| l (3.5.6)

K(Z[mX])" —— TC(Z[mX])A

The terms on the right-hand side is examined in the next two chapters, and
a lot is known. Thus theorem 3.5.1 to some extend reduces the calculation
of A(X) to linear K-theory.

4 The absolute theorems

This chapter outlines the proof of the theorem from [HM] that K(A) and
TC(A) agrees after p-adic completion for a large class of p-complete rings,
namely for the rings which are finitely generated modules over Witt vectors of
perfect fields k of positive characteristic p. It also calculates TC for the FSP’s
associated with a group like monoid, and gives the relation to Waldhausen's
A-functor.

4.1 General approach to TC calculations.

Since TC(L) is build out of the fixed sets TH(L)® the basic calculational
problem is to get a hold of 7, TH(L)® for the cyclic subgroups of the circle.
It suffices by theorem 2.5.5 to let C run over the cyclic p-groups, where we
have the fundamental cofibration of sect. 2.4

TH(L)nc,. — TH(L)%" =2 TH(L)Cem-

to ease calculations. ;
Recall that TH(L) is the restriction of an S-invariant spectrum T'(L).
In the notation of sect. 2.4, TH(L) = j*T(L) where j: U5 — U. Moreover,
the “geometric fix point” spectrum ®C»T'(L) of (2.4.1) is equivalent to T'(L)
by theorem 2.4.5,
Pk, 8% T(L) ~s1 T(L).

The general approach to the calculation of 7.T(L)¢ is to replace T'(L) by
the function spectrum F(ES},T(L)), and to use spectral sequences for cal-
culating the Cpn-fixed points of the function spectrum. This leaves us then
for each FSP L with the problem of how close the natural map

m.T(L)%" = n, F(ESL,T(L))%"
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is to be an isomorphism. Here ES? is the free contractible S'-space

oo o
ES! = U S(C'L-}-l) - U §2n+1

n=0 n=0
with its standard S"-action (orbit space CP*°), and F(ES},T(L)) is the
equivariant S'-spectrum whose V’th term is F(ES}, T(L)(V)), the space of
based maps from ES} = ES' U {+} into the V’th space of T(L), with S?
acting by conjugation.

Following [GM] we define for each finite p-group Cyn,

" .
(Cpm, T(L)) = (F(ES‘ ,T(L)) A Esl) (4.1.1)

and call it the Cyn-Tate spectrum of T'(L). It is an S'/Cpn-equivariant
spectrum indexed on U/»". The space

ES' = G S(C*®R) = G s,
n=0 n=0

with S'-action induced from complex multiplication in C", is contractible
but not equivariantly: (ES')€ = S(R) = S° for each C C S.

Lemma 4.1.2. For any two based Cy~-spaces X and Y, the restriction to
Cp-fixed sets induces a weak Cpn [Cp-homotopy equivalence

F(X,Y AESY)C = F(XCr, YCr),

Proof. We may assume X and ¥ are Cpn-equivariant CW complexes, e.g. by
replacing them with the realization of their singular complexes. The singular
set of the Cp» space X is X7, so X — X% has a free Cp~-action,

X = X% Ug (LICn4 A D¥).

Given ¢: XCr - YCr = (Y A f',Sl)fP, one can extend ¢ cell by cell to a

Cpn-equivariant map from X to Y A ES'. Indeed the obstructions to extend
lie in :

woF(Cpn , A S¥,Y AES")% = mF(S%,Y AES") =0.

This proves that the map is surjective on 7y, and hence on 7, by replacing
X by X A S™. Injectivity is similar. [l
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Recall that the smash product of T'(L) € S*SU and a based S'-space X
is the spectrification of the obvious prespectrum, or concretely

(T(L) A X)(V) = lim av-Y (L) (W) A X). (4.1.3)
wov

It follows from lemma 4.1.2 that

Nl

3% T(L) ~c, (T(L) A ESI)C’

and in particular that

Cp" / Cy

[ (Cpn, T(L)) ~ @°* F (ESL,T(L)) (4.1.4)

Let C C S* be any subgroup. We have the pair of adjoint functors j, and j*
of sect. 2.4 where j: € — U is the inclusion, and the maps from (2.4.2),

7¢: 3*T Ac BES} = (T AES})C, C finite (£15)
751: 5i*T As1 BSL = (TAESY)S, C=8. o

The maps fit together with the non-equivariant transfer maps g
trfg: j*TAp ESL = j*T Ac ES}, D>C
trfS, : 55°T Ass ESL = j°T Ac ESL
in homotopy commutative diagrams, namely
¢ o trfg ~ Fo1p, 'rc;c.\trfg1 ~ F ot (4.1.6)

where F' denotes inclusion of fixed sets as usual, cf. [A], [LMS].
Since ES! = ES! * S°, the unreduced suspension of ES?, there is an
Sl-equivariant, cofibration sequence

ES} 8+ ES' + S(ESY) = ---

which induces a cofibration of equivariant spectra upon smashing it with the
S'-equivariant function spectrum F (ES},T(L)). We take Cyn-fixed sets
and apply (4.1.4) and (4.1.5) to get the norm cofibration of [GM]:

TH(L) Ac,. ES} — F(ESY, TH(L))%" = H(Cp=, T (L)) (4.1.7)

By definition it appears that F(C, n,I'(L)) depends on the full equivariant
structure of T'(L), and not only on TH(L), but this is not really the case.
The adjunction 7, TH(L) = T(L) induces a map

H(Cpn, 4. TH(L)) = H(Cpn, T(L))




/
Ib Madsen 261

which also fits into the cofibration sequence above; it must be an equivalence
by a 5-lemma argument. Thus we shall often write H(Cpn, TH(L)) instead
of H(Cyp»,T(L)). We shall also use the costumary abbreviations

TH(L)ne,~ = TH(L) Ac,. ES}.

TH(L)"%" = F(ES}, TH(L))%".

With these notions we have

Proposition 4.1.8. There is a homotopy commutative diagram of cofibra-
tions (of non-equivariant spectra)

TH(L)ag,n ——+ TH(L)%" —2 5 TH(L)C-

I I I

Nh Rﬁ ~
TH(L)wc,n — TH(L)"C» —— H(Cyp», TH(L))

Remark 4.1.9. The S'-fixed set of TH(L) is contained in THHy(L), cf.
sect. 2.1, and is of no relevance. In particular the upper horizontal sequence
in (4.1.7) has no analogue for S* fixed sets. But the lower sequence does
have an S-version, namely

STH(L)xs: — TH(L)?S' — H(S?, TH(L))

with the right-hand term defined by (4.1.1) upon replacing the Cp» fixed set
by the S! fixed set, cf. [GM].

Example 4.1.10. In the special case of the identity FSP, L(X) = X, T(L)
is the equivariant sphere spectrum,

T(L)(W) ~c., lim pY-wgW. yveou®
Vv

cf. lemma 4.4.4 below. In this case the diagram of proposition 4.1.7 is com-
pletely known. Listing only the 0’th terms of the spectra we have
TH(Id)®" ~ Q%°S%(BCpn4) X +++ x 02°5®(BCp4.) x N°52(S%)
TH(Id)ro,n ~ QPS5 (BCpn.)
where Q°5°(X,) = Eﬂﬂ"(ﬁ"‘ A X;). The map R is the projection onto

the last n factors. Moreover, the affirmed Segal conjecture tells us that the
profinite completions of I';, and I',, are equivalences for all n.
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One may get. information about the homotopy groups of the terms in the
norm cofibration by spectral sequences. Let M be a coefficient group (usually
M =7Z,or M =T). To ensure convergence of the spectral sequences I will
assume that m,.(T'(L); M) is a finitely generated Zjmodule in each degree.

The spectral sequences were set up in [BM], sect. 2 and in [GM], sect. 10;
in [BM] by using a topological version (due to Greenlees) of the complete
résolution in usual Tate cohomology of groups and in [GM] by the dual
viewpoint where one uses the eéquivariant Postnikov tower of the spectrum.
In our case, the spectral sequences takes the form -

@) B2, (TE)noy; M) = Hy (Con's m(T(L); M)) = Tt (T(L)cpn; M)
(i) E*’-,t(T(L)’*Cr“ M) = H¥ (Cyo; mo(T(LY; M)) = my—q (T(LY"r ;M)

(i) B2, (B(Cp, T(L))i M) h
= H* (Cprsm(T(L); M) = 7y (B(Cp; (L)1)

The spectral sequences: are concentrated in the upper half pla.ne, the differ-
entials take EJ , to By ;.. ;, and for commutative L the last two spectral
sequences have ring structure (with the differentials being derivations) when
M is a p-adic ring with p odd. Since the Cpn-action comes from an S*-action
To(T'(L); M) has trivial Cpn-action. Thus for p odd:

B? (T(L)*%;F,) = E{un} ® S{t} ® m(T(L); F,) (4.1.11)
B (B(Cpe, TN, ) = B{un} ® 5{¢7'} @ mu(T(L) )

with deg(u,) = (-1,0), deg(t) = (-2, 0) and wt(T(L) F ) sﬂ;tmg in degree
(0,2).

In the above H,;, H? and H? denotes group homology, group cohomology
and group Tate cohomology. They are related by the formulas: -

H-*(G; A), ' §<0
H,_1(G; A), | - s> -1

| ker (Norm: Ho(G; A) = H°(G; A}) s=-1

coker (Norm: Hy(G; A) —+ H°(G; A)) §=10

H(G;4) =

When G = Cy~ and pA = 0 then Norm = 0, so we see that

B2, (T(D)MF,), 820

E?,, (IHI(C,,n T(L)) ) = {Egs—l,t (T(Z)no,n;Fp), s<0

It is important for calculation of m.(TC(L);F,) to identify the R-map, or
in the setting of the norm cofibration to identify w.(R"). This is connected
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with the differentials in the spectral sequence for FI(Cpn,T(L)) which cross
over the line —s =1/2 in BT ,. Indeed, the maps in

=
T(L)"%" < B(Cpr, T(L)) ~= ET(L)nc,n
induce homomorphisms of spectral sequences

E"'(Rh):' E:,'t (T(L)thn;M) — Ef.a,t (ﬂ(cp“:T(L));M) (4 1 12)

B L (WG T M) By (T M),

with E™(R") surjective for s > 0, and ET(0) injective for s < 0. In.a situation
where one can calculate the spectral sequences one will also. know E*(R"?)
and E*(8), and hence since the spectral sequences converge,

" E%n,Rh: Ex, (T(L)"Ce; M) - EOr, (1}31(0,,.. (L)) M)
B°(r.8): Bn. (B(Cyr, T(L)); M) = E'acs (T(E)icyni M)

In general this is of course not sufficient to give, say m.R"; there might
be filtration shifts. The following lemma goes a long way to overcome this
difficulty. -

Lemma 4.1.13. If @ € E%r,y (T(L)"%"; M) is in the kernel of E°(m,R")
then there exists an element B € woyt (T'(L)nc,; M) with E%7,(N")(8) = a.

Proof. This is a special case of [BM], theorem 2.15. The argument can be
outlined as follows. By assumption E*(R")(@) = 0. The reason must be
that there exists an r > s such that a belongs to the image of

@2 By pys (B(Cpn, T(L)); M) — EL, ¢ (B(Cpr, T(L)); M)
say @ = d"(y). Now .y = E"(8)(A) and B will be an infinite cycle in
E" (T(L)hg,»:M). Thus f represents an element:-of E* (T(L)nc,.; M),
and one can pick a suitable representative. More details can be found in
[BM], sect. 2. . O

The d?-differential in the spectral sequences is connected to the action

A: S ATH(L) — TH(L)



264 Algebraic K-theory and traces

as follows. The stable homotopy 7{ f(St)=tmy ()33(5’_}_)) = 14 (SY) @ ma(S?)
is Z @ Z /2, generated by the ¢ = id and the Hopf map 5. Thus we get
operators

8,72 m(TH(L)) — mige (S5 ATH(L)) 45 iy TH(L)

where the first map is exterior product with o and 7, respectively. There are °
induced operations . y

H* (Cpn m(TH(L) M)) —} B s (Cpn; el (TH(L) M ))
which we can compose with the periodicity isomorphism
H? (Cypn3 a1 (TH(L); M)) =3 H*? (Cp; 2 (TH(L); M))

to get maps [S™]x, n4.

Proposition 4.1.14. In the spectral sequence B . (Iﬁ[(c’ n,TH(L));-M),
the d?-differential

d: H* (Cpo mo(TH(L); M)) = H**2 (Cpmj my(TH(L); M))
is equal to [.5'1].,;#, provided 7 acts trivially onm, (TH(L); M). ' O

This is proved in [H2] when Cp» is replaced by S, and the above can be
deduced from this case. The assumption that 77 be zero is satisfied for the
linear FSP’s L= A associated with a ring because TH(A) ~ TH®(A) is. a
product of Eilenberg-MacLane spectra. .

We have left to consider the homotopy limit problem, i.e. the homotopical
behavior of - :

' [, : TH(L)%m-1 — H(C,m, TH(L)).
In the special case of L = Id it is a homotopy equivalence, but this is too
much to expect in general. The domain is a (—1)-connected spectrum, but’
this is often false for the right hand side, e.g. when L = F as we shall see in
sect. 4.2 below. The best one could hope for would be that 7i(L'n), and hence
also 7;(I';), be isomorphisms for i > 0. This unfortunately is also not true.
For the FSP"A associated with truncated polynomial algebras A = k[t]/ (&™),
the two sides have different homotopy groups in'all even dimensions; this is
an easy consequence of sect. 5.2:.- The only completely general theorem is the
following result of S. Tsalidis:

Theorem 4.1.15. ([T]) Suppose 7
mi(f2): m(THL); Fy) - (B(Cy, TH(L)):E, )
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is au% isomorphism for i > ip. Then the same is true for m;([',) for all n > 1.
' O

Tsalidis’ proof is similar to the induction step from C, to Cyn in the proof
of the affirmed Segal conjecture. L

Calculations from [H2] show that if m;(['y;F,) is an isomorphism in non-
negative degrees for a ring A then the same is the case for the polynomial
algebra A[t] and more generally for any smooth A-algebra. In [BM1] and
in sect. 5.4 below the assumption of theorem 4.1.15 is established for 4 =
W (. ), with ip = 0. Optimistically one would hope for

Conjecture 4.1.16. For a regular ring A,
mi(L1;F,): mi (TH(A); Fp) = m: (H(Cp, TH(A))F, )

is an isomorphism when.i > 0.

Note that the statement is equivalent to the assertion that
Dn: TH(A)%" — H (Cpa1, TH(A)) [0,00)

becomes a homotopy equivalence a.fter p-adic completion, with [0, c0) indi-
cating (—1)-connected cover.

4.2 The spectrum TC(F,).

This section illustrates sect. 4.1 by completely determining the spectra
TH(F,)C" and TC(F,). The calculation was originally carried out in [M],
but [HM], sect. 4.1-3 is a better place to look for additional details.

For any ring, THH(A) is the realization.of a simplicial abelian group, cf.
sect. 3.2, s0 its homotopy type is determined by its homotopy groups:

TH(A) ~ \/ E“H(ﬂnTH(A)) ~ [ [ Z"H(m. TH(A)) (4.2.1)

n=0 n=>0
where H(—) is the Ei.lenberg—MacLa.ne spectrum with npH(B) = B and -
m;H(B) = 0 for i #0, and X" is the suspension functor.
One may filter TH(A) by skeletons, since it is the realization of a sunphcxa.l '
construction. This leads to. a spectral sequence; -

E%(A) = HH,(A4) = m(TH(A); F,) (4.2.2)
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with A4 = H.(H(A);F,). This spectral sequence was used by Bokstedt to
calculate TH(F,). I refer the reader to [B1] or [HM], sect. 4.2 for details.
Different calculational methods can be found in [Br] or [FLS].

The 0-skeleton of TH(A) is the Eilenberg-MacLane spectrum H(A4), and
one may use the S'-action to get the map

o: 3. AHA — Si ATH(A) — TH(A). (4.2.3)
For A = F, we have 9 € m (HIF‘,,,]F‘,,) and can consider o, ([S'] A ';"o') €
ma(TH(F,); F, ), where [S'] € n{ (S1) was defined in the previous section.
Theorem 4.2.4. ([B1], [Br]). The reduction

redy: mTH(F,) — mo(TH(F, ); Fp)
is an isomorphism, and
r.TH(F,) = S¢,{o},

the polynomial algebra on o of degree 2 with redy(c) = 0.([S}| A 7). O

Combined with (4.1.11) we can explicate the E*-terms of the spectral
sequence E™(Cyn; M) = ET (IﬂI(Cpn,T(IF'p)); M) for M =F,, Zp to be

E*(Cpn;Fp) = By, {tn} ® Sk, {t,t ™'} ® Ef, {1} ® Sr, {0}
E*(Cpn; Zp) = By, {un} ® S, {t,t"'} ® Sr, {0}

except if p = 2 and n = 1 where the first two terms are replaced by
S{ul,ul_l}. The mod p Bockstein operator maps e;jo' to ¢! for I > 0. For
podd, Er (Cpn; ) is a spectral sequence of algebras. I p=2 there is the
usual trouble with products in 7. (T;F2) but in all cases, E"(Cpn;F,) is an
algebra over E"(Cyn; Z,).

Lemma 4.2.5. The non-zero differentials in E"(Cpn; IF,) are generated from
d*e; = to in the module structure over E”(Cyn;Zp). In particular

T (]I:]I(C,,n,TH(]F,,));IF,,) = Fr {un} ® Sg, {t,t™'}, poddorn>1
- (lfﬂ(Cg,TH(ng));le) & S {471}

with deg(t) = —2, degu, = —1.
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Proof. Since e; = 0.(70), 70 € 1 (HF,;F,) and red,(o) = 0.([S*] A 7o) we
have in the notation of proposition 4.1.14,

[S'lp(er) =0, [S"]x(1) =0,

and hence [S']x(e10') = o'+, The d?-differential then follow from (4.1.14),
and a routine cohomology calculation gives

E3(Cpn; Fp) = B, {un} ® Sk, {8,471}

(with u? = t if p = 2 and n = 1). For degree reasons there can be no
further differentials. For p odd (and p = 2, n = 1) this is a free commutative
algebra in the graded sense, and the stated value of the mod p homotopy is
immediate. If p — 2 and n > 1 one uses that the mod p Bockstein on u,, is
trivial. O

For n = 1, the mod p Bockstein relation 8(u;) = ¢ gives that

7. H(Cp, TH(F,)) = Sr, {t,t7*}

(with ¢ = u} if p = 2). We next check the assumption of theorem 4.1.15.

Lemma 4.2.6. The homomorphism
(01 F,): mi(TH(E,); F,) = m; (II:II(C,,,TH(IE‘,,));IF,,)

is an isomorphism when i > 0.

Proof. Since ['y: TH(F,) — H (Cp, TH(F,)) is multiplicative, it suffices to
see that o (I'y; IF;) is an isomorphism.

Continuing the cofibration diagram of (4.1.8), n = 1, to the right, gives a
homotopy commutative square of S'-spectra

TH(F,) —2 Sp¥ (TH(F,)ho,) ——r Spf TH(F,)

I I I

- h h
p¥, L (Cp, TH(F,)) —— Tpf, (TH(Fy)nc,) —— Tpl, TH(E,)Cr

Here as usual pgp indicates that the S'/C,-spectra are to be considered as
S'-spectra under the p’th root isomorphism S —+ S*/C,.

Now o = [S'](70), so we are done if we can show that ey = m;(8; Fp ) (7o)
is non-zero in g (TH(IF',,);,GF;FP), and [S]x(ep) # 0.
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The spectral sequence E™ (TH(F,);Z,) gives mgTH(F,) = Z/p, and by
(2.5.8) meTH(F,)r = Z/p®. The fundamental cofibration thus induces the
exact non-split sequence

0 — 1o TH(F, ) o, —+ moTH(F,)r -+ 7o TH(E, ) — 0
so mp(NV;IFp) = 0, and 71 (8; Fp) must be surjective. Finally, the inclusion
T(Fp) Ac, S} =+ T(F,) Ac, ES}

coming from S! C ES?! induces a monomorphism on ;(—;F,) for i = 0, 1.
The homeomorphism :

&, (TH(F,) Ac, S}) = TH(F,) A S}, (z,0) = (67',06)

map the diagonal S*-structure in the domain to the extended S!-structure
in the range. Hence

[5']: 7o (8, TH(E,) Ac, S1iF, ) = m (o€, TH(E,) Ac, ST )

must be injective. O

The spectrum TH(IF,,) is p-complete, and inductive use of the fundamental
cofibration (2.4.6) implies the same for TH(IF, )%™ for each n. Thus

T TH(F, )" = m, (TH(IF, )% Z,) .

Proposition 4.2.7. Forn > 1,
muT(E, )" = Sy jgmir{on}
with dego, = 2. Moreover, F(o,) = op,—1 and R(o,;) = Appon—1 with
An € Z[p™ a unit.
Proof. Theorem 4.1.15 shows that
I': 7 TH(F,)%" — m, M (Cpn, TH(F,))

is an isomorphism in non-negative degrees. For the target, the integral spec-
tral sequence E"(Cpn; Zp) has

E? = Eg, {un} ® Sp, {t,t™} ® SF, {0}
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The elements ¢ and o are infinite cycles. Indeed the inclusion of S* fixed sets
into Cp» fixed sets gives a map

I (S, TH(F,)) —+ H (Cpn, TH(F,))

¢f. (4.1.9), and an induced map of spectral sequence. The E*-term of the
range is

E? (1(S*, TH(E,)); Z,) = Sr, {t,t™} ® S¢, {0},

8o is concentrated in even total degrees. Thus E? = E*. On the other hand
it injects into the E? above. Thus t*¢! are all infinite cycles.

We claim that u, survives to E*"*1(Cpn;Z,) and that d®"tl(u,) =
t"*1g"_ Indeed, the first non-trivial differential on 4, must be of the form

d2r+1 (un) — tr-}-lo_r
for some r. Given this it is easy to solve the spectral sequence. In particular
E%noHl (Cpn; TH(F,)) = IF;?"

generated by 1,to,...,(to)", (d®* T (ust™!) = (to)"). Since
moHl (Cpn, TH(F,)) = mTH(F,)%"~* is Z/p" by (2.5.8), we conclude that
r = n. Moreover,

EOma H (Cpn , TH(F,)) = Fon

generated by o*,a*t,... ,6*"t", and mop1l (Cpn, TH(F,)) = 0. Since
in addition oy (IfI[(Cpn, TH(F,)); le) is a single copy of I, we must have
okl (Cpn; TH(F,)) = Z/p"

for all £ > 0. One more application of theorem 4.1.15 gives the stated
homotopy groups. The inclusion F' corresponds under I' to the inclusion

i3} (Cpn+1, TH(F,)) f_h’ﬂ(c n, TH(Fp))

so mor(F") must be surjective, and we can pick the generator to satisfy
Flog)= o3 '
Finally the exact sequence

1oT(F, ) 2y 1 T(F, )0t 25 1y T(F, Jnc,m — mT(Fp )7,

with 7, T(F,)%" = 0 and mT(Fp)ac,= = Z/p, yields the stated value of R.
O

Corollary 4.2.8. TC(F,) ~ HZ,V X~'HZ,
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Proof. We use the cofibration sequence of sect. 2.5,

TC(Ey,p) — TR(F,, p) — TR(Fy, p).

The previous proposition yields

. 0 fork>0
TR(F,,p) = li TH(F, )" =
7Tk R( P p) {%ﬂ-k ( P) ) {Zp fOl‘k-—'—»D :

so that
10TC(Fp,p) = Zp, 71TC(E;,p) = Z

and 7 TC(Fp,p) = 0 otherwise. Finally, TC(F,,) is p-complete and by. theo- -
rem 2.5.5 equal to TC(F,,p). O
4.3 The absolute theprem: linear case.

This section sketches the proof of theorem 1.3 of the introduction. It is joint
work with L. Hesselholt, and further details can be found in [HM], sect. 4.5,
5.1, 5.2 and [HM], appendix B.
We fix a perfect field k of positive characteristic p, and consider algebras
A over the (p-typical) Witt vectors W (k) which are finitely generated as
modules; for short: finite W (k)-algebras. If k is finite the assumption is that
A be a finite Z-algebra. We use the notation
Ki(A;Zp) = mi(K(A)))
TC;i(A; Zy) = m(TC(A))

and want to prove

Theorem 4.3.1. For finite W (k)-algebras, the cyclotomic trace
tre: Ki(A;Zp) = TCi(A; Zy)
is an isomdrphism, for i > 0.
The ring of Witt vectors W (k) is a P.I.D and is p-adically complete. Since

A is finite over W (k),
A=lim A/p"A,
+—

and we can introduce the continuous version of the functors:

to n to o .
K'9?(4) = holim K (4/p"4), TGC'P(A) = holim TC(A/p"4).
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There are exact sequences
0 Jim W K1 (A/p"4; Z,) —+ KPP (4;2,) — lim K;(A/p"A;Zp) =+ 0
0 = JimTCiy1(A/p"A; Z) = TCLP(4;Z,) — lim TCi(A/p"A; Zy) ~ 0
cf. [BK], p. 249 and p. 299.

The proof of theorem 4.3.1 is broken down into three statements to be
considered separately below:

/ o~
()  Ki(A/pAZ,) =S TCi(A/pA;Z,), >0

(i)  TCi(4;Z,) — TCIP(4;Z,), i>0
(i)  Ki(4;Zp) — Ki°P(4; Z,), i>0

Indeed, given (i), McCarthy’s theorem 3.4.12 show that
tre: K;(A/p"A;Z,) = TCi(A/p A Zp)

is an isomorphism for all ¢ > 0, and hence by the short exact sequences above
that

tre: Ki°P(4;Z,) — TCP(4; Z,), i>0.

Use of (ii) and (iii) completes the proof.

- I begin with (i). For A = W(k), A/pA = k. If k is finite then K(k)p =~
HZ, by [Q3]. For general perfect fields the same holds by [Kr]. We must
therefore first extend Corollary 4.2.8 to general perfect fields. The result we
need is-

Theorem 4.3.2. For a perfect ﬁeld of characteristic p > 0, there is a homo-
topy equivalence TR(k,p) ~ HW (k)

Given this, we can calculate TC(k, p) from the cofibration
| TC(k,p) — TR(k,p) =5 TR(, ),
since by theorem 2.5.7 we know that |
moF': mo(TR(k, p); Fp) — mo(TR(k, p); Z))
induces the Frobenius homomorphism of Witt vectors. Moreover

ker (F —id: W(k) = W(k)) = W(kF)
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and kF = F, so W(k¥) = Z,. Thus theorem 4.3.2 gives
0, i>0
TCi(k;Zy) ={ Zpy i=0 (4.3.3)
; cok (F —id: W(k) = W(k)), i=-1

and hence K;(k;Z,) & TC;(k;Zy) for i > 0. -

v

Proof- of 4.3.2. For a perfect field of positive characteristic the usual
Hochschild homology groups HH, (k) vanish in higher degrees, and HHy (k) =
k. Tt then follows from the spectral sequence (4.2.2) that
7o(TH(K)) = k @ . TH(F,).
The cofibration sequence
TH(k)ng,» — TH(k)C> L5 TH(k)om-1

was derived from taking Cpn fixed points, so TH(k)%" acts on it. In particu-
lar, the homotopy groups are o TH(k)*" -modules, and by (2.5.8) W1 (k)-
modules. The inclusion F, C k induces Wy (k)-homomorphisms:
()  Wnga(k) ® mTH(Fp)ac,n — mTH(E)ng,m

(i)  Waa(k) ® mTH(F,)%" — = TH(k)%"

(@)  Waya(k) @ mTH(E,) %"~ — mTH(k) %
Now m;TH(F, )% = Z/p™ and W11 (k) ® Z/p™ = W,(k), so the domain
of (iii) is Wn(k) ® mTH(F,)%"~*. We may inductively assume the third
arrow to be an isomorphism. Thus we are done by the 5-lemma, if we can
show that (i) is an isomorphism. This follows from the spectral sequence

H, (Cypn; T TH(K)) = m TH(k)1,n -

Indeed, it is é. spectral sequence of Wy41(k)-modules when the W41 (k)-
structure on the E*-term is via F™: Wy (k) = Wa(k) =k and -

W (k) ® (F™)#m; TH(F, ) = (F™)#x,(TH(E)).

We conclude that the homomorphisms in (i), (ii) and (iii) are isomorphisms.
Now (4.2.8) gives _
. TH(k) %" =.SW,1(0)10n} (4.3.4)

‘with R(o,) = Anpon—1 with A, € W, (F,) = Z /p™ a unit. In conclusion,

. 0 for x>0
. \Cpn
EamELR) {W.(k). for + =0

lim W, TH(k)%" =0
{—.—
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as the limit system is obviously Mittag-Leffler, cf. [BK], p. 256. O

. Theorem 4.3.5. If A is a semi-simple k-algebra then K;(4;Z,)
TC;(A;Zp) fori > 0.

Proof. Both functors preserve products so it suﬂi‘ce_s to do the case of a
simple algebra. If A = My (k) then we are done by Morita invariance:
JKi(Mn(k)) = Ki(k), TCi(Mn(k)) =TC;(k) .
and theorem 4.3.2. In general, we only know that
A@p K = My(k')

for a Galois extension k' with |k’ : k| prime to p. (The existence of such a k'
is a consequence of the lack of p-torsion in the.Brauer group Br(k)). Finally,
the horizontal compositions in the diagram . '

KA Z,) —2 Ki(A®kk;Z,) —— Ki(A;Z,)
TCi(4; Z;) ——+ TCi(A®Y;Z,) —— TCi(4;Z,)

are isomorphisms since [k' : k| is a unit of Z,, and the middle arrow is an
isomorphism. (Here i* is the composition of the functors applied to A®,k' —+
Endy (A ® k') and Morita invariance). O

Corollary 4.3.6. If A satisfies the assumption of theorem 4.3.1, then
trc: K;°P(A; Z,) — TC;°®(A;Zy) is an isomorphism for i > 0.
Proof. We are reduced to check that

tre: K; (A/pA; Zp) — TC;(A/pA; Zp)

is an isomorphism. But A/pA is artenian, so its radical J is nilpotent. Thus

by theorem 3.4.1 it is edough that the cyclotomic trace induce isomorphism

for the algebra (A/pA)/J, which is semi-simple. Apply theorem 4.3.5. 0O

Theorem 4.3.7. In the situation of theorem 4.3.1, the natural map
TC;(4; Z,) — TCIP(4;Z,)

is an isomorphism.
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Proof. It is enough to prove the statement with I, coefficients: a map of
p-complete spaces is a homotopy equivalence if the induced homomorphism
on mod p homotopy groups is an isomorphism.

The functor which to A associates the Eilenberg-MacLane spectrum HA
is continuous, m; HA = %i_rgmH A/p"A when A = (@A/p“A. The same is

true for the r fold smash product, HA(™ = HAA---A HA,

1 (HAD; F,) =5, (h{cﬁm H(A/p"A)™), F,,) :

n

This is an easy calculation based on the isomorphism
T (HA™,F,) = H(HAT D k) @ Ho_y(HAU1; k)
cf. [HM], lemma 5.1. It implies that the k-simplices
THHk(A)? o h?_li_m THH(4)).

The simplicial group model THH® for THH,, cf. sect. 2.4, is a Kan complex,
and for such homotopy inverse limits commutes with realizations, so we get

THH(A); ~ holim THEH(A/p"A)p.

The same relation the holds for the spectra TH(A) and TH(A/p"A).
Finally inductive use of the fundamental cofibration sequence shows that

the fixed sets (TH(A)%" )} are continuous, and since TC(A)y is a homotopy

inverse limit construction, TC(A); must be continuous. O

Theorem 4.3.8. For the rings in theorem 4.3.1,
Ki(A;Zp) — KI°P(A;Z,)

Proof. Let F' be the field of fractions of W (k), and let E = A @) F' with
radical J(E). Then J = AN J(E) is a nilpotent ideal of A and it suffices,
again the theorem 3.4.1, to show the theorem for A/J. But

Al ®wq F = E/J(E)

is semi-simple, and for such algebras results of Gabber, Suslin and Suslin-
Yufryakov give the result, cf. [HM], appendix B for more details. O

Theorem 4.3.1 is probably the optimal result for J(-theory calculations by
traces. One would have liked to have a similar isomorphism for other rings,
and in particular for the ring of rational integers. But

TCi(4;Z,) — TCi(lim A/p"A; Z,)
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at least when A is finite over Z. Indeed, this holds for the functor A — (HA)}
and hence adapting the argument of theorem 4.3.7 also for TC(A)7. But K-
theory does not have this property. One would also like to drop the finiteness
assumption on A, and could wonder what would happen for A = k[[X]]. For
such a ring the arguments proving theorem 4.3.7 and theorem 4.3.8 break
down. In the first case for the simple reason that the r fold tensor power of
A is not k[[X;,...,X;]] - one needs completed tensor products.

4.4 The absolute theorem: group-like case.

This section examines T'C(L) for a certain class of FSP’s which include the
G of (2.3.4). The results are mostly a reformulation of parts of [BHM].

Definition 4.4.1. An FSP L is called group-like if the associated cyclotomic
spectrum T'(L) satisfies the following condition:
For each finite cyclic group C there is an equivariant map of spectra

oc: ®°T(L) = T(L)C,
natural with respect to inclusions C; C C3, such that o¢ splits the natural

map s¢: T(L)% = ®°T(L), s¢c o o¢ = id.

For group-like L, the fundamental cofibration
TH(L)no,» — TH(L)"" 2 TH(L)CoN-1
is split by the map
Sp—y: TH(L)Cs"-t — TH(L)C*"
coming from the identification of p; #°»T(L) with T(L), and
RSp_y=id, FSu_;~S8noF (n>2). (4.4.2)

We recall from (4.1.5) that the fiber of R was identified as TH(L)x¢,. by the
transfer map

76, ¢ TH(L)no,» = TH(L) Ag,. EST — (T(L) A ESi)c.,n .
Naturality of transfers shows that
TH(L)nc,n — T(L)C
= |7

TH(L)nc,,, —— T(L)%
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is homotopy commutative with 7, being a suitable transfer map.

Proposition 4.4.3. For a group-like FSP there is a homotopy Cartesian
diagram

A
TC(L);,\ —_— (h?l_imTH(L)th,.)

Tn

1 o

TH(L)) 22 TH(L)}

P

Proof. The splittings of (4.4.2) give equivalences
\/ TH(L)nc,; —+ TH(L)%"
i=0 '
such that on the left hand side R corresponds to projection. Hence
TR(L,p) ~ | | TH(L)uc,: -
i=0

Under this equivalence F(zg,%1,...) = (Fz; + FSzo,Fza,...), and the
diagram

TH(L) —— [[2o TH(L)ne,: — II:2: TH(L)nc,

lFSo—id lF—id ~[F-—id

TH(L) — [12, TH(D)we,, — [12, TH(L)nc,,

gives the cofibration

A
hF(FSo —id); — TC(L,p); — holim (TH(L)hC,,i),,,

Tn

upon taking vertical homotopy fibers. Apply theorem 2.5.5. O

Lemma 4.4.4. For the identity FSP, T(1d) ~¢c_ £%(S°), where the right-
hand side is the equivariant sphere spectrum.

Proof. Recall from sect. 2.1 the subdivision S*-homeomorphism

|sdcTHH, (L; V)| = [THH, (L; V)],
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where C is a finite cyclic group of order c.
The space of 0-simplices in sdcTHH,(Id; V) is equal to THH,_; (Id V)
and there is a natural C-map

ic: lim QMRC(GMRC A V) 4 |sdcTHH,(1d; V)|

which is a C-homotopy equivalence onto the space of 0-simplices. The sim-
plicial structure maps are C-homotopy equivalences, so the topological re-
alization is C-homotopy equivalent to the space of 0-simplices, cf. sect. 2.2.
Hence i¢ is a C’-homotopy equivalence. The diagram

|sdg THH, (L; V)| ——2—+ |THH. (L; V)|

\/’

is commutative. It follows that the S'-map
§(8Y) = T(1d)(V)

induced by i is a C-homotopy equivalence for each finite C. O

For any FSP L and monoid G we may define a new FSP by
LG|(X)=L(X)AG4+. (4.4.5)

If L = Id this is precxsely G of (2.3.4). If L = A for a commutative ring A,
the map A[G] - A[G] is a stable equivalence, so there are equivalences

K(A[G]) ~ K(4[G]), TC(A[G]) ~ TC(AG])

for every discrete group. When G is a group-like topological monoid, the
cyclic classifying space BYG = |N;¥ (G)| was identified in sect. 2.1 to be the
free loop space ABG of the ordinary classifying space BG. Moreover, if ¢
is the composite homeomorphism

8ot INF(G)| 25 |sdo NS (G)|C 2 IS (G)|
then there is a commutative diagram ([BHM], proposition 2.5)

BYG —° (BYG)°

l l (4.4.6)

ABG —2:4 (ABG)®, A.(\)(z) = A(z°)
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Given any cyclotomic spectrum T' and any space X, the spectrum smash
product T'A AX} is again cyclotomic. Indeed, there is'a canonical map from
right to left:

(T AAX,) ~ BT A (AX)S

which is an S*/C-equivalence, and
ra AATY: pEECT A pEAXS - TAAX,

defines the required equivalence, cf. sect. 2.4.

Lemma 4.4.7. There is an S'-equivalence of cyclotomic spectra,
T(L[G]) ~g: T'(L) A ABG, provided G is group-like.

Proof. Consider the bi-simplicial space X, o(G; V) with
Xka(G;V) = holim F (§%° A -+ A 5%, F(ST) A -+ AF(S™) A Gt A SY).

x61h+l

Cyclic permutation of factors make it a bi-cyclic space. The map
Xea(LV)AGY, = X (G; V) (1)

becomes highly connected as an equivariant map as V runs through the S*-
universe &/ (one needs dim V¢ — oo for all C C S1).

The diagonal complex 6X, o(G;V) is precisely THH,(L[G]; V) with re-
alization THH(L[G]; V). On the other hand, if we instead first realize the
[-direction and then the k-direction and use (1), then we get a highly con-
nected S'-map

THH(L; V) A ABG,. - THH(L[G]; V).

Use of subdivision and (4.4.6) shows that the corresponding map on C-fixed
sets become highly connected when V runs over U, so the two prespectra are
equivalent. Moreover, the corresponding cyclotomic structure maps agree.
Apply spectrification. (|

Corollary 4.4.8. The FSP G is group-like if G is.

Proof. The previous result tells us that T'(G) ~c_, LF (ABG4). But the
suspension spectrum satisfies the requirement of (4.4.1). This is a conse-
quence of the tom Dieck-Segal splitting, valid for any based S*-space X:

SR(X)C ~sye ) IR /0Es/c(C/H) 4 Aoyp X
HCC

2°(S5 (X)) ~ B /o(X°)
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Here Eg(I') is the G-equivariant model of ET'. The map s¢ is the projection
onto the factor C' = H and o¢ is the obvious inclusion, cf. [tD], [LMS]. O

The next theorem is similar to lemma 5.15 of [BHM], but avoids the
assumption that I" has finite p-type. It contradicts the “counter-example”
presented in [BHM], p. 498-499, which is wrong. The mistake occurs in
the identification of (¢#™~1), on p. 499. The mistake was pointed out by
T. Goodwillie, and the proof below is due to him.

Lemma 4.4.9. For any equivariant S'-spectrum T, the S'-transfer induces
an isomorphism

Tu(EThs1; Fp) — (h{(ii_m Thepn i Fp)-

Proof. The skeletons of ES! are the spheres 5%~ € C* with the standard
action of S'. There is the cofibration diagram

S'A(STF A T) —— ST A (ST A1 T) — S* A (S 5% A1 T)

ltrf ltrf 1trf
Sy Agpn T ——— ST NG T ———— §¥HIS¥ U pg, T

(1)

Pﬂ

Now S2k+1/8%k=1 ~ gy G1 A S%*; the S'-action on the right hand side is the
diagonal action with §2* = %(S5?+~1). However for any S'-space or spectrum
X,

S_ll, ANX S S_ll_ AX|, (z,2) = (2,27 %)

where the bars indicate X with no S'-action. In particular,
SLAS* AT ~5 S} A|S?* AT
and the upper right hand term in (1) may be identified as
St A Sk 1G2k=1 Aoy T~ ST A |SZF AT

Moreover, the right-hand vertical map in (1) can be identified as the smash
product of the transfer

r: SUAT®(SL/SY) = B(SL /Cpn) @)
with |S?*¥ A T'|. The transfers
Tnt B°(SL/Cpnmt) — B(SL /Cpm)
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of the Cp-covering S*/Cpn-1 —+ 5 /Cpn are known as follows. If we identify
S!/Cpn with S? (via pc,» ), and use the splitting ~

5% (S1) = 5%(81) v £°(5°)

_induced by the projections, then 7,, becomes the matrix

w8 3

with € m (£°°(S°)) = Z/2 the non-trivial element. This can be seen for
example by using w of (2.4.2). Since the transfers in the limit system

trf,: S | g2k-1 NGy T = GUH GU=L Ao T
can be identified with 7, A [S** A T,

hlim Rl W holim B2(S1) AIS* AT,

trfy Tn
and we obtain from (3) a cofibration

STAS*AT o holim 5*°(S%.) A |IS* AT| — h‘@nsﬁ AT

Tn P

We can calculate the mod p homotopy groups of the right hand term by the
exact sequence

0— pﬂmm_l(s’* AT;F,) — Tr,-(ho}_im(s% AT);Fp) — 1i3m.-(s?’° AT;IF,) — 0.

The outer terms vanish, so in conclusion

mi(S* A S AT, T,) = 3 (holim i R T ) A
trf,

and comparing with (2) it follows that the right-hand vertical maps in (1)
induces an isomorphism

mi(D(S2H 1§21 Aoy T);F,) —E}m(hﬂm S+ [S2=1 £ T TF,).

We can finally make the obvious induction over k. |

Remark 4.4.10. The lemma can be restated as a homotopy equivalence of
p-completed spaces,

(SI AT )3 o) (hDEm Thepm )3
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\

Corollary 4.4.11. For a group-like FSP, there is a homotopy Cartesian
diagram of (non-equivariant) spectra

TC(L)) —— (STH(L)ns1),

| [t

TH(L)A 2275 TH(L))
Moreover, if L = G for a group-like monoid, then TH(L) = 2*°(ABG..) and
FSy = X%(Aps) where Ap(A)(2) = A(2P).

Proof. Only the last point need any explanation. It comes from the Segal-
tom Dieck splitting used in the proof of corollary 4.4.8:

% (ABG4)% ~ Z°(ABGhc,,) V Z=(ABGL")
= $°(ABGhc,,) V Z°(ABGy)

where the last homeomorphism is id V £(A;!). The map F becomes the
sum of the transfer

¥ (ABGhe,) = T7(ABG.)

and the inclusion
$°(ABGS?) + S°(ABG.)

and
So: B°(ABG4) — S (ABGhe,) V E*X(ABGT™)

is the inclusion in the second factor via Z3°(Ap) (N

Recall for an FSP L that we write moL for the associated ring moL =
_Iiﬂﬂ'nL(S“).

Theorem 4.4.12. Suppose L is an FSP so that moL is a finite W (k)-algebra
for some perfect field k of characteristic p. Then

tre: K (L)) = TC(L),

is a homotopy equivalence.

Proof. Dundas’ theorem 3.5.1 gives the homotopy Cartesian square
KLy — TC(L)Q

Le !
K(mL)) — TC(mL)y

and the bottom arrow is a homotopy equivalence by theorem 4.3.1. O
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4.5 The K-theory assembly map.

For a discrete group G' and a commutative ring R, GL,(R[G]) contains
GL,(R) x G as a subgroup, namely as the tensor product of (n x n)-matrices
over R and elements g € G considered as (1 x 1)-matrices over R[G]. Taking
classifying spaces gives a map

BGL,(R) x BG -+ BGL,(R[G]).
This induces a map of spectra
ax: K(R) A BGy —+ K(R|[G])

usually called the assembly map. Indeed, one may either use Segal’s I-space
definition, May’s operad version or Waldhausen’s definition of K(A) to do
the details, or one can use the device of ring suspensions as in the original
source, [L1]. '

The study of ax has long been promoted by W. C. Hsiang, who e.g. in
[Hs], conjectured that ax is a rational injection, provided R is regular and
BG is a finite complex. The conjecture is often called the K-theory Novikov
conjecture. The reason is that there is a similar assembly map in L-theory,
initially constructed by F. Quinn,

ar: L(R) A BG;+ — L(R[G])

and (rational) injectivity of ay (for R = Z and BG a manifold) translates
via the surgery exact sequence to Novikov’s original conjecture about the
homotopy invariance of the higher signatures.

The definition of aj extends to the case of FSP’s to _give a map of spectra

ax: K(L) A BG4y =+ K(L[G]).

(Here G could be any group-like monoid, and thus BG any space. For L = Id
the above becomes Waldhausen’s assembly map A(x) A X1 — A(X)). The
study of the assembly map when L = Id was the main motivation behind
[BHM]. We can now present a somewhat easier proof of the main result from
[BHM], thanks to Dundas’ relative theorem 3.5.1.

There is an obvious assembly map

THH(L; V) A ABG,. — THH(L[G]; V)
(cf. lemma 4.4.7) and hence via the inclusion

BG = ABG
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an assembly map
THH(L; V) A BG4 =+ THH(L[G]; V).

This passes to an assembly map of cyclotomic spectra and induces

arc: TC(L) A BG4 —+ TC(L[G))
so that the diagram

K(L)ABGy —* K(L[G))

lttcAid itrc (4.5.1)
TC(L) A BG4y —=%+ TC(L[G])

is commutative.

For each FSP L, we can from its p-adic completion Ly, L,(S) = L(S).
(It should be remembered that X} A Y;," is not p-complete; but this causes
no problems because we are always completing the functors on the outside,
so there are no unpleasant surprises in THH(L,), etc.)

Theorem 4.5.2. For a discrete group G, the assembly map
ar: K(Idp) A BG4 = K(1d,[G])

’
becomes split injective after p-adic completion.

Proof. We compose with the cyclotomic trace and consider
(K(Idp) A BGy)) —%— K(1d,[G)))
| | (1
(TC(Idy) A BG4), —= TC(1d,[G]))
Now corollary 4.4.11 gives the homotopy Cartesian diagram
TC(d,[G)) —— (S(ER(ABG4)s))

| | @)

SR(ABGL)A ——C0T, seo(ABG,)A

upon using the obvious equivalence between TH(Id,); and TH(Id); together
with lemma 4.4.4 and lemma 4.4.7.

The component group mo(ABG) is the set of free homotopy classes of
maps from the circle into BG, and hence equal to the conjugary classes of
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elements in G. Let A;;)BG be the component of the identity element. There
are S'-equivariant maps

ABG, 24 Ay BG, &2 BG,. (3)

The inclusion is a homotopy equivalence, but not an equivariant one. Any-
way, the weak statement is enough to.ensure that

ES* xg1 BG— ES" xg1 AjjBG
is a homotopy equivalence, and since
T3 (ABGi)pst = Z%(ES" xs1 ABGy)
diagram (1) projects to the homotopy Cartesian diagram

(TC(ldp) A BGy), — T(Z*°BS} A BG,)}

! !

T®(BG4), R X®(BG4))
Moreover,
(TC(Idp) A BG‘+); 5 TC(1d,[G]), By (TC(Id,) A BG+);‘
is the identity, and thus atc is split injective after p-adic completion. Now

apply theorem 4.4.12 and diagram (1) to conclude the proof. O

Soulé proved in [Sou] that

Tan+1(K(Z); Q) = Tant1 (K (Zp); Qo) (4.5.3)

is an isomorphism provided the p-adic L-function Ly(1+ 2n,w=2") # 0 (both
groups are equal to @,). This is certainly the case for regular primes and
maybe always. Soulé proved (4.5.3) by using the étale cohomology invariant.
It was reproved in [BHM] by cyclotomic trace considerations. One can use
(4.5.3) to translate theorem 4.5.2 into a rational statement, namely

Theorem 4.5.4. ([BHM]). If G is a discrete group for which each H;(BG; Z)
is finitely generated, then the K -theory assembly map

ax: K(Z)A BG. — K(ZG)

induce an injection on rational homotopy groups.
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Proof. The linearization maps
K(Id) = K(Z), K(dG]) - K(ZG)

are rational equivalences, essentially because the homotopy groups of £°°(S°)
are finite in positive degrees, cf. [W1]. Thus it suffices to show the statement

for
ax: K(1d) A BG,. — K(Id[G)).

We have
K(Id[G]) = TC(Id[G]) — (TC(Id) A BG,,);,‘

and must show
tre Aidpg: K(Id) A BG4 — (TC(Id) A BG+)Q
is rational injective. This is the case because
K(d)) =+ K (Idp):,‘ ol TC(Id,,)Q

is rationally the same as K(Z), — K(Zp),, and because we can choose p to
be a regular prime and apply (4.5.3). O

Remark 4.5.5. It would be nice if the above argument could be extended
to L-theory, and thus proving the original Novikov conjecture for the groups
with finitely generated Eilenberg-MacLane homology. There is a variant of
TC(R), namely the topological Dihedral homology TD(R), which imitates
the linear construction of [L2]. It is the fixed set of a suitable involution on
TC(R), TD(R) = TC(R)%/2, and there is a map from Hermitian K-theory
into TD(R), at least when 1/2 € R. The basic problem with this approach
however, is that TD(R); — TD(R ® Z,), is again an equivalence (under
suitable finiteness conditions on R). But in contrast to (4.5.3), L(Z) =+ L(Z,)
is rationally trivial for all primes, so one cannot extend the K-theory proof
directly.

There might be a chance of proceding indirectly as follows. Let E be the
maximal abelian extension of (J,, and let A be the integers of E. If one could
produce a signature type rationally injective map from L(Z[g]) to K (A[G]),
or maybe into some completion A(G) of A[G], like the C*-algebra associated
with C[G], then one could study the K-theory assembly map on A[G] (or
A(G)) using the techniques above. _

In this connection one should remember the theorems of Suslin that
K(E)) ~ K(C)} for the algebraic closure of E and that K(C)} ~ BU..
The latter equivalence comes from the roots of unity: the map BS' —
BGL;(C) = K(C) extends to 2*°5*(BS!) — K(C), and gives via the
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splitting 2%°5°(BS!) ~ BY x X the required map from BU to K(C), I
believe.
" - The same procedure gives a map from BU}' —+ K(A)) because pu(A) =

Q/Z and B(Q/Z); ~ (BS");.

Thxs remark represents years of discussions with W. C. Hsiang.

The main interest in the assembly map ag lies in its relationship to
automorphism groups of manifolds. For a group-like monoid, such as G =
0X, K(Id[G]) is Waldhausen's A(X) and in partlcula.r K(Id) = A(*),.s0 that

the assembly map takes the form
 aar A(®) A X4 — A(X).

Waldhausen defined the spectrum Wh'®P(X) to be the cofiber of a4.

For a manifold M, the space of topological pseudo isotopies P*P(M) is
defined as the space of homeomorphisms of M™ x I which is the identity on
M™ x 0UAM % I. A celebrated result of Waldhausen [W4] states that

 PWh'P(M) ~ holim PtoP(M x DF). (4.5.6)
k

Moreover, the stability theorem of K. Igsa, [I] asserts that the map

PLoP(AL) — holim iP“’P(M x D¥)

_is (dim M — 7)/3-connected, at least if M is smoothable

Farell and Jones has in [FJ] shown that for a negatively curved manifold
M, Wh*®(S1) determines Wh*P (). Thus it would be of considerable inter-
est to determine Wh*°P(S!). Theorem 3.5.1, proposition 4.4.3 and corollary
4.4.11 reduces this to the problem of studying the linearization map

LW TCM(S, p)s — TCH (Z[t, 7, p))

where ‘TC!)(—) is the cofiber of ayg. Indeed, the K-theory assembly
map Si A K(Z) —+ K(Z[t,t™"]) is an equivalence, so the fiber of L{!) is
Wh'P(S1)A. See also remark 5:4.8 below. See [M] for more details.

5 Calculations in K-theory

This chapter evaluates the higher K-groups K;(R;Z,) with p-adic coeffi-
cients in a number of cases where the K-groups were not previously Imown.
The rings we consider are all of the type where the absolute theorem of the
previous chapter applies, and the functor we-actually calculate is TC(R)j.
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5.1 On the K-theory of group rings.

Let A be a finite algebra over W(k), the Witt vectors of a finite field &k of
characteristic p. For a finite group G, the group ring A[G] is again finite, so

Ki(A[G]; Z,) = TCi(A[G]; Z,)-
By general induction theory, cf. [01] ‘
K(AIG] = holim K(AT])

where I' runs over the hyper-elementary subgroups of G, that is, the sub-
groups of the form I' = Cy x P where P a p-group and (NV,p) = 1. It
follows that A[['] decomposes into a product of twisted group rings B*[P] for
unramified extensions B/A.

We here study the case of an untwisted group-ring A[P]. In terms of
explicit values our main result is

Theorem b5.1.1. For a perfect field k -of charactet"istic p > 0,
Kon-1(k[Cpn); Zp) = Ki(k[Cpn]; Zp)®" and Kan(k[Cpn];Zp) = 0 when
n > 0.

The K;-group on the left is the p-part of the units k[C,~]* which is easily
calculated, cf. theorem §.1.16 below. Note also that k[C,~]/rad = k, so that
K;(k[Cpr]; Zit) = Ki(k; Zy) for (I,p) = 1.

Our starting point is lemma 4.4.7,

/ T(A[P]) ~g: T(A) AABP;.

Let X (P) denote the conjugacy classes of elements in P. Then mo(ABP) =
X (P), and the p’th power map A: X(P) = X(P) has ANX(P) =1 when
P has exponent p". Define a filtration of X (P),

{1} = Xo(P) c X1(P) C-+- C XN(P) = X(P), Xw(P)={glg"™ =1}
and a corresponding filtration of A = ABP
Ao CArC---CAy=A (5.1.2)

where Ap = ]_[,,E Xu(P) A,BP is the set of components corresponding to the
listed conjugacy classes. We note (from [BHM], sect. 7) that

A,BP ~ BCp(7)
the classifying space of the centralizer of +.
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. We. are interested in the Cpw-action on T(A[P]) The p’th power map

A: A3 AC C A maps Ay homeomorphically into Ak 1»80in (5.1. 2), AN -
Ap—; is the free stra.tum, a.ud :

A Ak —Ak ) W ¢ (Ak 1 —Ak 2)0,;
is a homeomorphism for 1 < k < N. Let 'I‘C(”(A[G],p) denote the coﬁber

of the assembly map from sect. 4.5, -
TC(4,p) A BPy “SSTC(A[P,p) = TCN(A[Plp),  (5.13)

and write Tx X =T A_X.,..

Proposition 5.1.4. One has

“TGW(A[P], p) = holim (T'(4) x (A, — A))"",
g M I

where the limit runs over inclusions of fixed sets.

Proof. In the proof we write B = BP. The inclusion i: B —+ A of B into
the constant loops induces a cofibration sequence of cyclotomic spectra

T(A)x B+ T(A)x A+ T(A)AA/B

This gives a cofibration sequence of fixed sets, and hence the cofibration
sequence T

holim(T'(A) x B)%" — TC(A[G],p) — holim(T'(4) A A/B)%".
F.R F,R

Now A =id on B, and since B has trivial S-action,

; Con — (hol; Cyn - :
.hg;l_xﬁm(T(A) x B) (hgl_gn T(A)%") x B = TC(A,p) & B..

It follows that

TG (A[G], p) = holim(T'(4) A A/B)%". (1)
FiR

We examine the right-hand side in two steps. First we evaluate the homotopy
limit over R and then we use the cofibration

holim(T'(A)AA/ B)°r" —s holim(T(A)AL/B)°r £} holim(T(4) AN/ B) %"

. {——.
F,R R R
(2)
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We use the decomposition
A/.B = Ao/B \ (A.l — A0)+ VetV (AN — AN—1)+

and the corresponding decomposition

N
(T(A) AA/B)™ = (T(4) Ao/ B)%" v \[(T(A) x (Ag — Apa))".

k=1

There are the following eésy consequences of the cyclotomic structure on _
T(A) x A, cf. lemma 4.4.7:

3)

@) AS*/BEA,/B=Ao/BV (Ar—Ao)s

(i) R: (T(A)AAo/B)o™™ —3(T(A) A Ao/B)%"=1 V (T(L) X (A1 — A,,)')a,,;_l
(iii) R: (T'(A) X (Ag — Ax—1))%" = (T(L) X (Apg1 — AR))%"1, 1<Ek<N
(iv) R: (T(A) X (Axy — Ay—1))°"" =0

The fundamental cofibration applied to T' = T'(A) A Ao/B shows that
(3,ii) is a homotopy equivalence. Indeed (7'(4) A Ag/B)ic,~» ~ 0 since the
inclusion of B in Ap is a non-equivariant homotopy equivalence. If we write

N
uF Xn =\ (T(A4) x (A& — Aea)™"
k=2 .
Yy = (T(A) A Ao/ B)%™V (T(A) x (A1 — Ao)) %

and consider the cofibration sequence of limit systems
- (Xu,R) = ((T(A) AA/B)C™ R) = (Y, B)

it follows from (3,iii-iv) that RN 1 Xn— Xn_ N+1 18 nuIl—homotoplc Hence
hothn ~0,and '

holim(T(4) A A/B)CP“ ~ hohmY

Inductive use of (3, u) yields

n—1

Yo \/ (T(A) x (A1 — Ag))%

i=0

and that R: ¥, — Y,.,_.1 correspondﬁ to the obvious projection. Therefore

hohm Yo H (T(A) & (Ar —Ag))%

i=0
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Now it is easy to see that
o0 oo
F: [T(T(A) % (A1 — 40))% = [] (T(4) x (A1 = Ao))
i=0 i=0
sends (to,t1,...) to (Fi1, F'ta,...) where on the right-hand side
F: (T(A) x (A; — Ag))%* = (T(A) x (A — Ag))Cr*-
is just inclusion of fixed sets. Thus by (2),

h{g_li_{m(T(A) AA/B)Cr ~ h%i_m (T(4) x (A1 —Ag))?" O

If P has exponent p then A; — Ag is a free Cpn space, so
(T(4) % (A1~ Ao)) " ~ T(A) X (Ar = Ao) ~ (T(A) x (Ar = Ao))y,
and lemma 4.4.9 gives
TCU (A[P]); ~ (S(TH(A) x (A1 — Ao))ast)y - (5.1.5)
For more general P, there is a spectral sequence
B}y = mesi-y (TH(A) % (Ak = Aem1)nsti Zp) = 7. (TCW(AG]; Z,))

which might be of use in some situations. In this connection, I note from [J],
theorem B that the homology of the homotopy S* orbit is closely related to
cyclic homology, namely

HC,-;(C. (G)) - Hn(ABGhsl)

where C.,(G) denotes the singular chain complex; for discrete G this is equiv-
alent to the group ring. Thus the E'-term above is a twisted version of
certain subgroups of cyclic homology groups associated with the filtration
(5.1.2). If one takes a Postnikov decomposition of TH(A) one obtains a sec-
ond spectral sequence which converges to the E'-term and starts out with
cyclic homology.

For A = Z, with p odd one can in a range instead use theorem 4.4.11
with L = Id,[P]. Indeed,

TH(Idp[P]) = TH(Z,[P])

is (2p — 3)-connected. The same is then the case when one replaces TH(~)
by TR(-), and it follows that

TC(1dy[P]) =+ TC(Zg[P])
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is (2p — 4)-connected. One the other hand for a p-group
Ap: ABP/BP — ABP/BP
is nilpotent, so theorem 4.4.11 yields the homotopy Cartesian square
TC(dp[P]) — E* (4 (ABPys1))

|

£°(BPy) —— S°(BP,)

trfs;l

This gives the exact sequence
Kn(ZpP;Zp)/Hn(P;Zp) = TCpe1(ZpP) = Hp(P;Zyp) — -+ - (5.1.6)

exact for n < 2p — 4, cf. conjecture 0.1 from [02]. I leave for the reader to
wonder about p = 2.

I now specialize to P = Cyn, the cyclic group of order NV, where one can
be more explicit.

The components of A = ABC,~ are indexed by C,~, and are denoted
Ay, g € Cynv. Two elements gy, g2 of the same order have S'-homeomorphic
components since there is an automorphism ¢ € Aut(Cpw~) with ¢(g1) = g2

which induces ¢: A, 1 Ag,. Moreover, for each component corresponding
to a non-generator, one has the S'-homeomorphism

pE AT = [[{An | h? = g} (5.1.7)

induced by the p’th power map A: Ay, — Af’.

Lemma 5.1.8. For any cyclotomic spectrum T and k > [ there is a cofibra-
tion sequence of spectra

p—11-1
(P T % Ag) %=t = (T A ) = \[ /(T s Ay )ttt

=1

Proof. The I'th iterate A': A, —+ A goi €mbeds A, into one component of
Ac:f,' , and A'(A,) is (non-equivariantly) equivalent to the ambient space At
The cofibration of the lemma is induced from

A!(AQ)-F —+* Agp'+ -+ Agp' /A‘(AQ)
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upon applying the functor pﬁ A (—))GP". Since A'(A,) is fixed under
. .
Cpt,
c
pﬁpl (T x AM(Ag)) *" ~gn pgplTCP' X A,.

We use (2.4.3) to calculate the cofiber. Indeed, (T AA_.i /AH(A,) ~0
gr q h

ij,

so that

(T/\AQPI/AI(A_.;))GPJ' - ng $Cr (T/\ Ag,a /Al(Ag))

Cokx1

p—1
~ (T A, A ) /A 8) 7TV (T A ies )
=1

Each of the p — 1 wedge terms are equivalent to (T x Ag,;-:)cv"“’ , and we
can iterate. O

The point of the lemma is that the component A oot has been replaced by
the simpler components Ag,... A grl=1s simpler w.r.t. the Cpe-action. For
example, the action of Cj» on A, is free when g is a generator of Cp~. For
every equivariant S'-spectrum T',

() (STuss)} ~ (hplim Th, )}
(11) (ThSl)Q - (h{cﬁ_m Tthn );’\ (5.19)
(i) H(S*,T)) ~ holim (Cpn, T)a

The first equivalence is lemma 4.4.9, the second is an easy consequence of the
definitions, and is just an equivariant version of the relation ho_li}rnBCpn ~

(P ),’,‘ The third equivalence follows by comparing the norm fibration for
Cpn and S, cf. remark 4.1.9. We consider the convergent sequences with

EX(T"S';Z,) = Sz,{t} @ m(T; Z,)
E*(H(S*,T); Zp) = Sz,{t,t '} ® ma(T; Zy)
cf. [HM1], [GM] for convergence.

Proposition 5.1.10. If g € Cy~ is a generator, then the Tate spectrum

H(SY, o T(K)% x Ag)y ~ »

Proof. We use Z, coefficients and have

B2, = Sz,{t,t7'} ® Swi,, (1) {0} ® Hu(Ag; Z/p'H)
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with ¢t € B2, 4, o € Eq2 and H, (A, Z/p'+Y) C B3, cf. (4.3.4).
The spectrum T(k)cp' is a product of Eﬂeqberg MacLane spectra, since
it is a module over TR(k) ~ HW (k), and the d*-differential is this given by

[SM)2: Hi(Ag; Z/p™) = Hypa(Ay; Z/p"Y)

induced from the action
S x A, = A,

cf. proposition 4.1.14. The evaluation of loops at 1 gives a non-equivariant
homotopy equivalence A, =+ BCyn, 50

Ho(Ag; Z/p'FY) = Bz jprsa{y1} ® Tz jprea{z2}

with deg(y:) = 1, degzs = 2 and with I'{z,} being the divided polynomial
algebra. We show in lemma 5.1.12 below that [S']; multiplies by y;. Hence

d? (t"’}'ﬂ(m?)ar) == ts+1’)’n($2)3110’r1 s € Zr n 2> 0:

- and E3=0. O

Proposition 5.1.11. For a generator g € Cpn,

7 (& T w )" Z,) = S,y {0} ® Hu(BCyi Z,p).

Proof. The spectral sequence for the homotopy S* fixed set has E2-term
E?, = 52,{t} ® Swy. v {0} © Ho(Ay; Z /)

with differentials as above. This time, however t~! is not present, so there is
no differential to kill the classes v, (z2)y10". Thus

EE,- — SWH.](!:) {0’} ® ylPZ/p'+1{$2}y

all concentrated on one vertical line, and E}, =B, O

Lemma 5.1.12. If g € Cpn is a generator, then the action S* x A, = A,
induces multiplication by y; € H1(A,;Z,) on H.(Ag; Z/p').

Proof. Let §: S —+ BCyn~ represent the homotopy class corresponding to
g € Cyn. Consider g as an element of ABC,v. Since Cpw is abelian, BCp,~ is
an abelian topological group. The map f: BCpn — ABC,~ with f(b)(z) =
bg(z) lands in A, since we may connect b with a path to 1 € BC,~. Moreover,
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f is a homotopy equivalence, since its composition with the evaluation map
is homotopic to the identity. The lemma now follows from the homotopy
commutative diagram

SIXBJ"EL’SIXABLM*AB

gx1 lev

BxB + B

o

O

We return to the calculation of the p-adic homotopy groups of
TCW (kCpn). They are by proposition 5.1.4 equivalent to

(,,\_/1 holim (T/(k) x A, )C"";z,,)

p—1
=@lmm ((T(k) o A -1 )%r"; z,,) .

where g generates Cy». The idea is to use the cofibration sequence of
lemma 5.1.8 inductively for [ =1,... ,N — 1. One has

. n . ' 1
h%l_m (T'(k) x Ag)%" ~ h%l_m (T(K) % Ag)yg, ~ (T(k)  Ag)"

after p-completion. This follows from (5.1.9,i) and proposition 5.1.10. Propo-
sition 5.1.11 shows inductively that all p-adic homotopy is concentrated in
odd degrees. In particular we get, for each [, short exact sequences

hs? G
0+ . (p& T(k)%' x Ay) "~ 7. hplim (T_'(k) . Ag,,;) ”

p=1i-1

- @@n.hohm (T k) % A, ) 0

=1

of homotopy groups with Z,, coefficients. These sequences are also split exact.
Indeed the left hand term consists of a sum of groups W1 (k) = W (k)/p"*1,
so it suffices to check that

Con
pHim, (hﬂi_m T(k) x Ag,:) =0. (5.1.13)
F
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This on the other hand is a consequence of induction theory, upon using a
result of C. Schlichtkrull, [Sch], which I now describe.
Let L be an FSP and consider the functor

TF(LIG], ) = holim T(L[G) .
F

For I C @ of finite index we have the map
Indg : TF(L[G],p) -+ TF(L[T],p)

given as the composition of the functor applied to L[G] — Endyr)(L{G])
with Morita equivalence. Now

TF(L[G])P) i hﬁm (T(L) X ABG)CP“.
r

decomposes into components,

TR(LGLp) ~ \/ holim (T(L) x Ay BG) ™"
[slex(aq) F

with A BG = Bg1C¢(g), the classifying space of the centralizer with some
action of S*. It follows that Indg_ decomposes into components,

. Ciun e Cpn
Indg([g], [7]): h%gn (T(L) x Al BG) ™ —*h%m (T(L) x Ay BL) ™" .

Theorem 5.1.14. ([Sch) (1) Ind5 ([g], ()) = 0 iy ¢ [g]. (i) Ify € [g] then
Indg, is induced from the S'-equivariant covering A, BI' = A,BG. O

(The theorem verifies in particular conjecture 7.14 of [BHM]; it undoubtly

generalizes to simplicial groups, and should be of help in the study of transfers .
in Waldhausen’s A-theory).

Corollary 5.1.15. In the limit over k, the cofibration sequences of lemma
5.1.8 become split, for T = T'(k).

Proof. The terms in the limit sequence are modules over K (k) = HW (k)
via the cyclotomic trace, so it suffices to check that the homotopy exact

sequence is split. This was above reduced to the statement (5.1.13). We use
theorem 5.1.14(i) with G = Cpn, I’ = Cpn-i-1 to conclude that

C,n- 1—1

Resc Feio Indc TF(k[Cpn], p) = TF(E[ p:v],p)
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, Cypn ' “ |
is trivial on holim (T(k) X Ag,,.) " . On the other hand the composition
induces multiplication by the index p'*! on homotopy. B

Theorem 5116 For a perfect field of characteristic p > 0,

x &Bn
7201 TCD ([Cp]) = m (TCRR[C,D)
2 TCH (K[Cpw]) =0, n > 0

»
*

Moreover,

N—-1 »
ar-lTCm(kaN) = (W(k_) /pN)“’(‘"” ® @ (W(.k) /pN—j)fii(p—l)(p‘—p’ ") )

=1

Proof. This follows from cofol]a.l.'y.5.1.15 and proposition 5.1.11 ﬁpon col-
lecting terms. O
We have left to determine the exact homotopy séqueuce of

TC(k) x BCpn — TC(K[C,]) = TC(I)(.k[Cpn]). (5..1.17)

From (4.3.3) we have
TC(k) ~ HZ,V X 1H(Z,). . (5.1.18)

~when k is finite. Thus

m; (TC(k) K.BCPN.); = Hi(BCyn;Zyp) ® Hiy1(BCyn;Zy),
with one copy of Z /p" in each.degree.

Lemma 5.1.19. The homotopy exact sequence of (5.1.17) reduces to the
exact sequence

0—+ Haq—1(BCyn; Lp) — TCapn—1 (K[Cpw])
— TCY_ (K[Cyv]) 2=+ Hyn—1(BCyii; Zp) — 0.

Proof. We must -argue that 8, is surjective. This is true for n = 1 be-
cause TC&) (E[Cyn]) =0 and because the K-theory assembly map is clearly
injective in dimension zero.
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For n. > 1 we use that (5.1.17) is a module over TR(k) x BCpw~ , and hence
over TR(F,) x BCy~. Thus

9: TC! (k[Cyn]) —+ BTC(k) x BCpw — HZy x BC,yn
commutes' with the resulting actions

TCM (K[C,yn]) ® Ho(BCyn; Z/pN) — . (Tcm(k N]),Z/pN)
Hi(BCypv;Zy) ® Ho(BCyn; Z/p™) = Hu(BCyn; Z [p")
The second map has the property
HI(BCpN§Zp) : H2n(BCpN§Z/pN) = Hony1(BCpn; Z/pN)r

and since Hony1(BCyn;iZy) = Hanga(BCyn;Z[pN), surjectivity of . in
dimension 1 gives surjectivity in general. a

Since TC;(k[Cpn]) = Ki(k[Cpn]; Zp) has exponent pV, lemma 5.1.19
yields the abstract isomorphism

TCan—1(K[Cp]) = TCE)_ (K[Cpw))-

This proves theorem 5.1.1. -

It seems clear that one should be able to calculate X.(k[P]) for more
complicated p-groups. It is also natural to attack K,(A[P]) for other base
rings, and in particular for A = Z, cf. sect. 5.4 below.

I conclude with some remarks about the twisted group ring case, inspired
by [01], ch. 12. Let E be any finite extension of (, and A C E the ring .
of integers. Given a p-group P and any homomorphism t: P —+ Gal(E/Q,)
we have the twisted group ring A*[P]. It contains the untwisted group ring
A[R], Po = Ker(t). Theorem 12.3 of [O1] states that the inclusion induces
an isomorphism -

K1 (A[Po])pp, — Ka (A*[P)), - (51.20)

where the left hand side denotes the coinvariants of the action induced from-
P/Py —+ Aut(A) x Out(Fp). Olivers argument.is based upon the integral
p-adic logarithm, close in spirit to m (trc), one may wonder if (5.1.20) gener-
alizes to the sta.tement

TC(At[P ]) ~ TC(A[PD])hP/Pu ?
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5.2 K-theory of k[z]/(z").

This section outlines joint work with Lars Hesselholt. The main result is
Theorem 5.2.8 below. A detailed account can be found in [HM], sect. 6-8,
when n = 2 and will appear in [HM2] when n > 2.

Let II,, = {0,1,x,... ,2" 1}, considered as a pointed monoid with 0 as
base point and with z* = 0 for i > n. We form the cyclic construction
NJ¥(11,). Its set of k-simplices is the (k + 1)-fold smash power of II,, so
consists of k + 1 tuples (z%,... ,z) with (z',... ,z%*) = 0 if some i,"> n;
NJ¥(I1,) becomes a cyclic set when we give it the structure maps of sect. 2.1.

The argument of lemma 4.4.7 gives for any ring A (or even FSP) the
equivalence of equivariant spectra

T (A[z]/(X™)) ~s1 T(A) AN (IIn)], (5.2.1)

There is an analogue of the component decomposition of N;¥(G) = ABG,
namely '

NS (IL,) = \/ N (I )

g={

where N{Y(Il,;s) consists of simplices (z%,...,z%) with Si, = s, and
0 € N¥(Il,;s) for all s. The simplex (z{9)) = (z,...,z) € N¥ (IIn;s)
is represented by a cyclic map

is,0: Als — 1] = No(IIn; 8)
of the standard cyclic (s — 1)-simplex. Its realization becomes a map
i: S x A*! 4 |N,(Ia; 8)],

cf. (2.1.3). Since (z",z,...,z) € Ny_n(Il,;s) is the base point, the com-
posite of i, with the iterated face operator dy;_n4y © -+- 0 ds, maps the
corresponding face S x A®*~" to zero. Moreover, as (z{*)) is invariant under
cyclic permutations, i, maps the orbit S* x C, - A*™! = C, < (S x A*1) to
zero. All in all we obtain a map

121 S xg, A*1/S g, Cp - A*™™ = [N (IL,; )|

and it is not hard to prove:
Lemma 5.2.2. The map i, is an S'-equivariant homeomorphism. - [

For n = 2, the domain of 1, is §* x¢, A*~1/8(S* x¢, A*~!). We consider
A*-1 c RC, to be the simplex spanned by the group elements g* € RC,.




Ib Madsen 299

It projects homeomorphically to the reduced regular representation RC, — R
with R C RC, the invariant line through 37~} ¢*. Hence we have:
St xg, A*1/9(S xc, A*71)
=~ S x¢, D(RC, — R)/3(S* x¢, D(RC, — R))
=] Si_ Ay SRR
If s is odd then RC,; — R is a complex representation and

S Ag, SROR g, S1/C, A SRCR

with diagonal S'-action on the right hand side. If s is even then RC, — R =
R_ & V, with V; complex, and

Sk Ac, SROR =2 cof (81/C,y2 2+ 51/C,) A SV

with A the natural projection.

The above description of |Ng”(Il2;s)| has the following generalization
when n > 2. We use C(n) to denote the complex S*-representation where .
the action of z € S* is multiplication with ™. Suppose dn < s < (d + 1)n,
and write

Ve =C(1) ® C(2) ® - - - & C(d). (5.2.3)

It is an S'-module and hence by restriction to C, C S! also a C,-module.

Theorem 5.2.4. ([HM2]). Suppose n > 2 and dn < s < (d+ 1)n. Then

S1/Cs A 8™, s<(d+1)n

S'%x0, A7 [S %, Co A* " ~
X0, /8 xe, 5 cofib (83/Casr =+ S3/Cs) ASY*, s=(d+1)n

Proof. (Outline). The proof is based upon the concept of regular cyclic
polytopes of D. Gale, [G]. Let 7a(9) = (£,€2;...,£9), & = €*™/°, The
image P, 4 = mq(A®~1) C V, is a regular cyclic polytope. Its structure of
facets (=codim 1 faces) is completely described in [G]. Using this we prove
in [HM2] that

Ta(A*1[Cy - A*™™) ~ Py g/Qya~ SV

for dn < s < (d+1)n where Q, 4 = mq(C,- A*™™). Next, the socalled Buenos
Aires formula, [BAG], gives explicit generators of the homology '

H. (N (Il,); Z) = HH, (Z[s]/(a"); Z)
in terms of the simplices of Ng¥(II,; s). This is used to show that

Si Ac, A*"1[SL Ac, Cs+ AP ~ 8L Ag, SV
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when dn < s < (d+1)n. The case s = (d+1)n is somewhat more complicated,
and will not be outlined here. O

We also need to know the cyclotomic structure of T' (A[z]/(z™)), similar
to lemma 4.4.7, and must calculate the geometric fixed points:
pE, 89T (Alz]/(a™) ~epm 4G, 27T (A) A pE, INEY (TL)] %
Gy T(A) A s |8do, N (IL)[Cr. 5
Comparing with (2.1.7), the isomorphism
Ag,: N&¥ (I, 8) — sdg, N&¥ (IL,,; sp)
gives an S'-map _
A™': pf sdg, NG (ITn; 5p) % —+ N&Y¥(Ip; 5)
which when composed with the above gives the required Cpe-equivalence
05, 99T (Alz]/ (@")) ~c,e T (Als]/(z
It is clear from the definition of V, that pé‘i m‘ﬁp e V,, and we also have
S ES; pﬁ (S*/Cps)- This yields a Cp-equivalence
re, (s): p @ (T(A) A SL/Cpe ASY**) = T(A) AS}/Cy ASY-.

The proof of theorem 5.2.4 contains the following

Addendum 5.2.5. The cyclotomic structure of T(A[z]/(z™)) is given by
V?;o Te, (3) . O

Since we are working in the category of equivariant spectra, T'(4) AS"- is
equal to the V;’th deloop T'(A)(V;) of T'(A). With this mterpret.atlon o, ()

induces
R: T(A)(Vps) O™ — T(A)(Vy) G

and we can form the homotopy inverse limit over these maps
Denote by TC(A[z]/(z™)) the reduced space, i.e. the homotopy fiber of
TC(A[z]/(z™)) = TC(A). Then

C (4lz]/(z")) ~ TC(4) x TC (Alz]/(z")) -

For any S'-equivariant spectrum T' € S'SU and any finite dimensional 5.
module W in the Universe we have the map

Va: T(W)Ce" — T(W)Crem
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constructed from equivariant transfers, cf. (2.5.8). If n = p"("lpn! with
(p,n') =1 we write

VP T(W)Cer = T (W) prtonte)

instead of Vju,m). Then we have the following analogue of [HM], adden-
dum 7.2:

*

Theorem 5.2.6. The spectrum TC(A[z]/ (z™))p is equivalent to the product
of the p-adic completions of ;

1T {): hglmT(A)(I@:,)cv‘ | .p) =1, n'fl}
R
and
11 { cof | % holim T'(A) (Vi) %o —*7™ V2% 5 holim T'(A Vi) Lp)=1,n"|!
ek | Bhglim T(A)(V) ") 55 mhplim T (A4} V) | =1, 0|1},

where in the second factor T(A)(I/;,q)or"'“""‘] =0 if i < vp(n).

Proof. We use the description
TC(-)p — TF(-)p == TF(-),

80 shall first determine 'ﬁ‘(A[m]/ (z"),p), the homotopy inverse limit of
T'(A[z]/(z™))" under the inclusion of fixed sets. For fixed m,

V (T(A)(V:) A S3/C) ™ = T (T(AVa) ASL/C)™ (1)

is an equivalence of spectra. Indeed, since we are only interested in p-
completions

T(A)(Ve) A S3/Ca ~ T(A) (V) A S3/Cpopter

and

Cpm

(T(A)(I{.,)Asj_/cpu,,(.,) - (pgprT(A)m \Cor Asi)a’“"‘" |

with 7 = min(vp(s),m). The action of Cpm-- on S} is free, so can be
divided out, and when we use the S'-action on Pﬁ,,.- T(A)(V;)C" to untwist
the action, we get

(T(A)(Va) A SL/C,)"™ ~ T(A)(V,)%" A SL/Cynr, 2)
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with 7 = m when v,(s) > m. The cofibration sequence of proposition 4.1.8
takes the form

T(A)(Va)no,r — T(A)(Va) % 24 T(A)(V,/p) Crm-

and inductive use show that the connectivity of T(A)(V;)%" tends to infinity
with s. This proves (1). Next for fixed s,

R= (T(A)(Ve) A S}/Co) ™ ~ TT(A)(V,) rr® %(3)

after p-completion. This follows from (2) with r = v,(s) < m, since the
F-map corresponds to the transfers

EP(S?/Cymti-upt) =+ BL(S/Cym-sptn)

which fit into a cofibration diagram

B2(S/Cpmtr—r) ——+ TP(S/Cpmt1-+) » BN

j |

T2 (St /Cpmmr) ——— BP(S/Cpm-+) b o)

Here Y3°(X) is the suspension spectrum of X;. Now smash with
T(A)(V,)C" to obtain (3), cf. proof of lemma 4.4.9. The above together
with theorem 5.2.4 yields

TF (Alz]/(z"),p) ~ [] ST(A) (V) oer

n'ts
<y : (r)
x ] cof (ET(A)(%)C»“»M-W VL}ET(A)GP”FM)
n'|s .

after p-completion. The homotopy fiber of R — id corresponds to taking
homotopy inverse limit over R. O

So far we have not specified the ground ring A, but to obtain explicit
calculation we now restrict A to be a perfect field k of positive characteristic
p, where we have the following result from [HM], sect. 8.1.

Proposition 5.2.7. Let V C U be a complex S'-module. The non-zero
homotopy groups of T'(k)(V)C»™ is concentrated in even degrees greater that
or equal to dim V. They are explicitly given as

wo T(R)(V)Cr™ = W,(k) if dimVC%m-s+ < 2i < dim VCem-s
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fors=1,...m, and

wa; T(R) (V)™ = Winga (k) if 2i> dim V.

Proof. The argument, is similar to the proof of proposition 4.2.7 and (4.3.4).
One first treats the case k = F,.

We remember that T'(k)(V) ~ T(k) A SV. It follows that the inclusion
VS C V induces an equivalence

H (Cpm, T(R)(V)) =+ H (Cpm, T(k)(V)) -

Indeed, the cofiber is F(Cpm,T(k) A SY=V"") and SV-V" is a free Cpm-
space, build up from free Cpm-cells, and the obvious induction over cells
reduces us to show that

H (Cpm, T'(k) A (Com+ A S¥)) = 0.

This follows e.g. from the spectral sequence of sect, 4.1, since Tate cohomol-
ogy groups vanish on free modules.
We next use the following analogue of proposition 4.1.8:

T (k) (V)aeum ——t T(k)(V)Cr™ —Z—s T(k)(VCr)Crm=
id L,y Py (1)
T (k) (VG —2—s T(R)(V)'Orm —Es fil Gy, T(R) (V)
Form =1,
Div: T(k) (V) = H (Cp, T(k)(VOP)) ~ H(Cp, T(k)(V))

induces an equivalence on ; for i > dim V. This is simply lemma 4.2.6
suspended dim V' times. Theorem 4.1.15 implies that I';, v and f'm_v in-
duce isomorphisms on homotopy groups in the same range. The spectral
sequence R

H* (Cpm, maT(Fp)(V) = muH (Cym, T(F,) (V)

is isomorphic to the spectral sequence for V' =.0 reindexed by shifting bide-
grees up by (0,dim V). Hence the argument of proposition 4.2.7 gives

7,8 (Cym, T(E,)(V)) = Sg/pmio, 0~ Hdim V] (2)

and it follows from (1) that m;T'(F,)(V)%™ = Z/p™*! if i is even and i >
dim V%». Moreover, the upper horizontal sequence in (1) yields that

R: T(E,)(V)%™ — T(,)(V %) m=
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i (dim V' — 1)-connected, so induction on m gives the claimed homotopy
groups for k = [F,.

Finally, the argument going from IF, to the perfect field k is similar to
the one presented in sect. 4.3. O

‘Let W(k) denote the big Witt vectors of &, i.e. W(k) = (1+ XK[[X]])*,
the multiplicative group of power series which begins with 1. Write W, [k)
for the truncated Witt-vectors :

Wn(k) = (1+ XE[X]])* /(1 + X™HE[X]]).

Let V,: W(k) — W(k) be the Verschiebung: it sends a polynomium p(X)
to p(X™), and induces an injection

Vit Win1(E) = Wim—1 (k).

Theorem 5.2.8. ([HM2|). For a perfect field k of characteristic p > 0,
Kom—1 (k[:n]/(m");zp) = Wanm—1(k)/VaWn_1(F)

and Ky, (k[z]/(z"); Zp) = 0 for m > 0.

Proof. We are in a situation where K.(—;Z,) and TC.(—;Z,) agree, and
shall calculate the latter. I shall only treat the case (p,n) # 1; the other case
is less complicated.

Suppose first n' | [ and choose m in the range

dimg Vpr-ll < m < dimg¢ Vprl (1)

with notation as in theorem 5.2.6. By definition,

n

[ﬂ] if r < wp(n)
dimg Vpriy =
[?l -1 ifr > vp(n)

so the above condition is equivalent to

prH—n<mn<pl—n ifr>uvy(n)
P H<mn<pl—n ifr=uvy(n) (2)
pH<mn<pl ifr<up(n)
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Now

/ Tom—1 (E h{o%-m T(},‘:)(pr.l)c;ﬂ) = 1T2m—2 h{(%_m T(k)(vp.l)cp.

2 Mam—a T (k) (Vpr-1) %=
= W.(k)

by theorem 5.2.7, and similarly

M2m—1 (E h?l_imT(k)(V‘l)Cpidp(ﬂ)) = We_y,(m) ()
R

Thus the second factor in theorem 5.2.6 (where n’ | [) contributes

B cok (Wrimpy—vy(m) (k) = Wr(m (k)

(I,p)=1, n'|l

to TCam—1(k[z]/(z"); Zp), when r = r(m,l) denotes the unique number
which satisfies (2). In other words, the contribution is

@{Wﬂp(ﬂ)(k) l (l,jp) =1, n' I L, 1< pmﬂ’}@
B {Wrmuy(®) | (,p) =1, 2’ |1, 1 > pmn'}.

Similar considerations show that the first factor in theorem 4.2.6 contributes
@{Wr(m,l) (&) | (1) =1, n' {1}, (4)

where this time r = r(m,[) is the unique number with p"~!l < mn < p"l.
Finally, it is easy to see that the direct sum of (3) and (4) is isomorphic to

(3)

Remark 5.2.9. The above argument shows that

MTom—1 ( H hﬁmT(k)(%.,)Cﬂ) ':Wmn—l(k)

(L,p)=1 R

and more generally that

ot ( II hgh'_mT(k)(vpu)"»*-") = P Wonnoa (V).
(Lp)=1 R

The difference between the two cases (p,n) = 1 and (p,n) # 1 in theorem
5.2.8 is just that V;, in the first case gives an isomorphism on the subproduct
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with n | [; in the second case there is a cokernel whose size depends on the
p-adic valuation of n.

I should point out that the low dimensional groups K;(k[z]/(z"); Zp),
i < 3, were determined previously, and that Thomas Geisser asked us to
use the present techniques to work out the groups for general i; he even
conjectured the correct answer. et

5.3 Nil calculations.

McCarthy’s relative theorem makes it possible to calculate the socalled Nil-
groups of rings A which contain a nilpotent ideal I for which A/I is a regular
ring. In this situation, we have the cofibration sequence

NK(A)N — TC (A[t] - A/I[t])" - TC (4 = A/DN (5.3.1)

with ONK(A)" ~ Nil(4)". I illustrate the situation with an explicit calcu-
lation for the rings A, = k[z]/(z") of the previous section. Further details
and examples are to appear in [HM2].

Lemma 5.2.2 and (5.2.1) shows that

T(A[t]) ~co T(A) AN (o) ~eo, T(A) A {? S3/Cs
5=0

and we can apply theorem 5.2.6 for the ring
Anlt] = K[t 2]/ (™).

This expresses TC(A,[t]) in terms of Bh{o_li_mT(k[t])(V;,q)cn‘ with (p,l) = 1.

Write T(k[t]) = T (k[t] & k), and let ~, denote equivalence after p-adic
completions. Then

- 0o \ Ci
) (Vy) o ~ (T(k)(vpl-,)cv‘ Y, si/c,)

=1

“» \V (F0050% 151/0y).

(v,p)=1 j=0
since §'/Cps, ~p S'/Cpi when (v,p) = 1, and one has as in sect. 5.2:

(T(k)(Vp.-,) A S.}./C'pi)c"i ~ T(k)(%;l)cpmin(i.:‘) A S.]i./cpmu{i.j)
~ ET(k)(VDI_I)C?mIn(E.i} v T(k) (V;:"I)C”m'"("‘” .
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For fixed k,

T hggm T (k[t]) (Vo) C#* = m ST (K[t]) (Vi) Ot

if ¢ is sufficiently large; the precise value of i is given in the proof of theo-
rem 5.2.8. It follows from remark 5.2.9 and the above that

mom-1 || 3 holim T (k[t]) (Vi) %'
(pd)=1 R

Cp.'
= Tom ( H h?_l_i_m T(k[t])(qu))
(pd)=1 R

= @ (@pjwmn_ﬂk) @@Wmn—l(k)) ]

(V!p)=l j=1

where p" is the exponent of Wy,,,;(k). This can also be written as

GB Wmn-1 [y]/ Wnn-1 [Py]

(vip)=1

We divide out the image of the Verschiebung Vi : W1 (k) = Wy (k)
to get

Theorem 5.3.1. The groups NKo,,, (k[z]/(z")) and NKap,—y(k[z]/(z™)) are
isomorphic and are given as an infinite sum of A,[y]/An[py] with A, =
Wonn—1(E)/VaWm_1(k). O

There are more canonical ways to present the result, e.g. by using the
deRham-Witt complex of Deligne and Illusie. I refer the reader to [HM2].

5.4 On the K-theory of local class fields.

It is natural to attempt to generalize the calculations of the previous sections
to rings of integers in local class fields, A = int(E) with E/Q, abelian (or
even to local number fields). Such fields appear as centers in group rings
Q,[G], and their integers are centers in the corresponding maximal orders
Mp(G),

. Z,G C Mp(G) C Q,G.

If E/Q, is unramified, then A = W(Fp.) is a factor in Z,[Cy], (p, f) = 1,
and one can use lemma 4.4.7,

T(Z5[C1l)p ~ (T(Zp) AABCyy)y ~ (T(Zg) ACp)y
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to get the cofibration sequence .
TC(W (Fpe )5 — TF(Z,)h &5 TF(Z,,)

cf. [BM2]. Thus the unramified case is of the same complexity as A =
Zp, where one has the calculational methods of sect. 4.1. In outline the
calculation of TC(Z,) is similar to the calculation of TC([F,), but the details
are of a different magnitude of difficulties.
The first problem is to verify Conjecture 4.1.16 for the rings in question
i.e. to show that
I': TH(A)» — H(Cp, TH(A)) (5.4.1)

induces isomorphisms on homotopy groups in non-negative degrees. This was
done in [BM1], sect. 5 for A = Z,, p odd, and in [R] for p = 2. I will go
through the p odd case below; it was not so well presented in [BM1]. First
recall from [B2]:

Theorem 5.4.2. The mod p homotopy groups of TH(Z,) are
W,(TH(Z,,); ]Fp) = E{e2p-l} ® S{fzp}

where the subscripts indicate degrees. Moreover, the Bockstein operator on
. fap i3 eap_1, and the reduction map from TH(Z,) to TH(F,) maps fap non-
trivially. O

The reader with no access to [B2] may consult [HM] for an outline. Recall
from lemma, 4.4.4 the S*-map
$(S%)p — TH(Idy)
which induces equivalence on all Cp» fixed sets. The inclusion
RS = T2(5°)
is split, and the splitting induces a map
f: 2%(5% - SR (SY)S" - SR(SY)HS — TH(Id,)HS".

The homotopy ring . (X°°(5°); Z,) is of course unknown, but it contains the
direct summand

E{a2p—3} ® S{b2p—2} C 7. (Em(so);FP)a p odd. (543)

The first element outside the direct summand lies in degree 2p* — 2p — 2.
There is a similar statement for p = 2. We compose f with the map

g: TH(Id,)*S' = TH(Z)"S — F(S3, TH(Z,))S
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where L comes from linearization Id, —+ Z,, and the second map is restriction
to the skeleton S3 C ES}. The cofibration sequence S} —+ S3 — §3/5?
and the S'-equivalence S%/S' ~ S§1 A S? yield the fibration sequence

Q2TH(Z,) —+ F(S3, TH(Z,))S" — TH(Z,).

The composition g o f maps the homotopy fiber of £°(S°) —+ HZ, into the
fiber Q2TH(Z,),

I: hRF(Z°(S°) =+ HZ,) - Q*TH(Z,), iol=gof.
On homotopy groups one has
l.(azp—3) = Qezp_1, Le(bap—2) = Q2 fap. (5.4.4)
This is a consequence of the statement that the composition
S A HZ, -t TH(Z,) 2 5271 HZ /p,

with ¢ the inclusion of the cyclic 0-skeleton, represents the suspension of
the first Steenrod operation P!, cf. [BM1], lemma 5.3 for details. We next
consider the diagram of spectral sequences

Er,, (TH(,)*,K,) — BT, (THZ,)""F, )

—Pg -

l (5.4.5)

r
E“‘qu

(TH(Idp)""; F,) — BT, (TH(Z,)"°?; F,)
In fiber degree q < 2p® — 2p — 2, the E2-terms are:

E® (TH(1dp)"%7; Fp) = E{w1} ® S{t} ® E{azp—3} ® S{bap-2}
E? (TH(Z,)"%";Fp) = E{u1} ® 5{t} ® E{ezp-1} ® S{fap}
B (TH(Id,,)"S ' IF,,) = 5{t} ® B{azp—3} ® S{bsp_2}

E? (TH(Z,)"";F, ) = ${t} ® E{esp-1} ® S{f2p}-

The vertical maps in (5.4.5) are the inclusions. It is well-known to homotopy
theorists (see e.g. [BM1], sect. 3) that )

E*(TH(ldy); Fp) & E*P=2)(TH(Id,); F,)
and that

d*r? (t) = t"luﬂ'z::u—:h d2p—2(u1) = (), der-1 (u1) =1 bzp_z. (5.4.6)
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The horizontal maps in'(5.4.5) are zero (at least in fiber-degrees < 2p®—2p—2)
but this is due to the filtration shift indicated by (5.4.4).

Proposition 5.4.7. Let p be an odd prime. In the spectral sequence
Er(TH(Z,)"7;F,), the elements tesy—1 and tfa, are infinite cycles. More-
over E* = E* and

dP(t) = ey, dP(w) =0, and dPP(w)=1"Hf

Proof. Let T' = TH(Z,) or T'= TH(Id,). Consider the Postnikov tower
T[0,0] +.T[0,1] 4 -+ + T[0,q] +

with inverse limit T'. Here T'[0, g] has homotopy groups precisely in degree ¢
for 0 < t < g, and in this range they are equal to the homotopy groups of T'.
The Postnikov tower can be taken to be functorial (e.g. by using J. Moore s
" simplicial construction of it), so each term has an S*-action.

The homotopy groups -of the Postnikov tower defines an exact couple,
which gives the spectral sequence we are looking at. It has

B2, , = T4 pF(ECpy,Tla,q))% = my—pF(BCpy,Tla,d]) = HP(BCy,,T)

and the differentials d"+! are induced from the additive relations
. , 8
ﬂq-pF(EC'p+,T[q,91)°'” (—.--rrq._‘PF(EGV'P.;.,T[q,q+r—1])ci’ —tmg—p—1F(ECp4,Tlg+r,g+r])°P.

" Here 8, is the connecting homomorphism in the homotopy exact sequence of
the fibration

T[gg+7—1] + Tlg,q+ 7]+ Tlg+r,g+7].

We shall now compare the situation for TH(Id,;) and TH(Z,). To shorten
notation, write ¥

Flsyt] = F(ECyp, TH(Id,)s, 1)
FZ[S, t] = F(EGP.H TH(ZP) [3’.t])GP

and let m,(—) = me(—; Zp). Then (5.4.4) translates as follows: the additive
relations : :

l. =
Tap—sF[2p—3,2p—3])4—n2p—s F[2p—3,2p~1]—Fmap—a Fz[2p~3,2p—1]4—map 3 Fz[2p—1,2p—1]

=} | ' .
rrg,,._.gF[2p—2,2p—2]+——ﬂ2p_gF[2p—-2,Zp]—f—)ﬂg,,_an[2p—2,2p] oy Fz[2p,2p] (]_)
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give well-defined maps (from left to right) which take asp_3 and by, into
the generators teg,—; and & fgj,_pf

Tap=3Fz[2p — 1,2p — 1] = H*(BCp; map—1 TH(Z,))
Tap—2Fz[2p, 2p] = H® (B Cpi map TH(Zp))

For example, the first additive relation is well-defined because I, annihilates
the generator uybap—a € H(BCp;map—oTH(Id,)): it maps to an element, of '
filtration degree 3, according to (5.4.4).

The elements az,—3 and bap—o are infinite cycles in the spectral sequence
for TH(Id,)"Cr, being in the image of f.. This means that they lift to
elements of map_3F[2p — 3, 00] and wap—2 F[2p — 2, 00]. It follows that teap—1
and tfop lift to map—3Fz[2p— 1, 00] and myp—2 Fz[2p, 00], so are infinite cycles.

Let us prove that d’"(u;) = 0 and d***!(u;) = tP*1f,, and leave the
easier differential d?P(t) = Pt 1e2,,_l to the reader. The additive relation
defining d?P(u,) is

m-1F0,0] = 711 F[0, 2p—4] += 7_, F[0, 2p—3] &rﬂ'_zF[2p—2, 2p-2]. (2)

Indeed u; lies in the subgroup w3 F[0, 2p—3] because d2P—2 (ul) =0 (and not
equal to t"‘lulagp_a). Because of the filtration shift represented by (5.4.4),
it is better to consider the additive relations B

Bl
A: w_1 F[0,0] 7_1F[0,2p — 4] —— w_oF[2p— 3, 2p]

T

8.
AZ: w-1F2[0,0] +—— w_1 F2[0,2p — 4] —— w_2F[2p — 3, 2p]

where @, is the connecting homomorphism in the homotopy exact séquence
of

F(0,2p— 4] + F|0,2p] + F[2p - 3,2p].
Theorem 5.4.2 and (5.4.3) gives

-2 F[2p — 3, 2p] = 1r_2F[2p'— 3,2p-2]
T2 F[2p— 3,2p] = w_oF[2p — 1, 2p]

and hence exact sequences

0 = T2 F[2p — 2,2p] —— 7_oF[2p—3,2p] —2—+ m_2F[2p—3,2p—3] =0 _

| I

0 7_oF[2p,20] —2Z—+ w_2Fy[2p—3,2p] —Z— w_aF[2p—3,2p—1] =0
4
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One has the following values of the groups involved: - )

72 F[2p - 2,2p] & H*P(BCy;map—2TH(Idp)) = Fyp(tPlap—2)
7o F[2p — 3,2p — 3] & H**~1(BCy; map—3TH(Idp)) = Fy, (P Luza2p—3)

m-2F|[2p, 2p] = H*P**(BCy; ?2pTH(Zp)) = Fp (t"* fap)
7_aF[2p - 3,2p— 1] & H*(BCp; mp1 TH(Z,)) = Fy(Purezp1) -

I claim that jz o l. o i = 0, giving the left hand vertical arrow in (4). Indeed
the generator of m_, F'[2p—2, 2p| is tPbap—2, hence in the image of the product
i ‘ -5 :

T_2pF[0,0] ® mp_o F[2p — 2,2p — 1] = w2 F[2p —2,2p — 1].
The homomorphism
rap—2F[20 — 229 — 1] = Tap-2 Fal2p — 2, 29— 1]
is zero by (5.4.4), and the claim follows by using the product
T—2pFz[0,0] ® wop—2Fz[2p—3,2p— 1] =+ 7;'_2Fz[2p — 3,2p — 1].
On the other hand ‘
AP 2u) = joA(w),  dY(w) = jzoAz(u) (5)

and by (3), jzAz(u1) = jzl.A(u1). Since d**~?(u;) = 0, one concludes that
dzP(u1) =0. Finally the differential d*~*(u;) = #Pb shows that L, A(u;) # 0
and that it belongs to the image of i in diagram (4). But the left hand
“vertical arrow in (4) is an isomorphism; use of products as above and (5.4.4)
completes the proof. 0o -
Corollary 5.4.8. For p odd,

7o (B(Cp, TH(Z)); Ty ) = B{esp-1} ® S{#7,¢77}.

Moreover,

Ly: 1y (TH(Zyp); Fy) = 7 (H(CP:T(Zp));Fp)
is.an. isomorphism in non-negative degrees.
Proof. The non-zero differentials in E" (1}'31(0,,, TH(Z,,));JF,,) are by (5.4.7):

PP(f) =it +Pey, s, dPH(u)=1"Hf, (i€ Z)
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and a routine calculation gives Efff,_z = F{u;} @ S{t"4~P}. For degree
reasons B35 = EZ,. This proves the first statement. The commutative
diagram

T(Zp) — » T(Fp)

I b
H(Cp:.T(ZP)) P H(Clh T(Fp))

together with lemma 4.2.4 and theorem 5. 4 2 tells us that T, (fyp) = t72°
and P (82,,-1) = €3p—1. . |

- The corollary implies that

TH(Z,) - H(C,, TH(Z,))[0, 0)

is a p-adic equivalence, and theorem 4.1.15 then gives

A
TF(ZP:P)Q e (hﬂmT(Zp)hC"") ~ (T(Zp)hsl)g.

£ P

The homotopy groups 7 (T'(Z )"‘5’"1 F,) and m, (“ (Sl;,T(Zp));]Fp) were cal-
culated in [BM2] by solving the involved spectral sequences, and

Ry: e (TE(Zy, p); I )—} Tu(TF(Zp, p); Fp)

was determined. This was enough to give the values of TC (W (Fpe ); ).
The groups turn out to be v;-periodic, i.e.

(A TC (W(IFPI) I, )_}Tcm+2p—2 (W(IF ‘) ?)

. (v1 = bap_z), and this together with other tricks leads to the proof of theo- .
rem 1.5 of the introduction. I refer to [BM2] for the details.
For odd primes p, theorem 1.5 states that

TC(Zp)A[0,00) ~ im.Jp x Bim J, x SUA. - (5.4.9)

This is true as (—1)-connected spectra when one use the deloopings arising
from Bott periodicity on the right hand side, For p = 2 there are added
" complications. For example, mod 2 homatopj groups of a ring spectrum
does not in géneral form a ring. At the time of writing TC.(Z2) has not been
completely determined, but. preliminary calculations of J. Rognes suggests
that

; (™ (TC(ZQ),IFQ) = W.(im Jo x BimJs % SUgA;IFz).
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One expects that a twisted version of (5.4.9) is true for p = 2, cf. [BM2],
sect. 6. I stress that im J, is the complex J space at 2, i.e. the homotopy
fiber of ¥* — 1: (BU x Z)} — BUJ.

For geometric reasons it is important to study the relative K-theory
K(Id — Z), by theorem 3.5.1 equal to TC(Id —+ Z). Indeed, a celebrated
theorem due to F. Waldhausen states that

K(Id) ~ Q°°85% x WhP!T(«)

-

where Q2WhP# (x) ~ holimDiff(D", D2~!) with D2~ C 9D" the lower
hemisphere, and where (1°°5° is the zero’th term in the sphere spectrum.

Conjecture 5.4.10. For each odd p we have to split fibration
cokJ, —+ (2%°5)) ﬁim . (1)
There is a similar split fibration
X, —+ QX5=(S! ACP®)) £+ SUP. (2)

Here the map from S A CP*® — SU is adjoint to the map which classifies
the reduced canonical line bundle, and €’ is its ‘universal’ extension. The
S-transfer

vz ROFP(S ACP*) — 5

induces a map 7,: X, —+ cokJ, and a map from SU} to im J, with fiber
SUJ. Let im J, be the 0-connected cover of im Jp. I conjecture that

TC(Id = Z)} ~ cokJ, x BeokJ, x Bim J, X hF(1}). (3)

The difficult part is to prove that the restriction of TC(Idp) — TC(Z,) to
the SU) factor of (2) is the deloop of % — 1: BUJ' —+ BUJ; this gives the
factor Bim J, in (3).

The outstanding problem which remains is to determine TC(A)} in ram-
ified situations. There are at least two approaches. One can attempt to
use that A appears as the center in a maximal order M,(G) C @Q,[G], and
use the ideas of sect. 5.1 to calculate TC(Z4[G]),- But this leaves one with
following problem, interesting in its own right:

Problem 5.4.11. Give a calculable trace description of K{Z,[G] =+ My(G)).



Ib Madsen 315

One knows by the localization theorem in /-theory a categorical descrip-
tion of K (Z,[G] = Q,[G]), and hence of K (Z,[G] = M,(G)), namely as
the K-theory of cohomological trivial modules. But despite a lot of efforts
by Békstedt and the author, (5.4.11) remains unsolved (even for G = Cp).

A second approach is to follow sect. 4.1, starting with a calculation of
TH(A). Recently, A. Lindenstrass has determined TH(A) for quadratic ram-
ified extensions of Zs. In general one should have

Conjecture 5.4.12. Let A be totally ramified and let m € A be the prime
element (A/mA =WF,). Then

7. TH(A, A/7) = Er,{a1} ® Sr,{az}
with dega; = 1. O
Conjecture 5.1.12 yields m, (TH(A); IF;,) as well, but I do not know if (5.4.1)
is an equivalence in this case.

Finally of course there is the deep problem of determining the relative
K-theory K (Z ) —+ Zp) but this is a different story altogether.
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