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o. Introduction , 
My purpose here is to explain a method in homotopy theory. The following result 
is perhaps the best exampk tu lIate ora statement that can be proved by this method: 

Theorem t. For any 2·connecled map 0/ topological spaces Y - X the fiber of 
A(Y) - A (X) alld the Jiber oj TC(Y) - TC(X) are IVeakly hOlliotopy equivalellt . 

Here A is Waldhausen's algebraic K-thcory functor from spaces to spectra, and 
TC is another functor which I will discuss below. "Fiber" means homotopy fiber. 

If we write A for the reduced functor A(Y) = fiber(A(y)-- A(*)) and similarly 
for Te, then in the case when X is a point we have the statement: 

Corollnry 2. For any 1-collnected topological space Y the spectra A(Y) alld TC(Y) 
are weakly homotopy equivalent. 

I will not say much now about the other functor TC, except that TC(X) is closely 
related to the free loop space AX (the space of all unbased maps from the circle to 
Xl and is easier to study than A(X) from the point of view of algebraic topology. 

The theorem stated above represents the work of several people. In particular, 
the definition of the functor TC, and of a map A -.. TC which is crucial to the proof, 
uses work ofBokstedt-Hsiang-Madsen. A p-completed versioJ} of Theorem 1 (proved 
by the method outlined below) was the main result of [BCCGHM]. The theorem 
stated above is only a marginal advance over this, since/a rational version ([Gl], 
Corollary on p. 349) has been known for some time. (The final steps in the proof of 
Theorem 1 will appear in [G6].) 

1. Summary of the Method 

The proof of Theorem 1 uses a kind of defonnation theory. The goal is to describe 
the change in A (X) produced by a given (small) change in X . It turns out that to 
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achieve this it is enough to describe the infinitesimal change in A(X) produced by 
an ilifilliresimal change in X. By this I mean: to give an approximate description of 
the change in A(X) produced by a very small change in X. (A small change in X is 
a highly connected map Y _ X.) 

In a little more detail, the method is this: 
There is a natural map of spectra from A(X) to TC(X), called the cyclotomic 

trace map. Denote its homotopy fiber by F(X). There is a constant c such that for 
any k-connected map of spaces Y - X the map of homotopy fibers 

fiber(A(Y) ~ A(X)) ~ fiber(TC(Y) ~ TC(X)) 

is (c + 2h)-connected. In other words, the map F( Y) - F(X) is about twice as highly 
connected as the map Y - X upon which it depends. By a certain general principle 
(Proposition 5 below), it follows that the map F(Y) _ F(X) is in fact oo-connected 
when the map Y _ X is at least 2-connected. (In other words, up to weak equiva
lence F(X) depends only on 7t 1 (X) if X is connected.) This yields the conclusion of 
Theorem 1. 

The general principle used above is analogous to the following fact from differen
tial calculus: If a function f (in a suitable domain, and satisfying suitable differenti
ability hypotheses) issuch that I [(x) - [(y)l < Clx - yl', then [is locally constant. 
A more familiar statement of this fact is that if the derivative of f is identically zero 
then f is locally constant. 

Section 2 explains the idea "derivative of a homotopy functor". Section 3 states 
the general principle mentioned above. Section 4 discusses what one needs to know 
about Waldhausen's functor A in order to apply the principle here. Section 5 
describes the other functor yc. Section 6 discusses that part of the proof which 
involves the map from A to TC. Details may be found in [BCCGHM, G2;G3, G4, 
and G6]. 

2. Differentiation of a Functor 

For a more detailed account of the ideas below, see [G2]. 

2.1 The Definition 

The idea can be made quite general, but for concreteness let us suppose that F is a 
functor from spaces to spectra. We always assume that it is a homotopy functor, 
meaning that it takes equivalences to equivalences. (Throughout, an equivalence of 
spaces or spectra means a weak homotopy equivalence.) 

In calculus the concept of derivative, or differential, of a function f at a point x 
is a way of systematically describing the quantity f(y) - f(x) with an accuracy like 
Iy - X12. In asimiIar way the next two definitions serve to describe the 2k-homotopy 
type of the fiber of F(Y) _ F(X) when the map Y ~ X is h-,fonnected. 

Definition 3. The derivative axF(X) of F at the based space (X, x) is the homotopy 
colimit (as k ~ co) of the spectra Qk fiber(F(X v Sk) ~ F(X)). 
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The maps in the limit system are (loosely speaking) induced by the diagrams 

F(X v S'-') -~ F(X v D~) - F(X) 

1 1 
F(X) - F(X v D~) F(X v S') 

(Nole that F (X v Dk) is equivalent to F(X).) Up to equivalence the derivative is 
determined by X and by knowing which component of X contains the point x. The 
spectrum JxF(X) is a functor of the based space (X, x), and any based map (X, x) -to 

(Y, y) which is an equivalence induces an equivalence axF(X) -to ayF(Y), 
There is a more general construction, If f: Y -to X is a map of spaces, think of 

Y as a space over X, think of the mapping cylinder of J as the fiberwise COIle of Y 
over X (another space over X), and denote it by ex Y. Let Ex Y, the fibenvise 
suspension of Y over X, be the union along Y of two copies of ex y. q 

Definition 4. The difJerential of (DxF)(Y), defined for any map Y -to X, is the homo
topy colimit of the spectra Qk fiber(F(E.~ Y) ~ F(X)), 

The maps in the limit system are defined using diagrams 

F(Et-' y) F(CxEt- ' y) F(X) 

1 1 
F(X) - F(CxEt-' Y) -~ F(Et Y) 

For fixed X the differential DxF is a functor from spaces over X to spectra, It 
is a homotopy functor in the sense that it preserves equivalences, where a map of 
spaces over X is called an equivalence if as a map of spaces it is a (weak homotopy) 
equivalence. We have (DxF)(X) - * and (DxF)(X v SO) - ",F(X). 

Note that there is a natural map 

fiber(F(Y) ~ F(X)) ~ (DxF)(Y) 

The functor DxF is intended to be an excisive functor that approximates Y1-+ 
fiber(F( y) ~ F(X)), much as in calculus the differential of a function f at a point x 
is a linear function that ' approximates J(y) - f(x), To explain this I need some 
language. 

2.2 Excision 

A commutative diagram q; of spaces (or spectra) 

q-(0) -~ q-(I) 

1 1 
q-(2) -~, q-(1,2) 
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is a cofiber square if the canonical map to ff(l, 2) from the homotopy pushout (union 
along :t-(0) of the mapping cylinders of :2"(0) ~ :2"(1) and :2"(0) ~ ~[(2)) is an 
equivalence. It is a fiber square (resp. k-connected) if the canonical map from fC(0) 
to the homotopy pullback (fiber product over :2"(1, 2) of Ihe path flbrations of 
:2"(1) - :2"(1, 2) and :2"(2) ~ .'(1, 2)) is an equivalence (resp. k-connecled). Equiva
lently, a square diagram q; of spectra is k-connected if the iterated fiber, the 
homotopy fiber of the map 

fiber{:2"(0) ~ :2"{I) ~ fiber{:2"(2) ~ :2"( I, 2)) 

of homotopy fibers, is (k - I)-connected. 
A functor F (say from spaces, or spaces over X, to spectra) is excisive if it takes 

cofiber squares to fiber squares. This is a very strong condition. Homotopy functors 
occurring in nature usually satisfy a much weaker, but useful, condition, called stable 
excision: there is a constant C2 such that if the maps .'t(0) ~ :t-( I) and :t-(0) ~ :t-(2) 
in a cofiber square are respectively hI - and k2~connected, then the diagram F(fC): 

F(:2"{0)) -~ F(:2"(I)) 

1 1 
FW{ I,2)) 

is (k t + k2 + c;!)-connected. 
If F satisfies stable excision then, for each X, DxF satisfies excision; we may 

think of DxF as a (reduced) homology theory on the category of spaces over X . 
Moreover, stable excision for F implies that the map from fiber(F(Y) -10 F(X» to 
(D,yF)(Y) is approximately 2k-connected for any k-connected map Y -10 X . . . 

2.3 The Principle 

Theorem I is proved by applying the following principle with F = flber(A ~ TC) 
and e = I. The term "e-ana1ytic" will be explained in Section 3. 

Proposition 5. If F is a fl-anaiytic junctor from spaces to spectra such that (DxF)(Y) 
is trivial for all X and all Y - X, then for every (e + I)-connected map Y - X of 
spaces the map F(Y) -10 F(X) is an equivalence. 

"Trivial" means equivalent to a point (all homotopy groups are trivial). If F 
satisfies a suitable limit axiom, so that up to equivalence it is determined by its 
behavior on finite CW complexes, then it is enough to assume that a~ F(X) rather 
than DxF is trivial. 

3. Analytic Functors , 

"Analyticity" ofa homotopy functor F has to do with the behavior of F with respect 
to cubical diagrams of spaces. By an Il-cubical diagram we mean a functor!![ from 
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the partially ordered set of all subsets of {I, ... , II} to the category of spaces. 
Analyticity of F involves one condition, stable (Ii - 1)st order excision, for each 11. 

Stable first-order excision is stable excision as defined in Sect. 2.2. 
Stable (II - f )st order excision concerns certain II-cubical diagrams !!£, namely 

the scrollg coJiber cubes. Call f!l a strong caliber cube if, for each 1 ::;; i < j ::;; 11 and 
S c {l, ... , Il} - {i,j}, the diagram 

~.(S) -~, !l"(Su {ill 

j j 
El(S u {j} -~, El(S u {i, j}) 

is a coliber square. The condition is that there is a constant cn such that, whenever 
!l" is a strong cafiber cube in which the map El(0) - ElU) is krcann~cted for all i, 
with k j > (}, then Fur) is (cn + Ek;)-connected. (An II-cubical diagram of spectra is 
called k-connected ifits iterated fiber -the spectrum obtained by taking homotopy 
fi bers in each of the II directions in turn - is (k - l)-connected.) Note that Cn is 
allowed to be negative. 

F or II = 1 this simply says that there is a constant C1 such that for any k
connected map !l"(0) _ !l"(J) of spaces the map F(El(0)) _ F(X(J)) is (k + c,)
connected, at leas t if k > a. 

Definition 6. The functor F is a-analytic if it satisfies (11 - l)st order as above for all 
11 ~ I , and if the numbers cn are bounded below by c - (}II for some constant c. 

Most homotopy funclors occurring in nature are (}-analytic for some t), nnd in 
many cases it is a routine matler to verify this. The identity functor from spaces to 
spaces is I-analytic, as is Waldhausen's functor A. 

The proof of Proposition 5 uses an unusual inductive argument. It is no t difficult, 
but I will no t take time to explain it here; see [G3]. 

Proposition 5 expresses one of two main consequences of analyticity. The other, 
the ex istence of a "Taylor tower" for a functor in analogy with the Taylor series of 
a function, is not used in the proof of Theorem 1. It is explained in [G5]. 

4. The Derivative of K-Theory 

In order to use Proposition 5 for proving Theorem I, it is necessary first of all to 
know (up to natural equivalence) what the derivative of the fun clor A is. The answer 
turns out to be this: 

Theorem 7. For a based space (X, x) tile spectrum oxA (X) is related by a c/Jain of 
natural equivalences to ECO(Q(X, x)+). 

This is the unreduced suspension spectrum of the based loopspace of X . (The 
subscript" +" adds a disjoint basepoint.) 
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Theorem 7 (3.3 of [G2]) is proved indirectly; it is reduced to a corresponding 
statement (Theorem 7' below) about smooth manifolds, using a major theorem of 
Waldhausen: 

Theorem R (Waldhauscn [W I]). There is a lIalUral lVeak equivalence oj spectra 
between A(X) alld tire product r~(x+ ) x WhD1rr(X), where WhDirr(X) is a lIatural 
dOl/hIe de/oopillg of the differentiable pseudoisotopy spectrum ,9Diff (X). 

In view of Theorem 8, Theorem 7 may be rewritten: 

Theorem 7'. For a based space (X, x) the spectrulII a.1;"&Dirr{X) is relaced by a elra;n 
of nalUral equivalences to Q 1.t(:O(Q(X. xl/ X). 

It is notable that, while the rela tionship between K-theory and pseudoisolOPY 
theory expressed in Theorem 8 is usually viewed as a way of reducing geometry to 
algebra, in this instance the flow of information is in the other direction. In this 
connection see also Sect. 5.3. 

Recall that the underlying space of the spectrum & Dirr(X) is essentially defined 
as a limit of spaces pDirr(M) for manifolds M (compact, with boundary. of arbitrarily 
large dimension) of· the homotopy type of X . The space pDlrr(kl) is the simplicial 
group of all diITeomorphisms of M x I which are the identity along (M x 0) u 
(aM x I). 

Therefore, to "compute" o:c& Dirr (X) is essentially to solve the following problem: 
For a smooth manifold M with an attached handle II of index k ;?: 3, determine the 
2k-homotopy type of the fiber of pD;rr(M) ~ pD;ff(M u II). This is done in [G2] using 
Morlel's "disjunction lemma" and an old-fashioned difTerentiable general-position 
argument. 

5_ The Functor TC 

I will now say something about the functor TC which occurs in the statement of 
Theorem 1. There are really two questions to address: How is it defined, and what' 
does it turn out to be? 

5.1 Definition of TC 

I will not be very specific about this. TC is related to B6kstedt's "topological 
Hochschild homology" (TH H). For details see [BCCGHM], [BHM], or [G4]. 

Recall that. according to one way of thinking about the K-theory of (based, 
connected) spaces, A(BG) is the K-theory spectrum of the " ring up to homotopy" 
Q~ .r~(1 GI+ )· The latter is to be thought of as the "group ring" keG] of the simplicial 
group G over the ground "ring" k = QSo. Heuristically, 

connective spectrum = infinite loop space 

- abelian group up to homotopy 

= k-module , 
and the group structure of G gives k[G] a multiplication compatible with its additive 
structure. These ideas can be made precise by using a suitable notion of "ring up 
to homotopy", for example B6kstedt's notion of FSP (functor with smash product). 
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For such a "rins" R, B5kstedt defines a K-theory spectrum K(R). Both the 
Quillen K-theory of rings and the Waldhausen K-theory of spaces are included as 
special cases (the cases of a discrete ring R and a group ring kEG] respectively). He 
also defines a spectrum THH(R); heuristically it is the simplicial object 

R 

i ! i 
R 0 R 

i ! i ! i 
R0R0R 

with face and degeneracy maps given by the product and unit of R, respectively, as 
in the definition of the standard chain complex for Hochschild hliilmology. The 
"tensor products" are meant to be over k and are really smash products of spectra. 

Bokstedt defines a map of spectra K(R) -.. THH(R); it is modeled on the "trace 
map" from K-theory to Hochschild homology defined by Dennis for an ordinary 
ring R. 

Very roughly speaking, TC is related to THH as cyclic homology is related to 
Hochschild homology. For any FSP there is a spectrum TeeR) with a map TeeR) ~ 
THH(R). The ",ice K(R) ~ THH(R) lifts to a map K(R) ~ TeeR), called the 
cyclotomic trace. (After p-complction this is the same as the map of that same name 
constructed in [BH M)). 

Let the simplicial group G be a loop group for the space X, and let R be kEG). 
In this case we sometimes write TC(X) instead of TC(R). Thus in this case the 
cyclotomic trace is a map A(X) -J> TC(X). It is this which is used in the proof of the 
theorem. 

5.2 Description of Te 

From a computational p'oint of view the main thing to know about TC(X) is that 
it is related in a certain way to the free loop space AX = Map(Sl, X). Again let G 
be a simplicial loop group for X. 

First of all, it is fairly easy to see that THH(k[G)) is equivalent to Em(AX. ). 
This is essentially because AX is equivalent to the realization of the simplicial space 

G 

i ! i 
GxG 

i ! i ! i 
GxGxG 

(the "cyclic bar construction" or "cyclic nerve" of G). 
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To describe TC(X) we must consider some additional structure that the space 
AX has. Let the circle group S1 act on AX in the usual way, and let dp : AX -. AX 
be the pth power map (composition with the standard map Sl -. SI of degree pl. 

It turns out that the functor X!-+ TC(X) is very closely related to the functor 
XH> 8(X) = E~ E((ES1 XSL AX)+), although to say exactly how they are related it 
is apparently necessary to consider separately the profinite homotopy type and the 
rational homotopy type. 

Concerning the profinite type, the statcmcnt is that after p-completion (p a 
prime) the spectrum TC(X) becomes part of a fiber square 

TC(X) B(X) 

1 1 nf 

E~AX+ 
1 " 

I J:~AX+ 

Here Trf is the Sl-transfer associated to the bundle 

(AX -) ES1 x AX ~ ES 1 x s' AX 

and I - Ap is the difference betwcen two stable maps, the identity and the map 
induced by Ap. 

This, it turns out, has the consequence that for I-connected spaces X there is a 
natural equivalence, after p-complction and passage to reduced functors, between 
TC(X) and 

where the map is the composition of the transfer and the map induced by evaluation 
AX -+ X at a point in the circle. 

Concerning the rational type, the statement is that for 2-conncctcd maps Y _ X 
there is a natural equivalence, after rationalization, between the fiber of TC(Y)-. 
TC(X) and the fiber of B(Y) ~ B(X). (This is not, however, induced by a natural 
map TC ~ B or B ~ TC.) 

5.3 Generalizations 

Theorem 1 can be generalized so as to apply to more than the K -theory of spaccs. 
There is considerable evidence for the following: 

Conjecture 9. For allY I-collnected map R -. S oj FSP's tlie resulting map of spectra 
from fiber(K(R) ~ K(S)) to fiber (TC(R) ~ TC(S) is all equivolellce. 

This can be deduced from Theorem 1 in some cases, namely those in which no(R) 
(= no(S» is an integral group ring ?l[n]. In particular, ~t is true for the map 
QSo = k = R -+ S = ?l. Unfortunately. this does not yet amount to a computation 
of the fiber of A( *) -. K(?l) in any real sense, because TC(71) is still a fairly mysterious 
object. 
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6. The Derivative of TC 

After' producing a map from A to Te, it remains to sho\y that it induces an 
equivalence olA(X) -J> o;r. TC(X). This is done in two steps. 

The first step is to show that axA(X) and o;r. TC(X) are abstractly equivalent, in 
the sense tha t these two functors from based spaces (X, x) to spectra arc related by 
a chain of natural equivalences. I have already sa id tha t o;r.A(X) is abstractly 
equivalent to EooQ(X, x) +_ The same is true of o;r. TC(X ). or course I cannot begin 
to explain why, since I have not even defined TC here, but to get the idea I invite 
the reader to work out the equivalences (see Sectio n 2 of [G2]): 

o,1:~A(X)+ - Map(S', l:~Q(X. x)+) 

o,B(X)+ -1:~Q(X. xl.. 

The second step is to prove: 
, 

Lemma 10. The cyclotomic lrace A _ TC induces all equifJalence o.rA(X) -J> o;r. TC(X). 

The trick in proving th is is to begin with the case when X is the suspension E Y 
of a connected space Y. 

To see that this special case is enough, one classifies all the natural maps 
E <>:!Q(X, x)+ -I- Eoo.Q(X, x)+ in the homotopy category of homotopy functors from 
based spaces to spectra. It turns ou t that the only maps which are equivalences 
when X is a simply-connected suspension arc those which are equivalences for all X. 

The argument which proves the lemma in the case X = EY is essentially the 
main argument of [CCGH]. It relies on a tool which is only available in the 
suspension case: the cyclotomic trace can be composed wi th another natural map 
as follows: 

U D,(Y) _ QA(1:Y) - QTC(1:Y), 
", 

Here D,(y) is the divided power l:~(E(71I")+ " z" y"'), (I am writing y'" for the 
smash product of II copies of Y.) The composed map above induces a map of 
derivativcs 

a,( U D,(y)) _ o,QTC(1:Y) - Q1:~Q1:Y+ 
1'I~1 , 

which, more or less by direct examination, is seen to be an equivalence. It follows 
tha t the map· 

Q1:~Q1:Y+ - a,QA(1:y) - a"QTC(1:y) - Q£~Q1:Y+ 

induced by the cyclotomic trace is a split surjection, and from this one concludes 
without much trouble that it is an equivalence. 

As a by~product this yields the main rcsult of [CCGH]. which can now be viewed 
as a special case of Corollary 2: 
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Theorem 1 I. For cOllnected spaces Y there is a Ilatural equivalence of spectra 
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