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In the invitation to speak at the seminar, S.-T. Yau stated the intent of the 
lectures and the accompanying publication to be that a graduate student, 
having heard the lecture and read the manuscript, should be able to start 
research of his or her own on the subject. He added that it was desirable if 
the manuscript contained soine new original results as well. I do not know if 
this is possible to achieve in a single paper, but it is a noble goal. The present 
blend between a traditional expository article and a detailed exposition of 
the subject 'is in any case my attempt at this goal. 
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IntrQd uc;tion 

T\!e present paper is an attempt to give an overview of topological cyclic 
homc;Jlogy and its relation to algebraic K-theory. In the 'classical' setting, al­
gebraic K-theory associates to a ring A a space K(A). The homotopy groups 
of K(A) are Quillen:s higher K-grollPS. They have proved very difficult to 
calculate, and are, for example, to this day not even known for the ring of 
rational integers. 

The homology of (a component of) K(A) is the group homology of the 
group Gr."" (A) of invertible matrices of the ring. This was early on used by 
Qulllen and Borel to evaluate K-theory offinite fields and the torsion free part 
of K-theory of algebraic integers, respectively. Later Sus lin evaluated the 
homotopy groups with finite coefficient~ of K-theory of algebraically closed 
fields, or what amounts to the same thing, the profinite completion K(F)" . 
In particular he showed that K(C)" is equivalent to the profinite completion 
of the space which classifies complex vector bundles. Bott periodicity then 
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calculates 'lriK (C)/\ to be a copy of the profinite integers when i is even and 
zero for i odd. 

This development inspired another calculational approach to the K­
groups, namely via etale K-theory, introduced by Friedlander. 

Given a Galois extension FeE with group G, K(F) ~ K(E)G. This 
is no big calculational help, but if one replaces the actual fixed sets by the 
socalled homotopy fixed sets, a construction introduced by Sullivan in the 
sixties in connection with his solution .of the Adams conjecture, then cal­
culations become possible. The homotopy fixed set is the function space 
(spectrum) 

K(E)"G = MapG(EG,K(E)) 

where EG is the contractible free G space, and where MaPG denotes the 
space of G-mappings. The filtration of EG by its skeleta induces a spectral . 
sequence 

H·(G,K.(E)) ::} 'Ir.K(E)"G 

which in favorable situations can be determined. The etale K-theory of a 
field F is, very roughly speaking, the homotopy fixed set of K(F)hG where 
F is the closure of F. In the characteristic zero situation K(F)/\ ~ K(C)/\ 
by Suslin, so the calculation of etale K-theory of fields is intimately tied to 
Galois cohomology. There has been a lot of efforts by many people to evaluate 
etale K-theory, and in particular by W. Dwyer, E. Friedlander, S. Mitchell 
and Bob Thomasson. But the basic question remains: how close is 

to be a (profinite) homotopy equivalence? In one formulation, the 
Lichtenbaum-Quillen conjecture asserts this to be the case (above dimen­
sion 1) for number fields. 

For small values of i, Ki(fields) have been extensively calculated in work 
of Merkurjev and Suslin. The reader is referred to Suslin's address at the 
ICM 1990. 

In another direction, Waldhausen generalized Quillen's K-theory of rings 
to include certain 'rings up to homotopy', such as nOOSOO(nx+). The re­
sulting functor A(X) is intimately related to the space of automorphisms 
(homeomorphisms or diffeomorphisms) of X when it is a (high dimensional) 
manifold. 

The approach to K-theory (of rings or spaces) in this paper is to study a 
certain trace type invariant 

trc: K(A) -t TC(A). 

The target is a topological version of Cannes' cyclic homology; We call it 
topological cyclic homology but maybe trace homology was· a better word. 
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From a superficial viewpoint the cyclotomic trace records the traces of all 
powers of matrices, so could also be called the characteristic polynomial in-

. variant. It works equally well for Waldhausen's K-theory of spaces, and was 
introduced in joint work with M. B6kstedt and W.-C. Hsiang [BHM] in order 
to solve the K-theory analogue of Novikov's conjecture about homotopy in­
variance of the higher signatures of manifolds. The construction was inspired 
·by ideas of T. Goodwillie. Here however, I shall be mostly concerned with 
the situation for rings. 

There is a map from TC(A) to another functor denoted THH(A), the 
topological Hochschild homology of R, and trc is a lifting of this topological 
Dennis trace. 

Let me briefly sketch the construction of THH(A). Consider the simplicial 
abelian group 

where the face operators sends al i8la2®as into ala2®aS, al ®a2aS , aSal i8la2 

etc. The homotopy groups of Z.(A), or what is the same thing, the homology 
groups of the associated chain complex, are the Hochschild homology groups 
HH.{A) . 

The basic idea, suggested by T. Goodwillie, is to replace A by the 
Eilenberg-MacLane spectrum it generates, and i8l by smash product of spec­
tra. This was carried out by B6kstedt, and leads to a · simplicial space 
THH{A). The extra structure in Z.{A) which comes from the cyclic ro­
tation of the tensor factors is also present after the indicated substitutions, 
and via Connes' theory of cyclic sets, it implies a circle action on THH{A). 

Connes initially defined cyclic homology by replacing Z.(A) by the com­
plex C.(A) whose n'th term is Zn{A)ICn+l , the quotient group by the cyclic 
rotation of factors. It is crude construction to divide out a non-free group 
action-usually one gets a better theory by instead taking the Borel quotient, 
This was done in papers of Loday-Quillen and Feigin-Tsygan who replaced 
the quotients Afi)n ICn by wen) i8lc

n 
A@n wh.ere wen) is the standard free 

Z[Cn] resolution of Z. In the topological situation of THH{A) it is better to 
talte fixed sets THIf{A)C for the various subgroups of the circle. Had the 
circle action on THH(A) been free, the fixed sets would have been the Borel 
orbits THH(A)hc = THH{A) IIc EC+. This is not the case, and the fixed 
sets THH{R)c is a mixture of Borel quotients, one for each strata of the 
action. In our topological situation it turns out that there 'is a certain map 

R: THH(A)cn -t THH(A)c~ 

whenever m divides n, which one does not see in the linear setting. This map 
mixes the stata. We also have the inclusion of fixed sets 

F: THH(A)Cn -t THH(A)cm • 
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The topological cyclic homology TC(A) is defined to be the homotopy 
theoretical limit of THH(A)Gn over the maps R and F as Cn varies over all 
cyclic subgroups. The basic theory of THH(A) and TC(A) is described in 
chap. 2 below, where we also recall the construction of 

trc: [((A) -I- TC(A). (Ll) 

Actually, both [((A), TC(A) and THH(A) are spectra in the sense that there 
are sequences of spaces [((A)Rn etc. so that [((A) is equivalent to the n'th 
based loop ·space of [((A)Rn etc., and trc preserves this structure. I write 
TH(A) for the spectrum {THH(A)Rn} but do not introduce special notation 
for the spectra [((A) and TCCA). 

The following chap. 3 presents results of Dundas, Goodwillie and Mc- . 
Carthy. The following theorem is proved in sect. 3.4. 

Theorem 1.2 (McCarthy). For a surjection of rings f: A -I- A with nilpo­
tent kernel, 

[((A) trc TC(A) 

1 1 
[((A) trc I TC(A) 

becomes a homotopy Cartesian diagram after profinite completion. 

In particular, the relative homotopy groups with finite coefficients of the 
two vertical maps agree. Earlier results of this nature have appeared in 
[G4J, [G5], [BCCGHM] . The proof is based upon Goodwillie's "calculus of 
functors"; it is very indirect, and does not in any way produce an explicit 
inverse from TC(A -I- A) to [((A -+ A). 

The trace (1.1) cannot in general induce an ispmorphism of (profinite) 
homotopy groups. Here is one reason: TC(A) is constructed out of Eilenberg­
MacLane spectra H(A). Now H(A)II ~ H(A.) since H(A) is characterized 
by its homotopy groups. This persists to TC, 

TC(A)II ~ TC(A I8i Z) 

at least if A is finite over Z. However, it is well known that K-theory does 
not have this property. Thus (1.1) has little chance of inducing isomorphism 
on profinite homotopy unless one restricts attention to complete rings. 

There is an extension due to B. Dundas of theorem 1.2 to the setting of 
Waldhausen's functor A(X), namely the following result which is outlined in 
sect. 3.5. 
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Theorem 1.3. (Dundas). For any space X the diagram 

A(X) trc 
TC(X) 

1 1 
becomes homotopy Cartesian after profinite completion. 

Let k be a finite field of characteristic p:j: 0, and let W(k) be its ring of 
Witt vectors. Chap. 4 outlines the proof of the following joint result with 
L. Hesselholt 

Theorem 1.4 ([HM]) For finitely generated W(k)-algebras, 

trc: K(A)~ -+ TC(A)~ 

is a homotopy equivalence (in positive dimensions). 

Chapter 4 also gives a new (simpler) proof of one 6f the inain results from 
[BHM), namely that the assembly map 

K(Z) 1\ Br + -+ K(Zr) 

is a rational equivalence for a large class of big groups, e.g. for the groups r 
which have finitely generated Eilenberg-MacLane cohomology in each dimen­
sion. The simplification of the original prooOs made possible by theorem 1.3. 
Chapter 4 further calculates TC(XY in terms of more traditional functors 
in algebraic topology; these involve the free loop space of X . 

The functor TC(A) is not very easy to calculate, but it does lent itself to 
analysis by classical methods of algebraic topology. The .basic approach, so 
far, has been to use ~he following diagram of (co)fibrations (in the category 
of spectra) 

R 

--+ Jfu(Cpn, TH(A)) 

The lower cofibratlon is usually called the norm cofibration. In ~rder to define 
it one uses that the spectrum TH(A) can be extended to an Sl-equivariant 
spectrum'T(A). Roughly speaking this means that there are spaces T(A)v, 

,. 

!' 
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one for each finite dimensional representation V of 8 1 such that TH(A) ~S' 
Map(SV, T(A)v) . Here SV denotes the one-point compactification of V with 
its induced SI-action. The construction of the norm cofibration is due to 
J. Greenlees and J . P. May. 

The point of the diagram is firstly that there are spectral sequences which 
approximates the terms in the bottom sequence, e.g. 

where j[. denotes Tate cohomology. Secondly, it turns out that the maps r 
and t in many situations are homotopy equivalences in non-negative degrees. 
This is reminisant ofthe Segal conjecture (which corresponds to TH(flOO SOO» 
where r and t are actual homotopy equivalences. In particular one expects 
r, t to give equivalence (in positive degrees) for integers in local number 
fields with non-zero residue characteristic. 

This has been verified in the unramified situation, A = W(lFp')' where 
the calculation of TO has been carried through. In order to describe the 
result, let ~m Jp be the homotopy fiber in 

where 'ljik is the Adams operation for an integer k which generates the units 
in 'll/p2'll, i.e. a topological generator of the units of the p-adic integers 'llpo 
The bottom homotopy group of im Jp is a copy of 'llp, and 

while 7r2n(imJp ) = 0 for n > O. (vp(-) denotes the p-adic valuation) . Let 
B im Jp denote the delooping of im Jp with 71'i(B im Jp) = 71'i-l (im Jp). Then 
one has: 

Theorem 1.5. ([BHM2]). Let IFp • be tbe finite field witb pS elements and 
A. = W(lFp.) its Witt-vectors. Tben for p odd, 

TO(A.)~ ~ im Jp x BimJp x SU; x U; x ... x U; (5 -1 copies ofU) 

wbere SU is tbe special unitary group, and U tbe unitary group. 

The proof of theorem 1.5 is a long and complex calculation which requires 
a thorough Imowledge of homotopy theory. It was in fact the first calculation 
made of the TO functor applied to rings. The general calculational scheme 
developed in this case was later exploited in a number of less complicated 
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situations. Theorem 1.5 in conjunction with the Dwyer-Mitchell calculation 
of Kct(As), [DM), verifies the conjecture of Lichtenbaum and Quillen for 
these rings. 

The first three sections of chapter 5 give other examples of TC­
calculations in situations where theorem 1.4 applies. Sect. 5.1 studies K­
theory of group rings of finite groups. In terms of concrete calculations the 
main result is: 

Theorem 1.6. Let k be a finite iield of characteristic p > 0, and let 0 be a 
cyclic group of p-power order. Then the p-primary part of K ~theory is given 
by 

K2n- 1 (k[OJ)(p) "" K1 (k[ODtvi' 

and K2n(k[C))(p) = 0 for n > O. 

The next two sections 5.2 and 5.3 outline joint work with L. Hesselliolt. 
The main result is the following 

Theorem 1.7. Let k be a perfect lleld of characteristic p > O. Then 

Here W(k) denotes the big Witt-vect9rs, that is, W(k) = (1 + k[[t)W, 
the multiplicative group of power series beginning with 1, Wr(k) is the cor­
responding truncated version 

and VB is the Verschiebung map which takes a power series J(t) to J(tS
). 

Sect. 5.3 is just an example; it evaluates the groups Nil. (A) for the rings of 
theorem 1.7. 

Finally it is in order to point out that TC(A) only contains information 
about K-theory at the residue characteristic. The I-primary part of K(A) 
for I # p is however, for the rings under consideration, already known by 
theorems of Gabber and Suslin et. al.: one may divide out the radical, cf. [Su), 
which also contains a thorough account on low dimensional caIculations. 

It is a pleasure to aclcnowledge the help I have had from M. Biilcstedt, 
B. Dundas and L. Hesselliolt in preparing this paper. 
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2 Topological cyclic homology 

This chapter sets the notation to be used in the rest of the paper, reviews the 
definition of the functors to be discussed and gives the basic constructions. 

2.1 Cyclic constructions. 

Let G be a topological monoid and E a two sided G space. For technical 
reasons we assume that the linit 1 EGis a "good" base point, Le. {I} C G 
be a colibration . . The cyclic bar construction of G with coefficients in E is 
the simplicial space N~Y (Gj E) with r-simplices 

(2.1.1) 

and simplicial structure maps 

{

(e91,92, ... ,9r), ' i = 0 

di(e,91, ... ,9r) = (e,9lJ'" ,9i9i+1,··· ,9r), 0 < i < r 
(9re,91, ... ,9r-d, i=r 

si(e,91, ... ,9r) = (e,91. '" ,9i-1. 1,9i, ... ,9r), 0 ~ i ~ r. 

Two special cases have particular interest for us, namely E = * and E = 
G (with its natural two sided G-structure) . In these cases we shorten the 
notation to 

N.G = N~(Gj*), N;YG = N;Y(GjG). 

The simplicial space N;Y G has extra structurej it is a cyclic set in the sense 
of Connes: one has the cyclic permutation 

with the following extra relations, as the reader can easily check, 

ditr = t r- 1di- 1, 1 ~ i ~ r 

dotr = dr 

sitr = tr+1Si-1. 1 ~ i ~ r 

sotr = t;+l Sr 

tr +1 = 1. r 

(2.1.2) 

Let t1 be the usual simplicial category with objects [rJ = {O, .. . , r} and order 
preserving maps, so that a simplicial space is a functor from t1 op to {spaces}. 
It is contained in a category A with the same objects but with 

A([rJ,[sJ) = t1([rJ,[sJ) x Cr+1 
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where Gr+l is th~: cyclic group of order r + 1. A cyClic space is just a functor 
from A op to {spaces}, see e.g. (J] for further information. 

For a simplicial space 'X. we iet IX. I denote the usual topological real­
ization, 

= 
IX.I = II AT X Xr/ ~j (diU, x) ~ (u,dix), (siu,x) ~ (U,SiX), 

r=O 

where di : Ar - 1 -+ A r , Si: Ar -+ A r - 1 are the face and degeneracy operators 
of the standard simplex. The realization of the cyclic r-simplex A[r]. -
A([_], [rJ) can be calculated to be 

(2.1.3) 

It is a co cyclic space, that is a functor from A into {spaces}. There are two 
good choices of the homeomorphism in (2.1,.3) . One can either choose it so 
that 

(i) tr(li,uQ, ... ,ur) = (8 -UQ,UlJ'" ,ur,uQ) or so that 

(ii) tr(li,uQ, ... ,ur) = (li-l/(r+l),ulJ'" ,U.,uo) . 

In case (i), the cosimplicial maps di , si are Idsl x di , Idsl X Si with di,Si 
being the usual cosimplicial maps on A·j in case (ii) di and si depends on 
the circle coordinate. The realization of cyclic spaces comes equipped with a 
natural action ~f S1. Indeed it is easy to see for a cyclic space Z. that 

= 
IZ.I ~ II Ar x Zr/~ (2.1.4) 

r=O 

where the identifications ~ are 

~ 
I! 

~ 
~' 
1 

! 
I 

" 

I 
i 

, \ '. r 
The Sl-action on the circle factor of Ar descents to the Claimed Sl-action on \ 
IZ.I. For further information on cyclic spaces we refer the reader to [C], [J], f 
~~l· I 

The homotopy theory of spaces X equipped WIth an action of a group G k 
is governed by the homotopy theory of its fixed sets XH; H ~ G (H closed if f 
G is Lie) . In particular a G-map f: X -+ Y is a weak homotopy equivalence ~f 
if and only'if its induced map on H-fixed set is for all (closed) H ~ G. Thus lit 

iI 
H 
,I' 
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it is important to be able to calculate fixed set IZ.l c for the realization of 
a cyclic set, where a is finite cyclic or a = 8 1 . It is not hard to see from 
(2.1.4) that 

8' IZ.I = {z E Zo I soZ = tlSOZ} 

but it is harder to use (2.1.4) to get information about IZ.l c when a c 8 1 

is finite. 
There is however a simple devise, edgewise subdivision, which can be used 

to effectively calculate IZ.l c . Let X. be any simplicial space, and a a cyclic 
group of order c. We consider X.: 6,op -t {spaces} and define 

sdc : 6, -t 6, 

sdc[r]" = [r) II ... IT [r), c = summands (2.1.5) 

sdcCP = cp II ... II cp, cp E 6, ([r), [s]). 

The composition X. 0 sdc: 6,0p -t {spaces} is the subdivided simplicial 
space, denoted sdcX •. Its space of r-simplices is equal to Xc(r+!)-l ' 

The diagonal inclusion of 6,r into the c fold join 6,r * .,. * 6,r induces a 
(non-simplicial) map D from the realization of sdcX. into the realization of 
X •. If X. is a cyclic space then IsdcX.1 has a natural IF./cZ action, which 
restricts to a simplicial Z/cZ action. Indeed t~t~l)-l acts simplicially on the 
r-simplices of sdcX •. From [BHM], sect. 1 we have: 

Lemma 2.1.6. The map D: IsdcX.1 -t IX. I is a homeomorphism. More­
over, if X. is cyclic then D is 8 1 -equivariant when IF./cZ is identified with 
the circle in the usual way. 0 

For a cyclic space Z., the action of the (r + l)'st power t:t~l)-l is 
a simplicial map of sdcZ. of order c, so induces a simplicial a-action on 
IsdcZ.I ; and hence via D an action of a on IZ.I. For example it is not hard 
to see that 

sdcN;Y(G) ~ N;Y(E,GC
) 

where E = GC (c fold Cartesian product) with its componentwise left GC_ 
action, and right GC-action given by 

The action of a on sdcNcY(G) corresponds under the above identification 
to the cyclic permutation action on E and GC, so there is a homeomorphism 

(2.1. 7) 

with 6,c induced from the diagonal map G -t GC. 
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We now suppose that our topological monoid is group-like, that is, 1roG 
is a group. In this case . 

BG= IN.GI 

and the canonical map G -7 nBG is a weak homotopy equivalence, in sign: 
nBG ~ G. Moreover, . 

BCYG = IN~YGI 

is equivalent to the free loop space ABG of BG. Indeed, the projection 

induces a map from BCYG to BG and the adjoint of the map 

S1 x BCYG -7 BCYG -7 BG 

defines the equivalence (cf. [Gl],[BF]) 

q: BC'/G~ABG. (2.1.8) 

This is not a (weakly homotopy) equivalence of S1-spaces since the S1-fixed 
sets do not agree . . However, for each finite subgroup C C Sl, 

(2.1.9) 

is an equivalence. This follows easily upon using (2.1.7) and the obvious 
homeomorphism 

~ 0 . 
. !:::..c: ABG --+(ABG) , !:::"(A)(Z) = A(ZC) . 

Indeed, qO identifies with q under the identifications induced from !:::..o and 
!:::..c (cf. [BHM], propos~tion 2.6). Let me give the proof of (2.1.8) when G is 
a group, and refer to [BF], [Gl] for the group-like case. One starts with a 
rewriting of NCY(G), namely via the bijection 

CY( ) ~ - f:N. G --+AdGxGE.G, 

where AdG denotes G with conjugation action, and E.G is the left acyclic 
bar construction whose k-sinlplices are g[gd .. ·Igk]; the map is defined as 

Tp.e topological realization of E. G is the free contractible G-space, and 
AdG Xa EG ~ ABG. Indeed a loop A(t) E ABG is mapped into (g>., X(l)) 
where X(t) is a lift of>.: [0; 1] c-+ BG and g>. is the hoIOliomy:' g>.' X(O) = X(l). 
When G is compact Lie one needs a connection in EG -+ BG, and >. will he 
a parallel curve in EG. 

., 

.11 
l ~ ., ,. , 
:1 
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.! 
I' 
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, ., 



Ib Madsen 203 

The above have generalizations to the nerve and cyclic nerve of a category 
e. The nerve N.e is the simplicial set with . 

the set of r compos able maps. Similarly N;Y (e) has r-simplices 

and boundary maps similar to (2.1.1). For categories with only one object, 
monoids, this agrees with the above constructions. If we restrict the mor­
phisms of C to be isomorphisms we obtain a subcategory ie, and (2.1.8) 
generalizes to 

These more general concepts will be used in the next chapter. 
We close this section with a rewriting of N.G, due to Waldhausen, [W2], 

in the special case where G is a semi-direct product. Let (V, +) be an abelian 
monoid equipped with a two-sided action of the monoid r . Denote by G = 
V >l r the semi-direct product with multiplication 

Let N. V be the bar construction of (V, +). It inherits a simplicial two sided 
action of r, and we can form the bisimplicial set 

[r], [5] >-+ N~Y (ri N. V). 

Its diagonal simplicial set with r-simplices 
6N;Y (ri N. V). Consider the simplicial map 

NCY (r' N V) is r ,r 

u: 6N~(r,N.V) ~ N.(V >l r) 

given on r-simplices by 
, 

U(Vl,'" ,Vr,'Yl,'" ,'''Yr) = 

denoted 

("1" ',rVl'Yl"l), "2" ·'rV2'Y1'2"2), ... ,(,rVr,l" ·'n'r»). 
The map u can be understood as the composition of two maps: one 

starts with a rewriting of the left hand side, similar to the above f, and then 
rearranges factors upon using the semi-direct product. When r is a group u 
is a bijection. In general one has from [W2], lemma 2.3.1 : 

Lemma 2.1.10. Ifr is a group-like monoid then u induces a weak homotopy 
equivalence of topological realizations. D 
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The map u. will be used in the next chapter for r = GLk (R), V = Mk(V), 
where R is a unital ring and V is an R-bimodule. In this Crul~ the semi-direct 
product ring V )I R has 

GLk(V )I R) = Mk(V) )I GLdR). 

2.2 Simplicial spaces. 

We have already in sect. 2.1 used simplicial sets and spaces. This will continue 
even more extensively in later sections, and it is in order to collect some of 
the relevant properties of siinplicial sets and spaces. 

Let us first point out that we use the word space to mean a based com­
pactly generated Hausdorff space, and that all constructions are to be taken 
in this category. 

A map f: X -t Y is caIled k-connected if it induces an isomorphism on 
homotopy groups in degrees less than k and an epimorphism in degree k, i.e. 
if.the homotopy fiber is (k-1)~connected: The convention is that every space 
is '( -2)-connected, non-empty spaces are (-I)-connected and path connected 
spaces are O-connected. It is an equivalence if it is k-connected for all k, and 
in general two spaces X and Y are caIled equivalent (X ~ Y) if they can be 
connected by a string of equivalences. In almost all cases to be considered, 
our spaces will have the homotopy type of CW complexes, and in -this Crule 
X ~ Y iff they are homotopy equivalent in the ordinary sense. The homotopy 
groups of a simplicial space (or set) X. will mean the homotopy groups of 
the topological realization IIX.II below. 

This is the bigger realization, sometimes called the fat realization, which 
only depends on the face operators in X., i.e. on the functor 

X.: ~~ -t {spaces} 

where ~m C ~ is the subcategory of injective maps in ~. Such a functor is 
caIled a ~-space, [RS], and a presimplicial space in [DM2]. Its realization 

00 

IIX.II = II ~r x Xr/(rtu.,x) ~ (u.,djx) (2.2.1) 
r=O 

has IX.I as a quotient when X. is simplicial. 
For simplicial sets, 

is an equivalence, but this is not always true for simplicial spaces. 
A simplicial space X.: ~op -t {spaces} is s:alled "good" (or "proper"), 

[Se1] (or [May1]) if the inclusion of its degenerate simplices 

r-l 

U Si(Xr - 1 ) C Xr 
i=O 

i 
! ' 

I. ,-

,­
" ,-
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is a colibration (an NDR-pair). For such, the two realizations IX.I and IIX.II 
are equivalent, cf. [SeI], appendix. 

Any bisimplicial set (functor from t,,0p x t,,°P into sets) give rise to two 
"good" simplicial spaces 

[r)-+ IXr,.I, [5)-+ IX.,sl. 
Their realizations' are each homeomorphic to the realization of the diagonal 
simplicial set oX.,., and similarly for multisimplicial sets. 

The homotopy fiber of a map f: X -+ Y of spaces with respect to * E Y 
is the space 

hF(J) = {(x, A) E X X yI I f(x) = A(O), * = A(I)} 

and there is a long exact sequence of homotopy groups 

.. . -+ 1riX -+ 1riY -+ 1ri-l (hF(J)) -+ 1ri-lX -+ . .. 

so f is k-connected precisely if hF(J) is (k -I)-connected (for each choice of 
*). 

Given a map of simplicial spaces, f.: X. -+ Y. and a base point *. E Y. 
there is a natural map 

(2.2.2) 

This is an equivalence if each Yr is O-connected, provided X. and Y. both 
are "good". In particular If. I is an equivalence when each fr: Xr -+ Yr is 
an equivalence. The associated fat realizations are equivalent without the 
goodness assumption. 

The homotopy liber and the dual notion of homotopy coliber, 

cof(J) = (Y x J) II X / (j(x) ~ (y, 1), * ~ (y,O) 

are special cases of the homotopy limit and the homotopy colimit functor 
from a small category into spaces, cf. [BKJ, [G4]. 

Let us next consider function spaces between pointed spaces X and Y. 
Denote by F(X, Y) the function space (in the compact open topology) of 
pointed maps from X to Y. 

Suppose X is a pointed CW complex, e.g. the realization of a simplicial 
set, and that dim X ::; n. There is a natural map 

(2.2.3) 

If Y. is a "good" simplicial space and each Yr is (dim X-I )-connected, then 
¢ is an equivalence. In partiCUlar, the loop space of a "good" simplicial space 
Y. with each Yr O-connected can be computed degreewise: 
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cf. [May1], sect. 12. 
Given based simplicial sets there is a simplicial version F. (X. , Y.) of the 

mapping space which we shall occasionally use. Its r-simplices consists of the 
simplicial maps 

o(Ll[r]. x X.) -t Y. 

which maps Ll[r]. x *. to the base point of Y •. Here Ll[r]. is the simplicial 
r-simplex with Ll[r]. = Ll ([s], [r]) . More generally, for each based J(., 

Map(J(., F. (X. , Y.)) = Map(o(J(. /\ X.), Y.) 

where Map denotes the set of based simplicial maps. In particular, we see 
for Y. = sin. Y, the singular complex of Y, that 

sin. F(IX.I, Y) ~ F.(X., sin. Y) 

(take 1(. = Ll[r].) . Since Y. ~ sin.IY.1 when Y. is fibrant (Kan complex) 
we see in this case that 

FOX.I, IY.!) ~ IF.(X.,Y.)I· 

Let us finally remind the reader that asimpJicial group·, X.; Llop -t {groups}, 
is always a Kan complex. For simplicial abelian groups A. and E., the 
function complex s.Ab(A., E.) has the property that 

In particular, oA. @Z(S':n is a deloop of A •. Here Z(S:) is the free abelian 
group of the.simplicial n-sphere modulo the relations A*. = 0 and 0 . x = O. 
The reader is referred to [Ql] and [May2] for further details on simplicial 
sets. 

Many constructions later in the paper are functors of fixed sets of the 
topological realizations of cyclic sets and spaces. Examples have already ap­
peared in sect. 2.1.' A map of cyclic sets (spaces) I.; X. -t Y. induces 
an Sl-equivariant map. It is an Sl-equivariant homotopy equivalence if 
I:; xf -t Y.o induces an equivalence for all closed subgroups of Sl. This 
includes S1 itself. But for some purposes of the paper, the S1· fixed set is 
exceptional, and only the C-fixed sets for finite C matters. We therefore . 
introduce the notions X ~o~ Y resp. X ~op~ Y t.o mean that X and Y 
can be connected with a sequence of Sl-maps :vhich induce equivalences on 
all Cn fixed sets, resp. Cpn fixed sets. _ 

In the rest of the paper we shall tacitly assume that our simplicial spaces 
are "good". This will sometimes have to be verified, but we shall not go into 
such details below. 

I ,. 

I: 
i , 
i 

I 
l. .. , 
j ' 
j 
i 
l. 
i 
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2.3 Topological Hochschild homology. 

Given a unital ring A and an A-bimodule V we can form its cyclic construc­
tion Z.(A; V). It is a simplicial abelian group with r-simplices 

Zr(Aj V) = V ® A0r (2.3.1) 

and face and degeneracy operators 

{

Va1 ®a2 ® ... ®ar, i=Q 

di(v®al®···®ar)= v®···®aiai+l®···®a" O<i<r 

arv ® al ® ... ® ar-I, ~ = r 

Si(V ® al ® ... ® ar ) = v ® ... ® ai-l ® 1 ® ... ® ar, Q ~ i < r 

cf. (2.1.1). When V = A. this becomes a cyclic set upon defining 

The topological realization of Z.(A; V) is denoted HH(A; V) or when V = A 
just HH(A). Its homotopy groups are the Hochschild homology groups, 

HHi(A; V) = 7l'iHH(A; V). 

Indeed for any simplicial abelian group Z. the homotopy groups of IZ.I can 
be calculated as the homology of the associated chain complex Z. with 

i 

d: Zi ~ Zi-l, dz = l:(-l)idv (z) 
,,=0 

and Z.(A; V) is the standard Hochschild complex. The space HH(A) is the 
topological realization of a cyclic set, so comes equipped with a natural action 
of SI, which keeps the base point invariant. Hence it gives a map 

A: S~ /\ HH(A) ~ HH(A) 

which is the identity on the subspace HH(A). Exterior product with the 
generator [SI] E 7l'1S1 induces a map from HHr(A) to HHr+! (A). This is 
Connes' B-operator, cf. [HI]. 

T. Goodwillie suggested a decade ago to define the topological Hochschild 
homology analogously by replacing A with the Eilenberg-MacLane spectrum 
it generates, and the tensor product by smash product of spectra. Some 
care is needed in order to make these substitutions because smash products 
of spectra are not easily made strictly associative. M. Biikstedt in [El] got 
around this difficulty in a way we now describe; see also [Br], appendix. 
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Let Top. denote the category of based spaces and continuous maps, and 
let L: Top. -+ Top. be a continuous functor such that L( *) = *, that is, the 
function 

F(X, Y) ~ F(L(X), L(Y)) 

is continuous and maps the constant map to the constant map. Given X, Y E 
Top., we have maps 

L(Y) -+ L(X A Y) 

for each x EX, induced from the corresponding inclusion of Y in X A Y, so 
altogether a function 

aX,Y: X A L(Y) -+ L(X A Y) 

and the assumptions on L implies that this is continuous; a is called the 
assembly map. 

Definition 2.3.2. (Bokstedt). A ·ftmctci? with smash product (FSP) is a 
functor L with an assembly map together with natural transformations 

Ix: X -+ L(X) 

. /-LX,Y : L(X) A L(Y) -+ L(X A Y) 

such that 

(i) J1.x,Y 0 (ixA idL(y») = ax,Y 

/-Lx,y 0 (idL(x) A Iy) = L(n) 0 ay,X 0 n 

(ii) ·J1.XflY,Z 0 (J1.X,y A idL(z») = J1.X,YflZ 0 (idL(x) A /-Ly,z) 

where n switches factors. 

The FSP is called O-connected if it maps n-connected spaces into n­
connected spaces and if 

aX : SI A L(X) -+ L(SI) A L(X) -+ L(SI A X) 

is 2n - c connected whenever X is n-connected (c independent of n). 
Any unital ring A induces a O-connected FSP which we denote A. It takes 

a based space X into the Dold-Thorn construction: the configuration space 
of particles in X with labels in A : 

(2.3.3) 

It is a O-connected FSP and A(sn) is the Eilenberg-MacLane space of type 
(A,n) as 

I. 

i 
! 
I 
1 
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A topological monoid G illduces a O-connected FSP G, namely 

G(X) =X I\G+ (2.3.4) 

with the obvious Ix and IJ,x,Y. 

Definition 2.3.5. A functor with smash product is called commutative if 

f.LX,Y 0 n = L(n) 0 f.LY,X 

where n switches factors. 

T4e FSP's A and G above are commutative when A and G are commuta­
tive. Let I denote tne category of finite sets and injective maps. Its objects 
are the sets n = {I, ... ,n} with 0 = 0. A morphism f E I(n,m) C1\ll be 
written as (J 0 i where (J E Em and i is the standard inclusion. The Cartesian 
products ["+1 form a cyclic oategory in that there are structure maps 

given by 

di: ["+1 -t [", Si: Y -t y+l, tr: I" -t Y 

d-( ) _ {(XQ'· ... ,xiIIx_i+1"" ,Xr) 
1 Xo, ... ,Xr -

(Xn II XO, Xl , ... ,Xr ) 

Si(XO, ... ,Xr ) = (Xo, .. . ,Xi-l,O,Xi, ... ,Xr ) 

ti(XQ, ... ,Xr) = (Xr,XQ,'" ,xr-d. 

o $i <n 
i=n 

For x E I we let SZ be the one point compactification of RZ. For a based. 
space X, consider the functor 

G-; (L): y+1 -t {spaces} 

given by 

where F denotes the pointed function space. Using the properties of L we 
find maps 

di : G-;(L,xQ,'" ,xr ) -t G;_l(L,di(xQ, ... ,xr)) 

Si: G-;_l(L,xQ, . .. ,xr-d -t G-;(L,Si(XQ, . . . ,Xr-l)) 
X x ti: Gr (L,xQ, ... ,xr) -t Gr (L,ti(XQ, ... ,xr)) 
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similar to the maps of sect. 2.1, and we can define a cyclic space THH~ (L) 
by setting 

THH; (L) = h~mG; (L). , (2.3.6) 
/r+l 

The realization of THH~ (L) is denoted THHx (L); if X = So we just write 
THH(L). 

Lemma 2.3.7. ([B1]) For a O-connected FSP L and given integer i , 

x x 1l"iTHHr (L) = 1l"iGr (L,xo, . . . ,xr ) 

provided Xo, . . . ,Xr are suificiently large. 

Proof. Here is Bokstedt's argument. The category I of finite sets and injec­
tive maps has the following structure: 

an associative product p.: I x I -+ I (1) 
, . 

natural transformations between JL and the two projections (2) 

a decreasing filtration F;I with JL(F;I, FjI) C FHiI (3) 

Indeed, JL(n, m) = n + m and F;I = {n I n ~ i} . Such a category is called a 
good 14nit category. These are preserved under Carte~ian product, so Ir+1 

is also a good index category. 
,For x = (;;0, ... ,xr ), write Gr(x) instead of G~(L,x). To each A ~ 0 

there exists an i so that Gr(x) -+ Gr(y) is A connected fo~ each x -+ y 
in Fi = F;Ir+I. Now it suffices to prove that the following two maps are 
A-connected: 

(a) 

Gr(y) -+ h~mGr(x), Y E Fi (b) 
xEFi 

The map in (a) is an equivalence; an inverse is induced from JL(Y, -) : 1'+1 -+ 
Fi for some fixed Y E Fi . This uses property (2) above. To show that (b) 
is a A-equivalence, one first argues that the space BFi (=realization of the 
nerve) is contractible. Indeed, JL induces a product on BFi , and by (2) it has 
a homotopy unit. Condition (2) also yields that 1l"oBEi = O. But a connected 
H-space has a homotopy' antipode: 

-Id: BFi -+ BFi, 

" 

i , 

., 
r 

i 
i, 
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with 
BFi ~ BFi X BFi -~d BFi X BFi ~ BFi 

homotopy to a constant. Since by (2), 

J.I. ~ Pl'2 : BFi X BFi -t BFi 

we conclude that BFi is contractible. Finally the projection 

211 

is a ..\-quasifibration in the sense that Gr(y) = p-l (y) is ..\-equivalent to the 
homotopy fiber. This follows from the last lemma in sect. 1 of [Q2] upon 
passing to the ..\-coskeleton of Gr (x). 0 

An FSP L induces a ring (pre)spectrum LS whose n'th term is L(sn). 
We note that THHx (L) only depends on LS in the sense that if Ll -t L2 is 
a map of FSP's so that Lf -t L~ is a homotopy equivalence of (pre)spectra 
then THHx (Lr) ~ THHx (L2) : 

A O-connected FSP L gives rise to a ring '/roL by linearization, namely 

('/roA = A), and the map 

induces a map THH(L) -t HH('/roL) since 

'/r "o+- .. +".G(L; Xo, ... ,xr ) = H"o+ .. +",. (L(S"'O 1\) ... 1\ L(S""» 

= '/ro(L) 0 ···0 '/ro(L). 

As THH; (L) is acyclic space, the realization THHx (L) inherits a continuous 
action of Sl, sect. 2.1, which will be of fundamental importance later in the 
paper. 

There are a number of variations of the construction. First, we may define 
THH(L, M) when M is an L-bimodule. This is a functor from pointed spaces 
to itself with an assembly map 

and structure maps 

ax,Y: X 1\ M(Y) -t M(X 1\ Y) 

lx,Y: L(X) 1\ M(Y) -t M(X 1\ Y) 

rx,Y: M(X) 1\ L(Y) -t M(X 1\ Y), 
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satisfying the obvious compatibility relations which we leave for the reader 
to explicate, One defines 

THH; (Lj M) = h~F(S"D A·· 'AS"r, M(S"'D) AL(S"') A,· 'AL(S:Cr ) AX) 
/,"+1 

and gets a simplicial space with realization THHx (Lj 'M) and a linearization 
map 

THH(Lj M) -+ HH(7roL, 7roM). ' (2.3.8) 

This is a rational equivalence when L = A, M = V. 
Second, we may vary the concept of FSP .to the simplicial setting and 

consider simplicial enda-functors of based simplicial sets 

L.: s.sets. -+ s.sets;,. 

with properties analogous tothe ones given in definition 2.3.2; In this setting 
the FSP A associated to a ring A is simply 

, A(x.) = A[X.J/A· *. = 0 

where A[X.] denotes the simplicial abelian group whose k-simplices is the 
free A-module with basis Xk. One defines THH.(L.) by using the simpli­
cial function space, assuming ,L.(S:) be fibrant, or 'one can follow L. by 
realization, and use the above construction. 
, Third, there is a variation of THH(L) which defines THH( C) of an additive 

category, cf. [DM2]. The definition is as follows. Consider the functor 

- , ( A lCoPxc C. : s.sets. -+ s. b 

which to a simplicial set X. associates the functor from cop x C to s.Ab 

Write x = (xo, ... "x.), 

V.(C,x) = v 
and 

G.(C,x) = F. (S:o 1\ ···A S:r, V.(C, x») . 

Here S:D is, say the xo-fold smash product of the 'sirilplicial circle S! -
~.[l]/a~.[l], and F. is the simplicial mapping space. Then, as before, 

THH.(C) = hoI.i.n1G.(C jx) 
--t 
/-+ 1 

(2.3.9) 

I , 
t' 

, . 
} 
~ 
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with realization THH(C). 
If C is the category of free A-modules of a given rank n, then THR(C) 

is obviously equal to THR(MIl(A)). By Morita invariance, cf. proposition 
2.6.5 below, this is equivalent to THR(A). If C = !TA,· the category of free 
A-modules, then the k-simplices of THR(C) consists .of matrices of ·varying 
sizes. By adding zeros in a suitable way to get them to have equal size, one 
does not change anything up to homotopy, so THH(C) ~ THH(A) also in 
this case. (The reader can easily supply the argument by constructing the 
required homotopies, step by step). More generally, if C = PA is the category 
of finitely generated projective modules, then by adding complements to 
modules and zero homomorphisms, one gets (as pointed out in [DM2]): 

Lemma 2.3.10. For the category of Jinite1y generated projective modules 
THR(PA ) ~ THR(A). 0 

The construction THH.(C) is clearly a cyclic set, ·so THH(C) has an 8 1_ 

, action. The equivalence in the above lemma is actually a Coo equivalence. 
This can be seen upon using subdivisions and lemmas 3.10-12 of [BHM]. 

In general one may associate to C the simplicial FSP: 

Lc(X) = II V 6~(X)(C1' C2)' 
clEC c,EC 

Then THR(e) ~ THH(Lc) cf. [DM], lemma 1.6.22, so (2.3.9) is not really a 
generalization. It is however a· very convenietit formulation, as we shall see 
in the next chapter, and Lc(X) is not functorial in C. 

Remark 2.3.11. The ring (pre)spectrum L S associated to an FSP is very 
special: it has a strictly associative multiplication, and for commutative L 
it is strictly commutative. Most of the (pre)spectra whiCh otherwise appear 
in algebraic topology do not have suell a "strict" structure--they are merely 
"homotopy everything associative" (Aoo-spedra) or "homotopy everything 
commutative" (Boo-spectra) . Recently Elmendorf, Kriz, Mandell and May 
have recast the category of Aco and Eoo-spectra into what they call L-rings 
and commutative L-rings, [EKMM]. Suell an animal E has an associative 
product /1-t:.,: EAt:., E -,+ E. There is no (strict) unit for /1-t:." but one may 
still define THR(E) by imitating the algebraic construction Z.(A) of (2.3.1), 
forgetting the degeneracy operators, cf. (2.2.1). ([EKMM] also introduces 
8-rings and product /J.s: E As E -+ E with a unit, and show that the two 
categories are equivalent, so for 8-rings one has THH.(E) with degeneracies). 
More importantly for this paper, Jeff Smith has pointed out that each L-ring 
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E gives rise to an FSP. Thus FSP's are rich in sup Illy also from the point of 
view of Aoo and Eoo-spectra. 

In the rest of the paper all FSP's will be assumed to be O-connected. 

2.4 Cyclotomic spectra. 

This section constructs from THH(L) an equivariant Sl-spectrum with extra 
structure, a so called cyclotomic spectrum. 

Let G be a compact' Lie group. For any finite dimensional G-
representation space V we write SV for its one point compactification, and 
if X is a G-space, n v X for the (based) mapping space F (SV ,X) with its 
conjugate G-action. . 

Roughly speaking a G-spectrum T is a G-space T with a specific delooping 
T(V) for each G-representation, so that T.and nVT(V) are G-equivaIent (or 
even G-homeomorphic) . However, due t~ 'the many G-automorphisms of V, 
some real care is needed to make consistent definitions. (For example, the 
signs whicl! show up for spectra when G = 1 blow up to become elements in 
the Burnside ring of G). 

We shall here follow the approach to G-spectra given in [LMS] , and we 
give a brief account before introducing the concept of cyclotomic spectra. Let 
G be a compact Lie group and U a "complete G-Universe", i.e. an infinite 
dimensional G-vector space with a G-invariant inner product whicl! contains 
eacl! finite dimensional representation of G. 

A G-prespectrum indexed on U is a collection of G-spaces t(V), one for 
each finite dimensional G-space V C U together with a transitive system of 
G-maps 

0': t(V) -+ nW-Vt(W) 

Here W - V denotes the orthogonal complement of V in W . It is a G­
spectrum if the structure maps 0' are all homeomorphisms. A map f: t -+ tt 
of G-prespectra con.sists of G-maps f(V): t(V) -+ tt(V) which commute 
strictly with the structure maps. The category of G-prespectra indexed on 
U is denoted GPU and GSU denotes the full subcategory of G-spectra. The 
forgetful functor I: GSU -+ G PU has a left adjoint L. It is given by the 
colimit over the structure maps 

Lt(V):::: ~ nW-v t(W), 
WcU 

provided that each 0' is an inclusion, i.e. induces a homeomorphism onto its 
image. (This can always be arranged by thickening up t, to such a prespec­
trum tT, cf. (HMJ, appendix A). 

I 
i· 

I 
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Suppose C is a closed subgroup in G with quotient J and T E GSU. There 
are two possible notions of an associated fixed point spectrum in JSUo, in 
[A], [LMS] denoted TO and ip°T respectively. Their V'th spaces are 

T°(V) = T(V)o, ip°T(V) = ~ nwc-vT(W)o, V = Va (2.4.1) 
WCU 

and the structure maps are the evident ones. Since T(V) ~ nW-VT(W) 
when V c W the replacement of a C-equivariant map from Sw-v to T(W) 
with its induced map on C-fixed sets induces a map so: TO -+ ip°T. If 
T = Lt, then ip°T(V) = IimnWC - Vt(W)O, see e.g. [HM], lemma U. 

In the case G = 1, the concept of prespectra differ from the usual one 
in that it is indexed on finite dimensional vector spaces, rather than on just 
the positive integers n (or IRn). But the two categories are equivalent; the 
relationship is similar to the relation between a category and its skeleton 
category. The category of spectra is similar to what used to be called n­
spectra, where one just demanded that u be a homotopy equivalence. The 
functor T 14 LTt brings us from n-spectra to spectra. 

We need a few further results. It can all be found in [LMS], chap. 1-2, 
but the reader which is not accustomed with spectra should first consult [A] 
to get oriented in the subject. 

Let G c H be a closed subgroup. There is a pair of adjoint functors 

iO: GSU -+ GSUH , io: GSUH -+ GSU 

with iO the obvious restriction, and 

Here V runs over the finite dimensional G subspaces which contain W. Given 
a based G-space X, I::OO(X) E GSUG denotes its suspension spectrum, i.e. 
the spectrum associated with the prespectrum V 14 SV 1\ X for V C UG • 

Then io(I::oo X) = I::~ X is the corresponding equivariant spectrum in GSU. 
Maybe the most important construction in the category of spectra is the 

transfer. Given T E GSU and a free G-space E, the transfer is a map 

T : JOT I\G E+ -+ jO(I::-Ad{G)T 1\ E+)G . 

Here j: UG -+ U, Ad( G) the adjoint representation and I::-AT is the func­
tion spectrum F(SA, T) or the equivalently internal delooping (I::-AT)(V) = 
T(A E9 V). It follows from [LMS], theorem II.7.1 that T is a homotopy equiv­
alence. Indeed, II.7.1 proves the result when T = joTo, To E GSUG. The 
general case follows because the natural G-map 
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is a non-equivariant homotopy equivalence, hence as E is G-free a G­
equivariant one. 

The second result we need is that "induction" and "coinduction" agree, 
cf. [LMS] , theorem II.6.2. Let T E GSUH, and let L = T{H}(G/H) be 
the tangent space at the base point {H}, with its H-acticin. There is a 
G-equivalence 

w: F(G+,r,LT)H ~G/H+I\.T. 

See also [HM], sect. 7. In our applications G = S1 or is finite, and H eGis 
finite. In this case we get the equivalences 

r: r,ArT I\G E+ ~ r(T 1\ E+)G, 

w: r,AF(G/H+,T)~G/H+ I\T 

with A = R if G = S1, and A = 0 if G is finite. 

(2.4.2) 

The smash products above are to be .taken in the category of spectra: if 
X is a G-space and t a G-pnispectrum then t 1\ X+ is the prespectrum whose 
V'th term is t(V) 1\ X+. If T is ' a G-spectrum then T 1\ X+ := L(X+ 1\ IT). 
It is worth pointing out that 

This follows from the equivalence ip°T ~G ip°t, mentioned above. 
We will now fix G to be the circle group S1. Write IC(n) for the one­

dimensional representation where z E S1 acts as multiplication with zn, and 
take 

nEZ,<>EN 

If C C S1 is cyclic of order c then UO c U is precisely the summands with 
nE cZ. 

Next we consider the homotopy fiber of Se: TO -+ ip°T when C is a 
cyclic p-group. Let j: UG -+ UO be the inclusion of the G-trivial universe 
and let D be a J-spectrum. We call j"T with its J-action forgotten for the 
underlying non-equivariant spectrum D. The following is proved in [HM], 
sect. 1 or in [BHM]: 

Proposition 2.4.3. Suppose C is a cyclic p-group. For any S1_spectrum T 

there is a coBbration sequence of non-equivariant spectra 

CICp 

ThO ~TO·cp) (ip°pT)OjOp: 

Here ThO = EC+ flo JOT is the homotopy orbit spectrum. o 
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The cofibration sequence of proposition 2.4.3 is the C fixed point of T 1\ 
(EC+ --+ SO --+ EC). One identifies the terms by use of (2.4.2) and the easy 
fact that (T 1\ EC)Cp ~ iPcpT, cf. lemma 4.1.2 below. 

The circle G = S1 has the nice property that any S1/C-space X can be 
viewed as an S1-space by identifying S1 with S1/C via the ICI'th root map 

Pc: S1 -=+ S1/C. We call this S1-space Pc(X). We can also use Pc to view 
S1/C-spectra as S1-spectra. Indeed, given an S1/C-spectrum D indexed on 
UC we have the S1-spectrum p~D indexed on PcUc, with 

In our case 
PcUC = EB C(nlc) = U 

QEN,nEcZ 

so p~D becomes an S1-spectrum, again indexed on U. 

Definition 2.4.4. A cyclotomic spectrum is an S1-spectrum indexed on U 
together with an S1-equivalence 

TC: p~iI!cT --+ T 

for every finite C C S1, such that for any pair of finite subgroups the diagram 

commutes. 

The cyclotomic condition is analogous to the property of free loop spaces: 
(AX)C ~ AX, and indeed the S1-suspension spectrum L:s. (AX) is easily 
seen to be cyclotomic. 

More generally, THHx (L) induces a cyclotomic spectrum for every FSP. 
We proceed to explain this. Let us write THH(L; V) instead of THHsv(L). 
It is the realization of a cyclic space, so gets an S1-action from this stmcture. 
On the other hand, being a functor in V (or SV) it has a second S1-action, 
and altogether an S1 x S1-action. We write t(L) (V) = THH(L; V) equipped 
with the diagonal S1-action. This defines an S1-prespectrum and we let T(L) 
be the associated equivariant spectrum, T(L) = Lt(L) . 

Actually, it is not very hard to see that the adjoint of the natural map 

SV 1\ THH(L; W) --+ THH(L; V EB W) 
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is a G-equivalence for each finite subgroup of the Circle, so that T(V) ~c 
THH(L; V), cf. [HM), proposition 1.4. 

In order to describe the cyclotomic structure maps TC we use the suir 
division operator sdc introduced in sect. 2.1. For a cyclic space Z., sdcZ. 
has a simplicial G-action, and its realization IsdcZ.1 an ITt/cZ action which 
extends the G = Z / cZ action. The homeomorphism 

D: IsdcZ.1 -+ IZ.I 

becomes an Sl-map when ITt/ c'l!. is identified with IT?./Z = Sl by division with 
c. 

We now define a simplicial map 

for each cyclic subgroup G c Sl. Let c' = IGI . With the notation of sect. 2.3, 
the r-simplices of sd9THH(Lj V) is the homotopy 'colimit 

sdcTHHr(Lj V) = holir Gfr+1)C-1 (Lj x) 
xEI(r+l)c 

where 

Gr (Lj x) = F(S:ro /\ ... /\ S:r" L(S:rO) /\ ... /\ L(S"'" /\ SV). 

The c-fold diagonal D..c: 1'+1 -+ 1(r+1)c gives a G-equivariant inclusion 

h~G~r+1i-1(L) 0 D..c -+ h~mG~r+1)_l(L) 
"/ .. +1 1(,,+I)c: 

which induce~ a homeomorphism of G-fixed sets, and for x E 1r+1 , 

G~r+1)-l (L)(D..c(x)) 

= F((S"'O)(c) /\ ... /\ (S"'r)(C) ,L(S"'O)(c) /\ ... 1\ L(S"'r)',) /\ Sv) 

where y(c) is the c-fold smash power, and the action of G is by cyclic per­
mutation of factorsj then (Y(c»)C is the diagonal copy of Y . 

The above formula is quite similar to the identification of sdcN;Y(G) = 
N;Y (Ej GC) explained in sect. 2.1, but this time there is no diagonal homeo­
morphism 

D..c: N;>'(G) -=+(sdcN~Y(G))c. 

Even in the linear case of Z.(R) we do not have such a map since D..(r) = 
rl8i " 'I8ir is not linear. However there is a map in the o~her direction. Indeed, 
given any two pointed G-spaces Yi and 1'2 one has the obvious map 

TO: F(Yi, 1'2)C -+ F(Y?, Y2
C) 

" 

, 
., 
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which restricts a C-equivariant map to the induced map on the C-fixed points. 
This gives a map 

rc : G(.+l)C-l (L, Llc(x)) -t G~c (L,x), x E ]'+1 

and induces a simplicial map 

rc: sdcTHH.(L; V)o -t THH.(Lj Vel . 

Taking realization and composing with the inverse of the homeomorphism D 
we have obtained 

rc: THH(L; V)c -t THH(L; VC). 

This is Sl-equivariant, when one identifies the SI fC-action in the domain 
with the SI-action via po, so induces an Sl-map from 

into 
T(L)(W) = lim nvc-WTHH(L; Vel . 

--t 
Veu 

Since iJ!°T(L) = iJ!Ct(L), we do get a map 

rc: p~iJ!cT(L) -t T(L) 

of SI-spectra. This is an Sl-equivalence by [HM], proposition 1.5, so we have 

Theorem 2.4.5. For every FSP the SI-spectrum T(L), induced from the 
prespectrum THH(Li V), is cyclotomic. 0 

The essential point in this and the next chapter is the spectrum T(L), 
but only considered as a spectrum in the usual sense equipped with an action 
of SI. To separate out this, let me introduce the notation TH(L) for this 
weakened form, 

TH(L) = T(L) I Us' = j*T(L), j : Us' -t U. 

The reason for introducing the extra notation is to underline the fact that 
TH(L)IIE+ and j*(T(L)I\E+), j : UC -t U are quite different. !ffor example 
E is SI-free then (TH(L)I\E+)C '" 0 whereas (T{L) I\E+)O '" TH{L) 110 E+ 
by (2.4.2). 

We shall continuously use the following special case of proposition 2.4.3; 
we call it the fundamental cofibrntion sequence 

(2.4.6) 
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2.5 Cyclic homology of cyclotomic spectra. 

Given any FSP we saw in the last section that the Sl-spectrum T(L) associ- , 
ated to the prespectrum THH(Li SV) comes equipped with an Sl-equivalence 

ro: p3q,°T(L) -4 T(L). 

We now use this structure to define a new functor TC(L), the topological 
cyclic homology of L, iuitially defined in [BHM). 

Let 1 be the category where objects are the' natural -numbers, ob 1 = 
{I, 2, 3, . .. }, and with two morphisms Rr, Fr : n -+ m, whenever n = rm, 
subject to the relations 

R1 = F1 = idn 

RrR. = Rr., FrF. = Fr. 

RrF. = F.Rr· 

(2.5.1) 

For a prime p, we let Ip be "the full subcategory with oblp = {1,p,p2, ... }. 
A cyclotomic spectrum T defines a functor from -I to the category of non­
equivariant spectra. Indeed when n = 1m we have two commuting maps 

R I , FI : TOn -+ TOm . 

Here TOn and TOm are considered as ordinary (non-equivariant) spectra. 
The map Fl, called the Frobenius map, is simply the inclusion of fixed points 
(Om C On). The map RI, called the restriction map, is the composite 

RI: TOn = (p3 TO )Om -sc) (p3q,0T)Om rc) TOm 

where 0 = 01 and so: TO -+ q,°T is the map from (2.4.10), and where ro 
is the cycl~tomic structure map. 

Definition 2.5.2. If T is a cyclotomic spectrum, then 

TC(Ti p) = holinl TOp' , 
f--
Ip 

TC(T) = holim TOn. 
f--

1 

For a functor with smash product L, we write TC(L) = TC(T(L)) and 
siIhilarly for TC(Ljp). 

The homotopy linlit which defines TC(TiP) may be formed in two steps. 
First we can take the homotopy limit over Fp (resp. Rp). Since Rp and Fp 
_coinmute, Rp (resp. Fp) induces a self-map o! this homotopy limit, and we 
may take the homotopy fixed points. More preciseJy', let 

TR(Tjp) = holinlTop', 
f--
Rp 

TF(Tjp) = holimTop •. 
f--
Fp 

(2.5.3) 
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Then Fp induces an endomorphism of TR(TiP) and Rp an endomorphism of 
TF(TiP), and 

TC(TiP) ::: TR(TiP)h(Fp) ::: TF(TiP)h(Rp). 

The homotopy inverse limit of a string of maps· . . ~ Xn ~ X n- 1 ~ .. • is a 
homotopy equivalent to the categorical limit provided each map is a fibration. 
Here (Fp) is the free monoid on Fp and Xh(Fp) denotes the (Fp)-homotopy 
fixed points of X, or in other words, the homotopy fiber of id - Fpo This was 
the definition used for TC(TiP) in [BHM]. 

There is a similar description of TC(L) . Let 

TR(T) = h~m Tan, TF(T) = h~ Tan, (2.5.4) 
R F 

then 
TC(T) = TR(T)"F = TF(T)hR, 

where hF denotes the homotopy fixed set of the multiplicative monoid of 
natural numbers acting of TR(T) through the maps F., s ~ 1. The inclusions 
{I} C IIp C II induce maps 

TC(T) ~ TC(T,p) ~ T . 

The following theorem, basically due to Goodwillie, cf. [HM], sect. 3, tells us 
that TC(L) is not really a stronger functor than the collection TC(L,p) for 
all primes p. 

Theorem 2.5.5. The projections TC(T) ~ TC(TiP) induce an equivalence 
of TC(T) with the fiber product of the TC(TiP) 's over T . Moreover, the 
functors agree after p-adic completion, TC(T)~ ~ TC(TiP)~ . 0 

Remark 2.5.6. T. Goodwillie has introduced the following alternative defi­
nition of TC(L) which has the advantage of allowing an integral description 
of Waldhausen's reduced A-theory, cf. [G5] . 

The fixed set TH(L)On has the natural Sl ICn-action so each P~n TH(L)On · 

is a spectrum with an Sl-actioIi. (an Sl-spectrum indexed on US'). If n = r.m 
then 

satisfies 
Fr{{rx) = BFr(x), BE Sl. 

Let M be the semi-direct product 
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It acts on 
TR(L) = holimp#c TH(L)cn. +-- n 

R 

Goodwillie defines: 

and shows that its p-adic completion is equivalent to TC(",p)~. 

In later chapters we shall be concerned with the calculation of TC(L) 
primarily for the FSP A associated to a ring, cf. (2.3.3) . In this case we write 
T(A) and TC(A) etc. instead of T(A) and TC(A). 

Since T(L) and its fixed points are (-I)-connected spectra, TC(L) is 
always (-2)-connected. In [HM], sect: 2 we calculated the component groups 
7ToT(AFpn, and in particular: 

Theorem 2.5.7. For a commutative ring A, there is a natural isomorphism 

I: W(A,p) --t 7ToTR(A,p) 

where W(A,p) denotes the p-typical Witt vectors. Moreover, the self map F 
on TR(A,p) corresponds to the Frobenius 'map of Witt-vectors. 

It follows that we have the exact sequence 

TCo(A,p) -+ W(A,p) ~ W(A,p) -+ TC_1 (A,p) ~ 0 

for the two lowest dimensional homotopy groups of TC(A,p). The left hand 
arrow is often injective, but not always. 

Addendum 2.5.8 .. For finite subgroups He/( of the circle, there is a 
map 'E'f,. (Sl / /(+) --t 'E'f,. (Sl / H+), namely the Thom collapse map of an 
equivariant embedding G/H C G/l( x V. It induces a map of spectra 

that is a map 
V: T(A)H --t T(A)lf, 

well-defined up to homotopy. In particular we get 

V : lI'oT(A)Cpn --t 7ToT{A)cpn+l . 

, , 

., 
}. 
., 

" 

,. 
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Theorem 2.5.7 extends to the statement that there is an isomorphism 

into the p-typical Witt vectors of length n + 1 with 7I"oF, 7I"oR and 71"0 V corre­
sponding to Frobenius, Restriction and Verschiebung, cf. [HMJ, theorem 2.3. 

We close with two remarks of homotopy theoretic nature. 

Remark 2.5.9. Given an J:., or S-ring E (ef. 2.3.11), the direct construction 
THH(E) from [EKMM] is not cyclotomic. The price one pays for maldng 
the spectrum multiplication J.l: E As E ~ E associative is that there are no 
"diagonal fixed points" under the cyclic group action on the S-smash powers, 
and this prevents the cyclotomic property. Passing to Jeff Smith's associated 
FSP E is one way around this. There might be other ways. 

Remark 2.5.10. For a commutative FSP L, one can iterate the construction 
TC(L) to obtain Tc(n)(L) for each n ~ 1, cf: [HMJ, sect. 3.6. In view ofthe 
calculational results of sect. 4 below it is an interesting challenge in homotopy 
theory to study Tc(n) (lFp) and Tc(n)(zp). 

2.6 The cyclotomic trace. 

We begin by defining the K-theory of an FSP. Given L we can consider the 
associated infinite loop space 

The components 

7I"oQL = lim 7I":z;L(SZ) 
--t 

is a ring, and we denote by GLl (L) c Q L the subspace of invertible compo­
nents. This .is by definition a group-like monoid. 

We let Mn(L) be the FSP of n x n matrices over L defined as 

Mn(L)(X) = F(I4, I4 A L(X)) , n= {I, ... ,n} 

and set GLn(L) = GLl(Mn(L)), again a group-like monoid. Direct sum of 
matrices give maps 
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which induces a monoid structure on the disjoint union of the BGLn(L). Its 
group-completion is K(L), that is: 

00 

K(L) = nB(1l B<TI .. n(L)) ~ BGLoo(L)+ X Z, (2.6.1) 
n=O 

where the superscript + is Quillen's plus construction. 
IT A is a unital ring, and A the associated FSP, cf. (2.3.3), then 1ToQ(A) = 

A, and the natural map QA -+ A is an equivalence. It follows that 

is an equivalence, and in turn that 

K(A) -+ BGL(A)+ x Z = K(A) 

is an equivalence. Thus K(A) is just another model for Quillen's K(A)-space 
(the version where Ko(A) = Z, rather than the projective class group). 

IT L is the FSP G of (2.3.4) associated to a topological group-like monoid 
G, then K(G) is a model for Waldhausen's A(BG), again the version with 
1ToA(BG) = Z. 

The space K(L) is an infinite loop space, that is , it is the zero'th space 
of a connective spectrum which again will be denoted K(L). The deloopings 
are not as concrete as the deioopings ofTH(L) and TC(L) above; One has to 
use the abstract machinery of Segal's r-spaces or the equivalent machinery 
May's operads, or the original approach of Boardman-Vogt. 

The cyclotomic trace from [BHM] is a spectrum map 

trc: K(L) -+ TC(L). 

It is highly technical to construct, so I sball here only give a rough outline of 
the ideas involved to the extend it throws light on the definition of TC(L). 
The interested reader can consult the original source, and [HM], sect. 1.6 for 
the equivalence of the abstract r-space delooping of TC(L) and the concrete 
one above. 

I begin by recalling K. Dennis' trace map in the linear situation, 

Tr: K(A) -+ HH(A) (2.6.2) 

Remember here that HH(A) denotes the topological realization of the stan­
dard cyclic abelian group Z.(A). We proceed simplicially, and consider 

(2.6.3) 

j 
" 

I , 
I 

' i 

, 
I 
' I 

i 
'I 
i 

" 

II 
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with 

I (gl. . . . ,gr) = (go, gl , ... ,gr), go = (gl .. . gr)-l 

S(gO, ... ,gr) =golil} "'liI} gn' 

We have the simplicial map 

Tr~n): Z.(Mn(A)) ~ Z.(A), 

Tr~n) (Xo iii} ••• iii} Xr ) = L Xo(io, i1) iii} ..• iii} Xr(i .. io). 

It induces a homotopy equivalence 

Tr(n): HH(Mn(A)) ~ HH(A) . (Morita invariance) 

225 

(2.6.4) 

Indeed, if i: A ~ Mn(A) is the inclusion which maps a E A into the matrix 
with a on the (1,1) entry and zero elsewhere, then the simplicial map 

Z.(i): Z.(A) ~ Z.(Mn(A)) 

induces a map from HH(A) to HH(Mn(A)) which is an inverse to Tr(n) . 
Consider the composition of (2.6.3) and (2.6.4): 

Tr. : N.(GLn(A)) ~ Z.(A) 

Trr = Tr~n) 0 Sr a Ir - sbr- 1)(n) 

where So is the degeneracy operator in Z.(A). It is easy to check that 

N.(GLn(A)) -----+, N.(GLn+l(A)) 

~ y 
Z.(A) 

is commutative, so the topological realization of Tr. induces the map in 
(2.6.2). 

The above linear trace map can be generalized to give 

tr: K(L) ~ THH(L) 

for each FSP, but two issues have to be addressed: GLn(L) has no strict 
inverses and (2.6.3) does note make sense a priori in THH.(L). 

There is a standard way to get around the lack of strict inverses by group 
completing the monoid, see below. For now we simply use (2.1.8) : 
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and replace II.I by the inclusion of BGLn(L) into the free loop space as the 
constant loops. The second map 

maps a string (go, ... ,gr) into the smash product go /\ . . . /\ gI E" THHr(L) 
upon thinking of each 9i as a limit of maps S"" -+ Mn(L)(S""). Finally we 
have Morita invariance: 

Recall our convention that two Sl-spaces are called Coo-equivariant if they 
are connected by a string "of Sl-maps which induce equivalences of C-fixed 
sets for every finite subgroup of Sl. 

Proposition 2.6.5. For eveIJ' FSP there is a Coo-equivalence 

which defines a Coo-equivalence of tbe associated equivatiant spectra 
T(Mn(L)) and T(L). 

Proof. I briefly sketcII a proof, modelled upon the linear case treated above. 
This approach is different from the one of [BHM]. Details can" be found in a 
forthcoming paper by C. SchIichtkrull, [Sch]. See also (DM2]. We can rewrite 

n n 

Mn(L)(X) = IIV L(X) 

and have the subfunctor 

n n 

Wn(L)(X) = V V L(X). 

It is an "FSP without unit". We can restrict the sinlplicial space 

THH.(Lj V): ~op -+ spaces (THH.(Lj V) = THHr (L)) 

to the subcategory of injective maps in ~ op, Le. we forget degeneracy opera­
tors and consider THH.(Lj V) only as a ~-space (presimplicial space) in the 
sense if [RS]. Then THH.(Wn(L)jV) is defined, and the inclusion of ~-sets 

THH.(Wn(L)j V) -+ THH.(Mn(L)j V) 

induces an equivalence upon applying the realizationlunctor II . II of ~-sets. 
On the other hand, the projection 

IITHH.(Mn(L)jV)II-+ ITHH.(Mn(L)jV)1 

, [ 

": 

", 
i' ,: 

·1 

! 
' 1 

, , 
"' , 
.1 
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is a C-equivalence. 
Second, suitable evaluation defines a map from Wn(L) to L, analogous to 

the linear situation 

and we can imitate the map of (2.6.4) to get 

tr(n): THH.(Wn(L)j V) -l' THH.(Lj V), 

This induces the required equivalence. o 

The resulting trace map, valid for any FSP, tr : K(L) -l' THH(L) , is 
Biikstedt's topological version of Dennis' trace map. It is ·far from obvious, 
however, that tr is a map of spectra. See the final paragraph of this section.. 

It is time to explain how to lift the topological Dennis trace into the 
fixed sets TH(L)O of the finite subgroups C c 51. Suppose first that G is a 
(topological) group. 

The simplicial map (ef. 2.1.7) 

has topological realization homotopic to 

where c = ICI and I is the inclusion into the constant loops. 
For a subgroup Co c C, the composition of oe with the inclusion qf 

(ABG)o into (ABG)OO is equal to oeo since t::.e leaves constant loops in­
variant. On the simplicial level it is therefore not Burprising that there is a 
natural homotopy between floo and the composition 

where D is the subdivision homeomorphism of lemma 2.1.6. Thus if we write 

FOIGo: IsdGN~(G)lo -+ IsdGo N;Y (G) 100 

ROIGo: IsdoN~(G)lo -=+ IsdGoN;Y(G)loO, ROIGo = t::.c)Oo 

we bave 

FOIOo 0 flo ~ 000' ROloo 0 flo = 000 (2.6.6) 
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with a specified homotopy in the first relation. There results a diagram 

y 
IN.(G)I 

~ 
lim IsdoN~(G)lo 
i--

R 
which is homotopy commutative via a specified homotopy equivalence and 
thus a map 

" IN.IC)! -> (~I'dcN;"IGJIC ) " (2.6.7) 

into the homotopy fiber of F - id. 
We want to apply (2.6.7) to (J = GLk(L), so must generalize to group-like 

topological monoids where I. a priori does not exist. 
The standard way to overcome the lack of strict inverses is to group 

complete the topological monoid: there are fu~ctors G I-t GV and G I-t G/I., 
and natural transformations G f- GV -+ G/I. which induces equivalences of 
the constructions N.( ) and N;Y( ) when G is group-like. Here GV is a free 
monoid and G/I. is a topological group, cf. [EF, p. 331] or [G2], sect. 1.1.8. 
Consider the homotopy pull-back 

6" a 
--=---t) holim IsdoN;Y(G/I.)1 

i--
R 

where §h is the composition of d with the iliclusion of ~ into h~. 
R R 

When G = GLk(L), the simplicial map 

S.: N;Y(GLk(L)) -+ THH.(Mk(L)) 

is cyclic in the sense of Connes, and the induced maps on C-fixed sets com­
mute with the F and R-maps. One gets a map 

I 
~ IhF IIF h~m sdoN;Y(GLk(L))c -+ h~m IsdoTHH.(Mk(L))OI . 

R . R 

The target is TC(Mk(L)). It is by (2.6.5) and (2.4.6) equivalent to TC(L). 
Thus we have for each k ·a string of maps 

trc: BGLk +=- B'GLk(L) --t TC(Mk(L)) ~ TC(L) 
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which in turn induces a map from 1((L) to TC(L), the cyclotomic trace. 
In order to see that trc is in fact a map of spectra, one uses e.g. Segal's 

f-structure on IIBGLk(L) and a corresponding structure on IITHH(Mk(L», 
cf. [BHMj, sect. 4. Finally, the associated abstract delooping of TC(L) and 
the concrete one from sect. 2.5 agree by [HM], sect. 1.6. I return to a different 
solution to this in the next chapter, but it is in order to mention that the 
f-space approach is based upon the following 

Proposition 2.6.8 ([BHMj) . For a product of FSP's there is a Cco -

equivalence 

3 The relative theorems 

The end result of this chapter is a proof of the following conjecture from [G5]: 
Let f: Ll -+ L2 be a map of FSP 's such that 7I"OLl -+ 7I"OL2 is a surjection of 
rings with nilpotent kernel. Then 

TC(Ll ) 

1 
--+ TC(L2) 

becomes homotopy Cartesian after profinite completion. . 
The proof proceeds in three steps, due to Dundas-McCarthy [DMl], Mc­

Carthy [Mc] and Dundas [D], respectively, and uses Goodwillie's black magic: 
calculus of functors, [G3], [G4]. The exposition is based on these papers and 
on [DM2) . I have had invaluable help from B. Dundas with some of the 
details below. 

; 3.1 Calculus of functors. 

i 
! 

Calculus of functors is a general procedure, devised by Goodwillie, for proving 
relative theorems as above. The reader is referred to [G3], [G4] for more 
details. 

We shall consider certain functors 

F: a.sets -+ {prespectra} 

from the category of simplicial sets (or spaces) to the category of prespectra. 
I here use prespectra indexed only on an, not the coordinate free ones of 
May. 
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The functors we consider are supposed to satisfy the following two axioms: 

(i) A homotopy it: Xl -t X 2 induces a natural homotopy 
F(ft): F(X1) -t F(X2)' 

(ii) For each X E s.sets and each prime p, the modp homotopy groups 
satisfy 

'lri(F(X)j IFp) = lim 'lriF(x(a)jlFp) 
--+ 

where x(a) runs over the finite sub complexes of X. 

Condition (i) implies that F is a homotopy functorj (ii) is called the p-limit 
axiom. 

Given such an F and a fixed (X, x) E s.sets. there is a new functor on 
s.sets., namely 

<J?(Y) = fib(F(X V Y) -t F(X)) . 

Consider the co=utative diagram 

--t) <J?(C+Y) 

1 
---t <J?(Sl /\ 1") 

where C±Y are the two cones in the reduced suspension Sl /\1". The standard 
retractions of the cones induce retractions of the two off diagonal terms, and " 
in turn a map 

<J?(Y) -t n<J?(Sl /\ Y) . - (3.1.1) 

The homotopy colimit of these maps is called the differential of F at 
(X, x). More importantly for our purpose we have 

Definition 3.1.2. The derivati.ve of F at (X, x) is the prespectrurn whose 
n'th term is 

and with structure maps 

being the adjoints of (3.1.1). 

[, 

" 

,I 
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For example the derivative of the functor 

F(X) = }jCXl(Xt ) 

of the suspension spectrum of the n-fold Cartesian power of X is 

n 

8",F(X) = V }jCXl(Xt -1) 

We next define Goodwillie's concept of analytic functors. The simplest 
ones are the linear functors. They are the homotopy functors which map a 
homotopy coCartesian square 

-----+1 Y{2} 

1 1 
into a homotopy Cartesian square 

and has F(*) ~ *. 
Here homotopy Cartesian and homotopy coCartesian meanS that the 

canonical maps 

are equivalences. 

Y0 ~h~(Y{l} -+ Y{1.2};(- Y{2}) 

Y{1.2} ~ h~(Y{l} t- Y0 -+ Y{2}) 

To define the concept of analytic functors, one needs to consider n­
dimensional cubes of spaces and spectra, i.e. functors 

3:: : peS) -+ C, C = s.sets, {spectra} 

!. from the category of posets of the finite set S. If S = n, then 3:: is called an 
n-cube. Generalizing the above, 3:: is called k-Cartesian or k-coCartesian if 

3::(0) ~ holim 3::, Po = peS) - {0} 
i-

:Po(S) 

3::(S) ~ holim3::, PI = peS) - {S} 
----+ 

:P, (S) 
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are k-equivalences. 
Given U eTc S the face a'[,X is the T - U cube given by..., 

a'[,x(V)l:(V U U). 

We shall consider strongly co Cartesian cubes, that is, cubes l: where each 
2-dimensional face a'[,l: is k-coCartesian for all k. This implies in particular 
that the total cube is homotopy co Cartesian. 

Definition 3.1.3. A functor F: s.sets -+ {spectra} is called stably n-excisive 
if the following statement En(c, K.) is true for some numbers c and K.: 

9Jn (c,K.): Given any strongly co Cartesian (n + I)-cube X with X(0) -+ X({s}) 
ks-connected and k. 2': If., then the (n + I)-cube F(X) is (-c + }Jk.)­
Cartesian. 

Definition 3.1.4. A homotopy .functor F is called p-analytic if for some q, 
independent of n, F satisfies En(np - q,p + 1) for all n . 

Let (A,P) be a pair of a unitary ring and an A bimodule P. For each 
based simplicial set Y. E s.sets. we have the simplicial ring 

(A ~ P)(Y.) = A El1 .P(Y.), .P(Y.) = P[Y.l/ P[*.]' 

with multiplication 

(alJP1)(a2,P2) = (a1 a2, a1P2 + P1 a2). 

We shall se~ in sect. 3.3 below that the realization of the simplicial functors 

[r]-+ hF(K(A El1 .P(Yr )) -+ K(A)) 

[r]-+ hF(TC(A El1 .P(Yr )) -+ TC(A)) 
(3.1.5) 

both satisfies En(-2 - n,D) for all n; thus they are (-I)-analytic; hF = 
homotopy fiber. 

The main theorem of Goodwillie's about analytic functors is the following 

Theorem 3.1.6. Suppose (J: F -+ G is a natural transformation between 
p-analytic functors such that 8",(J(X): a",F(X) -+ 8",G(X) is an equivalence 
of prespectra. Then for every (p + I)-connected map Y -+ J( in a.Seta., the 
diagram 

F(Y) ---+1 G(Y) 

1 1 
F(K) 1 G(K) 
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is homotopy Cartesian. 

The cyclotomic trace of sect. 2.6 defines a natural transformation between 
the two functors in (3.1.5), which turns out to satisfy the conditions of the 
above theorem after profinite completion, cf. sect. 3.2 and sect. 3.3 below, so 
theorem 3.1.6 implies that 

K(A Ea p(y'))A --+ TC(A Ea P.(y))A 

1 1 (3.1. 7) 

K(A)A TC(A)A 

is homotopy Cartesian, where the upper horizontal line is calculated degree- . 
wise. Indeed, the homotopy fibers of the vertical arrows are the relative 
theories of (3.1.5), and they vanish for y. = *., so agree by the theorem. 

3.2 K- and THH of additive split exact categories. 

In this section C is an additive split exact category, e.g. the category of 
projective modules PA over a ring, or its subcategory !fA of free modules. 

Recall that Waldhausen in [W3] associated to C a simplicial set (in fact 
a simplicial category) S.C. The r-simplices of objects in SrC is the set of 
diagrams 

.j. .j. 

(3.2.1) 
.j. 

.j. 

Cr-l.r 

with 

o -+ Gii -+ Gik -+ Gik -+ 0 

a (split) exact sequence. Thus SrC = 0 for r = 0, SlC = C, and in general 
SrC is the category of flags involving r objects with choice of quotients. 

The objects of S.C form a simplicial set where do forgets the first row 
(divides out Gd and where d i contracts the flag by forgetting Ci and the row 
Gi ••• The degeneracy operator Si inserts an extra Gi , so for example So and 
81 from SlC = C to S2C sends G to 0 >--+ G and C>--+ C, respectively. 
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The nerve of the isomorphism category is. (C) of flags defines a bisinipli­
cial space 

[5], [r] ~ N.(iSrC). 

The loop space of its realization is Waldhausen's definition of K(C), 

K(C) = nIN.(iS.C)I (3.2.2) 

(of course, Waldhausen's definition applies to much more general situations). 
In order to relate this to the previous definition of K-theory, recall from 
sect. 2.2 that we can realize the double complex in two steps. Let us first 
realize the r-direction. There is an obvious map 

(the inclusion of the I-skeleton), and 'since SoC = {a}, it factors over 

Realizing the s-direction and adjoining CT we get a map 

IN.(C)I ~ nIN.(iS.C)I (3.2.3) 

which turns out to be a group completion, cf. [W3], sect. 1.6. When C = 1A 
then 

<Xl 

n=O 

so the above definition of K-theory agrees with the earlier on,e from sect. 2.6 
in. this case. 

The iterated degeneracy operator in the s-direction defines a map 

s: No(iS.C) ~ N.(iS.C) 

with a one-sided inverse dg, and gives a map 

s: INo(iS.C)1 ~ IN. (is.C)I· (3.2.4) 

Corollary 1.4.1 of [W3] states that (3.2.4) is an equivalence. Thus one can 
recast (3.2.2) as ' 

K(C) ~ nl ob S.CI = nl[r] -+ Srel· (3.2.5) 

When C = PA, the projective modules, then (3.2.4), and (3.2.6) below, implies 
that 

the projective class group, of the ring A. 

I 

.' I 

I 

I 
" . 
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The S. construction can be iterated, and defines a (-I)-connected spec­
trum whose (n - I)'st term is nl ob sin)q The natural maps 

(3.2.6) 

are equivalences for n > I, cf. [W3], proposition 1.5.3, so the S.-construction 
deloops K (C) beyond the first step 

K(C) ~ nnl ob sin)q, n ~ 1. 

We now turn to THH(C), following [DM2]. We have already presented 
the definition in (2.3.9), and can try to imitate the two key results above, 
(3.2.3) and (3.2.4), for N.(-) replaced by THH.(-). In fact, since THH(-) 
is already a spectrum, one expects that (3.2.3) be an equivalence, and this . 
indeed happens. Here are some details. 

We can think of (3.2.2) as 

K(C) = nj[r] ~ IN.(iS,C)iI 

and can similarly consider the simplicial space 

[r] ~ THH(S,C) = ITHH.(S,C)I 

which we denote for short THH(S.C). There are maps 

defined as above. 

a: Sl/\ THH(C) ~ THH(S.C) 

s: THHo(S,C) ~ THH.(S,C) 

Theorem 3.2.7. ([DM2]) The maps a and s define equivalences 

(i) THH(C) ~ nITHH(S.C)1 

(ii) ~ nnITHHo(sin)C)1 ~ ~ nnITHH(sin)C)1 

Proof of (i) (sketch). The proof is modelled upon [W3], proposition 1.53. 

Consider the functor SnC ~ cn which to the flag (3.2.1) associates the n­
tuple (Ob 0 12 , ••• ,On-l,n)' It induces an equivalence 

This is an application of Morita invariance and (2.6.8): the trace of a trian­
gular matrQc only depends on the diagonal entries. 

Now recall for any simplicial space X. the simplicial path space con­
struction p.X •. It has n-simplices PnX. = Xn~l and face and degeneracy 
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operators are shifted up by 1. The extra degeneracy So: Xn -t Xn+l not 
used in P.X. gives an equivalence IF.X.I ~ X o, so IP.X.I is contractible 
when Xo consists of a single point. Moreover we have a sequence 

of simplicial sets upon considering Xl the constant simplicial space. We now 
have for each r the diagram 

THH(C) --t. ) THH(PrS.C) --+) THH(SrC) 

l~ 
THH(C) --t --'.-t) THH(Cr 

so the sequence 

THH(C) -t THH(P.S~C) -t THH(S.C) 

is a degreewise homotopy fibration, and hence becomes a homotopy fibration 
after' realization, since THH( -) is equivalent to an abelian group complex, 
see (3.2.8) below. Finally ITHH(P.S.C)I ~ *. 0 

The proof of (il) is more delicate and requires some rewritings of THH(C) 
which we now present. We have for each number x the simplicial abelian 
group 

and associated simplicial sets, one for each r, 

Vr •• (C, x) = V O"(CXO (eo, Cr) A CX• ~ClJ eo) A . .. A CXr (Cr, Cr-l») 
CO t- oo ,CrEe 

where 0" denotes the diagonal in the stated multisimplicial set. There are 
simplicial maps I ' 

and we let 

Vr .• (C, x) ~ Vr-l •• (C, dix) 

Vr .• (C, x) ~ Vr+l •• (C, SiX) 

THHr .• (C) = h~ s.C(oS;o A .. · A S;r, Vr •• (C,x»). 
xEI'"+l 

Here s.C is the simplicial mapping space. This gives a bisimplicial set 
THHr.s(C) whose realization is the THH(C) defined in sect. 2.3. 

i 
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We now vary the definition by replacing Vr .• (C,x) by 

Vr~(C,x) 

61 C"'"(eo,Cr) I8>Z(C""(ClIeo) /\ ... /\C""(Cr,Cr-d) 
co, ... ICrEe 

237 

'61 C"'" (eo I Cr) 18> Z(C"" (CI
I 
eo)) 18> ... 18> Z(CC, (Cr, Cr-l)) (3.2.8) 

and write THH~ .(C) for the corresponding bisimplicial abelian group. The 
inclusion of V.,.(C , x) in V.~.(C, x) induces a simplicial map 

B.: THH.(C) ~ THH~(C) (3.2.9) 

which is an equivalence. This follows from lemma 2.3:7, the well-lmown 
isomorphisms 

7riM(Y) ~ Hi(Y; M) ~ 7ri+x(Y /\ M(8"')), i < X, 

and because the inclusion of the wedge in the product (direct sum) is 2~xv-1 
connected. 

Recall that 82C is the category of (split) exact sequences in C. The 
morphisms are commutative diagrams 

0--+1 Co --+10 

o --+1 Cb --+1 Of --'---+ q --+10 

We use the notation (to I h, h) for this morphism. The simplicial functors 

induce simplicial maps 

and we have (in preparation for the proof of theorem 3.2.7 (ii)) 

Lemm.a 3.2.10. For each T, there are natural transformations 

such that 

dIT(I) = d I T(2) r r , d- T(2) - sr 0 dr 
2 r - 0 o· 
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Proof. Given objects c = (CQ, ... ,c,.) E Cr+l and morphisms 0'0 E C(co, c,.), 

O'k E C(Ck' Ck-1) for k = 1, .. . ,r we define objects lll;) = lll;) (c, a) of SzC 

ll~l) : O-tCr ~Cr EB CI;, ~Ck-tO 

ll~2) : ° -t Cr (,,'.~ Cr EB Ck (13. ;')1) Ck -+ 0 

where fh = ak+l . . . a r for 0 :'S k < r and fJr = 1. 
With these notions we define t~) 

t~l): s.C(s:, Vr~(C,x)) -+ s.C(S':, Vr~(S2C;X)) 

t~Z): s.C(S':, Vr~(C;x)) -+ s.C(S;, Vr~(SzC;y)y 

where y = (xo + ... + X., Xl + ... + XTJ ••• ,xr ) and SO:' = S;o /\ .. : /\ S;r. If 
(xo, .. . ,xr ) = (0, .. . ,0) the formulas are: 

t~1)(O'O®'" 181 ar) 

= (1, (c?o c?o) , ao) 181 (1, (5 c?, ) ,al) @ ... 181 (1, (5 c?J ,ar) 

t~Z) (ao®'" 181 ar) 

= (0'0' .. a., (c?o ~o) ,0) 181 (1, (b c?,) ,al) 181 .. ·181 (1, (5 c?J ,ar). 

For general x, one needs to replace C"'(c, d) by the equivalent s.C(c, d®Z(S"')) 
and one must use suitable suspension maps . 

in order to define both lliZ) (c, a) and t~2). Details are left for-the reader to 
carry out, who can also consult [DM2]. We set 

T;") = holim t~"): THH~(C)' -+ THH~(S2C), 
-t ' 
Ir+l 

These are the required maps, and the required relations are obvious to check. 
o 

We assumed C to be an additive split exact category, so S2C is equiva­
lent to C x C: there are functors both ways whose composites are 'naturally 
isomorphic to the identity. Indeed, 

S2C (do.d),) C xC, C xC so61~' S2C 

are the two functors. One composite is the identity; the other sends each 
object to an isomorphic object, and one may easily construct the required 
niltural isomorphism. 
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Functors such as THH~(C) does not map equivalent categories into ho­
motopy equivalent spaces (check e.g. r = 0). However the composite functor 
THH~(S.C) does have this property. 

Lemma 3.2.11. Let 90, 91: C -t V be naturally isomorphic functors between 
exact categories. Then there is a simplicial functor 

G: Ll[1]. x S.C -t S.V 

which restricts to S.fo and S.ft at the two ends. Here Ll[1]. is the simplicial 
I-simplex considered as a discrete category. 0 

The lemma is proved in [W3] , although only stated on objects. Since 
simplicial homotopies are preserved by functors, the induced maps 

are homotopic. In particular 

Consider a functor X from additive exact categories to simplicial or topo­
logical groups with X(O) = 0 and X(C x V) ~ X(C) x X(V) . Let Y(C) = 
Y(S.C), a bisimplicial abelian group. Then 

(3.2.12) 

where di = Y(di). This follows from the homotopy commutative diagram 

Y(S2C) Y(do Xd'l Y(C x C) Y(so Ell"1 Y(S2C) 

~ Ji'+~ 
Y(C) x Y(C) 

The right hand triangle homotopy commutes because it does so after com­
posing with the equivalence do x d2 , d2 s0 = 0 = dOsl . The left hand triangle 
commutes because prl x pr2 is a homotopy inverse to i l +i2 • Finally the hori­
zontal composite is homotopic to the identity by lemma 3.2.11, and dl (so+st) 
is equal to addition. 

The functor THH~(C) does not preserve product, but the functor 

(3.2.13) 
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does. This is formal and true for any functor Z with Z(O) = 0 as the map of 
multisimplicial sets 

is an isomorphism when the sum of the 2k simplicial degrees is less than 2k 
(because SoC = 0). In particular the map is 2k-connected. . 

Proof of theorem 3.2.7 (ii). With the notation from (3.2.13) have from 
(3.2.12) 

d1 ~ do + d2 : X r(S.S2C) -+ :Xr(S.C), 

Lemma 3.2.10 can be applied to Xr as well as to THH~, and shows that the 
composition 

Xr(C) d~1 Xo(C) 8~1 Xr(C) 

is homotopic to the identity. Indeed 

The other composition is obviously the identity. 
Thus X.(C) is a simplicial space in which the Simplicial structure maps 

are all homotopy equivalences; for such Xo(C) ~ IX.(C)I 0 

Theorem 3.2.7 allows a slick definition of the topological Dennis trace 

tr: K(C) -+ THH(C), 

namely as the composite 

nls.CI-+ nITHHo(S.C)1 -+ nITHH(S.C)1 ~ THH(C) (3.2.14) 

where the first map is induced from sending an object e E SrC into ide E 
Homs.de, e). . 

We can introduce the spectrum TH(C) either by iterating the S.­
construction or by introducing a dummy variable similar to what we did 
in the case of THH(L). The corresponding d!!loops (spectra) are equivalent 
by the standard argument which makes use of both deloops: 

THH(si"lC) ~ n"THHsn (Si"lC). ~ THHsn (C) 

(cf. [EM] sect. 1). 
IT we use the iteration of the S.-construction to define the spectrum, then 

it is obvious that the map in (3.2.14) is ' a map 9f spectra. 

II 

" 

I 
I · 

;, , .' 
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. Later in the chapter we shall consider THHEll(CiM) where M: CO x C ~ 
Ab. It is defined by replacing Vr~(C,x) by , 

Vr~(Ci M, x) = EB M"'a (co, Cr) i81ZC"" (Cl' ctJ)i8I' .. i81 ZC"'"(Cr, Cr-d. (3.2.15) 

If C is the catetegory of projective or free modules and M is an A-bimoduJe 
then 

M",a(ctJ ,Cr) = HomA (ctJ, Cr i81A M) 

extends to a functor on S.C; and the proof of theorem 3.2.7 extends word for 
word to give 

THHEll(A,M) ~ ~ np(lTHH~(Sip)PA,M)J). 
p 

Moreover, in this linear situation, one can omit the homotopy colimit over 
Xo in the definition of THH~. Indeed, for any number x 

HomA(a, b)...2:.t s.p A (a i8I Z(S:), b i8I Z(S:)) 

~ s.Sets. (S:, s.P A(a, b i8I Z(S:))) 

where S: = t.[xJ./8 is the simplicial x-sphere, and HomA(a, b) is considered 
the constant simplicial group, cf. [Q1]. We have proved 

Corollary 3.2.16. For an A-bimodule M, 

THH(A,M) ~ ~np EB Hom(c,ci81M) 0 
p cES!P):J' A 

Remark 3.2.17. If we let x = 0 in (3.2.15) we obtain a bisimplicial abelian 
group Vr~ (C, M, 0) which is constant in the s-direction. Following [DM1] we , 
write 

Fr(C, M) = Vr,o(C, M, 0) ~ M(ctJ, Cr). 

The homotopy groups of IF.(C, M)I, or equivalently the homology groups 
of the associated chain complex F.(C,M), is usually denoted H.(CiM) and 
is called the (non-additive) homology of C with coefficients in M . Dundas 
and McCarthy proves theorem 3.2.7 for this functor by an argument almost 
identical to the above. The diagram 

nOOIF.(siOO)p Ai M)I ---t) nooITHHEll(Sioo)p Ai M)I 

i~ i~ 
nOOIFo(S~P Ai M)I ~ nOOITHH~(Sioo)p Ai M)I 
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then shows that rr.THH(AjM) ~ H.(PA,M) . This is a special case of a 
theorem due to Pirashvili and Waldhausen, [PW). 

3.3 Stable K- and TC-theory. 

Let A be a ring, V an A-bimodule and A t>< V the semipro duct ring. We 
may replace V by the (n - I)-connected simplicial .A-hiJnoduJe V(8~) and 
consider the simplicial ring A t>< V(s~). This can be thought of as a small 
deformation of A. We want to measure the difference between K(A) and 
K(A t>< V(s~)). 

Recall from (WI] that K-theory of a simplicial ring R. is defined as 

(3.3.1) 

where GLn(R.) C Mn(R.) · is the group like simplicial monoid of ma­
trices which map to invertible .matrices in Mn (7I'oR.), and BGLn(R.) -
IN.(GLn(R.))I. Alternatively we ca,n use (2.6.1) for the FSP 

R.(X) = IlP] ~ fip(X)1 

Indeed K(R.) 0:::: K(R.). There is another, more straightforward possibility, 
namely to consider the simplicial monoid GL(R.) with p-simpllces GL(Rp ). 

This leads to degreewise K-theory, IlP] ~ K(Rp) I, which however is not a 
homotopy invariant of R., and does not agree with (3.3.1) in general 

For a map ·of (simplicial) rings R. ~ s. we ~te 

[((R. ~ s.) = hF(K(R.) ~ K(8.)). 

Lemma 3.3.2 ([G2]). Let R. be a simplicial ring and I. CR. a (degreewise) 
square zero ideal. Then 

(There is a little gap in the argument from [G2], le=a 1.2.2 where it was 
used without proof that the diagram 

BGL(R.) ) BGL(R.) 

1 1 
BGL(R.)+ ---t) BGL(R.)+ (Quillen's plus) 
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is homotopy Cartesian. This was repaired in [FOV]). 

Definition 3.3.3 ([W2]) . The stable K-theory KS(A; V) is the functor 

W(A; V) = ~ nn+1 K(A ~ V(s~) -+ A) 
n 

The limit system in the definition, i.e. the maps from K(Affi V(s~) -+ A) 
to nK(A ffi V(S~+l) -+ A)" are the ones given in (3.1.1) . KS(A; V) is a 
spectrum whose k'th space may be given by replacing the (n + l)'st loop 
space in the definition by the (n + 1 - k)'th loop space. 

The lemma above shows that we might as well have defined the stable 
K-theory degreewise as 

K'(A, V) = ~ nn+1 Hr] -+ K(A ~ V(S~) -+ A) I (3.3.4) 
n 

which is the point of view to be used below. 
The reader can note the resemblance of K S with the algebraic "tangent 

space" of K-theory: 

TK(A, V) = K(A ~ V -+ A). 

In K'(A, V) one has further made V "small" by passing to the simplicial 
setting, where one can make V "close to the O-module" . upon replacing it 
with V(S~), which "approaches 0" in the homotopy sense as n -+ 00 . Further 
details on stable K-theory can be found in [K). . 

The above can be generalized to the setting of FSP's. Indeed, let L be 
an FSP and M a module over L as in sect. 2.3. One defines 

(L ~ M[n])(X) = L(X) V (sn A M(X)) 

(one could also use L(X) V M(sn A X) as the two definitions give stably 
equivalent FSP's). 

K'(L; M) = ~ nn+1 K(L ~ M[n]-+ L) 

TC'(L;M) = lim nn+1TC(L ~ M[n]-+ L). 
--+ 

The topological Dennis trace 

tr : K(L, M) -+ TH(L, M) 

(3.3.5) 

factors over K S (L, M) and long ago, Waldhausen conjectured that the re­
sulting map 

1("(L; M) ~ TH(L; M) (3.3.6) 
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is an equivalence. 
The rest of the section is a presentation of the Dundas-McCarthy proof 

of (3.3.6) in the linear situation, corresponding to L = A, M = V, the FSP's 
associated with a ring and a bimodule, and of Hesselholt's corresponding 
result for TC. 

Consider the category peA, V) of pairs (P, a) of a projective A-module 
P and an A-linear homomorphism a: P -+ P I8IA V. The morphisms from 
(P, a) to (PI, a'l are maps f: P -+ pI such that 

P a I PI8IAV 

pI a' 
--='--tl pI 181 A V 

are commutative. 
The [(-theory of peA, V) will be denoted [(cY(A; V); in the simplicial 

setting we make the following , 

Definition 3.3.1. For a simplicial A-bimodule V., 

J(CY(A;V.) = i[rJ-+ J(P(A;Vr»I. 

Clearly, [(CY(A; 0) = [(A) and we set kCY(A; V.) = hF([(A; V.) -+ I 
[(A»). Lemma 3.3.B. There are homotopy equivalences . 

(i) [((A~V:-+A)~kCY(A;&V.(S;)) 

(ti) J('(A; V) ~ holimOn +1 kCY(A, V(S~+1»)'. 
--+ 

n 

Proof. The second statement follows from the first since N.,V(X.) = V(S; 1\ 

X.), so we have left to prove (i). 
Since we are considering the relative groups, we may replace P(A, V) by 

:7(A, V) in the definitions. But 

00 

N.(i:7v) ~ II N.(imk:7v) (3.3.9) 
k=l 

where mk:7v is the full subcategories of pairs (Ak, a), a E Mk(V) and where 
i indicates that we are only considering isomorphisms. An r-simplex of 

I 

I ;. 

: , 
" 
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N.(imk!f(A, V)) is detennined by a string (aOj h, ... ,!k) with" E GLdA) 
and ao E MdV). Thus 

(3.3.10) 

upon sending (ao j ft, ... ,h) into ((h· .. h)-Ij h, .. . ,lk), cf. (2.1.1). From 
(2.1.10) we have 

(3.3.11) 

so, extending (degreewise) to simplicial modules V., and taking group com­
pletions, the result follows. 0 

Theorem 3.3.12 ([DM1]). For any A-bimodule M, the trace defines an 
equivalence 

J(B (A, M) ...:; THH{A, M). 

Proof. We use the model THHIIl for THH. Indeed corollary 3.2.16 gives 

THH(A,M) ~ ~ np 
( ED Homs!p) {C,C ®A M)) 

cES!P)PA 

By definition 

J(CY(AjM) = WII((Sip)P(A,M))1 . W ( II HOms!p)(C'C®AM))' 
CES!P)P 

with P = P A. We shall compare these definitions when M is replaced by 
the simplicial bimodule W. = M{S~), M applied to the simplicial n-sphere. 
Both functors are defined degreewise 

THH{A, W.) = I[r]-I- THH{AjWr)1 
J(CY{A, W.) = I[r]-I- J(cY{AjWr)l. 

Actually, we are interested in the relative functor KCY{A, W.) . Consider the 
co Cartesian diagram 

lucEs!p)p Homs!p) (C, C ®A Wo)1 ---tl I sip) PI 

I-/ls!p)PI I-lIs!p)PI 

IV CES!P)P Homs!p) {C, C ®A Wo)1 * 
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Each of the spaces are at least (p - I)-connected, since the S.-construction 
applied to any category adds one to the connectivity. It follows the vertical 
homotopy fiber is (2p - 2)-equivalent to the space !Sip)p! which was divided 
out, and hence that the vertical homotopy fibers agree in the same range. 
Since p » 2n, it follows that 

}(CY(A;W.) ~2n n" V Homs!p)(C,C ®A W.) . .-
CES!P):P 

It is clear from the definition of trace given in (3.2.11) that it (under the 
equivalences above) corresponds to the natural inclusion 

V Homs!p)(C,C ®A W.) ~ E9 Homs!p)(C,C ®A W.). 
CES!P):P CES!P):P 

This map is (p + 2n)-connected. Indeed, the inclusion of a wedge of n­

connected spaces into the product is 2n-connected, so the corresponding map 
indexed over S~p)p is· (2n + I)-connected. Thus the homotopy fiber of the 
map in question is a bisimplicial set F.,. with IFr,.! (2n + I)-connected for 

r 2': p and !Xr ,.! contractible for r < p (since !Sip)! is (p -I)-connected. The 
standard spectral sequence 

is zero for r < p and s ~ 2";' + 1, so gives the connectivity conclusion. The 
theorem now follows from the equiyalences 

J(5(A; M) = h~mnn+l J(CY(A; M(S~+l)) 

TH(A;M) = holimnn+.1TH(A;M(S~+1)). 0 
--t 

We remark that the above proof also contains a proof of 

Addendum 3.3.13. For a simplicial A bimodule V., 

(i) }(CY(A; V.) = lim n p 

--t 
p 

V Homs!p) (C, C ®A V.) 
CES!P):P 

(ii) }(CY(A; V(X.)) = !!!!} n" V Homs!p) (C, C ®A V.)~(X.) 
P CES!P):P 
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Theorem 3.3.14 ([HI]) . For any FSP L and L-bimodule M, the profinite 
completions ofTC8 (L;M) and TH(L;M) are equivalent. 

Proof (sketch). Recall from (3.3.5) that 

TC 8 (L;M) = ~ nn+lTC (L ~ M[n]-+ L) 

where L ~ M[nJ is the FSP 

(L I>( M[n])(X) = L(X) V (sn /I M(X)). 

We may decompose 

(L(SXO) V M[n](SXO)) /1 ... /1 (L(SXr) V M{n]CSXr)) 

into a wedge, and collect the factors which contain a given number of copies 
, of M[n](SX). This gives a decomposition of cyclic spaces 

00 

TH(L I>( M[n]) = V Ta(L; M[n]) 
0=0 

with To(L; M[n]) = TH(L). Moreover Tl (L; M[n]) is a simplicial spectrum 
whose k-simplices has exactly one copy of M[n], but sitting at any of the 
(k + 1) positions available, i.e. 

Tl (L; M[n])k = CHI + /I TH(Lj M[n]). 

The realization of this cyclic space is S~ /I TH(Lj M[n]) with its natural action 
of 8 1 (in the first factor), so 

Tl (Lj M[n]) = S~ /I TH(L; M[n]). 

· The cyclotomic structure map Rp maps 
! 

Rp: Ta(L; M[n])Cpr -+ Ta/p(Lj M[n]) Cpr_I 
· if pia and trivially otherwise. By (2.4.6) this map is (na - I)-connected. 
· Hence if (k,p) = 1 

Tp.,\:(L; M[n])Cpr "'.I:;m-l T,\:(Lj M[n])Cpr-., 

, and again by (2.4.6), Tk(L; M[n])Cpr-. '" Tk(L; M[n])I,Cpr_" which is (kn-
1)-connected (as Tk contains k copies of the (n - I)-connected M[n]). 

I We are only interested in the range < 2n, so Tkp' (L; M[n])Cpr c~ be 
: disregarded when k > 1. Thus by theorem 2.5.5, 

TC (L I>( M[n] -t L); "'2n-1 (h~m (y. Tp. (L; M[n])) Cpr) " 
Jp 8._0 

P 
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Moreover, 

R~') : Tp. (Lj M[nJ)Cpr ~2n-l Tl (Lj M[nJ)c;-· for T ~ s 

and Tp. (Lj M[n])Cpr ~2n-l 0 if T < s. Hence 

(as we work with spectra, there is no difference between finite wedges and 
finite products) . The Rp-map corresponds to projection on the first T factors, 
so 

h~m (20 Tp. (Lj M[nJ)) cpr = fi Tl (Lj M[nJ)Cp' 

and by (2.5.4) one concludes that 

TC (L ~ M[nJ ~ L); ~ (h~Tl(Lj M[nJ)Cp,) II 
Fp 

p 

The action of Sl (and hence Cp') on 

Tl (Lj M[nJ) = S~ /\ TH(Lj M[nJ) 

is free, and in this case the action can be divided ou);, so 

h~Tl(Lj M[nJ)cp' ~ h~ W ICp'+ /\ TH(Lj M[nJ)) 
Fp 

where the limit on the right is via transfers (in the suspension spectrum 
'E,OO(SICp'+))' If we identify Sl/Cp' = Sl then we obtain a (co)libration of 
limit systems: 

TH(Lj M[nJ) -~l S~ /\ TH(Lj M[nJ) -~l Sl /\ TH(Lj M[nJ) 

IF 1 Fp lid 
TH(Lj M[nJ) S~ /\ TH(Lj M[nJ) Sl /\ TH(Lj M[nJ) 

This implies a colibration in the limit. Since 

h~m(TH(LjM[n]),p)~ ~ 0 

we are finished. o 
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3.4 McCarthy's theorem. 
" 

The presentation in this section is my writeup of lectures given by McCarthy 
in Aarhus, July 1994. 

Theorem 3.4.1 (McCarthy). Let R -t S be a surjection of rings with 
nilpotent kernel. Then the diagram 

1({R) " --t TC{R)" 

1 1 
1({S)" --t TC{S)" 

of profinitely completed spectra is homotopy Cartesian. In particular 

K{R -t S)" ~ TC{R -t S)". 

The obvious induction shows that it suffices to prove the theorem when 
the kernel is a square zero ideal; this will be assumed in the rest of the section. 

Associated to a simplicial ring R. we have the FSP 

fl.{x) = I[s]-t fl.{X)I· 

We write TC{R.) instead of TC(fl.) . If R. -t R~ is a simplicial equivalence 
(Le. IR.I -t IR~I a homotopy equivalence) then the induced map of FSP's 
fl. -t R~ is a stable equivalence in the sense that 

lim nn(fl.(sn)) -t lim nn(fl~(sn)) 
--t --t 

n n 

is an equivalence, and in this case 

cf. sect. 2.6, so TC(R.) only depends on the homotopy type of R •. On the 
other hand, we have the possibility of calculating TC degreewise. In contrast 
to K-theory where the two definitions do not agree in general we have 

Proposition 3.4.2. TC(R.) ~ I[s]-t TC{R.)I. 

Proof. Since 

nno+,,+nk /[sj-t R8(sno) A· · · A Rs(sn»1 ~ 

/[sl-t nno+,,+n> (R8{sno) A · ··/\ Rs{sn>))\ 
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we see that the topological Hochschild spectrum TH(R.) can be calculated 
degree wise: 

TH(R.) ~ I[s]-+ TH(R,)I· 

The fundamental colibration sequence of proposition 2.4.3 then shows that 
the same assertion is true for fixed sets 

TH(R.)Gpn ~ I[s] -+ TH(Rs)Gpnl 

and upon taking inverse limit 

TF(R.,p) ~ I[s] -+ TF(R.,p)1 

cf. (2.5.3) for notation. There is a salient point here: realization does not 
in general commute with homotopy inverse limits; however in the above sit­
uation it does as TH(R,) ~ nTHHC~.; SI), so TH(R.) is equivalent to a 
Kan simplicial set. For such, realization do commute with homotopy inverse 
limits. 

Finally the homotopy librations 

- - R -id -
TO(R.,p) -tTF(R.,p) .!:-t TF(R.,p) 

- - R p-id -
TO(R.,p) -tTF(R.,p) -t TF(R.,p) 

show that TO(R.,p) can be calculated degreewise. Now apply theorem 2.5.5 
to obtain the result for TO(R.) . 0 

Lemma 3.4.3 ([G2J). H the theorem is true in the special case where R is a 
semi-direct product ring R = A I>( M and S = A then it is true in general. 

Proof. Goodwillie associates to S a simplicial ring <]i.(S) with a simplicial 
map <P.(S) · -+ S (when S is regarded as the constant simplicial ring) such 
that 

(i) <Pr(S) is free associative for each r 

(ii) 1;P.(S)1 ~S is an equivalence. 

Indeed, ;P.(S) is the simplicial ring with <pr(S) = (FGy+l(S) where G is 
the forgetful functor from rings to sets and F its left adjoint free functor: 
;P.(S) is the "bar-construction", cf. [G2J, sect. 1.1.6. Write A. = ;P.(S) and 
consider the (degreewise) pull-back 

B. A. , 
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Then M = ker(B. -t A.) is the constant ideal M = ker(R -t S) . Since t/J, 
and hence (fi, is an equivalence 

K(R -t S) ~ K(B. -t A.). 

The latter can be calculated degreewise by lemma 3.3.2, 

K(B. -t A.) ~ l[rJ-t K(Br -t Ar)l. 

Now Ar is free, so Br -t Ar is a split surjection, and hence Br = lvIr I>( Ar. 
With the assumption, 

so in conclusion 

K(B -t A)" ~ l[rJ-t TC(Br -t Ar)"1 ~ TC(B -t A)" 

by the previous proposition. o 

The idea behind the proof of theorem 3.4.1 is to use calculus of functors 
on the cyclotomic trace 

trc: K (A I>( M(X.) -t A) -t TC (A I>( M(X.) -t A) 

cf. sect. 3.1. First we need: 

Proposition 3.4.4. For any ring A and bimodule M, 

(i) X. -t K(A I>( M(X.)) 

(ii) X. -t TC(A I>( M(X.)) 

are (-I)-analytic as functors from based simplicial sets to spectra. 

Proof. For K-theory we can use the equivalence of lemma 3.3.S(i), 

and the general fact that a functor 

F: s.sets. -t {spectra} 

is p-analytic if (and only if) F(( -) 1\8;) is (p-l)-analytic. The latterfollows 
directly from the definition of analyticity. ~deed if F is say O-analytic, and X 
is a strictly co Cartesian (n+ I)-cube with X(0) -t Xes) k.-connected (k. ~ 0) 
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then the suspended cube has 3:(0) A Sl -t 3:(s) A Sl (ks + I)-connected, so 
by assumption . 

is (q + I:(ks + I))-connected. Hence if F satisfies the condition En( -q, 1) 
then F( (- ) A Sl) satisfies En (-n - q - 1,0), so is (-I)-analytic. 

To see that KCY(A, AlI(X.)) is O-analytic we use the description of adden­
dum 3.3.13: 

KCY(A,M(X.))~holimnP ( V HOmSlP)(C'C@AM)~(X.)). 
cEslp):p 

Given a strongly co Cartesian (n + I)-cube X. For given C E sip), the cube 

Homslp)(C, C @A M)~(X) 

is homotopy Cartesian for each p: this is true for AlI(X) for any abelian M. 
It follows from the dual Blaker-Massey theorem, [G4J, theorem 2.6 that 

the above strongly Cartesian cube is also n + I:ks coCartesian. Taldng wedge 
over C E sip) we obtain an (n + p + I:k.)-coCartesian cube. (The extra p 

appears because sip) is (p - I)-connected, cf. the last part of the proof for 
theorem 3.3.12). By [G4], theorem 2.5, the cube 

V 

is (p + I:k.)-Cartesian, and looping down p times there results a (I:k.)­
Cartesian cube. This proves (i). 

The FSP associated to the simplicial.ring A b< M(X .. ) is equivalent to the 
FSP which sends Y. to A(y.) V All (X. AY.). Thus we have the decomposition 
of spectra 

00 

TH (A b< M(X.)) ~ V Tn (A;M(X.)) 
0=0 

also used in the proof of theorem 3.3.14. 
One now first shows that the functor M(n) (X.) = M(X.) A··· A M(X.) 

is (-I)-analytic. This is a non-trivial task. The functor Tn (A,M(X.)) 

involves n smash copies of M(X.) in each degree, and is thus (-I)-analytic as 

well. Hence TH (A b< .NI(X.)) is (-I)-analytic. The cofibrations of spectra 

(2.4.6) 

TH(A b< M(X.))hCpn -t TH(A b< M(x.))Cpn -t TH(A b< M(x.»Cpn-l 
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then give (inductively) that each of the .fixed sets is (-I)-analytic. Taking 
inverse limit we see that 

X. J-t TF(A I>< M(X.),p) 

is (-I)-analytic, and then that TO(A I>< M(X.),p) has the same property. 
Apply theorem 2.5.5 to complete the proof. 0 

Lemma 3.4.5. The functors 

X. -+ K(A I>< .N[(X.)) 

X. -+ TO(A I>< .II(((X.)) 

satisfies the p-limit axiom (ii) of sect. 3.1 for each prime p. o 

This is well-known for [(-theory. The proof for TO follows the scheme 
of the previous lemma: first do TH and then induct over the fundamental 
cofibrations, (2.4.6). 

We next evaluate the differential 8x F of the two functors in question, cf. 
definition 3.1.2. 

Lemma 3.4.6. The functors K(A I>< M(X.)) and TO(A I>< M(X.))~ have as 
differentials the spectrum l[Pl -+ TH(A x M(Xp); M)I and its p-compietion, 
respectively. ' 

Proof. This is really a consequence of results in the previous section, namely 
theorems 3.3.12 and 3.3.14. 

8x K(A I>< M(X.)) = ~ nn+l K (A I>< M(X. V S:) -+ A I>< M(X.)) . 

But M(X. V S:) = M(X.) Ell M(S';) and thus 

A I>< M(X. V S:) = (A I>< M(X.)) I>< .II(((S:) 

where on the right hand side the action is through the projection A I>< 

M(X.) -+ A. Wri~e B. = A I>< M(X.). The analogue of lemma 3.3.2 for 
bisinlplicial rings shows that 

[( (B. I>( M(S:) -+ B.) ~ i[P]-+ K (Bp I>< M(S:) -+ Bp) i 

and by 3.3.8(i) and 3.3.12 

~ nn+l J( (Bp I>< M(S:) -+ Bp) ,.,., 

~ nnH Key (Bp, M(S:+l)) ~ TH(Bp; M). 
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Similarly, 

by theorem 3.3.14, and proposition 3.4.2 supplies the conclusion. 0 

Finally, one must clIeck that the p-completion of 8" trc induces the Elquiv­
alence. This follows from the following homotopy commutative diagram of 
spectra, where M. = M(S:') for an B-bimodule M: . -

TC(B EB M.)~ ~~ h~m S1 jGpr+ 1\ TH(R, M.)~ 

~ 1 1 
K(B EB M.)~ __ t"_-+. TH(B EB M.)~ 1 

~lm 

S~ 1\ T~(R, M.)~ 

~ 1 
TH(B; .i1:.($1))~ +-1 -::-:-~l-m- S1 (I TH(R,M)~ 

The two upper vertical maps are the natural ones whicl1 map a homotopy 
inverse limit into its initial term. The right-hand vertical composition is an 
equivalence (cf. the proof of the9rem 3.3.14), and the notation is 

K(B EB M.) = J( (B EB M. --t B) 

etc. This completes McCarthy's proof of theorem 3.4.1, as I have understood 
his Aarhus lectures. 

AddendUIn 3.4.1. (McCarthy) Suppose 1.: R. --t S. is a map of simplicial 
rings and tlJat 71"0(11.1) is surjective and has nilpotent kernel. Then 

[((R.)" --t) TC(R.)" 

1 1 
[((S.)" --t) TC(S.)" 

is homotopy Cartesian. 

The proof is the same with the exception of lemma 3.4.3 where one has 
to add an extra step, passing from nilpotency on the 7I"o-level to nilpotency 
on the simplicial ring level, cf. [G2], lemma 1.3.3. 
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3.5 Dundas' theorem. 

This section gives a brief outline of the proof from [D] of Goodwillie's COll­

jecture: 

Theorem 3.5.1. (Dundas). Let f: L1 ~ L2 be a map of FSP's with 1f'o(f) 
surjective and ker 'Il"o (I) nilpotent. Then the diagram 

K(Ld" 

1 1 
is homotopy Cartesian . 

The general idea is to approximate the FSP's Li by FSP's coming from 
simplicial rings, and then use McCarthy's theorem 3.4.7 to derive the con­
clusion. This is similar in spirit to the cosimplicial resolution of a space 
(simplicial set) by Eilenberg-MacLane spaces. 

Let X be a (k - 1)-connected space (simplicial set) with k > 1. By 
"" the Hurewicz theorem, 'Il"kX ~ HkX and 'Il"kHX ~ HkHX is surjective. 

In other words, the linearization map X ~ ZX is (k + 1)-connected. The 
relative version of this is as follows. Suppose f: X ~ Y is a (k+ 1)-connected 
map and X is (k - 1)-connected. Then the 2-cube 

(3.5.2) 

ZX z/) Zy 

is (k + 2)-Cartesian in the sense of sect. 3.1. 
Indeed, let C be the (homotopy) cofiber of f, and let F be the homotopy 

fiber. Then F is k-connected and C is (k + 1)-connected, and the left hand 
vertical map is the diagram 

F --of) X ---t) Y 

1. 1 1 
nc --of) * C 

is (k + 2)-connected. (This follows for example from the Serre spectral se­
quence of the involved homotopy fibrations) . On the other hand, Z( -) sends 
a colibration into a fibration, so hF(Zf) ~ nzc: apply Z the the right 
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hand coCartesian square above. Since Cis (k + 1)-connected, nc ~ n71.c 
is (k + 2)-connected. Thus F ~ hF(71.j) is (k + 2Fconnected; its homotopy 
fiber is equal to the homotopy fiber of 

(
- Zj - ) a: X ~ h~m ZX -'-t Zy -(- Y 

so (3.5.2) is (k + 2)-Cartesian. Roughly the same argument proves 

Lemma 3.5.3. ([D)) . Let X be an (n + k)-Cartesian n-cube, 'k > 1 such that 
each sub m-cube is (m + k)-Cartesian. Then the (n + 1)-cube X ~ 71,x is 
(n + 1 + k)-Cartesian. 0 

Starting now with a (k - 1)-connected space, one can inductively define 
n-cubes 3n(X) as follows: 

X IIx) 71,x 

ZX Zhx ) 71,71.x 
and in general -. 

3n(X) = {3n-1 (X) ~ 71.(3n-1 (X)) } . 

The lemma tells us that 3n(X) is (n + k)-Cartesian. For an FSP L, each 
vertex 3n(L(X))s defines a new FSP 3n(L)s with L = 3n(L)0, and with 

adX): L(X) ~ h~m3n(L)s(X) 
S#0 

(n + k)-connected when X (hence L(X)) is (k - 1)-connected. 
One could similarly ,start with the functor 71.q = 71, 0 • • • 0 71, instead of 71.. 

It is still true that X ~ 71.qx is (k + 1)-connected for a (k -1)-connected X, 
and one obtains corresponding cubes 3~(L) with al(X) (n + k)-connected. 

Proposition 3.5.4. The map aL in,c;luces a map 

TC(L); ~ h~ TC(3n(L)s)~ 
S#0 

which is (n - 1)-connected. 

Proof. Here is Dundas' argument. It is enough to show that 

TH(L) ~ h~ TH(3n(L)s) 
s,# 
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is n-connected, since inductive use of the fundamental colibration then gives 
the same conclusion for all Cpn-fixed sets, hence for TF(L,p), and finally for 
TC(L,p) with n replaced by n - l. 

Now TH(L) is the prespectrum {ITHH.(Ljsm)l}m, and it suffices to 
argue that 

THHr(Lj sm) -+ h~m THHr(3n(L)Sj Sm) 
5",0 

is (n + m)-connected for all T. This is lemma 3.5.2 when T = O. In general, 

(2) 

The map is induced from the natural map 

In turn, (]" is constructed from iterated use of the assembly map X 1\ ZY -+ 

Z(X 1\ Y) . For example, ZX 1\ Zy -4 Z(X 1\ ZY) zu) Z (Z(X 1\ Y)) . The 

equivalence statement (2) amounts to the easy fact that X I\z(sn) -+ Z(X 1\ 

sn) is (2n - I)-connected. To linish the proof one applies (3.5.3) with aL 

replaced by al. 0 

The next result is of similar complexity but I refrain from giving the proof, 
and refer the reader to [D]. 

Proposition 3.5.5. The map ' 

is (n + I)-connected. 

1((L) -+ holim1((3n(L)s) 
r-
5# 

o 

For S of 0, 3n(L)s is equivalent to an FSP associated to a simplicial ring, 
namely to a simplicial version of limnk3n(L)s(Sk) and 7ro3(L)s = 7roL, so 

--t 
k 

theorem 3.4.7 applies to show that 

when S of 0. The two previous propositions combine to give the same fot 
S = 0. This completes my outline of theorem 3.5.l. 

Let G be a topological (or simplicial) monoid homotopy equivalent to 
nx, and G the corresponding FSP, so that J((G) is Waldhausen's A(X). 
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The theorem applies to C; -l- 1roC; = 1rlX, and to 1r1X :-t Z[1rlX)~, so gives 
a homotopy Cartesian diagram 

A(X)" TC(X)" 

1 1 (3.5.6) 

K(Z[1rlX))" --tl TC(Z[1rlX])" 

The terms on the right-hand side is examined in the next two chapters, and 
a lot is !mown. Thus theorem 3.5.1 to some extend reduces the calculation 
of A(X) to linear K-theory. 

4 The absolute theorems 

This chapter outlines the proof of the theorem from [HM) that K(A) and 
TC(A) agrees after p-adic completion for a large class of p-complete rings, 
namely for the rings whicl1 are finitely generated modules over Witt vectors of 
perfect fields k of positive cl1aracteristic p. It also calculates TC for the FSP's 
associated with a group like monoid, and gives the relation to Waldhausen's 
A-functor. 

4.1 General approach to TC c.alculations. 

Since TC(L) is build out of the fixed sets TH(L)C the basic calculational 
problem is to get a hold of 1r. TH(L)C for the cyclic subgroups of the circle. 
It suffices by theorem 2.5.5 to let G run over the cyclic p-groups, where we 
have the fundamental cofibration of sect. 2.4 

to ease calculations. 
Recall that TH(L) is the restriction of an Sl-invariant spectrum T(L). 

In the notation of sect. 2.4, TH(L) = jOT(L) where j: Us' -l- U. Moreover, 
the "geometric fix point" spectrum iJ!cpT(L) of (2.4.1) is equivalent to T(L) 
by theorem 2.4.5, 

p~ iJ!cpT(L) ~S' T(L) . 
p 

The general approach to the calculation of 1r.T(L)C is to replace T(L) by 
the function spectrum F(ES~, T(L)), and to use spectral sequences for cal­
culating the Cp.-fixed points of the function spectrum. This leaves us then 
for each FSP L with the problem of how close the natural map 
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is to be an isomorphism. Here ES1 is the free contractible Sl-space 

IX> IX> 
ES l = U S(IC"+1) = U S2n+l 

n=O n=O 

with its standard Sl-action (orbit space ICPIX>), and F(ES~, T(L)) is the 
equivariant S1-spectrum whose V'th term is F(ES~,T(L)(V)), the space of 
based maps from ESi = ES l u {+} into the V'th space of T(L), with S1 
acting by conjugation. 

Following [GM) we define for each finite p-group Cpn, 

(4.1.1) 

and call it the Cpn-Tate spectrum of T(L). It is an S1/Cpn-equivariant 
spectrum indexed on uCpn. The space 

IX> IX> 
.ES1 = U S(C" E9 R) = U S2n, 

n=O 

with S1-action induced from complex multiplication in Cn , is contractible 
but not equivariantly: (ES1)C = S(R) = SO for each C ~ S1. 

Lemma 4.1.2. For any two based Cpn -spaces X and Y, the restriction to 
Cp-fixed sets induces a weak Cpn / Cp-homotopy equivalence 

Proof. We may assume X and Y are Cpn-equivariant OW complexes, e.g. by 
replacing them with the realization of their singular complexes. The singular 
set of the Cpn space X is XCp , so X - Xcp . has a free Cpn-action, 

Given ¢: Xc. -+ yCp = (Y 1\ ES1 )cp , one can extend ¢ cell by cell to a 
Cpn-equivariant map from X to Y 1\ ESl. Indeed the obstructions to extend 
lie in 

This proves that the map is surjective on 'lro, and hence on 'lrn by replacing 
X by X 1\ sn. Injectivity is similar. 0 
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Recall that the smash product of T(L) E SISU and a based SI-space X 
is the spectrification of the obvious prespectrum, o-r concretely 

(T(L) "X)(V) = lim nW-v (T(L)(W) "X) . 
-.-t 

W:lV 

It follows from le=a 4.1.2 that 

ipopT(L)~Opn (T(L) " ES1) Op 

and in particular that 

(4.1.3) 

(4.1.4) 

Let C ~ SI be any subgroup. We have the pair of adjoint functors j" and j" 
of sect. 2.4 where j: UO -t U is the inclusion, and the maps from (2.4.2), 

TO: j*T "0 ES~ -t (T "ES~)O, C linite 

TS1 : ~j*T "51 ES~ -t (T " ES~)S1 , C = SI. 

The maps lit together with the non-equivariant transfer maps 

trft?: j"T'''D ES~ -t JOT "0 ES~, D:) C 

trf~' : ~j*T "51 ES~ -t j*T "0 ES~ 
in homotopy commutative diagrams, namely 

D 5' TO 0 trfc ~ F 0 TD, TO 0 trfc ~ F 0 TS1 

( 4.1.5) 

(4.1.6) 

where F denotes inclusion of fixed sets as usual, cf. [Aj, [LMSj. 
Since ESI = ESl * So, the unreduced suspension of ES1,' there is an 

Sl-equivariant colibration sequence 

which induces a cofibration of equivariant spectra upon smashing it with the 
Sl-equivariant function spectrum F (ES~, T(L)). We take Cpn-lixed sets 
and apply (4.1.4) and (4.1.5) to get the norm colibration of [GM]: 

(4.1.7) 

By definition it appears that Jilr(Cpn ,7'(L)) depends on the full equivariant 
structure of T(L), and not only on TH(L), but this is not really the case. 
The adjunction j" TH(L) -t T(L) induces a map 



/ 

Ib Madsen 261 

which also fits into the cofibration sequence above; it must be an equivalence 
by a 5-lemma argument. Thus we shall often write Jfu( Cpn, TH(L» instead 
of JfiI(Cpn, T(L». We shall also use the costumary abbreviations 

TH(L)hGpn = TH(L) IIGpn ES~ 
TH(L)hGpn = F(ES~, TH(L»Gpn . 

With these notions we have 

Proposition 4.1.8. There is a homotopy co=utative diagram of coflbra­
tions (of non-equivariant spectra) 

TH(L)hGpn 
N 

I TH(L)Gpn R TH(Lfpn-. 

lid lr lr 
TH(L)hGpn 

N' 
I TH(L)"Gpn R' 

I JfiI( Cpn , TH(L» 

Remark 4.1.9. The SI-fixed set of TH(L) is contained in THHo(L), cf. 
sect. 2.1, and is of .no relevance. In particular the upper horizontal sequence 
in (4.1.7) has no analogue for SI fixed sets. But the lower sequence does 
have an SI-version, namely 

ETH(L)hS' -+ TH(L)hS' -+ JfiI(SI, TH(L» 

with the right-hand term defined by (4.1.1) upon replacing the Cpn fixed set 
by the SI fixed set, cf. [GM]. 

EXlllTIple 4.1.10. In the special case of the identity FSP, L(X) = X, T(L) 
is the equivariant sphere spectrum, 

T(L)(W) ~G= ~ nY-Wsw, v C uG 
V 

cf. lemma 4.4.4 below. In tllis case the diagram of proposition 4.1.7 is com­
pletely known. Listing only the O'th terms of the spectra we have 

TH(Id)Gpn ~ nOOSOO(BCpn+) x ... x nOOSOO(BCp+) x nOOSOO(So) 

TH(Id)/'Gpn ~ nOOSOO(BCpn+) 

where nOOS""(x+) = limnk(Sk II X+). The map R is the projection onto 
-t 

the last n factors. Moreover, the affirmed Segal conjecture tells Us that the 
profinite completions of r TI and tTl are equivalences for all n. 
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One may get. information about the homotQPy ,groups of the terms in the 
norm.·cofibration by .spectraJ'sequences. Let M be a coefficient group (usually 
M ' = 'Zp or M · lF~). T~ ensure convergence of the spectral sequences I will 
assume that 71'. (T(L); M) is a finitely generated Zp-rnodule in each degree. 

The spectral.sequences were set up in [BM], sect. 2 and in [GM], sect. 10; 
in [BM], by using a topological version '(due to Greenlees) of the complete 
resolution ln, usual Tate'cohomology 'of groups and in [GM] by the dual 
viewpoint where one uses theequivariant Postnikov tower of thespectr,uin. 

, . 
In our case., the spectral' sequences takes the form' 

(i) E;;t (T(L)hCpn'; M) =H. (Gp"; 7rt(T(L); M)) ~ 7t.+t, (T(L)hCpn; M) 

(li) E:.,t (T(L)'hGpn,; M)= HB'(Gpn; 7rt(T(L); M»::}'7rt-s (T(L)hCpn jM) 

(ill) E:.,t (E(Gpn, T{L));M) , 

= fIB (Gpn j 7rt(T(L)j M)'~ ,7rt_. (E(Gpn; T(L»);M) 

The spectral sequences. are concentrated in the upper half plane, the differ­
entials take E;,t to E;:"r,t+r-l' .and for commut,ative L ,the last two,.spectral 
sequences have' ring structure (with the differentials being derivations) when 

, 0, 

M is a p-adic ring with p odd .. Since the Gpn -action com,es frOlIt an: Sl-action 
1l'.(T(L);M) has trivial Gpn-action. Thus for.p odd: 

E2 (T(L)hC~n j lFp ) = E{un} ® S{t} ~ 7r.(T(L)jlFp ) (4.1.11) 

E2 (E(Gpn, T(L»j IF'p) = E{~n} ~ S{t,C1
} ~ 7r.(T(L)jFp ) 

with.deg(un ) = (-1,0)" deg(t) = (-2,0) and 1l'tCl'(L)jlF'p) sitting,in degree 
(0, t). ' .. 

In the above Hs., HB and fiB denotes group homology, grqup cohomology 
and group Tate cohomology. They are related by the formulas: 

H-'(GjA), 

j[-'(GjA) = ,H._L(GjA}, '. 
' Iker (r-rorm: Ho(Gj A) -:-:+ HO(Gj A»), . 

, cOKer (Norm: HiJ(G;A) -+ HO(GjA») , 

When G = Cpn' ·and,.pA:. = ° then l\form = 0, so w~· see ,that 

~:-:;o 

s;;> -1 

s= -1 

8=0 

82':0 
8<0 

, , 

It is important for calculation of 7r.(:rC(L)j.lFp) to identify the R-map, or 
in the setting of the norm cofibration to identify 7r.(Rh). This is connected 
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with the differentials in the spectral sequence, for IiiI(Cpn, T(L» which cross 
over the line. - ,S =1/2 in. E:s t •. Indeed" the maps in , 

,. 
induce homomorphisms of spectral sequences 

E'(Rh): E:'B,t (T.(L)hC.n;M) -+ E:'.,t (liiI(Cpn,T(L»;M) 
(4.1.12) 

. Er(~): E,:'.,t (liiI(Gpn ,T(L»; M) -+ E:''':'l,dT(Lh~.n ,; ,M): 

with- Er (Rh) surjective for 8 ~ 0., and E.r (p) injective for .8 < O. In.a situation 
where one can calculate the .spectrai ~equences'one Will..also, know E?"(Rh) 
. and E oo (8), and hence since the spectral sequences converge, 

. E°-rroRh : E°-rr.{T(L)hCpn;M) -+ E°-rro (liiI(Cpn,T(L» ;M) 

EO(-rr.8): EO·-rr. (IiiI(Cpn;T~L~);M).-+ E°!fO-l CT(L)"C~,.;M) 

In general this. is of course not sufficient to ,give; say -rr oRh; there might 
be filtration shifts. The following lenima goes a long way to overcome this 
difliculty. ~ 

Lemma 4.1.13. If a E E°-rrB+t (T(L)hC.n; M) is in the kernel of EO (7foRh) 
then there exists an element f3 E -rr.+t (T(L)hGpn; M) .with E°-rr. (Nh) (f3) = ex. 

Proof. This is .a special. cas~ of [BMj, theorem 2.15. The argument can. be 
outlined as follows. By assumption EOO(Rh)(a) = O. The reason must . be 
that there exists an r > 8 such that ex belongs to the image of 

cf": E;-•• t-r+l- (Jlii(Cpn :;T(t»); M) :-+- E: •. t (IiiI(Cpn', T(L»j,M) 
. . . ~. . . 

say" ex = dr(r.~. Now (J = Er(8)({1) ,and f3 will. be an infinite cyCle ' 'in 
Er (T(L)h9pniM). ThuB f3 represents. an element."of E oo (T(L)hG~njM), 
and one can pick a s~itable representative. 'More details can be found in 
~M]~~.2~ · d 

The £l2-differential in the spectral sequences is connected to the actioll 

A: S~ 1\ TH(L) -+ TH(L) 
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as follows. The stable homotopy lrt(S~)"" 1r4(:E3'(8~J) !!!11r4(84) EIl' 1r4 (83
) 

is Z Ell Z/2, ,generated' by tne 'O' = 'id and the. Hopf map 1'/. Thus we get 
operators 

1 . 1 A. ,)· 
[8 ],1'/: lr;(TH(L)) -I-1r;+l(8+ATH(L)) -.-=Ht:;:uTH(L) 

, I 
where, the first ma,p is exterio~ product with 0' ,and'1t, respectively. Thete are ' i 

induced operations 

ir (Cp" j lrt(~H(L) j>M)) -+ fj' (Cpnj lrt+l (TH(L )j,M)) 
, , 

which we can composE:J with the p,eriodicity isomorphism 

fj. (Cp"; lrt+ltTH(L);MJ) ~ fjB+2 (Cp"; lrt+l (TH(L)j M)) 

to get lIl:aps [81
] # t 1'/#. 

. . . 

P.ropositi!>n 4.1.14 . .In the spectral, sequenct:, E;,. (liiI(Cp " , TH(L)); M), 
the cP-dliIerential 

d2,: ir (Cp" j lrt(TH(L)j M)) -+ fj.+2' (Cpu j lrt(TH(L); M)} 

is equal t~ [81]'#, provided 7], acts trivially~n 11'. (TH(L)j M): o 

This .is. proved in [H2] when Cpu 'is rep.laced by> 8 1,. and the above can be 
deduced from this ' case, The assumption that 1'/#' be zero is satisfied, for the 
linear' FSP's L '::: .A associated with a,ring, because TH(A) ,..,. THm{A) is a 
prodUct of. Eilenberg-MacLane spectra, ' 

We have left to consider the homotopy limit problem, i.e, the homotopical 
behavior of 

l' n,: TH(L)opU-l -+ liiI (Cpn, TH(L)) . 

In the, special. case of L = Id'it is a homotopy equivalence, but this is too 
much. to expect In ,general. The domain is. 'a,. (-I)-connected spectrum" but' 
this is .ofteIL false for th,ll right hand side\ 'e:g. whep. L,=JFp 'as we Bh~ Bee in 
sect. 4.2 below. The best one, could hope for would be that 11';(1' n), and hence 
al~o ir;(r n)) be isomorphisms for t > O. This unfortunately is also not true. 
For. the FSP'.A associateil with truncated polynomial algebras A;:: k[t]/(tn ), 

the two sides 'have different homot0p.Y' groups iir' all even dimensions; this. is 
an eaSy consequence of sect. '5'.2',- ';rhe only completely general theorem 'is' the 
follOwing resuft of S. 'Tsa1idis~ 

Theorem 4.1.15 •. ([TD .suppose 

11'; (1'1)':' '7r;(TH(L); IF;'.) +:"1 (Iiir( Cp , 1'H(L)); ,IFp) 

L 
I 
,I 
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is an isomorphism for i > i o. 'Then the same is true for 7Ti(f' n) for all n :::: 1. 
. I _ . . 0 

Tsalidis' .prooris similar to the induction step from Cj, to Cp~ in the proof 
of the affirmed Segal conjecture. 

Calculations from [I:i21 show' that if 7Ti(f'1; lFp ) is an isomorphism in. non': 
negative degrees for a ring A then the .same, is the.lcase for the polynomial 
algebra Alt] and more generally for any smoa.th A-algebra. In [EMl] and 
in sect. 5.4. below the assumption of theorem 4.1.15' is estal>lished for .A = 
W(lFp')' with io = O. OptimisticaIiy one would hope for 

ConJecture 4.1-.16. FoI' a regular ring A, 
., 

is an isomorphism when. i > 0 .. 

Note that the statement is equivalent to the assertion that 

becomes a nomotopy equivale!lce afteF p-adic completion, with (O,~) indi-
cating (-i)-connected cover.. . 

4.2 The spectrum TC(lFp). 

This section illustrates sect. 4.1 by compietely determinjng tge.· spectra 
TH(lFp)Opn and TC(JFp '): The 'calculatio~ was originally carried ol.ltjn [MJr 
.but [HM], sect. 4.1-'3' i~ a better place to look for additfonal details. . . 

For any ring, THH(A) is the realization·.of a. si~plicial abelian grou'p, cf. 
sect. 3.2, so its 'homotopy type is determined by its homotopy groups: 

00 . , 00 

TH(A),,,, V ~nH(7TnTiI(A)) ~ II EnH(7TnTH(A)) (4.2.1) 
n=O n=O 

whe~e H(-) is the Eilenberg-MacLane spectrum with 7ToH.(B) - B and 
7TiH(B) = 0 for i ;6 '0, and. En is tpe suspension. functor. 

One may ffiter TH(A) by skeletons, since it is the realization of a simplicial 
construction.,. This .leads to. a l1pectral sequence; . 

(4.2.2) 
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with AA = H.(H(A);IFp ). This spectral sequence was used by Bi:ikstedt to 
calculate TH(IFp). I refer the reader to [BI] or [liM], sect. 4.2 for details. 
Different calculational methods can be found in [Br) or [FLS). 

The O-skeleton of TH(A) is the Eilenberg-MacLane sp"ectrum H(A), and 
one may use the Sl-action to get the map 

a: S~ /\ HA --l- S~ /\ TH(A) --l- TH(A). (4.2.3) 

For A = lFp we have TO E 7T1(HIFp;IFp) and can consider a.([Sl]/\ ';:0) E 

7T2(TH(IFp); lFp), where [Sl] E 7Tf(S~) was defined in the previous section. 

Theorem 4.2.4. ([BI), [Br)). The reduction 

is an isomorphism, and 

the polynomial algebra on u of degree 2 with redp(u) = a •. ([Sl]/\ TO), 0 

Combined with (4.1.11) we can explicate the E2-terms of the spectral 

sequence ET (Cp' ; M) = ET (I8r( Cp" T(IFp)); M) for M = lFp, Zp to be 

E2(Cp.; lFp) = EFp {un} @ SFp {t, t-1
} @EFp{etJ i8I SFp {a} 

E2(Cp.; Zp) = EFp {Un} @SFp{t,C1} @SF.{a} 

except if p = 2 and n = 1 where the first two terms are replaced by 
S{U1,Ul1}. The modp Bockstein operator maps e1ul to u l for 12: O. For 
p odd, ET (Cp.; IFp) is a spectral seq~ence of algebras. If p = 2 there is the 
usual trouble with products in 7T. (T; IF2 Hmt in all cases, Er (Cp' ; IFp) is an 
algebra 'over Er(cp.; Zp). 

Lemma 4.2.5. The non-zero dilIerentials in Er(cp.; lFp) are generated from 
d?el = ta in the module structure over Er(cp.; Zp). In particular 

7T. (I8r( Cp" TH(lFp)); IFp) ::: EFp {Un} i8I SFp {t, C 1
}. p odd or n > I 

7T. (I8r(C2 • TH(IF2 ));IF2 ) ::: SF,{U1,u11} 

with deg(t) = -2, degun = -1. 
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Proof. Since el = o-.(TO), TO E 71"1 (HlFpjlFp) and redp(o-) = (1.([Sl]/\ TO) we 
have in the notation of proposition 4.1.14, 

and hence [Sl]#(e1u l ) = 0-
'
+1. The cr-differential then follow from (4.1.14), 

and a routine cohomology calculation gives 

(with u~ = t if p = 2 and n = 1). For degree reasons there can be no 
further differentials. For p odd (and p = 2, n = 1) this is a free commutative 
algebra in the graded sense, and the stated value of the modp homotopy is 
immediate. If p - 2 and n > 1 one uses that the m'odp Bockstein on Un is 
trivial. 0 

For n = I, the modp Bockstein relation ,B(ud = t gives that 

(with t = ui if p = 2). We next check the assumption of theorem 4.1.15. 

Lenuna 4.2.6. The homomorphism 

is an isomorphism when {~ O. 

Proof. Since t 1: TH(lFp) -+ !iiI (Cp , TH(lFp)) is ' multiplicative, it suffices to 
see that 71"2 (t 1 j IFp) is an isomorphism. 

Continuing the colibration diagram of (4.1.8), n = I, to the right, gives a 
homotopy coinmutative square of Sl-spectra 

TH(lFp) 8 Ep~p (TH(lFp)hCp) EN l Ep~ TH(lFp)Cp 
p 

1 f'. lid 1 r. 
# - 8" 

l Ep~p (TH(lFp)hCp) 
EN" Ep~ TH(lFp )hCp Pc 18l (Cp , TH(lFp)) l p p 

Here as usual p~ indicates that the Sl/Cp-spectra are to be considered as 
p 

Sl-spectra under the p'th root isomorphism Sl -+ sl/ep • 

Now 0- = [Sl]#(TO), so we are done if we can show that eo = 7I"i(8j lFp)(TO) 
is non-zero in 71"0 (TH(lFp)hCpjIFp), and [Sl]#(eo) # O. 
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The spectral sequence Er (TH(lFp)j Zp) gives .'rroTH(lFp) = Z ip, and by 
(2.5.8) 7roTH(lFp)Cp = Z lp2. The fundamental colibration thus induces the 
exact non-split sequence 

so 7ro(NjlFp) = 0, and 7r1(8jlFp) must be surjective. Finally, the inclusion 

-. 

coming from S1 C ES1 induces a monomorphism on 11';( -j IFp) for i = 0,1. 
The homeomorphism 

map the diagonal S1-structure in the domain to the extended S1-st.ructure 
in the range. Hence 

must be injective. o 

The spectrum TH(lFp) is p-complete, and inductive use of the fundamental 
colibration (2.4.6) implies the same for TH(lFp)Cpn for each n. Thus 

Proposition 4.2.7. For n 2:: 1, 

witb degO'n = 2. Moreover, F(O'n) = O'n-1 and R(O'n) = AnPO'n-1 witb 
An E Zip" a unit. 

Proof. Theorem 4.1.15 shows that 

is an isomorphism in non-negative degrees. For the target, the integral spec­
tral sequence ftr (Cpn j Zp) has 
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The elements t and er are infinite cycles. Indeed the inclusion of 8 1 fixed sets 
into Cpn fixed sets gives a map 

d. (4.1.9), and an induced map of spectral sequence. The E 2 -term of the 
range is 

so is concentrated in even total degrees. Thus E2 = Eoo. On the other hand 
it injects into the E2 above. Thus tkerl are all infinite cycles. 

We claim that Un survives to E 2n+l (Cpn ; Zp) and that cPn+1 (un) = 
tn+l ern. Indeed, the first non-trivial differential on Un must be of the form 

d2r+1 (un ) = tr+lerr 

for some r. Given this it is easy to solve the spectral sequence. In particular 

E°'lroE (Cpn; TH(lFp)) = ~r 

generated by 1, ter, ... ,(tery-l, (cPr+1(unt-l) - (terY). Since 
'lroE (Cpn, TH(lFp)) ~ 'lroTH(lFp)cpn- 1 is Z Ipn by (2.5.8), we conclude that 
r = n. Moreover, 

E01T2k E (Cpn, TH(lF'p)) = ~n 

generated by erk, erk+lt, ... ,erk+ntn, and 1T2k+lE (Cpn, TH(lFp)) = O. Since 

in addition 1T2k (E(Cpn, TH(lF'p)); IFp) is a single copy of IF'p we must have 

for all k ~ O. One more application of theorem 4.1.15 gives the stated 
homotopy groups. The inclusion F corresponds under f' to the inclusion 

so 'lr2k(Fh) must be surjective, and we can pick the generator to satisfy 

F(ern) = ern-I· 
Finally the exact sequence 

'lr2T(lFp)Cpn ~ 'lr2T(lFp)Cpn-t ~ 'lrlT(lFp)hCpn ~ 'ltlT(lFp)Cpn, 

with 'lrlT(lFp)Cpn = 0 and 1TIT(lFp)hCpn = Zip, yields the stated value of R. 
o 

Corollary 4.2.8. TC(lFp) ~ HZp V E-1 HZp 
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Proof. We use the colibration sequence of sect. · 2.~, 

The previous proposition yields 
-

1TkTR(lFp,p) = lim 1TkTH(lFpFpn = {o 
. +;- ZI' 

so that 

for k > 0 

fork=O 

1ToTC(lFp,p) = Zp, 1T_1TC(lFp,p) = Zp 

--

and 1Tk TC(lFp , p) = 0 otherwise. Finally, TC(lFp) is p-complete and by theo­
rem 2.5.5 equal to TC(lFp ,p). 0 

4.3 The absolute theprem: linear case~ 

This. section sketches the proof of theorem L3 of the introduction. It is joint 
work with L. Hesselholt, and further details can be found in [HM), sect: 4.5, 
5.1, 5.2 and [HMJ, appendix E-

We fix a perfect field k of positive characteristic p, and consider algebras 
A over the (p-typical) Witt vectors W(k) which are finitely generated as 
modules; for short: finite W(k)-algebras. If k is finite the assumption is that 
A be a finite Zp-algebra. We use the notation 

and want to prove 

J(i(A; Zp) = 1Ti(J(A)~) 

TCi(A; Zp) = 1Ti(TC(A)~) 

Theorem 4.3.1. For finite W(ky-algebras, the cyclotomic trace I 

is an isomorphism, for i ~ O. 

The ring of Witt vectors W(k) is a P.I.D and is' p-adically complete. Since 
A is finite over W(k), 

A = lim A/pnA, 
+--

and we can introduce the continuous version of the functors: 
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There are exact sequences 

cf. [BK], p. 249 and p. 299. 
The proof of theorem 4.3.1 is broken down 4lto three statements to be 

considered separately below: 

I 0< 

(j) J{i(A/pA; Zp) -=t TCi(A/pA; Zp), i?:O 

(ii) e:! top TCi(A; Zp) --+ TCi (A; Zp), i?:O 

(iii) e! top J{i(A; Z p) --+ J{i (A; Zp), i>O 

Indeed, given (i), McCarthy's.theorem 3.4.12 show that 

is an isomorphism for all i ?: 0, <md hence by the short exact sequences above 
that 

trc:J{iOP(A;Zp)~TC:OP(A;Zp), i?: o. 
Use of (ii) <md (iii) completes the proof . 

. I begin with (i). For A = W(!.), A/pA = k. If k is finite then J{(k)~ ~ 
HZp by [Q3]. For general perfect fields the same holds by [Krl. We must 
therefore first extend Corollary 4.2.8 to general perfect fields. The result we 
need is · 

Theorem 4.3.2. For a perfect field of characteristic p > 0, there is a homo­
topy equivalence TR(k,p) ~ HW(k) 

Given this, we c<m calculate TC(k,p) from the cofibration 

TC(k,p) -'-t TR(k,p) ~ TR(k,p), 

since by theorem 2.5.7 we know that 

TroF: Tro(TR(k,p); IFp ) -l- Tro(TR(k,p); Zp) 

induces the Frobenius homomorphism of Witt vectors. Moreover 

ker(F - id : W(k) -t W(k» = W(kF) 
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and kF = IFp so W(kF) = Zp. Thus theorem 4.3.2 giv.es 

i~O 

i=O TCi(kj Zp) = {ip , . . .' 

'. ' .: cok (F - id: W(/.) -+ W(k» , i" = -1 

and hence Ki(kj Zp) e! TCi(kj Zp) fat i ~O . . 

(4.3.3) 

Proof' of 4.3.2:. For a perfect field of positive characteristic the usual 
Hochschild homology groups HH.(k) vanish in higher degrees, and HHo(lC) = 
k. It then follows from the spectral sequenCEt (4.2.2) that 

7r.(:rH(k» = k@7r.TH(lFp)' 

The cofibration sequence . 

TH(k)hGpn 3..t TH(kfpn ~ TH(k)Gpn-l 

was derived from talting Cpn. fixed points, so:TH(k)Gpn acts on it. In particu­
lar, the homotopy groups are 7roTH(k)Gpn -modules, and by (2.5.8) Wn+1 (k)­
modules. The inclusion IFp C k induces Wn+l(k)-homomorphisms: 

(i) WnH(k) ® 7riTH(lFp)hGpn -+ 7riTH(k)"Gpn . 

(ii) Wn*i (k) @7riTHQFp)Gpn -+ 7riTH(k)opri 

(iii) Wn+l(k) ® 7riTH(lFp)Gpn-l -+ 1TiTH(k)Gpn-l 

Now 1TiT;H(lFpfpn-l = Zipn and Wn+l(k) ® Zipn ~ Wn(k), so the do~ain 
of (iii) is Wn(k) ® 1TiTH(lFp)Gpn-l. We may inductively asstim~ the .third 

. arrow to be an isomorphism. Thus we are done by the 5-1emma, if we can 
show that ~i) is an isomor'phism. This follows f):om. the spectral sequence 

H. (Cpn j 1T. TH(k» =? 1T. TH(k)hGpn. . 

Indeed" it is ~ spectral sequence of Wn+1(k)-modules when the Wn+l(k)­
structure on the E2-term is via Fn.: Wn+1(lt) -+ W1(k}. k and 

Wn+1 (k] ® (Fn)#1TiTH(lFp) e! (Fn)#1T.(TH(k». 

We .conclude that the homomorphisms in (i), (ii) and (iii) are isomorphisms. 
Now (4.2.8) gives 

(4.3.4) 
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as the limit system is obviously Mittag-Leffier, cf. [BK1, p. 256. 0 

Theorem 4.3.5. If A is a semi-!limple "-algebra then J(;(A; Zp) ::: 
TC;(A; Zp) for i ~ O. 

Proof. Both functors preserve products so it suffices "to do the case of a 
simple algebra. If A -:- Mn(k) then. we are done by Morita invariance: 

and theorem 4.3.2. In general, we only know that 

for a Galois extension k' with Ik' : kl prime to p. (The existence of such a k' 
is a consequence oUhe lack of p-torsion in the.Brauer group Br(k». Finally, 
the horizontal co~positions.in the diagram. . . 

J(;(A;Zp) ;. 
) I~;(A ®k /;'; Zp) 

.. , 
l J(;(A;Zp) 

1 1 1 
TC;,(A;Zp) 

;. 
) TC;(A®k; Zp) 

;' 
) TC;(A;Zp) 

are is~morphisms since Ik' : kl is .8, unit of..Zp , and the middle arrow is .. an 
isomorphism. (Here iO is the composition of the functors applied to A®k /;' -+ 
Enq~(A ®k k') and' Morita: invariance). · ' 0 

Corollary 4.3.6. If A satisfies the assumption of' theorem 4.3.1, then 
trc: K:oP(A; Zp) -+ TC~OP(A; Z,p} is an isom?rphism for i > 0; 

Proof. We are reduced to check that 

trc: J(;(A!pA; Zp) -+ TC;(A/pA; Zp) 

is an ispmorphism. But A/ pA is artenian, so .its radical J .is nilpotent. Thus 
by theorem '3.4.1 it is enough that the cyclotomic trace induce isomorphism 
for the algebra (A/pA)/ J, whlch is semi-simple. Apply theorem 4.3.5. 0 

Theorem 4.3 .. 7. In the situation of theorem 4.3.1, the natural map 

TC;(AjZp) -+ TC;OP(Aj Zp) 

is ari ' isomorphism. 
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Proof. It is enough to prove the statement with IFp coefficients: a map of 
p-complete spaces is a homotopy equivalence if the induced homomorphism 
on modp homotopy groups is an isomorphism. 

The functor which to A associates the Eilenberg-MacLane spectrum HA 
is continuous, 'II'iHA :: lim'll'iHAlpnA when A = limAlpnA. The same is 

. t-- t--
true for the T fold smash product, H A (T) = H A /\ ... /\ H A, 

'II'.(H A(r)i IFp) ~ 11'. (hp~mH(AlpnA)(r) j IFp) . 

This is an easy calculation based on the isomorphism 

'II'.(H A(r)i IFp) ~ H.(HA(r-l)i k) ffi H.-I (H A(T-I)i k) 

cf. [HMJ, lemma 5.1. It implies that the k-simplic'es 

THHk(A); ~ h~m THHk(A);. 

The simplicial group model THH~ for TI-IH., cf. sect. 2.4, is a Kan complex, 
and for such homotopy inverse limits commutes with realizations, so we get 

THH(A); ~ h~ THH(AlpnA);. 

The same relation the holds for the spectra TH(A) and TH(AlpnA). 
Finally inductive use of the fundamental cofibration sequence shows that 

the fixed sets (TH(A)Cpn); are continuous, and since TC(A); is a homotopy 
inverse limit construction, TC(A); must be continuous. 0 

Theorem 4.3.8. For the rings in theorem 4.3.1, 

~ top J(i(Ai Zp) ~ 1(i (Ai Zp) 

Proof. Let F be the field of fractions of W(k), and let E = A I8IW(k) F with 
radical J(E). Then J = An J(E) is a nilpotent ideal of A and it suffices, 
again the theorem 3.4.1, to show the theorem for AI J. But 

AI J I8IW(k) F = EI J(E) 

is semi-simple, and for such algebras results 'of Gabber, Suslin and Suslin­
Yufryalwv give the result, cf. [HMJ, appendix B for more details. 0 

Theorem 4.3.1 is probably the optimal result for J(-theory calculations by 
traces. One would have liked to have a similar isomorphism for other rings, 
and in particular for the ring of rational integers. But 
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at least when A is finite over Z. Indeed, this holds for the functor A t-+ (HA)~ 
and hence adapting the argument of theorem 4.3.7 also for TC(A)~. But 1(­

theory does not have this property. One would also like to drop the finiteness 
assumption on A, and could wonder what would happen for A = k[[X)]. For 
such a ring the arguments proving theorem 4.3.7 and theorem 4.3.8 break 
down. In the first case for the simple reason that the r fold tensor power of 
A is not k[[X1" .. ,Xr ]] - one needs completed tensor products. 

4.4 The absolute theorem: group-like case. 

This section examines TC(L) for a certain class of FSP's which include the 
G of (2.3.4) . The results are mostly a reformulation of parts of [BHM]. , 

Depnition 4.4.1. An FSP L is called group-like if the associated cyclotomic 
spectrum T(L) satisfies the following condition: 
For each finite cyclic group C there is an equivariant map of spectra 

natural with respect to inclusions C1 C C2 , such that ac splits the natural 
map Sc: T(L)C ~ ;pCT(L) , Sc 0 ac = id. 

For group-like L, the fundamental cofibration 

TH(L)/,Crft -t TH(L)cpft ~ TH(LfpN-' 

is split by the map 

Sn-1: TH(Lfpft - 1 ~ TH(L)cpft 

coming from the identification of p~p ;pcpT(L) with T(L), and 

RSn- 1 = id, FSn- 1 ~ Sn-2F (n 2: 2). (4.4.2) 

We recall from (4.1.5) that the fiber of R was identified as TH(L)hGpft by the 
transfer map 

rCpft : TH(L)hCpft = TH(L) I\cpft ES~ ~ (T(L) 1\ ES~(pft . 

Naturality of transfers shows that 
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is homotopy commutative with Tn being a suitablE! transfer map. 
. -

Proposition 4.4.3. For a group-Wee FSP there is a homotopy Cartesian 
diagram 

TC(L)~ ( h~~TH(L)'C •• ) : 
. 

1 Iproj 
':. 

TH(L)~ FSo-11 TH(L)~ 

Proof. The splittings of (4.4.2) give equivalences 

n 

V TH(L)ltCpi ~ TH(L)Cpn 
i=O 

such that on the left hand side R corresponds to projection. Hence 

00 

TR(L,p) ~ II TH(L)hCpi' 
i=O 

Under this equivalence F(XO,X1, ... ) = (FX1 + FSxo,Fx2, ... ), and the 
diagram 

TH(L) I rr:o TH(L)hCpi 

1 FSo - id 1 F-id 

TH(L) I rr:o TH(L)hCpi 

gives the colibration 

---t rr:1 TH(L)ltCpi 

IF-id 

---tl rr:1 TH(L)I,Cpi 

hF(FSo - id)~ -t TC(L,p)~ -t holim (TH(L)"c ,)" 
{-- p p 

Tn 

upon taldng vertical homotopy libers. Apply theorem 2.5.5. o 

Lemri:J.a 4.4.4. For the identity FSP, T(Id) ~C~ ESt (SO), where the right­
hand side is the equivariant sphere spectrum. 

Proof. Recall from sect. 2.1 the subdivision S1-homeomorphism 

. IsdcTHH.(Lj V)I-Et ITHH.(Lj n l, 
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where C is a finite cyclic group of order c. 
The space of O-simplices in sdeTHH.(Idj V) is equal to THHe_ 1 (Idj V) 

and there is a natural C-map 

which is a C-homotopy equivalence onto the space of O-simplices. The sim­
plicial structure maps are C-homotopy equivalences, so the topological re­
alization is C-homotopy equivalent to the space of O-simplices, cf. sect. 2.2. 
Hence ie is a C-homotopy equivalence. The diagram 

IsdeTHH.(LjV)1 __ D_-., ITRH.(LjV)1 

~/ 
SV 

is commutative. It follows that the Sl-map 

induced by i is a C-homotopy equivalence for each finite C. o 

For any FSP L and monoid G we may define a new FSP by 

L[G)(X) = L(X) 1\ G+. (4.4.5) 

If L = Id this is precisely G of (2.3.4). If L = A for ,a commutative ring A, 
the map A[G) -t A[Gj is a stable equivalence, so there are equivalences 

K(A[G]) ~ K(A[G]), TC(A[G]) ~ TC(A[G]) 
I 

for every discrete group. When G is a group-like topological monoid, the 
cyclic classifying space Bey G = IN;Y (G) I was identified in sect. 2.1 to be the 
free loop space ABG of the ordinary classifying space BG. Moreover, if 8e 
is the composite homeomorphism 

then there is a commutative diagram ([BRM], proposition 2.5) 

BCYG 5,,) (BcYG)G 

1 1 (4.4.6) 

ABG Ac) (ABG)G, Lle(..\)(z) = ..\(ze) 
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Given any cyclotomic spectrum T and any space.X, the spectrum smash 
product T /\ AX+ is again cyclotomic. Indeed, there is 'a canonical map from 
right to left: 

<liC (T /\ AX+) ~ <licT /\ (AX)~ 

which is an S1IC-equivalence, and 

TC /\ .6.~1 : p~<licT /\ p~AXf- -+ T /\ AX+ 

defines the required equivalence, cf. sect. 2.4. 

Lemma 4.4.7. There is an S1-equivaIence of 
T(L[G]) ~S' T(L) /\ ABG+, provided G is group-like. 

cyclotomic spectra, 

Proof. Consider the bi-simplicial space X.,.(Gj V) with 

Xk,l(Gj V) = h~m F (sxo /\ .... /\ SXk,F(SXO) /\ .. . 1\ F(SXk) 1\ G~ 1\ SV). 
xEIA+l 

Cyclic permutation of factors make it a bi-cyclic space. The map 

Xk,d1j V) 1\ G~ -+ Xk,l(Gj V) (1) 

becomes highly connected as an equivariant map as V runs through the S1_ 
universe U (one needs dim VC -+ 00 for all.C ~ S1). 

The diagonal complex 6X.,.(G;lf) is precisely THH.(L[GJjV) with re­
alization THH(L[Glj V). On the other hand, if we instead first realize the 
I-direction and then the k-direction and use (1), then we get a highly con­
nected Sl-map 

THH(Lj V) /\ ABG+ -+ THH(L[GJj V). 

Use 'of subdivision and (4.4.6) shows that the corresponding map on C-fixed 
sets become highly connected when V runs over U, so the two prespectra are 
equivalent. Moreover, the corresponding cyclotomic structure maps agree. 
Apply sp.ectrification. 0 

Corollary 4.4.8. The FSP G is group-like if Gis. 

Proof. The previous result tells us that T(G) ~C= "ESi (ABG+). But the 
suspension spectrum satisfies the requirement of (4.4.1). This is a conse­
quence of the tom Dieck-Segal splitting, valid for any based Sl-space X: 

"ESi(X)c ~Sl/C V "ESi/cEs1/c(CIH)+I\C/HXH 
m;c 

<lic ("ESi (X)) ~ "ES: /C (Xc) 
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Here Ea(r) is the G-equivariant model of Er. The map So is the projection 
onto the factor C = H and Ua is the obvious inclusion, cf. ltD], [LMS]. D 

The next theorem is similar to 1ernma 5.15 of [BHM], but avoids the 
assumption that T has finite p-type. It contradicts the "counter-example" 
presented in [BHM1, p. 498-499, which is wrong. The mistake occurs in 
the identification of (t:;:-l)r on p. 499. The mistake was pointed out by 
T . Goodwillie, and the proof below is due to him. 

Lenuna 4.4.9: For any equivariant Sl-spectrum T, the Sl-transfer induces 
an isomorphism 

Proof. The skeletons of ES1 are the spheres S2k-l E If} with the standard 
action of Sl. There is the cofibration diagram 

Sl I" (S!k-I "s' T) --+. S'" (S!k+' "s' T) --+ S' ,,(S2k+1 /S2k-1 "S' T) 

lw lw lw 
S!k-I "Opn T -----+. S!k+l "Opn T ----+. S2k+1 / S2k-1 "Opn T 

(1) 

Now S2k+1 / S2k-1 ~SI S~" S2k; the Sl-action on the right hand side is the 
diagonal action with S2k = ~(S2k-1). However for any Sl-space or spectrum 
x, 

S~ /\ X ~SI S~ "lXI, (z, x) f-t (z, z-1x ) 

where the bars indicate X with no S1-action. In particular, 

S~ /\ S2k /\ T ~S' S~ /\ IS2k /\ TI 

and the upper right hand term in (1) may be identified as 

S1 /\ S2k+1/S2k- 1 /\5' T ~ S1 /\ IS2k /\ TI. 

Moreover, the right-hand vertical map in (1) can be identified as the smash 
product of the transfer 

T: S1 /\ ~=(S~/S1) ~ ~=(S~/Cpn) 

with IS2k 1\ TI. The transfers 

Tn: ~=(S~/Cpn-l) ~ ~=(SVCpn) 

(2) 
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of the Op-covering 8 1/Opn_l -+ 81/Opn are kno~n as follows. If we identify 
81/Opn with 8 1 (via pCpn), and use the splitting -

_ induced by the projections, then Tn becomes the matrix 

_ (id 0) Tn -
1) p 

~ . (3) , 

with 1) E 7f1(L;CXl(SO)) = 7l/2 the non-trivial element. This can be seen for 
example by using w of (2.4.2). Since the transfers in the limit system 

trf : S2k+1 / S2k-1 A ' T -+ S2k+l/S2k-1 A T n Gpn _ 1 CpR 

can be identified with Tn AIS2k A TI, 

holim S2k+l/S2k-1 'A T :::: holim L;CXl(S1 ) AIS2k A TI ~ Cpn_l ~ + , 
trfn Tn 

and we obtain from (3) a cofibration 

S1 A S2k AT -+ h~m L;CXl (S~) A IS2k A ~I -+ h~m S2k AT. 
p 

We can calculate the modp homotopy groups of the right hand term by the 
exact sequence 

o -t lim (1)7r'_I(S2k AT; lFp) -t 7r,(holim(S2k AT); IFp) -t lim 7r,(S2k AT; IFp) -t O. 
+-- <- ... 

The outer terms vanish, so in conclusion 

7fi(S1 AS2k AT;IFp) ~ 7fi(h~mS2k+1/S2k-1 ACpn T;lFp), 
trfn 

and comparing with (2) it follows that the right-hand vertical maps in (1) 
induces an isomorphism 

We can finally make the obvious induction over k. o 

Remark 4.4.10. The lemma can be restated as a homotopy equivalence of 
p-completed spaces, 
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Corollary 4.4.11. For a group-lilce FSP, there is a homotopy Cartesian 
diagram of (non-equivariant) spectra 

TH(L)~ 

----}) (ETH(L)"Sl); 

FSo-id 
) 

1 trf 51 

TH(L)~ 

Moreover, if L = G for a group-lilce monoid, then TH(L) = E=(ABG+) and 
FSo = E=(Llp+) where Llp('\)(z) = >.(zP). 

Proof. Only the last point need any explanation. It comes from the Segal­
tom Dieck splitting used in the proof of corollary 4.4.8: 

ESl (ABG+fp ~ EOO(ABGhGp+) V EOO(ABG;P) 

::: EOO(ABGhGp+) V E=(ABG+) 

where the last homeomorphism is id V E+'(Ll;l). The map F becomes the 
sum of the transfer 

and the inclusion 

and 
So: EOO(ABG+) -+ E+,(ABGhGp) V L:OO(LlBG~P) 

is the inclusion in the second factor via E+,(ll.p) o 

Recall for an FSP L that we write 7roL for the 8.'3sociated ring 7roL = 
Iim7rnL(Sn) . 
---} 

Theorem 4.4.12. Suppose L is an FSP so that 7roL is a Enite W(k)-algebra 
for some perfect Eeld k of cllaracteristic p. Then 

trc: J((L)~ -+ TC(L)~ 

is a ,1lOmotopy equivalence. 

Proof. Dundas' theorem 3.5.1 gives the homotopy Cartesian square 

J((L)~ TC(L)~ 

L- 1 
J((7roL)~ 

and the bottom arrow is a homotopy equivalence by theorem 4.3.1. 0 



282 Algebraic [(-theory and traces 

4.5 The K-theory assembly map. 

For a discrete group G and a co=utative ring R, GLn(R[G]) contains 
GLn(R) x G as a subgroup, namely as the tensor product of {n x n)-matrices 
over R and elements 9 E G considered as (1 x I)-matrices over R[G]. Taking 
classifying spaces gives a map 

BGLn(R) x BG -t BGLn(R[GJ). 

This induces a map of spectra 

aK: [(R) 1\ BG+ -t [(R[G]) 

usually called the assembly map. Indeed, one may either use Segal's r-space 
definition, May's operad version or Waldhausen's definition of [(A) to do 
the details, or one can use the device of ring suspensions as in the original 
source, [LI]. 

The study of aK has long been promoted by W. C. Hsiang, who e.g. in 
[Hs], conjectured that aK is a rational injection, provided R is regular and 
BG is a finite complex. The conjecture is often called the K-theory Novikov 
conjecture. The reason is that there is a similar assembly map in L-theory, 
initially constructed by F. Quinn, 

aL: L(R) 1\ BG+ -t L(R[G]) 

and (rational) injectivity of aL (for R = Z and BG a manifold) translates 
via the surgery exact sequence to Novikov's original conjecture about the 
homotopy invariance of the higher signatures. 

The definition of aK extends to the case of FSP's to give a map of spectra 

aK: K(L) 1\ BG+ -t [(L[G]). 

(Here G could be any group-like monoid, and thus BG any space. For L = Id 
the above becomes Waldhausen's assembly map A(*) 1\ X+ -t A(X)). The 
study of the assembly map when L = Id was the main motivation behind 
[BHM]. We can now present a somewhat easier proof of the main result from 
[BHM], thanks to Dundas' relative theorem 3.5.1. 

There is an obvious assembly map 

THH(L; V) 1\ ABG+ -t THH(L[G]; V) 

(cf. le=a 4.4.7) and hence via the inclusion 

BG -t ABG 
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an assembly map 

THH(Lj V) 1\ BG+ -t THH(L[G)j V) . 

This passes to an assembly map of cyclotomic spectra and induces 

aTe: TC(L) 1\ BG+ -t TC(L[G]) 

so that the diagram 

J«(L) I\BG+ aK 
) J«(L[G)) 

1 trci\\d 1 trc (4.5.1) 

TC(L) 1\ BG+ aTe) TC(L[G]) 

is commutative. 
For each FSP L, we can from its p-adic completion Lp, Lp(S) = L(S);. 

(It should be remembered that X::- 1\ Ypi\ is not p-completej but this causes 
no problems because we are always completing the functors on the outside, 
so there are no unpleasant surprises in THH(Lp); etc.) 

Theorem 4.5.2. For a discrete group G, tbe assembly map 

I 

becomes split injective after p-adic completion. 

Proof. We compose with the cyclotomic trace and consider 

(K(Idp ) 1\ BG+); aK ) J«(Idp[G]); 

1 1 
(TC(Idp) 1\ BG+); aTe) TC(Idp[G]); 

Now corollary 4.4.11 gives the homotopy Cartesian diagram 

TC(Idp[G)); (~(~Si (ABG+))hS 1 ); 

1 1 

(1) 

(2) 

upon using the obvious equivalence between TH(Idp); and TH(Id); together 
with lemma 4.4.4 and lemma 4.4.7. 

The component group 1fo(ABG) is the set of free homotopy classes of 
maps from the circle into BG, and hence equal to the conjugary classes of 



284 Algebraic J( -theory and traces 

elements in G. Let A[lJBG be the component of the identity element. There 
are Sl-equivariant maps -

The inclusion is a homotopy equivalence, but not an equivariant one. 
way, the weak statement is enough to ·ensure that 

is a homotopy equivalence, and since 

diagram (1) projects to the homotopy Cartesian diagram 

(TC(Idp ) 1\ BG+); ---+ L:(L:OO BS~ 1\ BG+)~ 

1 1 
Moreover, 

(3) 

Any-

~ 
.> 

is the identity, and thus aTe is split injective after p-adic completion. Now 
apply theorem 4.4.12 and diagram (1) to conclude the proof. 0 

Soule proved in [Sou] that 

(4.5.3) 

is an isomorphism provided the p-adic L-function Lp(1 + 2n,w-2n ) "# 0 (both 
groups are equal to Qp). This is certainly the case for regular primes and 
maybe always. Soule proved (4.5.3) by using the etale cohomology invariant. 
It was reproved in [BHM] by cyclotomic trace considerations. One can use 
(4.5.3) to translate theorem 4.5.2 into a rational statement, namely 

Theorem 4.5.4. ([BHMJ). lEG is a discrete group Eor which each Hi (BGj Z) 
is finitely generated, then the J( -theory assembly map 

induce an injection on rationa111Omotopy groups. 
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Proof. The linearization maps 

K(Id) -+ K(Z), K(Id[G]) -+ K(ZG) 

are rational equivalences, essentially because the homotopy groups of L!CXl(SO) 
are finite in positive degrees, cf. [WI]. Thus it suffices to show the statement 
for 

aJ(: J((Id) 1\ BG+ -+ K(Id[G)). 

We have 
K(Id[G]) -+ TC(Id[G]) -+ (TC(Id) 1\ BGp)~ 

and must show 

trc 1\ idBa: K(Id) 1\ BG+ -+ (TC(Id) 1\ BG+)~ 

is rational injective. This is the case because 

is rationally the same as K(Z)~ -+ K(Zp)~, and because we can choose p to 
be a regular prime and apply (4.5.3). 0 

Remark 4.5.5. It would be nice if the above argument could be extended 
to L-theory, and thus proving the original Novikov conjecture for the groups 
with finitely generated Eilenberg-MacLane homology. There is a variant of 
TC(R) , namely the topological Dihedral homology TD(R), which imitates 
the linear construction of [L2]. It is the fixed set of a suitable involution on 
TC(R), TD(R) = TC(R)z/2, and there is a map from Hermitian K-theory 
into TD(R), at least when 1/2 E R. The basic problem with this approach 
however, is that TD(R)~ -+ TD(R @ Zp)~ is again an equivalence (under 
suitable finiteness conditions on R). But in contrast to (4.5.3), £(Z) -+ £(Zp) 
is rationally trivial for all primes, so one cannot extend the K-theory proof 
directly. 

There might be a chance of pro ceding indirectly as follows. Let E be the 
maximal abelian extension of Q., and let A be the integers of E. If one could 
produce a signature type rationally injective map from £(Z[g]) to J((A[G]), 
or maybe into some completion A(G) of A[G], like the CO-aJgebra aSsociated 
with C[G], then one could study the J(-theory assembly map on A[G] (or 
A(G)) using the techniques above. . 

In this connection one should remember the theorems of Suslin that 
J((E)~ ~ J((IC)~ for the algebraic closure of E and that J((IC)~ ~ BU;'. 
The latter equivalence comes from the roots of unity: the map BSl -+ 
BGL1(C) -+ J((C) extends to n=s=(BS1) -+ J((C), and gives via the 
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splitting nOOSOO(BS1) ~ BY x. X the required,map ·from BU to K(C), I 
believe. . 

-. The same procedure gives a map from BU; -+ J((A)~ because JL(A) = 
Q/Z and B(Q/Z); '" (BSl);. . 

This remark represents years of discussions with W. C. Hsiang, 

. The main interest in the assemlJly map aJ( lie~ in its relationshjp to 
automorphism groups of marlifolds . . For a group-like· monoid, such as G = 

nx, J«Idl9D is Waldhausen's A(X) and in particular K(Id) = A(*),.so that 
the assembly map takes the form 

aA: At*) A x:+ -+ A(X). . 

Waldhausen defined the spectrum WhtoP(X) to be the coliber of aA . . 

For a manifold M, the space of topological pseudo isotopies ptoP(M) is 
defined. as, the space of homeomorphisms ·of Mn, x J which is the, identity on 
Mn x 0 U 8M 'x I. A celebrated' result of Waldhausen (W4] states that 

Moreover, the stability theorem of K. Igsa, [I] asserts that the map 

ptoP(M) -+ hol~ ptoP(M x, Dk) 

j's (dimM - 7)/3-connected, at least if Mis smoothable 

(4,5.6) 

Farell and Jones hail in [FJ] shown that for a negatively curved marlifold 
M, WhtoP (S1) determines WhtoP(M). Thus it would be of considerable inter­
est to determine Wh,toP(Sl) : Theorem 3.5.1" proposition 4.4.3 and corollary 
4.4.11 reduces this to the problem of studying the linearization map 

L(l) : 'TC(1) (S1 ,p); -+ TC(1) (Z[t, C 1];p); 

where 'TC(1) (-) is the coliber of aTe. Indeed, the K-theory assembly 
map S~ A K(Z) -+ K(Z[t, t,-l]) is an equivalence,. so the fiber of Lnl is 
WhtoP(Sl)~. See also remark 5.4.8 below. See [M] for more det!lils. 

5 Calculations in K-theory 

This chapter evaluates the higher K-groups Ki (Rj Z~) with p-adic coeffi­
cients in a nuniber of cases where the K-groups were not previously known. 
The rings w.e consider are all of the type where the absolute theorem of-'the 
previous chapter ,applies, and the functor weactuaily calculate is TC(R)~ . . 
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5.1 On the K-theory of group rings. 

Let A be a finite algebra over W(k), the Witt vectors of a finite field k of 
characteristic p. For a finite group G, the group 'ring A[G] is again finite, so 

By general induction theory, cf. [01] 

K(A[G])~ ~ holimK(A[rJ)~ +- . 

where r runs.over the hyper-elementary subgroups of G, that is, the sub­
groups of the form r = CN ~ P where Pap-group and (N,p) = 1. It 
follows that A[r] decomposes into a product oftwisted group rings Bt[P] for 
unramified extensions. B / A. . 

We here study' the case ·of an untwisted group-ring A[P]. In terms of 
explicit values our' rriain result is 

Theorem 5.1.1. For a perfect field k ·of characteristic p > 0, 
K2n_l(k[CpN]iZp) - Kl(k[CpN]iZp)EIln and K2n(k[CpN]iZp) = 0 when 
n> O. 

The K1-group on the left is the p-part of the units k[CpN] x which is easily 
calcula~ed, cf. theorem 5.1.16 below .. Note also that k[CpN Jlrad =, k, 'so that 
Ki(k[CpN]i Z,) = Ki(k; Z,) for (l,p) = 1. 

Our starting point is lemma 4.4.7, . 

/ T(A[P]) ~Sl T(A) A ABP+. 

Let X(P) denote .the conjugacy classes of elements in P. Then 7ro(ABP) . 
X(P), and the p'th power map'A: X(P) -+ X(P) has !:l,N X(P) = 1 when 
P has exponent? Define a filtration of X(P), 

{I} = Xo(P) c Xl(P) c ... c XN(P) = X(P), X,,(P) = {glgpk = I} 

and a corresponding filtration of A = ABP 

(5.1.2) 

where A" = ll-YEx.(p) A-yBP is t~e set of components corresponding to the 
listed conjugacy classes. We note (from [BRM]; sect. 7) that 

A-yBP ~ 'BCp(1'J 

the classifying space of the centralizer of 1'. 
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. We. are· interested in the Cpn-action on ·T(A[PJ). The'.p'th power map 

D..: A ~J AGp, C Amaps Ak homeomorphically int~-A~~l' so in (5.1:2), AN-
AN - I is the. free stratum, and : 

~ . , 
D.: Ak - Ak _ 1 -+ (Ak- l - Ak_2 )Gp 

. . -
is a homeomorphism for i < k. ~ N. Let TC(I) (A[G],p) denote the caliber 
of the assembly map from sect. 4.5, . 

.(.5.1.3) 

and write T p( X = T I\.X+. 

Proposition 5.1.4. One has . . 
. TC(I),(A[P],p) ~ holim (T(A) p( (AI - Ao»Gpn , 

+--
F 

where the limit runs' over inclusions of fixecf sets. 

Proof. In the proof we write B = BP. The inclusion i: B -+ A of I? into 
the constant loops induces a cofibration sequence of. cyclotomic spectra 

T(A) p( B -+ T(A) p( A -t T(A) 1\ AlB 

This gives a cofibration sequence oj .fixed sets" ane!.- hence the cofibr!l-tion 
sequence 

ho\im(T(A) I>< B)Gpn -+' TC(A[G],p) -+ hoJim:(T(A) A AI B)Gpn., 
. +-- . " . +-- . 

F,R. 1!'.R 

. N.'!w D. =..id on B, ·and since B has trivial Sl-action, 

holim(T(A) D( B)Gpn = (holimT(A)Gpn) D( B = TC(A,p) ' D( B .. 
+-- +-- . 

. F .R F.R 

It follows that 

(1) 

We. examine the right-hand side in two steps. First wEi evaluate the homotopy . 
limit over R and then 'we' use the colibration 

h~(T(A)AAI B)Gpn -+ h~(T(A)1\A1 B)Gpn ~ h~(T{A)/iAI B)Gpn . 
F.R R R 

(2) 
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We use the decomposition 

AlB = AolB V (AI - Ao)+ V·· · v(AN - AN-I)+ 

an~ the corr~sI>onding .decomposition 

N 

289 

(T(A) 1\ AI B)Cpn = (T(A) I\Aol B)Cpn V V (T(A) D< (Ak - Ak_l))Gp
!' • 

There are the' followingeMY consequences of the cyclotomic ' structure on 
T(A) ~ A, cf. lemma 4.4.7.; 

(3) 

a A 
(i) Ao p I B..9£A11 B = Aol B V (A~ - Ao)+ 

(ii) R: (T(A) 1\ AoIB)Opn -=+(T(A) 1\ Ao/B)ap~-l V (T(L) ~ (AI - Ao»op';-. 

(iii) R: (T(A) ~ (Ak - Ak_I»Opn -t (T(£) ~ (Ak+1 - Ak»Opn-., 1 ~ k < N 

(iv)' R: (T(A) ~ fAN - AN_~»O .. n ' -+ 0 

The' fundamental cofibrationapplied to T = T(A)./( AolE ·shows that 
(3,ii) is a homotopy equivalence. Indeed (T(A) I\.AolB}hcpn "" o since the 
inclusion of Bin Ao is a. non-equivariant 'homotopy equivalence. If we write 

N 

, Xn = V (T(A) I>«Ak - Ak_1))Gp,n ' 
k=2 

and consider the cofibration ,sequence of limit systems 

. . (.;rn, R) ~ (T(A) "AIEf;,n ,R) ~ (Yn,R) 

it follows from (3,ili-iv) that RN - I ; Xn ~ Xn-N+I is null-homotopic. Hence 
holimXn ~ 0, and ' . " . . 
+--

holim(T(A) " AI B)Cpn ~ holim Yn . 
+-- -r-

Inductive use of (3,ii) yields 

n-1 

Yn~: V (T(A) I>< .(AI - Ao))cp; 
i=O 

and that R ; Yn -'f Yn - { corresponds to the obVious projection. Therefore . . , . < . . 
, 00 

h~~Yn ~ IT (T(A) I>< (AI -;- Ao))Cp; 

I 
R ~o ' 
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Now it is easy to see that 

00 00 

F: II (T(A) I>( (AI - Ao))c., -t II (T(A) I>( (AI - Ao))c" 
i=O i=O 

sends (to,tr, . .. ) to (Ftl,Ft2,"') where on the right-hand side 

F: (T(A) I>( (AI - Ao))c,. -t (T(A) I>( (AI - Ao))C.'- l 

is just inclusion of fixed sets. Thus by (2), 

holim(T(A) II AI B)C.n ~ holim (T(A) I>( (AI - Ao))C.n 
~ ~ 
F,R F 

If P has exponent p then Al - Ao is a free Cpn space, so 

y 

" 

o 

(T(A) I>( (AI - Ao))C.n ~ T(A) I>(c._ (Ai - Ao) ~ (T(A) I>( (AI - Ao)hC.n 

and le=a 4.4.9 gives 

(5.1.5) 

For more general P, there is a spectral sequence 

El" = 7rk+I-1 ((TH(A) I>( (Ak -Ak-r))hS1jllp) =? 7r. (TC(I)(A[GJ;ll p)) 

which might be of use in some situations. In this connection, I note from [J], 
theorem B that the homology of the homotopy 3 1 orbit is closely related to 
cyclic homology, namely 

where C. (G) denotes the singular chain complexj for discrete G tIns is equiv­
alent to the group ring. Thus the EI-term above is a twisted version of 
certain subgroups of cyclic homology groups associated with the filtration 
(5.1.2). If one takes a Postnikov decomposition of TH(A) one obtains a sec­
ond spectral sequence which converges to the El-term and starts out with 
cyclic homology. 

For A = IIp with p odd one can in a range instead use theorem 4.4.11 
with L = Idp[PJ . Indeed, 

is (2p - 3)-connected. The same is then the case when one replaces TH( -) 
by TR( -), and it follows that 

TC(Idp[P]) -t TC(llp(P]) 



Ib Madsen 291 

is (2p - 4)-connected. One the other hand for a p-group 

Ap: ABP/BP -+ ABP/BP 

is nilpotent, so theorem 4.4.11 yields the homotopy Cartesian square 

TC(Idp[PJ) --+1 ~oo (~+(ABPhS')) 

~ Itrrs , 

This gives the exact sequence 

(5.1.6) 

exact for n ~ 2p - 4, cf. conjecture 0.1 from [02]. I leave for the reader to 
wonder about p = 2. 

I now specialize to P = CpN, the cyclic group of order N, where one can 
be more explicit. 

The components of A = ABCpN are indexed by CpN, and are denoted 
Au, 9 E CpN. Two elements 91, 92 of the same order have Sl-homeomorphic 
components since there is an automorphism ¢ E Aut(CpN) with ¢(91) = 92 

ow 
which induces ¢: Au, -=-+ Ag,. Moreover, for each component corresponding 
to a non-generator, one has the Sl-homeomorphism 

(5.1.7) 

induced by the p'th power map /::,.: A" --+ A~p. 

Lemma 5.1.8. For any cyclotomic spectrum T and k ;:: 1 there is a calibra­
tion sequence of spectra 

p-ll-1 
(p~ ,Tcp' ~ A;fr '-' -+ (T ~ Aup' )cp• -+ V V (T ~ Aup; )cp._'+;. 

p . . 
3=1 

Proof. The l'th iterate/::,.I : Ag -+ Au" embeds Ag into one component of 

A cp
,' , and /::,.1 (Ag) is (non-equivariantly) equivalent to the ambient space A .... r 9 

The colibration of the lemma is induced from 
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upon applying the functor p~ (T II (- ))Oph. Si!1ce ~1(Ag) is fixed under p. -
Cp " 

p~ (T ~ ~1(Ag))op' ~S' p~ TOp' ~ Ag. 
pi pI 

We use (2.4.3) to calculate the coliher. Indeed, (T II A p' / ~1(Ag)) ~ 0 
g hO. 

p 

so that 

Each of the p - 1 wedge terms are equivalent to (T ~ A p'_' )op. _' , and we 
. 9 

can iterate. 0 

The point of the lemma is that the component Agp' has been replaced by 
the simpler components Ag, ... , Agp'-" simpler w.r.t . the Cph-action. For 
example, the action of Cp• on Ag is free when 9 is a generator of CpN. For 
every equivariant SI-spectrum T, 

(i) 

(ti) 

(ill) 

(2:ThS'); ~ (hplim ThOpn); 

(ThS'); ~ (h~m ThOpn); 

• 1 f\ • f\ 
IIll(S ,T)p ~ h~m IIll(Cpn, T)p 

(5.1.9) 

The first equivalence is lemma 4.4.9, the second is an easy consequence of the 
definitions, and is just an equivariant version of the relation h~mBCpn ~ 

(CPOO);. The third equivalence follows by comparing the norm fibration for 
Cpn and SI, cf. remark 4.1.9. We consider the convergent sequences with 

E 2 (T1
•
S

' j Zp) = Szp it} ~ 7l'.(Tj Zp) 

E2(IiiJ(SI, T)j Zp) = SZp it, t- l
} ~ 7l'.(Tj Zp) 

cf. [HMl], [GM] for convergence. 

Proposition 5.1.10. If 9 E CpN is a generator, then the Tate spectrum 

IiiJ(sI,p~ ,T(k)Op' D< Ag); ~ * 
p 

Proof. We use Zp coefficients and have 

E;,. = SZp it, C l } ~ SW'+1(k){U} ~ H.(Agj Z/pl+l) 
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• -2 - 1+1 - 2 With t E E_2 ,o, U E Eo,2and H.(Agi ZIp ) CEo,., cf. (4.3.4). 
The spectrum T(k)Gp' is a product of Ellenberg MacLane spectra, since 

it is a module over TR(k) ~ HW(k), and the d2-differential is this given by 

induced from the action 
SI X Ag ~ Ag 

cf. proposition 4.1.14. The evaluation of loops at 1 gives a non-equivariant 
homotopy equivalence Ag ~ BCpN , so 

with deg(Yl) = 1, degx2 = 2 and with r{X2} being the divided polynomial 
algebra. We show in lemma 5.1.12 below that [SI)# multiplies by Yl' Hence 

rP (t''Yn(X2)Ur) = ts+l'Yn(X2)YIUr, s E Z, n ~ 0, 

Proposition 5.1.11. For a generator 9 E CpN, 

Proof. The spectral sequence for the homotopy 8 1 fixed set has E2-term 

with differentials as above. This time, however C 1 is not present, so there is 
no differential to kill the classes 'Yn(X2)Ytur . Thus 

E;,. = SWI+t(/') {u} ~ y1rZ/ p l+I{X2}, 

all concentrated on one vertical line, and E~ • = EZO •. , , o 

Lemma 5.1.12. If 9 E CpN is a generator, then the action SI x Au ~ Au 
induces multiplication bYYl E Hl(AgiZp) on H.(AgiZlpl+l). 

Proof. Let g: SI ~ BCpN represent the homotopy class corresponding to 
9 E CpN. Consider 9 as an element of ABCpN. Since CpN is abelian, BCpN is 
an abelian topological group. The map j: BCpN --t ABCpN with j(b)(z) = 
bg(z) lands in Ag since we may connect b with a path to 1 E BCpN. Moreover, 
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f is -a homotopy equivalence, since its compositioll :with the evaluation map 
is homotopic to the identity. The lemma now follows from the homotopy 
commutative diagram 

nction AB 
• 

mutt B X B -----'="-----+. B 
. '. " 

o 

We return .to the calculation of the p-adic homotopy groups of 
TC(1) (kCpN). They are by proposition 5.1.4 equivalent to 

p-l 

= E9 ~ 11'. ((T(k) ~. A9~N-' )Cpn ; zp) , 
where g generates Cpn. The idea is to use the colibration sequence of 
lemma 5.1.8 inductively for l = 1, ... ,N - 1. One has 

h~ (T(k) ~ Ag)Opn ~ h~m (T(k) ~ A9)hGpn ;..., (T{k) I>< Ag)hS' 
F F 

after p-completion. This follows from (5.1.9,i) and proposition 5.1.10. Propo­
sition 5.1.11 shows inductively that all p-adic homotopy is concentrated in 
odd degrees. In particular we get, for each l, short exact sequences 

of homotopy groups with Zp coefficients. These sequences are also split exact. 
Indeed the left hand term consists of a sum of groups ~+l(k) = W(k)/pl+1, 
so it suffices to check that 

(5.1.13) 
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This on the other hand is a consequence of induction theory, upon using a ' 
result of C. 8chlichtkrull, [8ch], which I now describe, 

Let L be an FSP and consider the functor 

TF(L[G],p) = holimT(L[G])Cpn. 
~ 

F 

For reG of finite index we have the map 

Ind~: TF(L[G]'p) -+ TF(L[r),p) 

given as the composition of the functor applied to L[G] -+ EndL[r](L(G]) 
with Morita 'equivalence, Now 

TF(L[G],p) ~ holim(T(L) ~ ABG)Gpn, 
, ~ 

F 

decomposes into components, 

TF(L[G],p) ~ V h~ (T(L) ~ A[g]BG(pn 
[g]ex(G) F 

with A[g]BG = Est CG(g), the classifying space of the centralizer with some 
action of 51. It follows that Ind~, decomposes into components, 

Ind~([g], [")']): holim (T(L) ~ A[g]BG) Cpn -+ holim (T(L) ~ A(oy]Br)Cpn . 
~ ~ , 
F F ' 

Theorem 5.1.14. ([Sch]) (i) Ind&([g], [")']) = 0 if 'Y.I/:. [g]. (li) If")' E [g] then 

Ind& is induced from the 5 1-equivariant covering AoyBr -+ AgBG. 0 

(The theorem verifies in particular conjecture 7.14 of (BHM]; it undoubtly 
generalizes to simplicial groups, and should be of help in the study of transfers, 
in Waldhausen's A-theory). 

~ 

Corollary 5.1.15. In the limit over h, the colibration sequences of lemma 
5.1.8 become split, for T = T(h). 

Proof. The terms in the limit sequence are modules over J(k)~ = HW(k) 
via the cyclotomic trace, so it suffices to check that the homotopy exact 
sequence is split. This was above reduced to the statement (5.1.13). We use 
theorem' 5.1.14(i) with G = Cpn, r = CpN-I-t to conclude that 

Res~pN oInd~pN-I-l: TF(k[CpN),p) -+ ,TF(k[CpNJ,p) 
pN-l-l pN 
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. Cn 

is trivial on h~m (1'(k) ~ Ayp') ,p • On the oth.er. hand the composition 

induces multiplication by the index pI+! on homotopy. 0 

Th,eoreID 5.1.~6. For a perfect field of characteristic p > 0, 

. ffin 
'lr2n-1 Te(l) (k[C;N]) = 'lrl (Te(l) (k[CpN]) ) , 

1f2n Te(l) (k[CpN]) = '0, n 2: 0 

Moreover, 

. , 

N-I 
1r.

1
TC(I){kC

p
N) = (W(~)/pN)ffi(P-I) ffi,EB (W(k)/pN-irI1(p-l)(PI-pl-~). 

i=l 

Proof. This follows from corollary 5.1.15 and proposition 5.1.11 upon col­
lecting terms. 0 

We have left to determine the exact homotopy sequence of 

(5.1.17) 

From (4.3.3) we have 

(5.1.18) 

when k is finite. Thus 

with one copy of Z/pN in each degree. 

LeIDIDa 5.1.19. The homotopy exact sequence of (5.1.17) reduces to the 
exact sequence 

0--+ H2n- 1 (BCpN i Zp) ~ TC2n- 1 (k[GpN]) 

--+ TC~~_I'(k[CpN]) ~ H2t.-1 (BCpN; Zp) --+ O. 

Proof. We must ·argue that 8. is surjective. This is true for n -:- 1 be,. 
causeTC~~)(klCpN]) =0 and because the K-theory assembly map is c1ell;l'ly 
injective in dimension zero. 
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For n > 1 we use that (5.1.17) is a module over TR(k) I>< BOpN, and hence 
over TR(lFpJ I>< BCpN·. Thus 

8: TC(l) (k[CpN]) -t 1:TC(k) I>< B.pp~ -t H'/I.,~ · I>< BOpN 

commutes' with the resulting actions 

Toil) (k[CpN]) @H •. (BCpN.j7l../pN) -t 7r. (TO(l)(k[CpN])j'/l.,/pN) 

H~(BCpN j 71..,,) 181 H.(BCpN j 7I../pN) -t H.(BCpNj 7I../pN) 

The .second map has the property 

and since H2n+1·(BCpNj7l.. p ) = H2n+l (BCpNj7l..j]ll), ,surjectivity of 8. in. 
dimension 1 gives surjectivity in general. 0 

Since TC;(k[CpN]) = K;(k[CpN)j 71..1') has exponent pN, lemma 5.1.19 
yields the abstract isomorphism 

This proves theorem 5.1.1. . 

It seems clear that one should be able to calculate K.(k[P]) for more 
complicated p-groups . . It. is also natural to attack K.(A[P]) for other base 
rings, and in particular for A = 71..1' cf. sect. 5.4 below. 

I conclude with some remarkS about the twisted. group r~g case, inspired 
by [01), ell. 12. Let E be any finite extension of iQp and AcE the ring 
of integers. Given a p-group P and any homomorphism t: P -t Gal(E /1Qp) 
we have the twisted group ring At[P]. It contains the untwisted group ring 
A[Po)' Po = Ker(t). Theorem 12.3 of [01) states that the inclusion induces 
an isomorphism '. ' 

(5.1.20) 

where the left hand side denotes the coinvariants of the action induced from· 
P / Po -t Aut(A) x Out(Po}, Olivers argument. is based upon the integral 
p-adic logarithm, alose in spirit to. 7rl(?:C)j one may wonder if (5.1.20) gener:~ 
alizes to the statement ' -
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5.2 K-theory of k[xJl(xn
). 

This section outlines joint work with Lars Hesselholt. The main result is 
Theorem 5.2.8 below. A detailed account can be found in [HMj, sect. 6-8, 
when n = 2 and will appear in [HM2] when n > 2. 

Let TIn = {O, 1, x, ... ,xn- 1 }, considered aB a pointed monoid with 0 as 
baBe point and with xi = 0 for i ;::: n. We form the cyclic construction 
N;Y (TIn) . Its set of k-simplices is the (k + I)-fold smaBh power of TIn. 50 

consists of k + 1 tuples (xi., ... ,xi.) with (xi., ... ,Xi.) = 0 if some iv ~;::: ni 
N;Y (TIn) becomes a cyclic set when we give it the structure maps of sect. 2.l. 

The argument of lemma 4.4.7 gives for any ring A (or even FSP) the 
equivalence of equivariant spectra 

T (A[x]/(xn)) ~S' T(A) 1\ IN~(TIn)l, (5.2.1) 

There is an analogue of the component decomposition of N;Y (G) = ABG, 
namely 

00 

N;Y(TIn) = V N;Y(TIniS) 
8=0 

where N~Y(TIniS) consists of simplices (xi., ... ,xi.) with Eiv = s, and 
o E N?(TIniS) for all s. The simplex (x(s») = (x, ... ,x) E N;~l(TIniS) 
is represented by a cyclic map 

is,.: A[s - 1]. -+ N. (TIn i S) 

of the standard cyclic (s - I)-simplex. Its realization becomes a map 

cf. (2.1.3). Since (xn,x, ... ,x) E N.-n{TIniS) is the base point, the com­
posite of is,. with the iterated face operator d.-n+l 0 ••. 0 d., maps the 
corresponding face S1 X b.s- n to zero. Moreover, as (x(s») is invariant under 
cyclic permutations, is maps the orbit S1 x C • . b..- l = C • . ' (Sl X b. .-1) to 
zero. All in all we obtain a map 

i . S1 Xc b..-l IS1 Xc C . b.s- n -+ INCY(TI . 8)1 s·. • 8 • n, 

and it is not hard to prove: 

Lemma 5.2.2. The map i. is an Sl-equivariant homeomorphism. 0 

For n = 2, the domain of i. is S1 xc, b.s- 1 /8(S1 xc, b.s- 1 ). We consider 
b. 8-1 C IRC. to be the simplex sparmed by the group elements gi E IRC •. 
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It projects homeomorphically to the reduced regular representation IRC, - IR 
with IR C IRC, the invariant line through L::~ gi. Hence we have: 

8 1 x ~'-1/8(S1 X ~'-1) C. G. 

::: Sl xo, D(IRC, - W.)18(81 xo. D(W.C. -IR)) 
~ S1 1\ SRO.-R - + 0, . 

If s is odd then IRC, - IR is a complex representation and 

S~ 1\0, SRo,-R :::51 S~/C, 1\ SRO.-R 

with diagonal Sl-action on the right hand side. If s is even then W.C. - IR = 
TIL $ V. with V. complex, and 

S~ 1\0. SRO.-R ::: cof (S~/C'/2 ~ 8~/C,) 1\ SV. 

with ~ the natural projection. 
The above description of IN;Y (II2 is) I has the following generalization 

when n > 2. We use iC(n) to denote the complex S1-representation where . 
the action of z E Sl is multiplication with zn. Suppose dn < s ~ (d + l)n, 
and write 

Va = iC(1) $ iC(2) $ . . . $ iC(d). (5.2.3) 

It is an Sl-module and hence by restriction to C. C 8 1 also a C.-module. 

Theorem 5.2.4. ([HM2]). Suppose n ;::: 2 and dn < s ~ (d + l)n. Then 

S l A ,-1/s1 C A B-n {S~/CB " SV', . s < (d + l)n Xc L.1 Xc soL..\. ....... 5 1 v: 
• • cofib (S~/Cd+1 -+ S~/C.) "s " s = .(d + l)n 

Proof. (Outline). The proof is based upon the concept of regular cyclic 
polytopes of D. Gale, [G]. Let 1lAg) = (~ .. ~; ; ... ,~~), ~. = e21fi

/,. The 
image P"d = 7rd(~'-l) C Va is a regular cyclic polytope. Its structure of 
facets (=codinl 1 faces) is completely described in [G]. Using this we prove 
in [HM2] that 

;d(.6,,-l/C, . .6,,-n) ~ P"dIQ"d ~ SV • .. 
for dn < s < (d+ l)n where Q"d = 7rd(C,· ~'-n). Next, the socalled Buenos 
Aires formula, [BAG], gives explicit generators of the homology . 

in terms of the simplices of N!'Y(IIni s). This is used to show that 

Sl 1\ ~'-1/81" C. ~'-n ~ Sl 1\ SV. + ~ + ~ , + ~ 
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when dn < 8 < (d+l)n. The case 8 = (d+l)n is somewhat more complicated, 
and will not be outlined here. '. 0 

We also need to know the cyclotomic structure of T (A[xl/(xn)) , similar 
to lemma 4.4.7, and must calculate the geometric fixed points: 

P3
p 
iJ,cpT (A[xJ/(xn)) ~cp~ P3p <I,cpT(A) II P3pIN~Y(IIn)ICp 

~c.~ T(A) II p3.lsdc.N~(IIn)lc • . 

Comparing with (2.1.7), the isomorphism 

D.c.: N~Y(IIn,8) ~ sdc.N;Y(llni sp)cp 

gives an Sl-map 

D.-i. p# sdc NCY(II ·sp)c. ~NCY(II 's) . Gp p. nJ • n, 

, 
" 

which when composed with the above gives the required Cp~-equivalence 

It is clear from the definition of V. that p3 Vs~P ~ 5' Vs, and we also have 
• 

Sl/C. -:::=51 p3 (Sl/Cp.)' This yields a Cp~-equivalence • 
rc. (8): p~. q,c. (T(A) II stlcps f\ Sv •• ) --t T(A) II sVCs II SV'. 

The proof of theorem 5.2.4 contains the following 

Addendum 5.2.5. The cyclotomic structure of T(A[xJ/(xn)) is given by 
V:orc.(s). 0 

Since we are working in the category of equivariant spectra, T(A) II SV. is 
equal to the V. 'th deloop T(A)(Vs) of T(A). With this interpretation rcp (s) 
induces ' 

R: T(A)(Vps)c.~ --t T(A)(v;.)cp~-1 

and we can form the homotopy inverse limit over these maps 
Denote by TC(A[xJ/(xn)) the reduced space, i.e. the homotopy fiber of 

TC(A[xJ/(xn)) --t TC(A). Then 

TC (A[xl/(xn)) ~ TC(A) x TC (A[xJ/(xn)) . 

For ' any Sl-equivariant spectrum T E SlSU and any finite dimensional Sl_ 
module W in the Universe we have the map , 

' 1 
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constructed from equivariant transfers, cf. (2.5.8). If n = pVp(fl)n' with 
(p, n') = 1 we write 

instead of Vpup(n). Then we have the following analogue of [HMj, adden­
dum 7.2: • 

Theorem 5.2.6. The spectrum TC(A[x]/(xfl))~ is equivalent to the product 
of the p-adic completions of 

and 

II {COf (~h?~imT(A)(VP'I{p'_UP(n) vJ'~ Eh?~mT(A)(Vp'I)OP') I (l,p) = 1, n' II} , 
where in the second factor T(A) (Vp'dCp,-up(n) = 0 if i < vp(n). 

Proof. We use the description 

TC( -)~ --+ TF( -)~ ~ TF( -), 

so shall first determine TF(A[x]/(xfl),p), the homotopy inverse limit of 
T(A[x]/(xfl))Cpn under the inclusion of fixed sets. For fixed m, 

00 00 

V (T(A)(V.) 1\ s~/c8fp~ -+ II (T(A)(V8) 1\ s~/c8f'~ (1) 
8=1 8=1 

is an equivalence of spectra. Indeed, since we are only interested in p­

completions 

T(A)(Vs) 1\ S~/C8 ~ T(A)(V.) 1\ S~/CpUp(.) 

and 

with r = min(vp(s), m) . The action of Cp~-'r on S~ is free, so can be 
divided out, and when we use the Sl-action on P~prT(A)(v.)Cpr to untwist 
the action, we get 
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with T = m when vp(s) ~ m. The colibration sequeqce of proposition 4.1.8 
takes the form 

T(A)(V.)hGpr -l- T(A) (Vsfpr ~ T(A) (V./p)Gpr- 1 

and inductive use show that the connectivity ofT(A)(v.)Gpr tends to infinity 
with s. This proves (1) . Next for fixed 8, 

h~ (T(A)(V.) /\ st/c.fpm ~ ET(A)(V.)GpUPC'I ~. (3) 
F 

after p-completion. This follows from (2) with T = vp(s) :S m, since the 
F-map corresponds to the transfers 

E+,(Sl/Cpm+t_uPC'I) -+ E+,(Sl/Cpm_upC•I) 

which lit into a colibration diagram 

Here E+'(X) is the suspension spectrum of X+. Now smash with 
T(A)(Vs)Gpr to obtain (3), cf. proof of lemma 4.4.9. The above together 
with theorem 5.2.4 yields 

TF (A[xl/(x"),p) ~ II L:T(A)(Vs)Gpup('1 

"'Is 

x II cof (L:T(A)(VsfpupC.I-Up(n l v~P: L:T(A)GpUP(OI) 
n'ls . 

after p-completion. The homotopy fiber of R - id corresponds to taking 
homotopy inverse limit over R. D 

So far we have not specified the ground ring A, but to obtain explicit 
calculation we now restrict A to be a perfect field k of positive characteristic 
p, where we -have the following result from [HM], sect. 8.1. 

Proposition 5.2.7. Let V CUbe a complex Sl-module. The non-zero 
homotopy groups ofT(k) (v)Cpm is concentrated in even degrees greater tbat 
or equal to dim VGp. They are explicitly given as 

7l'2iT(k)(v)Gpm = Ws(k) if dim vGpm-.+t :S 2i < dim vGpm-. 
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for s = 1, .. . m, and 

Proof. The argument is similar to the proof of proposition 4.2.7 and (4.3.4). 
One first treats the CaBe k = IFp • 

We remember that T(k)(V) ~ T(k) II SV. It follows that the inclusion 
VGp C V induces an equivalence 

Indeed, the cofiber is IflI(Cp~, T(k) II SV-Vc
p

) and Sv-vcp is a free Cp~­
space, build up from free Cp~ -cells, and the obvious induction over cells 
reduces us to show that 

This follows e.g. from the spectral sequence of sect. 4.1, since Tate cohomol­
ogy groups vanish on free modules. 

We next use the following analogue of proposition 4.1.8: 

T(k)(V)llGp~ _N---+. T(k)(V)Gpm R • T(k)(VGp)Gpm- 1 

lid lrm
•
v ltm

•
v (1) 

R" • IflI (Cpm, T(k)(V)) 

For m = 1, 

induces an equivalence on 7T"; (or i 2: dim VGp
• This is simply lemma 4.2.6 

suspended dim VGp times. Theorem 4.1.15 implies that r m,V and t m,V in­
duce isomorphisms on homotopy groups in the same range. The spectral 
sequence 

ho (Cpm ,7T" .T(lFp) (V)) '* 7T" oIflI (Cpm ,T(lFp) (V)) 

is isomorphic to the spectral sequence for V = ·0 reindexed by shifting bide­
grees up by (0, dim V). Hence the argument of proposition 4.2.7 gives 

(2) 

and it follows from (1) that 7T"iT(lFp)(V)Gpm = Z/pm+I if i is even and i ~ 
dim VGp. Moreover, the upper horizontal sequence in (1) yields that 

R: T(lFp)(V)Gpm -t T(lFp)(VGp)Gp~-l 
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is (dim V - I)-connected, so induction on m gives ,the claimed homotopy 
groups for k = IFp. 

Finally, the argument going from IFp to the perfect field k is similar to 
the one presented in sect. 4.3. 0 

'Let W(k) denote the big Witt vectors of k, i.e. W(k) = (1 + Xk[[X]]) " , 
the multiplicative group of power series which begins with 1. Write W~(k) 
for the truncated Witt-vectors 

Let Vn: W(k) -+ W(k) be the Verschiebung: it sends a polynornium p(X) 
to p(xn), and induces an injection 

Theorem 5.2.8. ([HM2)). For a perfect field k of characteristic p > 0, 

K2m- 1 (k[xJ/(xn)j Zp) = W nm-l (k)jVn W m-l (k) 

and K 2m (k[xJj(xn )j Zp) = 0 for m > O. 

Proof. We are in a situation where K.(-jZp) and TC.(-jZp) agree, and 
shall calculate the latter. I shall only treat the case (p, n) # 1 j the other case 
is less complicated. 

Suppose first n' II and choose m in the range 

with notation as in theorem 5.2.6. By definition, 

so the 'above condition is equivalent to 

pr-1Z_ n < mn :::;prZ-n ifr> vp(n) 

pr-11 < mn :::; prl - n if r = vp(n) 

pr-11 < mn :::; prl if r < vp(n) 

(1) 

(2) 

.\ 
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Now 

I 7r2m-l (~h?~mT(J.)(v;",)Gp,) ~ 7r2m-2 h?~mT(1.)(VpiIFp, 

by theorem 5.2.7, and similarly 

:::: 7r2m_2T(k)(Vpr_ll)Gpr-l 

~ Wr(k) 

7r2m-l (~h?~imT(k)(Vp,,)Gp'_vp(n») ~ Wr_vp(nj{k). 

Thus the second factor in theorem 5.2.6 (where n' II) contributes 

E9 colc (Wr(m,I)-vp(n)(k) --+ Wr(m,l) (k)) 
(l,p)=l, n'll 
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to TC2m- 1 (1.[x)/(xn); Zp), when r = r(m,l) denotes the unique number 
which satisfies (2) . In other words, the contribution is 

E9{Wvp (n)(k) I (l,p) = I, n' II, 1< pmn'}EfJ 

E9{Wr(m,I)(k) I (l,p) = 1, n' II, I > pmn'} . 
(3) 

Similar considerations show that the first factor in theorem 4.2.6 contributes 

E9{Wr(m,I)(k) I (P,l) = 1, n' Ph (4) 

where this time r = r(m,l) is the unique number with pr-1l < mn ~ prl. 
Finally, it is easy to see that the direct sum of (3) and (4) is isomorphic to 
Wmn-l(k)/Vn(Wm-l(k)). 0 

Remark 5.2.9. The above argument shows that 

1T2m-l ( II h~T(k)(Vp,,)G.') = Wmn-1(k) 

(I,p)=l R 

and more generally that 

7r2m-l ( II h~mT(k)(Vpll)G.'-") =p"Wmn-1(k). 
(l ,p)=l R 

The difference between the two cases (p, n) = 1 and (P, n) :/: 1 in theorem 
5.2.8 is just that Vn in the first case gives an isomorphism on the subproduct . 
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with n I/j in the second case there is a cokemel who,se size depends on the 
p-aclic valuation of n. 

I should point out that the low dimensional groups K;(k[x)/(xn)j Zp), 
i :5 3, were determined previously, and that Thomas Geisser asked us to 
use the present techniques to work out the groups for general ij he even 
conjectured the correct answer. '> 

5.3 Nil calculations. 

McCarthy's relative theorem makes it possible to calculate the socalled Nil­
groups of rings A which contain a nilpotent ideal I for which AI I is a regular 
ring. In this sit uation, we have the colibration sequence 

NK(A)A -+ TC (A[t] -+ AI I[t])A -+ TC (A -+ AI I)A (5.3.1) 

with nNK(A)A ~ Nil(A)A. I illustrate the situation with an explicit calcu­
lation for the rings An = k[x]/(xn) of the previous section. FUrther details 
and examples are to appear in [HM2]. 

Lemma 5.2.2 and (5.2.1) shows that 

00 

T(A[t]) ~C= T(A) 1\ NCY(IIoo) ~C= T(A) 1\ V 8~/Cs 
8=0 

and we can apply theorem 5.2.6 for the ring 

An[t] = k[t, x)/(xn). 

This expresses TC(An[t)) in terms of Eh~(k[t))(v;,I,)cpl with (p, I) = 1. 

Write T(k[t]) = T (k[t]-+ k), and let ~p denote equivalence after p-adic 
completions. Then 

00 

~p V V (T(k)(Vpi,)Cp' 1\ 8~/Cp;) , 
(v,p)=l j = O 

since 8 1 IGp;v ~p 81/Gp; when (v,p) = 1, and one has as in sect. 5.2: 

(T(k)(Vpl') 1\ 8~/Gp; (pi ~ T(k)(Vpl,)Cpm'n{l .;) 1\ 8~/Gpm'X(I,;) 
~ ET(k)(Vvl,)Cpmln(i';) V T(k)(Vpi,fpmln(I ,J). 
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For fixed k, 

7rk h~m T(k[t])(~'I)C" = 7rk:ET(k[t])(Vp'I)Cp' 
R 
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if i is sufficiently large; the precise value of i is given in the proof of theo­
rem 5.2.8. It follows from remark 5.2.9 and the above that 

7r2m-l II :E h~mT(k[t])(VP'lfp' 
(p,l)=l R 

~ 7r2m ( II h~T(k(t])(VP'I)) c.' 
(p,l)=l R 

<>< E9 (EBpiWmn-I(k) Gl EBWmn-I(k)) , 
(v.p)=1 ;=1 

where pr is the exponent of W mn-I (k). This can. also be written as 

E9 W mn-dyJlW mn-dpY]· 
(v.p)=1 

We divide out the image of the Verschiebung Vn: Wm-I(k) ~ Wmn-I(k) 
to get 

Theorem 5.3.1. The groups NK2m (k[x]/(xn )) and NK2m_ 1 (k[x]/(xn )) are 
isomorphic and are given as an inflnite sum of An[Y]/ An[PY] with An -
Wmn_l(k)/Vn W m- 1 (k). 0 

There are more canonical ways to present the result, e.g. by using the 
deRham-Witt complex of Deligne and musie. I refer the reader to [HM2]. 

5.4 On the K-theory of local class fields. 

It is natural to attempt to generalize the calculations of the previous sections 
to rings of integers in local class fields, A = int(E) ,vith E/Qp abelian (or 
even to local number fields). Such fields appear as centers in group rings 
Qp [G], and their integers are centers in the corresponding maximal orders 
Mp(G), 

7l pG C Mp(G) C IQ!pG. 

If E/lQ!p is unramified, then A ~ W(lFp.) is a factor in 7l p[CJ] , (p, J) = 1, 
and one can use lemma 4.4.7, 
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to get the cofibration sequence 

TC(W(IF'p' W --t TF(Zp)~ R'll TF(Zp)~, 

cf. [BM2]. Thus the unramified case is of the same complexity as A -
Zp, where one has the calculational methods of sect. 4.1. . In outline the 
calculation of TC(Zp) is similar to the calculation of TC(IF'p), but the details 
are of a different magnitude of difficulties. 

The first problem is to verify Conjecture 4.1.16 for the rings in question, 
i.e. to show that 

r: TH(A)~ -+ J!n(Cp, TH(A)) (5.4.1) 

induces isomorphisms on homotopy groups in non-negative degrees. This was 
done in [BMl], sect. 5 for A = Zp, p odd, and in [R] for p = 2. I will go 
through the p odd case below; it was not so well presented in [BMl]. First 
recall from [B2]: 

Theorem 5.4.2. The modp homotopy groups ofTH(Zp) are 

where the subscripts indicate degrees. lvloreover, the Boc1cstein operator on 
/2p is e2p-l, and the reduction map from TH(Zp) to TH(IF'p) maps h p non­
trivially. 0 

The reader with no access to [B2] may consult [HM] for an outline. Recall 
from lemma 4.4.4 the Sl-map 

t: ~s. (So)~ -+ TH(Idp) 

which induces equivalence on all Cpn fixed sets. The inclusion 

~s. (SO)S' -+ ~OO(SO) 

is split, and the splitting induces a map 

f: ~OO(SO) -+ ~s. (SO)S' -+ L:s. (SO)/,S' -+ TH(Idp t S1 . 

The homotopy ring 7r. (~OO (SO); Zp) is of course unknown, but it contains the 
direct summand 

(5.4.3) 

The first element outside the direct summand lies in degree 2p2 - 2p - 2. 
There is a similar statement for p = 2. We compose f with the map 
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where L comes from linearization Idp -t Zp, and the second map is restriction 
to the skeleton S.t c ES~. The cofibration sequence S~ -t S.t -t S3 / Sl 
and the Sl-equivalence S3 / 8 1 ~ 8~ 1\ 8 2 yield the fibration sequence 

The composition go f maps the homotopy fiber of EOO(SO) -t HZp into the 
fibpr n 2TH(Zp), 

I: hF(EOO(SO) -t HZp) -t n 2TH(Zp), i 0 I = 9 0 f. 

On homotopy groups one has 

1.(a2p_3) = n2e2p_1, 

This is a consequence of the statement that the composition 

(5.4.4) 

with ~ the inclusion of the cyclic O-skeleton, represents the suspension of 
the first Steenrod operation pI, cf. [BMI), lemma 5.3 for details. We next 
consider the diagram of spectral sequences 

E~p,q (TH(Idp)hS
1 

j lFp) --jo, E~p,q (TH(Zp)hSl j lFp) 

1 1 
E r (TH(Id )hCp 'F ) --..,., E r (TH('" )hCp'F ) _p,q p, p _p,q!.UP' P 

, 
In fiber degree q ~ 2p2 - 2p - 2, the E2-terms are: 

E2 (TH(Idp)hcpj lFp) = E{ur} ® Sit} ® E{a2p_3} ® S{b2p- Z} 

E2 (TH(Zp)hCpj lFp) = E{Ul} ® Sit} ® E{ezp_r} ® S{hp} 

E2 (TH(Idp)hS
1 

j lFp) = Sit} ® E{a2p-3} ® S{bzp- z} 

E2 (TH(Zp)hS1jlFp) = Sit} ®E{e2p-r} ® S{hp}. 

(5.4.5) 

The vertical maps in (5.4.5) are the inclusions. It is well-known to homotopy 
theorists (see e.g. [EMI), sect. 3) that . 

E2(TH(Idp)j lFp) ~ E 2(p-2) (TH(Idp)j lFp) 

and that 

(5.4.6) 
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The.horizontal maps in '(5:4_5) are .zero (at least in fib~rdegrees ~ 2p2_2p-2) 
but this is due to the filtration shift indicated by (5A.'!}. 

Proposition 5.4.7. Letp be an odd prime. In the spectral sequence 
Er(TH(Zp)'hCpjlFp ), the elements te2p_l aiJd t!2p are in1inite cycles. More­
over E2 = E2p and 

-, 

Proof. Let T = TH(Zp} orT= TH(Idp). Consider the Postnilwv tower 

T[O, OJ +-.T[O, 1j +- .. . +- T[O, q] +- ... 

with. inverse limit T:. Here T[O, ql h.as homotopy groups precisely 'in degree. t 
for 0 ~ .t ~ q, and in. this range they are equal to tbe hoinotopy groups of T~ 
The Posj;niIwv tower can be taken to 'be functorial' (e.g. 'by usin~ J. Moore's 

' . simplicial construction of it), so eaCh term has an Sl-actiori. -
The homotopy groups ·of the Postnikov tower defines an exact couple, 

which gives the spectral sequence we are looking at. It has 

and the differentials dr+1 are induced from the additive relations 

Here B. is ~he connecting homomorp¥ism in the homotopy exact sequence of 
the fibration 

T[q, q + r - I] +- T[q, q + r] +- T[q+ r, q + rj. 

We shall. now compare the situation for TH(Idp) and TH(Zp) . . To shorten 
notation, write 

-.F[s·,tl. = F(ECphTH(Idp)[s, tDCp 
. C 

Fz[s, t] = F(ECp+, TH(Zp)[s, t)) p 

and fet 71'.(-) = 71'.(-jZp)' 'Then (5AA) translates as follows: the additive 
relations 

I. 9:! 
"'p_.F[2p-3,2p~3]«-"'p_.F[2p-3,2p-l]-;-"",p...;.Fz[2p-3,2p-1]-I-"',p_.Fz[2p-l,2p-l] 

- I " "',p_,F[2p-2,2p-2]t=-""p_,F[2p-2,2p]~"'p_,Fz[2p-2,2p]<-<",p_,Fz [2p,2p] (1) 
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give well·defined maps (from left to right) which take a2p-3 and b2P- 2 into 
the generators te2p_l and t!2P . of 

'll:2p':'3FZ[2p - I, '2p -1] = H2(BCp; 1I"2p_1.TH(Zp» 
• 2 . . 

1I"2P-2FZ[2p, 2pJ = H CBCp; 1I"2p TH(Zp)) 

For example, the first additive relation is well·defined becaus'e l. annihilates 
the generator u1b2p_2 E HI (BCp ; 1I"2p-.2,TBJIdp )): it maps, to an element, of" 
filtration degree 3, according to (5A.4). . -

The elements a:,lp-3 and b2p- 2 are infinite cycles in the spectral sequence 
for TH(Idp)hCp , being in the image of f. . This, means tha,t they lift to 
elements of 1I"2p_3F[2p - .3, ooJand 1I"2p_2F[2p - .2, 00]. It follows that. te2p-l' 
and t!2p lift to 1I"2p-3Fz[2p-l, 00] and 1I"2P_2Fz[2p, 00], so are infinite cycles. 

Let us prove that tfP(Ul) = 0 and £l2P+1(uI) = t P+1 h p and leave the 
easier differential tfP(t) = tP+l e2P:--1 to the reader. The additive relation 
defining, d2p (uI) is . 

~ . a 
1I"_lF[O, O]-F- 1I"_lF[O, 2p-4l r.-< 'IT.-IF[O, 2p-3]....!+ 1l'_.2F[2p-2, 2p-2]. (2) 

. . 
Indeed u1lies in,the subgroup 1I"_1F[O,2p-3] because tfP- 2(Ul) = 0 (and not 
equ~l to tP-1ula2p'_3)' B'ecause'of the filtration s\lift repres.!lnteli by (5A.4), 
it is better to consider the additive relations -

A: 1I"_l.F[O, 0] I 1I"_lF[O,2p - 4] 
a' • 

1 11" _2F[2p - 3, 2p] 

}. [I. [h . . (3) 

a~ liz: 11" -lFz[O, 0] I 11" _lFz[O,2p - 4] . 1 11"-2Fz[2p - 3, 2p] 

where a~ is the connecting homomorphism in the homotopy exact sequence 
of . 

F[O, 2p - 4] +- F[O, 2p] +- F[2p - 3, 2p]. 

The.orem 5.4.2 and (5.4.3) gives 

1[_2F[2p - 3, 2p) ~ 11" _2F[2p - 3, 2p - 2) 

11" _2F[2p - 3,'2p) ::: 1l' _2F[2p' - I, 2p) 

and hence exact sequences 

0-+ 1l'_2F[2p - 2,2p) -~I 1T~~[2p,-.3,2p) j . I 1T_2F[2p - 3, 2p - 3)-+ 0 

.... 1 11• 

~ ' h ) -'~I 1T-2.f'Z[2p - 3,2p) ---"'~I 1r_2F[2p -, 3,2p -1 -+ o· 
(4) 
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-. 
One has the following values of the groups 4lvolved:-

. 7T _2F[2p - 2, 2p] '" H 2p (BCp; 7T2p-2 TH(Idp)) = lFp (tPb2p_2) 

7T _2F[2p - 3, 2p - 3) E!! H 2P-I(BCp; 7T2p_:iTH(Idp» = lFp W-Iula2p_S)' 

7r_2F[2p, 2pl '~ H2Ji+2(BCpj 7r2p TH(Zp» = lFp (tP+I h p) 

7T_2F[2p - 3, 2p·- 1] ~ H2P+I(BCpj 7T~P-ITH(Z~J) '= lFp (tPule2p-I)' , 
- . ~ 

I claim that,jz a I. 0 i = 0, giving the left hand vertical atrow in (4) _ fudeed 
the-generator of 7T _2F[2p- 2,,2p} is.tPb2p- 2, hence in the image of the .prpduct 

" . - . map 

7r_2pF[0, 0] ~ 7r2P~2F[2p - 2, 2p - 1] --+ 7r_2F[2p - 2, 2p - 1]. 

The, homomorphism 

7T2p_2F[2p. - 2,2p - 1] --+ 71'2p-2FZ[2p - 2, 2p- 1] 

is zero by (5.4.4), and the claim follows by using the product , 

7T - 2pFz[0, 0] ~ 7T2p-2FZ[2p - 3, 2p - 1] ,--+ 7T_2FZ[2p - 3,2p - 1]. 

On the other hand 

(5) 

and by ,(3),. jzAz(u~) = jzl.A(uIJ. Since cPp- .2(Ul) = 0, one concludes that 
.d~(UI)· 0, Finally the differential cPp-I(Ul} = tPb shows that I.A(Ul) # 0 
and that it belongs to the image of i in diagram (4): But the left hand 

. vertical arrow in (4) is an isomorphismjuse Of pro'ducts as abov~and (5.4A) 
completes the proof. 0 

Corollary 5.4.8. For p odd, 

71'. (H(Cp, TH(Zp»; lFp) = E{e2p-d ~ SW, CPl . 

Moreover, 
r.: 7r.(TH(Zp)j.lFp) --+ 71'. (in(Cp,T(Zp»;iFp) 

is"ap, isomorphism in .non-negative degrees. 

Proof. The non-~ero differen~ials in Er (H(Cp, TH(Zp)};lFp) are by (5.4.7): 
. , 



Ib Madsen 313 

and a routine calculation give~ E;;'-2 ~ E{U1} (8) S{tl'.,it-P}.. For' degree 
reasons E;;.+z = E'::.. This proves the first statement. The co=utative 
diagram 

T(Zp) ~---+l T(lFp) 

it it 
. IHI(Cp , T(Zp)) I IHI(Cp , T(lFp )) 

together with le=a 4.2.4 and . theorem 5.4.2 tells us that r.(f2p) = t-2p 

and l' • (e2p-1): = . e2p-l. 0 

The corollary implies that 

is a p-adic equivalence, and theorem 4.1.15 then gives 

TF(Z"p)~ - (hr::"'T(Z')'C~ ): - (T(Z,)"')~. 
The homQtop~ gr~ups '1l".(T(~pjhS~ ;lFp,) and.7r. (IHI(Sl;,T(Zp)) ;lFp) were .cal­

culated in [BM2J byso!ving the ,involved spectral sequences, and 

~: .: 7r •. (TF,(Zp,P)i lFp). -t 7r.(TF(Zp,P),i,IB:p) 

was determined. This was enough to give the values of TC.(W(lFp'); lFp). 
Th~ groups turn out to be vI-periodic, i.e. . . . 

'" . 
VI: TC. (W(lFp' );lFp }-=+ TC~+2p-z (W(lFp'); lFp) 

(VI = b2;-2), and this together with other tric~ leads to the proof oftheo­
rem L50fthe introductiol!-' I refer to [BM2] for the details. 

For odd primes p, theorem 1.5 states that 

: (5.4.9) 

This is true as (-1 )-connected spectra when. one use the cfeloopings arising 
from Bott periodicity on. the right hand side, .. For p. = 2 there are added 

. complications. For example, mod 2 homotopy groups of a ring spectrum 
does not in general form a ring. At the time of writing TC. (Zz) has not been 
completely determined, but .. preliminary calculation~ of J. Rognes suggests ' 
that': . . 

/ 
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One expects that a twisted version of (5.4.9) is true for p = 2, cf. [BM2J, 
sect. 6. I stress that im h is the complex J space at 2, i.e. the homotopy 
fiber of1/Jk -1: (BU x Z)~ -t BUt. 

For geometric reasons it is important to study the relative [(-theory 
[((Id -t Z), by theorem 3.5.1 equal to TC(Id -t Z) . Indeed, a celebrated 
theorem due to F . Waldhausen states that 

." 
> 
.' 

where n2WhDiff (*) ~ h~mDiff(Dn,D~-l) with D~-l c aDn -the lower 

hemisphere, and where noosoo is the zero'th term in the sphere spectrum. 

Conjecture 5.4.10. For each odd p we have to split fibration 

co~Jp -t (nOOSOO)~ ~ imJp. 

There is a similar split fibration 

, 
X -t n°o Soo (Sl II CPOO

)/\ ~ SU/\ . 
P - Pt-- p 

(1) 

(2) 

Here the map from Sl IIlCPoo -t SU is adjoint to the map which classifies 
the reduced canonical line bundle, and e' is its 'universal' extension. The 
S1-transfer 

r: n°o soo(S1 II CPOO
) -t n°o Soo 

induces a map r~ : Xp -t cokJp and a map from SU; to im Jp with fiber 
SU;. Let im Jp be the O-connected cover of im Jp • I conjecture that 

TC(Id -t Z)~ ,... cokJp x BcokJp x B im Jp x hF(r;) . (3) 

The difficult part is to prove that the restriction of TC(Idp) -t TC(Zp) to 
the SU; factor of (2) is the deloop of1/Jk - 1: BU; -t BU;i this gives the 
factor B im Jp in (3). 

The outstanding problem which remains is to determine TC(A); in ram­
ified situations. There are at least two approaches. One can attempt to 
use that A appears as the center in a maximal order Mp(G) C IQip(GJ, and 
use the ideas of sect. 5.1 to calculate TC(Zp[Gj);. But this leaves one with 
following problem, interesting in its own right: 

Problem 5.4.11. Give a calculable trace description of [({Zp[Gj -t Mp(G)) . 
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One lmows by the localization theorem in K-theory a categorical descrip­
tion of K (Zp[G] -+ Qlp [CD, and hence of J( (Zp[G] -+ Mp(G)), nameiy as 
the J( -theory of cohomological trivial modules. But despite a lot of efforts 
by Biikstedt and the author, (5.4.11) remains unsolved (even for G = Cp ). 

A second approach is to follow sect. 4.1, starting with a calculation of 
TH(A). Recently, A. Lindenstrass has determined TH(A) for quadratic ram­
ified extensions of Z2. In general one should have 

Conjecture 5.4.12. Let A be totally ramined and let 7r E A be the prime 
element (A/7rA = lFp ). Then 

with deg Ui = i. o 

I Conjecture 5.1.12 yields 7r. (TH(A)j IFp) as well, but I do not know if (5.4.1) 
is an equivalence in this case. 

Finally of course there is the deep problem of determining the relative 
K-theory K (Z(p) -+ Zp) but this is a different story altogether. 



. 
• 
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