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Preface

Algebraic K-theory draws its importance from its effective codification of a mathematical
phenomenon which occurs in as separate parts of mathematics as number theory, geometric
topology, operator algebra, homotopy theory and algebraic geometry. In reductionistic
language the phenomenon can be phrased as

there is no canonical choice of coordinates.

As such, it is a meta-theme for mathematics, but the successful codification of this phe-
nomenon in homotopy-theoretic terms is what has made algebraic K-theory into a valuable
part of mathematics. For a further discussion of algebraic K-theory we refer the reader to
chapter I below.

Calculations of algebraic K-theory are very rare, and hard to get by. So any device that
allows you to get new results is exciting. These notes describe one way to get such results.

Assume for the moment that we know what algebraic K-theory is, how does it vary
with its input?

The idea is that algebraic K-theory is like an analytic function, and we have this other
analytic function called topological cyclic homology (TC) invented by Bökstedt, Hsiang and
Madsen [6], and

the difference between K and TC is locally constant.

This statement will be proven below, and in its integral form it has not appeared elsewhere
before.

The good thing about this is that TC is occasionally possible to calculate. So whenever
you have a calculation of K-theory you have the possibility of calculating all the K-values
of input “close” to your original calculation.
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4 . PREFACE

Figure 1: The difference between K and TC is locally constant. To the left of the
figure you see that the difference between K(Z) and TC(Z) is quite substantial, but
once you know this difference you know that it does not change in a “neighborhood”
of Z. In this neighborhood lies for instance all applications of algebraic K-theory of
simply connected spaces, so here TC-calculations ultimately should lead to results in
geometric topology as demonstrated by Rognes.

On the right hand of the figure you see that close to the finite field with p elements,

K-theory and TC agrees (this is a connective and p-adic statement: away from the

characteristic there are other methods that are more convenient). In this neighbor-

hood you find many interesting rings, ultimately resulting in Hesselholt and Madsen’s

calculations of the K-theory of local fields.

So, for instance, if somebody (please) can calculate K-theory of the integers, many
“nearby” applications in geometric topology (simply connected spaces) are available through
TC-calculations (see e.g., [103],[102]). This means that calculations in motivic cohomol-
ogy (giving K-groups of e.g., the integers) actually have bearings for our understanding of
diffeomorphisms of manifolds!

On a different end of the scale, Quillen’s calculation of the K-theory of finite fields
give us access to “nearby” rings, ultimately leading to calculations of the K-theory of local
fields [52]. One should notice that the illustration is not totally misleading: the difference
between K(Z) and TC(Z) is substantial (though locally constant), whereas around the
field Fp with p elements it is negligible.

Taking K-theory for granted (we’ll spend quite some time developing it later), we should
say some words about TC. Since K-theory and TC differ only by some locally constant
term, they must have the same differential: D1K = D1TC. For ordinary rings A this
differential is quite easy to describe: it is the homology of the category PA of finitely
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generated projective modules.

Figure 2: The differential of K and TC is equal at any point. For rings it is the

homology of the category of finitely generated projective modules

The homology of a category is like Hochschild homology, and as Connes observed,
certain models for these carry a circle action which is useful when comparing with K-
theory. Only, in the case of the homology of categories it turns out that the ground ring
over which to take Hochschild homology is not an ordinary ring, but the so-called sphere
spectrum. Taking this idea seriously, we end up with Bökstedt’s topological Hochschild
homology THH.

One way to motivate the construction of TC from THH is as follows. There is a
transformation K → THH which we will call the Dennis trace map and there is a model
for THH for which the Dennis trace map is just the inclusion of the fixed points under the
circle action. That is, the Dennis trace can be viewed as a composite

K ∼= THHT ⊆ THH

where T is the circle group. The unfortunate thing about this statement is that it is model
dependent in that fixed points do not preserve weak equivalences: if X → Y is a map



6 . PREFACE

of T-spaces which is a weak equivalence of underlying spaces, normally the induced map
XT → Y T won’t be a weak equivalence. So, TC is an attempt to construct the T-fixed
points through techniques that do preserve weak equivalences.

It turns out that there is more to the story than this: THH possesses something
called an epicyclic structure (which is not the case for all T-spaces), and this allows us to
approximate the T-fixed points even better.

So in the end, the cyclotomic trace is a factorization

K → TC

of the Dennis trace map.
This natural transformation is the theme for this book. There is another paper devoted

to this transformation, namely Madsen’s eminent survey [80]. We strongly encourage all
readers to get a copy, and keep it close by while reading what follows.

It was originally an intention that readers who were only interested in discrete rings
would have a path leading leading far into the material with minimal contact with ring
spectra. This idea has to a great extent been abandoned since ring spectra and the tech-
niques around them has become much more mainstream while these notes has matured.
Some traces can still be seen in that chapter I does not depend at all on ring spectra, lead-
ing to the proof that stable K-theory of rings correspond to homology of the category of
finitely generated projective modules. Topological Hochschild homology is however inter-
preted as a functor of ring spectra, so the statement that stable K-theory is THH requires
some background on ring spectra.

The general plan of the book is as follows.
In section I.1 we give some general background on algebraic K-theory. The length of

this introductory section is defended by the fact that this book is primarily concerned with
algebraic K-theory; the theories that fill the last chapters are just there in order to shed
light on K-theory, we are not really interested in them for any other reason. In I.2 we
give Waldhausen’s interpretation of algebraic K-theory and study in particular the case of
radical extensions of rings. Finally I.3 compare stable K-theory and homology.

Chapter II aims at giving a crash course on ring spectra. In order to keep the presenta-
tion short we have limited us to present only the simplest version: Segal’s Γ-spaces. This
only gives us connective spectra, but that suffice for our purposes, and also fits well with
Segal’s version of algebraic K-theory which we are using heavily later in the book.

Chapter III can (and perhaps should) be skipped on a first reading. It only asserts that
various reductions are possible. In particular K-theory of simplicial rings can be calculated
degreewise “locally” (i.e., in terms of the K-theory of the rings appearing in each degree),
simplicial rings are “dense” in (connective) ring spectra, and all definitions of algebraic
K-theory we encounter give the same result.

In chapter IV topological Hochschild homology is at long last introduced. First for ring
spectra, and then in a generality suitable for studying the correspondence with algebraic
K-theory. The equivalence between the topological Hochschild homology of a ring and the
homology of the category of finitely generated projective modules is established in IV.2,
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which together with the results in I.3 settle the equivalence between stable K-theory and
topological Hochschild homology of rings.

In order to push the theory further we need an effective comparison between K-theory
and THH, and this is provided by the trace map K → THH in the following chapter.

In chapter VI topological cyclic homology is introduced. This is the most involved of
the chapters in the book, since there are so many different aspects of the theory that have
to be set in order. However, when the machinery is set properly up, Goodwillie’s ICM-
conjecture is proven in a couple of pages at the beginning of chapter VII. The chapter
ends with a quick and inadequate review of the various calculations of algebraic K-theory
that have resulted from trace methods.

The appendices collect some material that is used freely throughout the notes. Most
of the material is available elsewhere in the literature, but has been collected for the
convenience of the reader, and some material is of a sort that would distract the discussion
in the book proper, and hence has been pushed back to an appendix.

Acknowledgments: This book owes a lot to many people. The first author especially
wants to thank Marcel Bökstedt, Bjørn Jahren, Ib Madsen and Friedhelm Waldhausen for
their early and decisive influence on his view on mathematics. These notes have existed
for quite a while on the net, and we are grateful for the helpful comments we have received
from a number of people, in particular from Morten Brun, Harald Kittang, John Rognes,
Stefan Schwede and Paul Arne Østvær. A significant portion of the notes were written
while visiting Stanford University, and the first author is grateful to Gunnar Carlsson and
Ralph Cohen for inviting me and asking me to give a course based on these notes, which
gave the impetus to try to finish the project.

For the convenience of the reader we provide the following leitfaden. It should not be
taken too seriously, some minor dependencies are not shown, and many sections that are
noted to depend on previous chapters can be read first looking up references when they
appear. In particular, chapter III should be postponed upon a first reading.
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Chapter I

Algebraic K-theory

{I}

In this chapter we define and discuss the algebraic K-theory functor. This chapter will
mainly be concerned with the algebraic K-theory of rings, but we will extend this notion
at the end of the chapter. There are various possible extensions, but we will mostly focus
on a class that are close to rings.

In the first section we give a quick nontechnical overview of K-theory. Many of the
examples are touched lightly on, and are not needed later on, but are included to give an
idea of the scope of the theory.

In the second section we introduce Waldhausen’s S-construction of algebraic K-theory
and prove some of the basic facts.

The third section concerns itself with comparisons between K-theory and various ho-
mology theories.

1 Introduction

The first appearance of what we now would call truly K-theoretic questions are the investi-
gations of J. H. C. Whitehead and Higman on the diffeomorphism classes of h-cobordisms.
The name “K-theory” is much younger, and first appears in Grothendieck’s work on the
Riemann-Roch theorem. But, even though it was not called K-theory, we can get some
motivation by studying the early examples.

15
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1.1 Motivating example from geometry: Whitehead torsion
{sec:Whitetor}

A cobordism W between a disjoint union M

of two circles and a single circle N .

Let M and N be two smooth n-
dimensional manifolds. A cobordism
between M and N is an n + 1-
dimensional smooth compact mani-
fold W with boundary the disjoint
union of M and N (in the ori-
ented case we assume that M and
N are oriented, and W is an oriented
cobordism from M to N if it is ori-
ented so that the orientation agrees
with that on M and is the opposite
of that of N).
We are here interested in a situation
where M and N are deformation re-
tracts of W . Obvious examples are
cylinders M × I.

(For a more thorough treatment of the following example, see Milnor’s very readable
article [85])

More presicely: Let M
be a compact, connected,
smooth manifold of di-
mension n > 5. Sup-
pose we are given an h-
cobordism (W ;M,N), that
is a compact smooth n +
1 dimensional manifold W ,
with boundary the disjoint
union of M and N , such
that both the inclusions
M ⊂ W and N ⊂ W are
homotopy equivalences.

An h-cobordism (W ;M,N). This one is a cylinder.

{subsec:QWh}

Question 1.1.1 Is W diffeomorphic to M × I?

It requires some fantasy to realize that the answer to this question can be “no”. In
particular, in the low dimensions of the illustrations all h-cobordisms are cylinders.

However, this is not true in high dimensions, and the h-cobordism theorem 1.1.3 below
gives a precise answer to the question.

To fix ideas, let M = L be a lens space of dimension, say, n = 7. That is, the
cyclic group of order l, π = µl = {1, e2πi/l, . . . , e2πi(l−1)/l}, acts on the seven sphere S7 =
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{x ∈ C4 s.t. |x| = 1} by complex multiplication

π × S7 → S7 (t,x) 7→ (t · x)

and we let L be the quotient space S7/π = S7/(x ∼ t · x). Then L is a smooth manifold
with fundamental group π.

Let

. . .
∂

−−−→ Ci+1
∂

−−−→ Ci
∂

−−−→ . . . −−−→ C0

be the complex calculating the homologyH∗ = H∗(W,L;Z[π]) of the inclusion L = M ⊆ W
(see section 7 and 9 in [85] for details). Each Ci is a finitely generated free Z[π] module,
and has a preferred basis over Z[π] coming from the i simplices added to get from L to W
in some triangulation. Define

Bi = im{Ci+1
∂

−−−→ Ci}

and

Zi = ker{Ci
∂

−−−→ Ci−1}.

We have short exact sequences

0 −−−→ Zi −−−→ Ci −−−→ Bi−1 −−−→ 0

0 −−−→ Bi −−−→ Zi −−−→ Hi −−−→ 0.

But since L ⊂ W is a deformation retract, H∗ = 0, and so B∗ = Z∗.
Since each Ci is a finitely generated free Z[π] module, and we may assume each Bi free

as well (generally we get by induction only that each Bi is “stably free”, but in our lens
space case this implies that Bi is free). Now, this means that we may choose arbitrary
bases for Bi, but there can be nothing canonical about this choice. The strange fact is that
this phenomenon is exactly what governs the geometry.

Let Mi be the matrix (in the chosen bases) representing the isomorphism {Mi}

Bi ⊕ Bi−1
∼= Ci

coming from a choice of section in

0 −−−→ Bi −−−→ Ci −−−→ Bi−1 −−−→ 0.

1.1.2 K1 and the Whitehead group
{subsec:Wh_1}

For any ring A we may consider the matrix rings Mk(A) as a monoid under multiplication.
The general linear group is the subgroup of invertible elements GLk(A). Take the limit
GL(A) = limk→∞GLk(A) with respect to the stabilization

GLk(A)
g 7→g⊕1
−−−−→ GLk+1(A)
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(thus every element g ∈ GL(A) can be thought of as an infinite matrix

[
g′ 0 0 ...
0 1 0 ...
0 0 1 ...
...

...
...
...

]

with g′ ∈ GLk(A) for some k <∞). Let E(A) be the subgroup of elementary matrices (i.e.
Ek(A) ⊂ GLk(A) is the subgroup generated by the elements eaij with ones on the diagonal
and a single off diagonal entry a ∈ A in the ij position). The “Whitehead lemma” (see
1.2.2 below) implies that

K1(A) = GL(A)/E(A)

is an abelian group. In the particular case where A is an integral group ring Z[π] we define
the Whitehead group as the quotient

Wh(π) = K1(Z[π])/{±π}

via {±π} ⊆ GL1(Z[π])→ K1(Z[π]).
Let (W ;M,N) be an h-cobordism, and let Mi ∈ GL(Z[π1(M)]) be the matrices de-

scribed in 1.1 for the lens spaces above and similarly in general. Let [Mi] ∈ Wh(π1(M))
be the corresponding equivalence classes and set

τ(W,M) =
∑

(−1)i[Mi] ∈ Wh(π1(M)).

The class τ(W,M) is called the Whitehead torsion.

{theo:hcob}
Theorem 1.1.3 (Mazur (63), Barden (63), Stallings (65)) Let M be a compact, con-
nected, smooth manifold of dimension > 5 with fundamental group π1(M) = π, and let
(W ;M,N) be an h-cobordism. The Whitehead torsion τ(W,M) is well defined, and τ
induces a bijection

{
diffeomorphism classes (rel. M)

of h-cobordisms (W ;M,N)

}
←→ Wh(π)

In particular, (W ;M,N) ∼= (M × I;M,M) if and only if τ(W,M) = 0.

Example 1.1.4 One has managed to calculate Wh(π) only for a very limited set of groups.
We list a few of them; for a detailed study of Wh of finite groups, see [90]. The first three
refer to the lens spaces discussed above (see page 375 in [85] for references).

1. l = 1, M = S7. Exercise: show that K1Z = {±1}, and so Wh(0) = 0. I.e: any h
cobordism of S7 is diffeomorphic to S7 × I.

2. l = 2. M = P 7, the real projective 7-space. Exercise: show that K1Z[C2] = {±C2},
and so Wh(µ2) = 0. I.e: any h cobordism of P 7 is diffeomorphic to P 7 × I.
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3. l = 5. Wh(µ5) ∼= Z (generated by the invertible element t + t−1 − 1 ∈ Z[µ5] – the
inverse is t2 + t−2 − 1). I.e: there exists countably infinitely many non diffeomorphic
h-cobordisms (W ;L,M).

4. Waldhausen [127]: If π is a free group, free abelian group, or the fundamental group
of a submanifold of the three-sphere, then Wh(π) = 0.

5. Farrell and Jones [30]: If M is a closed Riemannian manifold with nonpositive sec-
tional curvature, then Wh(π1M) = 0.

1.2 K1 of other rings
{sec:$K_1$ of other rings}

1. Commutative rings: The map from the units in A

A∗ = GL1(A)→ GL(A)/E(A) = K1(A)

is split by the determinant map, and so the units of A is a split summand in K1(A). In
certain cases (e.g. if A is local, or the integers in a number field, see next example) this
is all of K1(A). We may say that K1(A) measures to what extent we can do Gauss
elimination, in that ker{det : K1(A) → A∗} is the group of equivalence classes of
matrices up to elementary row operations (i.e. multiplication by elementary matrices
and multiplication of a row by an invertible element).

2. Let F be a number field (i.e. a finite extension of the rational numbers), and let
A ⊆ F be the ring of integers in F (i.e. the integral closure of Z in F ). Then
K1(A) ∼= A∗, and a result of Dirichlet asserts A∗ is finitely generated of rank r1+r2−1
where r1 (resp. 2r2) is the number of distinct real (resp. complex) embeddings of F .

3. Let B → A be an epimorphism of rings with kernel I ⊆ rad(B) – the Jacobson
radical of B (that is, if x ∈ I, then 1 + x is invertible in B). Then

(1 + I)× −−−→ K1(B) −−−→ K1(A) −−−→ 0

is exact, where (1 + I)× ⊂ GL1(B) is the group {1 + x|x ∈ I} under multiplication
(see e.g. page 449 in [4]). Moreover, if B is commutative and B → A is split, then

0 −−−→ (1 + I)× −−−→ K1(B) −−−→ K1(A) −−−→ 0

is exact.

For later reference, we record the Whitehead lemma mentioned above. For this we need
some definitions.

{Def:commutator}

Definition 1.2.1 The commutator [G,G] of a group G is the (normal) subgroup generated
by all commutators [g, h] = ghg−1h−1. A group G is called perfect if it is equal to its
commutator, or in other words, if H1G = G/[G,G] vanishes. Any group G has a maximal
perfect subgroup, which we call PG, and which is automatically normal. We say that G is {maximal perfect subgroup}
quasi-perfect if PG = [G,G].
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An example of a perfect group is the alternating group on n ≥ 5 letters. Further
examples are provided by the

{lem:Whitehead}
Lemma 1.2.2 (The Whitehead lemma) Let A be a unital ring. Then GL(A) is quasi-
perfect with maximal perfect subgroup E(A). I.e.

[GL(A), GL(A)] = [E(A), GL(A)] = [E(A), E(A)] = E(A)

Proof: See e.g. page 226 in [4].

1.3 The Grothendieck group K0
{subsec:The Grothendieck group $K_0$}{Def:K0}

Definition 1.3.1 Let C be a small category and E a collection of diagrams c′ → c →
c′′ in C closed under isomorphisms. Then K0(C, E) is the abelian group, defined (up
to isomorphism) by the following universal property. Any function f from the set of
isomorphism classes of objects in C to an abelian group A such that f(c) = f(c′) + f(c′′)
for all sequences c′ → c→ c′′ in E , factors uniquely through K0(C).

That is, K0(C, E) is the free abelian group on the set of isomorphism classes, modulo
the relations of the type “[c] = [c′] + [c′′]”. So, it is not really necessary that C is small, the
only thing we need to know is that the class of isomorphism classes form a set.

Most often the pair (C, E) will be an exact category in the sense that C is an additive
category such that there exists an full embedding of C in an abelian category A, such that
C is closed under extensions in A and E consists of the sequences in C which are short exact
in A.

Any additive category is an exact category if we choose the exact sequences to be the
split exact sequences, but there may be other exact categories with the same underlying
additive category. For instance, the category of abelian groups is an abelian category,
and hence an exact category in the natural way, choosing E to consist of the short exact

sequences. These are not necessary split, e.g., Z
2 //Z //Z/2Z is a short exact sequence

which does not split.
The definition of K0 is a case of “additivity”: K0 is a (really the) functor to abelian

groups insensitive to extension issues. We will dwell more on this issue later, when we
introduce the higher K-theories. Higher K-theory plays exactly the same rôle as K0, except
that the receiving category has a much richer structure than Abelian groups.

The choice of E will always be clear from the context, and we drop it from the notation
and write K0(C).

{ex:K_0}
Example 1.3.2 1. Let A be a unital ring. If C = PA, the category of finitely generated

projective (left) A modules, with the usual notion of exact sequences, we often write
K0(A) for K0(PA). Note that PA is split exact, that is, all short exact sequences in
PA split. Thus we see that we could have defined K0(A) as the quotient of the free
abelian group on the isomorphism classes in PA by the relation [P ⊕Q] ∼ [P ] + [Q].
It follows that all elements in K0(A) can be written on the form [F ] − [P ] where F
is free.
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{KfA}

2. Inside PA sits the category FA of finitely generated free A modules, and we let
Kf

0 (A) = K0(FA). If A is a principal ideal domain, then every submodule of a
free module is free, and so FA = PA. This is so, e.g. for the integers, and we
see that K0(Z) = Kf

0 (Z) ∼= Z, generated by the module of rank one. Generally,
Kf

0 (A)→ K0(A) is an isomorphism if and only if every finitely generated projective
module is stably free (P and P ′ are said to be stably isomorphic if there is a Q ∈ obFA
such that P ⊕ Q ∼= P ′ ⊕ Q, and P is stably free if it is stably isomorphic to a free
module). Whereas K0(A × B) ∼= K0(A) × K0(B), Kf

0 does not preserve products:
e.g. Z ∼= Kf

0 (Z × Z), while K0(Z × Z) ∼= Z × Z giving an easy example of a ring
where not all projectives are free.

3. Note that K0 does not distinguish between stably isomorphic modules. This is not
important in some special cases. For instance, if A is a commutative Noetherian ring
of Krull dimension d, then every stably free module of rank > d is free ([4, p. 239]).

{IBN}

4. The initial map Z → A defines a map Z → Kf
0 (A) which is always surjective, and

in most practical circumstances an isomorphism. If A has the invariance of basis
property, that is, if Am ∼= An if and only if m = n, then Kf

0 (A) ∼= Z. Otherwise,
A = 0, or there is an h > 0 and a k > 0 such that Am ∼= An if and only if either
m = n or m,n > h and m ≡ n mod k. There are examples of rings with such h and
k for all h, k > 0 (see [69] or [18]): let Ah,k be the quotient of the free ring on the set
{xij, yji|1 ≤ i ≤ h, 1 ≤ j ≤ h+ k} by the matrix relations

[xij] · [yji] = Ih, and [yji] · [xij] = Ih+k

Commutative (non-trivial) rings always have the invariance of basis property.

5. Let X be a CW complex, and let C be the category of complex vector bundles on X
with exact sequences meaning the usual thing. Then K0(C) is the K0(X) of Atiyah
and Hirzebruch [2]. Note that the possibility of constructing normal complements,
assure that this is a split exact category.

6. Let X be a scheme, and let C be the category of vector bundles on X. Then K0(C)
is the K(X) of Grothendieck. This is an example of K0 of an exact category which
is not split exact.

1.3.3 Geometric example: Wall’s finiteness obstruction
{subsec:Geometric example: Wall’s finiteness obstruction}

Let A be a space which is dominated by a finite CW complex X (dominated means that

there are maps A i //X r //A such that ri ' idA).
Question: is A homotopy equivalent to a finite CW complex?
The answer is yes if and only if a certain finiteness obstruction lying in K̃0(Z[π1A]) =

ker{K0(Z[π1A])→ K0(Z)} vanishes. So, for instance, if we know that K̃0(Z[π1A]) vanishes
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for algebraic reasons, we can always conclude that A is homotopy equivalent to a finite
CW complex. As for K1, calculations of K0(Z[π]) are very hard, but we give a short list.

1.3.4 K0 of group rings
{subsec:$K_0$ of group rings}

1. If Cp is a cyclic group of order prime order p less than 23, then K̃0(Z[π]) vanishes.
K̃0(Z[C23]) ∼= Z/3Z (Kummer, see [86, p. 30]).

2. Waldhausen [127]: If π is a free group, free abelian group, or the fundamental group
of a submanifold of the three-sphere, then K̃0(Z[π]) = 0.

3. Farrell and Jones [30]: If M is a closed Riemannian manifold with nonpositive sec-
tional curvature, then K̃0(Z[π1M ]) = 0.

1.3.5 Facts about K0 of rings
{subsec:Facts about $K_0$ of rings}

1. If A is a commutative ring, then K0(A) has a ring structure. The additive struc-
ture comes from the direct sum of modules, and the multiplication from the tensor
product.

2. If A is local, then K0(A) = Z.

3. Let A be a commutative ring. Define rk0(A) to be the kernel of the (split) surjection
rank : K0(A) → Z associating the rank to a module. The modules P for which
there exists a Q such that P ⊗A Q ∼= A form a category. The isomorphism classes
form a group under tensor product. This group is called the Picard group, and is
denoted Pic0(A). There is a “determinant” map rk0(A) → Pic0(A) which is always
surjective. If A is a Dedekind domain (see [4, p. 458–468]) may be reinterpreted as
an isomorphism to the ideal class group Cl(A).

4. Let A be the integers in a number field. Then Dirichlet tells us that rk0(A) ∼=
Pic0(A) ∼= Cl(A) is finite. For instance, if A = Z[e2πi/p] = Z[t]/

∑p−1
i=0 t

i, the integers
in the cyclotomic field Q(e2πi/p), then K0(A) ∼= K0(Z[Cp]) (1.3.41.).

5. If f : B → A is a surjection of rings with kernel I contained in the Jacobson radical,
rad(B), then K0(B)→ K0(A) is injective ([4, p. 449]). It is an isomorphism if either

(a) B is complete in the I-adic topology ([4]),

(b) (B, I) is a Hensel pair ([34]) or

(c) f is split (as K0 is a functor).
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1.3.6 Example from algebraic geometry
{subsec:Example from algebraic geometry}

(Grothendieck’s proof of the Riemann–Roch theorem. see Borel and Serre [11]) Let X
be a quasiprojective non-singular variety over an algebraically closed field. Let A(X) be
the Chow ring of cycles under linear equivalence with product defined by intersection.
Tensor product gives a ring structure on K0(X), and Grothendieck defines a natural ring
morphism ch : K0(X)→ A(X)⊗Q. For proper maps f : X → Y there are transfer maps
f! : K0(X)→ K0(Y ) and the Riemann–Roch theorem is nothing but a quantitative measure
of the fact that

K0(X)
ch
−−−→ A(X)⊗Q

f!

y f!

y

K0(Y )
ch
−−−→ A(Y )⊗Q

fails to commute: ch(f!(x)) ·T (Y ) = f!(ch(x) ·T (X)) where T (X) is the value of the Todd
class on the tangent bundle of X.

1.3.7 Number-theoretic example
{subsec:Number-theoretic example}

Let F be a number field and A its ring of integers. Then there is an exact sequence
connecting K1 and K0:

0 −−−→ K1(A) −−−→ K1(F )
δ

−−−→
⊕

m∈Max(A)K0(A/m) −−−→ K0(A) −−−→ K0(F ) −−−→ 0

The zeta function of F is defined for s ∈ C to be

ζF (s) =
∑

I non-zero ideal in A

|A/I|−s

This series converges for Re(s) > 1, and admits an analytic continuation to the whole
plane. It has a zero of order r = rank(K1(A)) in s = 0, and

lim
s→0

ζF (s)

sr
= −

R|K0(A)tor|

|K1(A)tor|

where | −tor | denotes the cardinality of the torsion subgroup, and the regulator R depends
on the map δ above.

This is related to the Lichtenbaum-Quillen conjecture, which is now confirmed at the
prime 2 due to work of among many others Voevodsky, Suslin, Rognes and Weibel (see
section 0.9 for references and a deeper discussion).

1.4 The Mayer–Vietoris sequence

We have said that K0(A) got its name before K1(A), and the reader may wonder why one
chooses to regard them as related. Example 1.3.7 provides one reason, but that is cheating.
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Historically, this was an insight of Bass, who proved that K1 could be obtained from K0 in
analogy with the definition of K1(X) as K0(S1∧X) (cf. example 1.3.2.5). This is entailed
by exact sequences connecting the two theories. As an example: if

A −−−→ By f

y
C

g
−−−→ D

is a cartesian square of rings and g (or f) surjective, then we have a long exact “Mayer–
Vietoris” sequence

K1(A) −−−→ K1(B)⊕K1(C) −−−→ K1(D) −−−→

K0(A) −−−→ K0(B)⊕K0(C) −−−→ K0(D)

However, it is not true that this continues. For one thing there is no simple analogy to
the Bott periodicity K0(S2∧X) ∼= K0(X). Milnor proposed in [86] a definition of K2 (see
below) which would extend the Mayer–Vietoris sequence if both f and g are surjective,
i.e. we have a long exact sequence

K2(A) −−−→ K2(B)⊕K2(C) −−−→ K2(D) −−−→

K1(A) −−−→ K1(B)⊕K1(C) −−−→ K1(D) −−−→ K0(A) −−−→ . . .

However, this was the best one could hope for:
{ex:No excision}

Example 1.4.1 Swan [118] gave the following example showing that there exist no functor
K2 giving such a sequence if only g is surjective. Let A be commutative, and consider the
pullback diagram

A[t]/t2
t7→0
−−−→ A

a+bt7→( a b0 a )
y ∆

y
T2(A)

g
−−−→ A× A

where T2(A) is the ring of upper triangular 2 × 2 matrices, g is the projection onto the
diagonal, while ∆ is the diagonal inclusion. As g splits K2(T2(A))⊕K2(A)→ K2(A× A)
must be surjective, but, as we shall see below, K1(A[t]/t2) → K1(T2(A)) ⊕ K1(A) is not
injective.

Recall that, since A is commutative, GL1(A[t]/t2) is a direct summand of K1(A[t]/t2).
The element 1+t ∈ A[t]/t2 is invertible (and not the identity), but [1+t] 6= [1] ∈ K1(A[t]/t2)
is sent onto [1] in K1(A), and onto

[( 1 1
0 1 )] ∼ [

(
( 1 1

0 1 ) 0
0 1

)
] = [

[
e
( 1 0

0 0 )
12 , e

( 0 1
0 0 )

21

]
] ∼ [1] ∈ K1(T2(A))

where the inner brackets stand for commutator (which is trivial in K1, by definition).
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1.5 Milnor’s K2(A)
{sec:Milnor’s $K_2(A)$}

Milnor’s definition of K2(A) is given in terms of the Steinberg group, and turns out to be
isomorphic to the second homology group H2E(A) of the group of elementary matrices.
Another, and more instructive way to say this is the following. The group E(A) is gen-
erated by the matrices eaij, a ∈ A and i 6= j, and generally these generators are subject
to lots of relations. There are, however, some relations which are more important than
others, and furthermore are universal in the sense that they are valid for any ring: the so-
called Steinberg relations. One defines the Steinberg group St(A) to be exactly the group{ISteinberg relations}
generated by symbols xaij for every a ∈ A and i 6= j subject to these relations. Explicitly:

xaijx
b
ij = xa+bij

and

[xaij, x
b
kl] =





1 if i 6= l and j 6= k

xabil if i 6= l and j = k

x−bakj if i = l and j 6= k

One defines K2(A) as the kernel of the surjection

St(A)
xa

ij 7→e
a
ij

−−−−→ E(A).

In fact,

0 −−−→ K2(A) −−−→ St(A) −−−→ E(A) −−−→ 0

is a central extension of E(A) (hence K2(A) is abelian), and H2(St(A)) = 0, which makes
it the “universal central extension” (see e.g. [66]).

The best references for Ki i ≤ 2 are still Bass’ [4] and Milnor’s [86] books. Swan’s paper
[118] is recommended for an exposition of what optimistic hopes one might have to extend
these ideas, and why some of these could not be realized (for instance, there is no functor
K3 such that the Mayer–Vietoris sequence extends, even if all maps are split surjective).

1.6 Higher K-theory
{sec:Higher K-theory}

In the beginning of the seventies, suddenly there appeared a plethora of competing theories
pretending to extend these ideas into a sequence of theories, Ki(A) for i ≥ 0. Some theories
were more interesting than others, and many were equal. The one we are going to discuss
in this paper is the Quillen K-theory, later extended by Waldhausen to a larger class of
rings and categories.

As Quillen defines it, the K-groups are really the homotopy groups of a space K(C). He
gave three equivalent definitions, one by the “plus” construction discussed in 1.6.1 below (we
also use it in section III.1.3 but for most technical details we refer the reader to appendix
A.1.6), one via “group completion” and one by what he called the Q-construction. That
the definitions agree appeared in [41]. For a ring A, the homology of the space K(A) is
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nothing but the group homology of GL(A). Using the plus construction and homotopy
theoretic methods, Quillen calculated in [97] K(Fq), where Fq is the field with q elements.

The advantage of the Q-construction is that it is more accessible to structural consid-
erations. In the foundational article [99] Quillen uses the Q-construction to extend most
of the general statements that were known to be true for K0 and K1.

However, given these fundamental theorems, of Quillen’s definitions it is the plus con-
struction that, has proven most directly accessible to calculations (this said, very few
groups were in the end calculated directly from the definitions, and by now indirect meth-
ods such as motivic cohomology and the trace methods that are the topic of this book have
extended our knowledge far beyond the limitations of direct calculations).

1.6.1 Quillen’s plus construction
{subsec:Quillen’s plus construction}

We will now describe a variant of Quillen’s definition of the (connected cover of the)
algebraic K-theory of an associative ring with unit A via the plus construction. We will
be working in the category of simplicial sets (as opposed to topological spaces). The
readers who are uncomfortable with this can consult appendix A1.6, and generally think
of simplicial sets (often referred to as simply “spaces”) as topological spaces instead. If X
is a simplicial set, H∗(X) = H(X;Z) will denote the homology of X with trivial integral
coefficients, and if X is pointed we let H̃∗(X) = H∗(X)/H∗(∗).

{Def:acyclic}
Definition 1.6.2 Let f : X → Y be a map of connected simplicial sets with connected
homotopy fiber F . We say that f is acyclic if H̃∗(F ) = 0.

We see that the fiber of an acyclic map must have perfect fundamental group (i.e. 0 =
H̃1(F ) ∼= H1(F ) ∼= π1F/[π1F, π1F ]). Recall from 1.2.1 that any group π has a maximal
perfect subgroup, which we call Pπ, and which is automatically normal.

If X is a connected space, X+ is a space defined up to homotopy by the property that
there exist an acyclic map X → X+ inducing the projection π1(X) → π1(X)/Pπ1(X) =
π1(X

+) on the fundamental group. Here Pπ1(X) ⊂ π1(X) is the maximal perfect subgroup.

1.6.3 Remarks on the construction

There are various models for X+, and the most usual is Quillen’s original (originally used
by Kervaire [65] on homology spheres). That is, regard X as a CW complex, and add
2-cells to X to kill Pπ1(X), and then kill the noise created in homology by adding 3-cells.
See e.g. [46] for details on this and related issues.

In our simplicial setting, we will use a slightly different model, giving us strict functo-
riality (not just in the homotopy category), namely the partial integral completion of [14,
p. 219]. Just as K0 was defined by a universal property for functions into abelian groups,
the integral completion constructs a universal element over simplicial abelian groups (the
“partial” is there just to take care of pathologies such as spaces where the fundamental
group is not quasi-perfect). For the present purposes we only have need for the following
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properties of the partial integral completion, and we defer the actual construction to an
appendix.

{prop:plusproperties}
{prop:plusproperties1}

Proposition 1.6.4 1. X 7→ X+ is an endofunctor of pointed simplicial sets, and there
is a natural cofibration qX : X → X+,

{prop:plusproperties2}

2. if X is connected, then qX is acyclic, and
{prop:plusproperties3}

3. if X is connected then π1(qX) is the projection killing the maximal perfect subgroup
of π1X

Then Quillen provides the theorem we need (for proof and precise simplicial formulation,
see appendix A.1.6.3.1:

{theo:pluschar}

Theorem 1.6.5 For X connected, 1.6.4.2 and 1.6.4.3 characterizes X+ up to homotopy
under X.

The integral completion will reappear as an important technical tool in chapter III.

Recall that the group GL(A) was defined as the union of the GLn(A). Form the
classifying space of this group, BGL(A). Whether you form the classifying space before
or after the limit is without consequence. Now, Quillen defines the connected cover of
algebraic K-theory to be the realization |BGL(A)+| or rather, the homotopy groups,

Ki(A) =

{
πi(BGLA

+) if i > 0

K0(A) if i = 0
,

to be the K-groups of the ring A. In these notes we will use the following notation

{Def:algebraic K-theory space}

Definition 1.6.6 If A is a ring, then the algebraic K-theory space is

K(A) = BGL(A)+

Now, the Whitehead lemma 1.2.2 tells us that GL(A) is quasi-perfect with commutator
E(A), so π1K(A) = GL(A)/PGL(A) = GL(A)/E(A) as expected. Furthermore, using the
definition of K2(A) via the universal central extension, it is not too difficult to prove that
the K2’s of Milnor and Quillen agree [87].

One might regret that this K(A) has no homotopy in dimension zero, and this will
be amended later. The reason we choose this definition is that the alternatives available
to us at present all have their disadvantages. We might take K0(A) copies of this space,
and although this would be a nice functor with the right homotopy groups, it will not
agree with a more natural definition to come. Alternatively we could choose to multiply
by Kf

0 (A) of 1.3.2.2 or Z as is more usual, but this has the shortcoming of not respecting
products.
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1.6.7 Other examples of use of the plus construction

1. Let Σn ⊂ GLn(Z) be the symmetric group of all permutations on n letters, and let
Σ∞ = limn→∞Σn. Then the theorem of Barratt–Priddy–Quillen [114] states that
BΣ+

∞ ' limk→∞ΩkSk, so π∗(BΣ+) are the stable homotopy groups of spheres.

2. Let X be a connected space whith abelian fundamental group. Then Kan and
Thurston [60] has proved that X is, up to homotopy, a BG+ for some strange group
G. With a slight modification, the theorem can be extended to arbitrary connected
X.

1.6.8 Alternative definition of K(A)

In case the partial integral completion bothers you; for BGL(A) it can be substituted by
the following construction: choose an acyclic cofibration BGL(Z) → BGL(Z)+ once and
for all (by adding particular 2 and 3 cells), and define algebraic K-theory by means of the
pushout square

BGL(Z) −−−→ BGL(A)y
y

BGL(Z)+ −−−→ BGL(A)+

This will of course be functorial in A, and it can be verified that it has the right
homotopy properties. However, at one point (e.g. in chapter III.) we will need functoriality
of the plus construction for more general spaces. All the spaces which we will need in these
notes can be reached by choosing to do our first plus not on BGL(Z), but on BA5. See
appendix A.1.6.4 for more details.

1.7 Some of the results prior to 1990
{results prior to 1990}

1. Quillen [97]: If Fq is the field with q elements, then

Ki(Fq) =





Z if i = 0

Z/(qj − 1)Z if i = 2j − 1

0 if i = 2j > 0

.

If F̄p is the algebraic closure of Fp, then

Ki(F̄p) =





Z if i = 0

Q/Z[1/p] if i = 2j − 1

0 if i = 2j > 0

.

The Frobenius automorphism Φ(a) = ap induces multiplication by pi on K2i−1(F̄p),
and the subgroup fixed by Φk is K2i−1(Fpk).
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2. Suslin [115]: “The algebraic K-theory of algebraically closed fields only depends on
the characteristic, and away from the characteristic it always agrees with topological
K-theory”. More presicely:

Let F be an algebraically closed field. Ki(F ) is divisible for i ≥ 1. The torsion
subgroup of Ki(F ) is zero if i is even, and

{
Q/Z[1/p] if char(F ) = p > 0

Q/Z if char(F ) = 0

if i is odd. (see [117] for references.)

On the spectrum level Suslin’s results are: If p is a prime different from the charac-
teristic of F , then

K(F )̂p ' kup̂

(ku is complex K-theory and p̂ is p-completion) and if p is the characteristic of F ,
then

K(F )̂p ' HZp̂.

3. • K0(Z) = Z,

• K1(Z) = Z/2Z,

• K2(Z) = Z/2Z,

• K3(Z) = Z/48Z, (Lee-Szczarba [70]).

4. Borel [10]: Let A be the integers in a number field F and nj the order of the vanishing
of the zeta function

ζF (s) =
∑

I ideal in A

|A/I|−s

at s = 1− j. Then

rankKi(A) =

{
0 if i = 2j > 0

nj if i = 2j − 1

ex: If A = Z, then

nj =

{
1 if j = 2k − 1 > 1

0 otherwise

Furthermore, Quillen [98] proves that the groups Ki(A) are finitely generated.

5. [91] Let A be a perfect ring of characteristic p (meaning that the Frobenius homo-
morphism a 7→ ap is an isomorphism), then Ki(A) is uniquely p-divisible for i > 0.

6. Gersten [35]/Waldhausen [127]: If A is a free ring, then K(A) ' K(Z).

7. Barratt-Priddy-Quillen [114]: the K-theory of the category of finite sets is equivalent
to the sphere spectrum.
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8. Waldhausen [127]: If G is a free group, free abelian group, or the fundamental group
of a submanifold of the three-sphere, then there is a spectral sequence

E2
p,q = Hp(G;Kq(Z))⇒ Kp+q(Z[G])

9. Waldhausen [126]: The K-theory (in his sense) of the category of retractive spaces
over a given space X, is equivalent to the product of the suspension spectrum of X
and the differentiable Whitehead spectrum of X.

10. Goodwillie [39]: If A→ B is a surjective map of rings such that the kernel is nilpotent,
then the relative K-theory and the relative cyclic homology agree rationally:

Ki(A→ B)⊗Q ∼= HCi−1(A→ B)⊗Q.

11. Suslin/Panin:
K(Zp̂)̂' holim

←−n
K(Z/pnZ)̂

where ̂ denotes profinite completion.

1.8 Conjectures and such

1.9 Recent results

Lichtenbaum-Quillen and all the calculations using TC.

1.10 Where to read

Two very readable surveys on the K-theory of fields and related issues are [43] and [117].
The survey article [89] is also highly recommended. For the K-theory of spaces see [131].
Some introductory books about higher K-theory exist: [5], [112], [104] and [56], and a
new one (which looks very promising to me) is currently being written by Weibel [133].
The “Reviews in K-theory 1940–84” [81], is also helpful (although with both Mathematical
Reviews and Zentralblatt on the web it has lost some of its glory).

2 The algebraic K-theory spectrum.

Ideally, the so called “higher K-theory” is nothing but a reformulation of the idea behind
K0: the difference is that whereas K0 had values in Abelian groups, K-theory has values
in spectra. For convenience, we will follow Waldhausen and work with categories with
cofibrations (see 2.1 below). When interested in the K-theory of rings we should, of course,
apply our K-functor to the category PA of finitely generated projective modules. The
projective modules form a special example of what Quillen calls an exact category (see
1.3), which again is an example of a category with cofibrations.
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There are many definitions of K-theory, each with their own advantages and disadvan-
tages. Quillen started off the subject with no less than three: the plus construction, the
group completion approach and the “Q”-construction. Soon more versions appeared, but
luckily most turned out to be equivalent to Quillen’s whenever given the same input. We
will eventually meet three: Waldhausen’s “S”-construction which we will discuss in just a
moment, Segal’s Γ-space approach (see chapter II.3), and Quillen’s plus construction (see
1.6.1 and A.1.6).

2.1 Categories with cofibrations
{subsec:catcof}

The source for these facts is Waldhausen’s [131] from which we steal indiscriminantly. That
a category is pointed means that it has a chosen zero object 0 which is both initial and
final.

{Def:category with cofibrations}

Definition 2.1.1 A category with cofibrations is a pointed category C together with a
subcategory coC satisfying

{Def:category with cofibrations1}

1. all isomorphisms are in coC
{Def:category with cofibrations2}

2. all maps from the zero object are in coC
{Def:category with cofibrations3}

3. if A→ B ∈ coC and A→ C ∈ C, then the pushout

A −−−→ By
y

C −−−→ C
∐

AB

exists, and the lower horizontal map is in coC.

We will call the maps in coC simply cofibrations. Cofibration may occasionally be
written �. A functor between categories with cofibrations is exact if it is pointed, takes
cofibrations to cofibrations, and preserves the pushout diagrams in 3.

Example 2.1.2 (The category of finitely generated projective modules.) Let A be
a ring (unital and associative as always) and letMA be the category of all A modules. We
will eventually let K-theory of the ring A be the K-theory of the category PA of finitely
generated projective right A-modules. The interesting structure of PA as a category with
cofibrations is to let the cofibrations be the injections P ′ � P in PA such that the quotient
P/P ′ is also in PA. That is, if P ′ � P ∈ PA is a cofibration if it is the first part of a short
exact sequence

0→ P ′ � P � P ′′ → 0

of projective modules. In this case the cofibrations are split, i.e., to any cofibration f : P ′ →
P there exist g : P → P ′ in PA such that gf = idP ′.
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A ring homomorphism f : B → A induces a pair of adjoint functors

MB

−⊗BA

�
f∗
MA

where f ∗ is restriction of scalars. The adjunction isomorphism

MA(Q⊗B A,Q
′) ∼=MB(Q, f ∗Q′)

is given by sending L : Q⊗BA→ Q′ to q 7→ L(q⊗1). When restricted to finitely generated
projective modules −⊗B A induces a map K0(B)→ K0(A) making K0 into a functor.

Usually authors are not too specific about their choice of PA, but unfortunately this may
not always be good enough. For one thing the assignment A 7→ PA should be functorial,
and the problem is the annoying fact that if

A
f

−−−→ B
g

−−−→ C

are maps of rings, then (M⊗AB)⊗BC and M⊗AC are generally only naturally isomorphic
(not equal).

So whenever pressed, PA is the following category.

{Def:fgp}
Definition 2.1.3 Let A be a ring. The category of finitely generated projective A-modules
PA is the following category with cofibrations. Its objects are the pairs (m, p), where m is
a nonnegative integer and p = p2 ∈ Mm(A). A morphism (m, p) → (n, q) is an A-module
homomorphism im(p)→ im(q). A cofibration is a split monomorphism.

Since p2 = p we get that im(p) ⊆ Am p
−→ im(p) is the identity, and im(p) is a finitely

generated projective module, and any finitely generated projective module in MA is iso-
morphic to some such image, and so the full and faithful functor PA → MA sending
(m, p) to im(p) displays PA as a category equivalent to the category of finitely generated
projective objects inMA. Note that for any morphism a : (m, p)→ (n, q) we may define

xa : Am � im(p)
a

−−−→ im(q) ⊆ An,

and we get that xa = xap = qxa. In fact, when (m, p) = (n, q), you get an isomorphism of
rings

PA((n, p), (n, p)) ∼= {y ∈Mn(A)|y = yp = py}

via a 7→ xa, with inverse

y 7→ {im(p) ⊆ An y
−−−→ An p

−−−→ im(p)}.

Note that the unit in the right side ring is the matrix p.
If f : A → B is a ring homomorphism, then f∗ : PA → PB is given on objects by

f∗(m, p) = (m, f(p)) (f(p) ∈ Mm(B) is the matrix you get by using f on each entry in
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p), and on morphisms a : (m, p)→ (n, q) by f∗(a) = f(xa)|im(f(p)), which is well defined as
f(xa) = f(q)f(xa) = f(xa)f(p). There is a natural isomorphism between

PA −−−→ MA
M 7→M⊗AB−−−−−−−→ MB

and

PA
f∗
−−−→ PB −−−→ MB

.

The assignment A 7→ PA is a functor from rings to exact categories.

Example 2.1.4 (The category of finitely generated free module) Let A be a ring.
To conform with the strict definition of PA in 2.1.3, we define the category FA of finitely {Def:fgf}
generated free A-modules as the full subcategory of PA with objects of the form (n, 1),
where 1 is the identity An = An. The inclusion FA ⊆ PA is “cofinal” in the sense that
given any object (n, p) ∈ obPA there exists another object (m, q) ∈ obPA such that (m, q)⊕
(n, p) = (m+n, q⊕ p) is isomorphic to a free module. This will have the consequence that
the K-theories of FA and PA only differ at K0.

2.1.5 K0 of categories with cofibrations

If C is a category with cofibrations, we let the “short exact sequences” be the cofiber
sequences c′ � c � c′′, meaning that c′ � c is a cofibration and the sequence fits in a
pushout square

c′ −−−→ cy
y

0 −−−→ c′′

This set is the set of objects of a category which we will call S2C. The maps are commutative
diagrams

c′ −−−→ c −−−→ c′′y
y

y
d′ −−−→ d −−−→ d′′

Note that we can define cofibrations in S2C too: a map like the one above is a cofibration
if the vertical maps are cofibrations and the map from c

∐
c′ d
′ to d is a cofibration.

{lem:$S_2C$ is a category with cofibrations}
Lemma 2.1.6 With these definitions S2C is a category with cofibrations.

Proof: Firstly, we have to prove that a composite of two cofibrations

c′ −−−→ c −−−→ c′′y
y

y
d′ −−−→ d −−−→ d′′y

y
y

e′ −−−→ e −−−→ e′′
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again is a cofibration. The only thing to be checked is that the map from c
∐

c′ e
′ to e is a

cofibration, but this follows by 2.1.1.1. and 3. since

c
∐

c′

e′ ∼= c
∐

c′

d′
∐

d′

e′ � d
∐

d′

e′ � e

The axioms 2.1.1.1 and 2.1.1.2 are clear, and for 2.1.1.3 we reason as follows. Consider the
diagram

d′ −−−→ d −−−→ d′′x
x

x
c′ −−−→ c −−−→ c′y

y
y

e′ −−−→ e −−−→ e′′

where the rows are objects of S2C and the upwards pointing maps constitute a cofibration
in S2C. Taking the pushout (which you get by taking the pushout of each column) the
only nontrivial part of 2.1.1.3. is that we have to check that (e′

∐
c′ d
′)
∐

d′ d→ e
∐

c d is a
cofibration. But this is so since it is the composite

(e′
∐

c′

d′)
∐

d′

d ∼= e′
∐

c′

d
∐

(e′
∐

c′

c)
∐

c

d→ e
∐

c

d

and the last map is a cofibration since e′
∐

c′ c→ e is.
There are three important functors

d0, d1, d2 : S2C → C

sending a sequence c = {c′ � c � c′′} to d0(c) = c′′, d1(c) = c and d2(c) = c′.

{lem:The functors $d_i$ are all exact.}
Lemma 2.1.7 The functors di : S2C → C are all exact.

Proof: See [131, p. 323].
We now give a reformulation of the definition of K0. We let π0iC be the set of isomor-

phism classes of C. That a functor F from categories with cofibrations to abelian groups
is “under π0i” then means that it comes equipped with a natural map π0iC → F (C), and a
map between such functors must respect this structure.

Lemma 2.1.8 K0 is the universal functor F under π0i to abelian groups satisfying addi-
tivity, i.e., such that the natural map

F (S2C)
(d0,d2)
−−−−→ F (C)× F (C)

is an isomorphism.
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Proof: First one shows that K0 satisfies additivity. Consider the splitting K0(C)×K0(C)→
K0(S2C) which sends ([a], [b]) to [a � a ∨ b→ b]. We have to show that the composite

K0(S2C)
(d0,d2)
−−−−→ K0(C)×K0(C) −−−→ K0(S2C)

sending [a′ � a → a′′] to [a′ � a′ ∨ a′′ → a′′] = [a′ = a′ → 0] + [0 → a′′ = a′′] is the
identity. But this is clear from the diagram

a′ a′ −−−→ 0∥∥∥
y

y
a′ −−−→ a −−−→ a′′y

y
∥∥∥

0 −−−→ a′′ a′′

in S2S2C. Let F be any other functor under π0i satisfying additivity. By additivity the
function π0(iC) → F (C) satisfies the additivity condition used in the definition of K0 in
1.3.1; so there is a unique factorization π0(iC)→ K0(C)→ F (C) which for the same reason
must be functorial.

The question is: can we obtain deeper information about the category C if we allow
ourselves a more fascinating target category than abelian groups? The answer is yes. If
we use a category of spectra instead we get a theory – K-theory – whose homotopy groups
we have already seen some of.

2.2 Waldhausen’s S construction

We now give Waldhausen’s definition of the K-theory of a category with (isomorphisms
and) cofibrations. (According to Waldhausen, the “S” is for “Segal” as in Graeme B.
Segal. According to Segal his construction was close to the “block-triangular” version
given for additive categories in 2.2.4 below. Apparently, Segal and Quillen were aware of
this construction even before Quillen discovered his Q-construction, but it was not before
Waldhausen reinvented it that it became apparent that the S-construction was truly useful.
In fact, in a letter to Segal [96], Quillen comments: “... But it was only this spring that I
succeeded in freeing myself from the shackles of the simplicial way of thinking and found
the category Q(B)”.)

For any category C, the arrow category ArC (not to be confused with the twisted arrow
category TC used sometimes), is the category whose objects are the morphisms in C, and
where a morphism from f : a→ b to g : c→ d is a commutative diagram in C

a −−−→ c

f

y g

y
b −−−→ d

Consider the ordered set [n] = {0 < 1 < · · · < n} as a category, and consider the arrow
category Ar[n].
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{Def:IIWaldS}
Definition 2.2.1 Let C be a category with cofibrations. Then SC = {[n] 7→ SnC} is
the simplicial category which in degree n is the category SnC of functors C : Ar[n] → C
satisfying the following properties

1. For all j ≥ 0 we have that C(j = j) = 0 (the preferred null object in C)

2. if i ≤ j ≤ k, then C(i ≤ j) � C(i ≤ k) is a cofibration, and

C(i ≤ j) −−−→ C(i ≤ k)y
y

C(j = j) −−−→ C(j ≤ k)

is a pushout.

To get one’s hand on each SnC, think of the objects as strings

C01 � C02 � . . . � C0n

with compatible choices of cofibers Cij = C0j/C0i, or equivalently as triangles

C01
// // C02

// //

����

C03
// //

����

. . . // // C0,n−1
// //

����

C0n

����
C12

// // C13
// //

����

. . . // // C1,n−1
// //

����

C1n

����
C23

// // . . . // // C2,n−1
// //

����

C2,n

����
. . .

...

����

...

����
Cn−2,n−1

// // Cn−2,n

����
Cn−1,n

with horizontal arrows cofibrations and every square a pushout (the null object is placed
in the corners below the diagonal).

The first thing one should notice is that

Lemma 2.2.2 There is a natural isomorphism K0(C) ∼= π1(obSC).
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Proof: Since obviously obS0C is trivial, π1(obSC) is the quotient of the free group on the
pointed set obC = obS1C by the relation that [c′] = [c′′]−1[c] for every c′ � c � c′′ ∈ obS2C
(this uses the Kan loop group description of the fundamental group of a space with only

one zero simplex, see the appendix A.1.1.9). An isomorphism c′
∼=
−→ c can be considered

as an element c′
∼=
−→ c→ 0 ∈ obS2C, and so [c′] = [c]. Since we then have that

[c′][c′′] = [c′′ ∨ c′] = [c′ ∨ c′′] = [c′′][c′]

we get an abelian group, and so K0(C) is the quotient of the free abelian group on the
isomorphism classes of C by the relation [c′] + [c′′] = [c], which is just the formula arrived
at in 1.3

Thus we have that K0(A) = K0(PA) is the fundamental group of obSPA if we choose the
cofibrations to be the split monomorphisms, and it can be shown thatKi(A) is πi+1(obSPA)
for the other groups we discussed in the introduction (namely i = 1 and i = 2).

2.2.3 Additive categories

Recall that an Ab-category [79] is a category where the morphism sets are abelian groups
and where composition is bilinear (also called linear category). An additive category is an
Ab-category with all finite products.

Let C be an additive category, regarded as a category with cofibrations by letting the
cofibrations be the split inclusions. With this choice we call C a split exact category.

In these cases it is easier to see how the S-construction works. Note that if

c = (c0,1, . . . , ci−1,i, . . . , cn−1,n)

is a sequence of objects, then the sum diagram ψnc with

(ψnc)ij =
⊕

i≤k≤j

ck−1,k

and maps the obvious inclusions and projections, is an element in SnC. Since C is split
exact every element of SnC is isomorphic to such a diagram. Maps between two such sum
diagrams can be thought of as upper triangular matrices:

{Def:$T_nC$}
Definition 2.2.4 Let C be an Ab-category. For every n > 0, we define TnC – the n × n
upper triangular matrices on C – to be the category with objects obCn, and morphisms

TnC((c1, . . . , cn), (d1, . . . , dn)) =
⊕

1≤j≤i≤n

C(ci, dj)

with composition given by matrix multiplication
{lem:T=S}

Lemma 2.2.5 Let C be additive. Then the assignment ψq given in the discussion above
defines a full and faithful functor

ψq : TqC→ SqC

which is an equivalence of categories since C is split
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2.3 The equivalence obSC → BiSC

An amazing – and very useful – property about the simplicial set of objects of the S-
construction is, considered as a functor from categories with cofibrations to simplicial sets,
it transforms natural isomorphisms to homotopies, and so is invariant up to homotopy to
equivalences of categories.

This is reminiscent to the classifying space construction, but slightly weaker in that the
classifying space takes all natural transformations to homotopies, whereas obS only does
this to natural isomorphisms.

Assume all categories are small. If C is a category, then iC ⊆ C is the subcategory with
all objects, but only isomorphisms as morphisms.

For every n ≥ 0, regard [n] = {0 < 1 < · · · < n} as a category (if a ≤ b there is a unique
map a← b), and maps in ∆ as functors (hence we may regard ∆ as a full subcategory of
the category of small categories). The classifying space (or nerve) of a small category C is
the space (simplicial set) BC defined by

[q] 7→ BqC = {c0 ← c1 ← · · · ← cq ∈ C} = {functors [q]→ C}.

Note that B[q] = ∆[q]. The standard fact that natural transformations induce homotopies
come from the fact that a natural transformation is the same as a functor C × [1] → D,
and B(C × [1]) ∼= BC × B[1] = BC ×∆[1]. (see appendix A.1.1.5 for related topics).

{obShtfu}
Lemma 2.3.1 If

f, g : C → D

are isomorphic exact functors, then they induce homotopic maps

obSC → obSD.

Hence C 7→ obSC sends equivalences of categories to homotopy equivalences of spaces.

Proof: (the same proof as in [131, 1.4.1]). We define a homotopy

H : obSC ×B[1] −−−→ obSD

as follows. Regard the isomorphism f ∼= g as a functor F : C × [1]→ D. Let c : Ar[n]→ C
be an object of SnC, and φ ∈ Bn[1] = ∆([n], [1]). Then H(c, φ) is the composite

Ar[n] −−−→ Ar[n]× [n]
(c,φ)
−−−→ C × [1]

F
−−−→ D

where the fist map sends i ≤ j to (i ≤ j, j). This is an element in SnD since f ∼= g is an
isomorphism.

{cor:obSinobNtS}
Corollary 2.3.2 If tC ⊂ iC is a subcategory of the isomorphisms containing all objects,
then the inclusion of the zero skeleton is an equivalence

obSC
'
−−−→ BtSC

where tSqC ⊆ SqC is the subcategory whose morphisms are transformations coming from
tC.
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Proof: This follows by regarding the bisimplicial object

{[p], [q] 7→ BptSqC}

as obSqNp(C, tC), where Np(C, tC) is a full subcategory of the category NpC of functors
[p]→ C and natural transformations between these. The objects of Np(C, tC) are the chains
of maps in tC, i.e., obN(C, tC) = BptC.

Consider the functor C → Np(C, tC) given by sending c to the chain of identities on
c (here we need that all identity maps are in tC). It is an equivalence of categories. A
splitting being given by e.g., sending c0 ← · · · ← cp to c0: the natural isomorphism to the
identity on Np(C, tC) being given by

c0
α1←−−− c1

α2←−−− c2
α3←−−− . . .

αp
←−−− cp∥∥∥ α1

y α1α2

y α1α2...αp

y
c0 c0 c0 . . . c0

.

Considering obSC → BtSC as a map of bisimplicial spaces, we see that by 2.3.1 it is a
homotopy equivalence

obSC = obSN0(C, tC)→ obSNp(C, tC) = BptSC

in every degree, and so by A.1.5.0.2 a weak equivalence of diagonals.

2.3.3 Additivity

The fundamental theorem of the S-construction is the additivity theorem. For proofs we
refer the reader to [131] or [83]. This result is actually not used explicitly anywhere in
these notes, but it is our guiding theorem for all of K-theory. In fact, it shows that the S-
construction is a true generalization of K0, giving the same sort of universality for K-theory
considered as a functor into spectra (see below).

{additivity theorem}
Theorem 2.3.4 Let C be a category with cofibrations. The natural map

obS(S2C)→ obS(C)× obS(C)

is a weak equivalence.

2.4 The spectrum

Continuing where lemma 2.1.6 and 2.1.7 left off, one checks that the definition of SC
guarantees that it is in fact a simplicial category with cofibrations.

To be precise,
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Definition 2.4.1 Let C be a category with cofibrations. A cofibration c � d ∈ SqC is a
map such that for 0 < i ≤ q the maps

c0i � d0i

and
d0,i−1

∐

c0,i−1

c0i � d0i

are all cofibrations.

Note that if c � d is a cofibration then it follows that all the maps cij � dij are
cofibrations.

This means that we may take S of each SnC, and in this way obtain a bisimplicial
object SSC, and by iteration, a sequence of (multi)-simplicial objects S (m+1)C = SS(m)C.

Recall that a spectrum is a sequence of pointed spaces, m 7→ Xm, m ≥ 0, together with
maps S1∧Xm → Xm+1. See appendix A.1.2 for further development of the basic properties
of spectra, but recall that given a spectrum X, we define its homotopy groups as

πqX = lim
−→
k

πk+qXk

(where the colimit is taken along the adjoint of the structure maps. A map of spectra
f : X → Y is a pointwise equivalence if fn : Xn → Yn is a weak equivalence for every n,
and a stable equivalence if it induces an isomorphism π∗(f) : π∗X → π∗Y .

We will study another model for spectra much closer in chapter II. Morally, spectra
are beefed up versions of chain complexes, but in reality they give you much more.

Note that S0C = ∗, i.e., SC is reduced. If we consider the space obSC it will also be
reduced, and the inclusion of the 1-skeleton obS1C = obC gives a map

S1∧obC → obSC

This means that the multi-simplicial sets

m 7→ obS(m)C = obS . . . S︸ ︷︷ ︸
m times

C

form a spectrum after taking the diagonal.
A consequence of the additivity theorem 2.3.4 is that this spectrum is almost an “Ω-

spectrum”: more precisely the adjoint maps obS(m)C → ΩobS(m+1)C are equivalences for
all m > 0. We won’t need this fact.

Let for any category iD ⊆ D be the subcategory with the same objects, but with only
the isomorphisms as morphisms. As before, we get a map S1∧BiC → BiSC, and hence
another spectrum m 7→ BiS(m)C.

For each n the degeneracies induce an inclusion

obS(n)C = B0iS
(n)C → BiS(n)C
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giving a map of spectra. That the two spectra are pointwise equivalent (that is, the maps
obS(n)C = B0iS

(n)C → BiS(n)C are all weak equivalences of spaces) follows from corollary
2.3.2.

Definition 2.4.2 Let C be a category with cofibrations. Then

K(C) = {m 7→ obS(m)C}

is the K-theory spectrum of C (with respect to the isomorphisms).

In these notes we will only use this definition for categories with cofibrations which are
Ab-categories. Exact categories are particular examples of Ab-categories with cofibrations,
and we will never need the further restrictions in the definition of exact categories, even
though we will give all statements for exact categories only.

The additivity theorem 2.3.4 can be restated as a property of the K-theory spectrum:
The natural map

K(S2C) −−−→ K(C)×K(C)

is a pointwise equivalence (i.e.,

obS(n)(S2C) −−−→ S(n)(C)× obS(n)(C)

is a weak equivalence for all n). One should note that the claim that the map is a stable
equivalence follows almost automatically by the construction (see [131, 1.3.5]).

Definition 2.4.3 (K-theory of rings) Let A be a ring (unital and associative as al-
ways). Then we define the K-theory of A, K(A), to be K(PA), the K-theory of the
category of finitely generated projective right A-modules.

K-theory behaves nicely with respect to “cofinal” inclusions, see e.g., [113], and we cite
the only case we need: the inclusion FA ⊆ PA induces a homotopy fiber sequence of spectra

K(FA) −−−→ K(PA) −−−→ H(K0(A)/Kf
0 (A))

where H(M) is the Eilenberg-MacLane spectrum of an abelian group M (a spectrum whose
only nonzero homotopy group is K0(A)/Kf

0 (A) in dimension zero. See section II.1 for a
construction). Hence the homotopy groups of K(FA) and K(A) = K(PA) coincide in
positive dimensions.

2.5 K-theory of split radical extensions

Recall that if B is a ring, the Jacobson radical rad(M) of an B-moduleM is the intersection
of all the kernels of maps from M to simple modules [4, p. 83]. Of particular importance
to us is the case of a nilpotent ideal I ⊆ B. Then I ⊆ rad(B) since 1 + I consists of units.

We now turn to the very special task of giving a suitable model for K(B) when f : B →
A is a split surjection with kernel I contained in the Jacobson radical rad(B) ⊆ B. We
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have some low dimensional knowledge about this situation, namely 1.2.3. and 1.3.2.5. which
tell us that K0(B) ∼= K0(A) and that the multiplicative group (1 + I)× maps surjectively
onto the kernel of K1(B) � K0(A). Some knowledge of K2 was also available already in
the seventies (see e.g., [22] [125] and [77])

We use the strictly functorial model explained in 2.1.3 for the category of finitely
generated projective modules PA where an object is a pair (m, p) where m is a natural
number and p ∈MmA satisfies p2 = p.

Lemma 2.5.1 Let f : B → A be a split surjective k-algebra map with kernel I, and let
j : A → B be a splitting. Let c = (m, p) ∈ PA and P = im(p), and consider PB(j∗c, j∗c)
as a monoid under composition. The kernel of the monoid map

f∗ : PB(j∗c, j∗c)→ PA(f∗j∗c, f∗j∗c) = PA(c, c)

is isomorphic to the monoid of matrices x = 1 + y ∈ Mm(B) such that y ∈ MnI and
y = yj(p) = j(p)y. This is also naturally isomorphic to the set MA(P, P ⊗A j

∗I). The
monoid structure induced on MA(P, P ⊗A j

∗I) is given by

α · β = (1 + α) ◦ (1 + β)− 1 = α+ β + α ◦ β

for α, β ∈ MA(P, P ⊗A I) where α ◦ β is the composite

P
β

−−−→ P ⊗A I
α⊗1
−−−→ P ⊗A I ⊗A I

multiplication in I
−−−−−−−−−−→ P ⊗A I

Proof: Identify PB(j∗c, j∗c) as the matrices x ∈ Mn(B) such that x = xj(p) = j(p)x and
likewise for PA(c, c). The kernel consists of the matrices x for which f(x) = p (the identity!),
that is the matrices of the form j(p) + y with y ∈Mn(I) such that y = yj(p) = j(p)y. As
sets this is isomorphic to the claimed monoid, and the map j(p) + y 7→ 1 + y is a monoid
isomorphism since (j(p) + y)(j(p) + z) = j(p)2 + yj(p) + j(p)z + yz = j(p) + y+ z + yz 7→
1 + y + z + yz = (1 + y)(1 + z). The identification with MA(P, P ⊗A j

∗I) is through the
composite

HomA(P, P ⊗A j
∗I) ∼=HomA(P, j∗(P ⊗A I)) ∼= HomB(P ⊗A B,P ⊗A I)

φ7→1+φ
−−−−→ HomB(P ⊗A B,P ⊗A B)

∼=HomB(im(j(p)), im(j(p))) = PB(j∗c, j∗c)

where the last isomorphism is the natural isomorphism between

PA
j∗
−−−→ PB −−−→ MB

and

PA −−−→ MA
−⊗AB−−−−→ MB

.
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Lemma 2.5.2 In the same situation as the preceding lemma, if I ⊂ Rad(B), then the
kernel of

f∗ : PB(j∗c, j∗c) −−−→ PA(c, c)

is a group.

Proof: Suslin ICM86 To see this, assume first that P ∼= An. Then

MA(P, P ⊗A I) ∼= MnI ⊆Mn(rad(B)) = rad(Mn(B))

(we have that Mn(rad(B)) = Rad(Mn(B)) since MB(Bn,−) is an equivalence from B-
modules to Mn(B)-modules, [4, p. 86]), and so (1 + Mn(I))

× is a group. If P is a direct
summand of An, say An = P ⊕Q, and α ∈ MA(P, P ⊗A I), then we have a diagram

P ⊗A B
1+α
−−−→ P ⊗A By

y

An ⊗A B
1+(α,0)
−−−−→ An ⊗A B

where the vertical maps are split injections. By the discussion above 1+ (α, 0) must be an
isomorphism, forcing 1 + α to be one too.

All the above holds true if instead of considering module categories, we consider the
S construction of Waldhausen applied n times to the projective modules. More precisely,
let now c be some object in S

(n)
p PA. Then the set of morphisms S

(n)
p MA(c, c⊗A I) is still

isomorphic to the monoid of elements sent to the identity under

S
(n)
p PB(j∗c, j∗c)

f∗
−−−→ S

(n)
p PA(c, c)

and, if I is radical, this is a group. We will usually suppress the simplicial indices and
speak of elements in some unspecified dimension.

{def:DandKAP}
Definition 2.5.3 We need a few technical definitions. Let

0 −−−→ I −−−→ B
f

−−−→ A −−−→ 0

be a split extension of k-algebras with I ⊂ Rad(B), and choose a splitting j : A→ B of f .
Let tPB ⊆ PB be the subcategory with the same objects, but with morphisms only the

endomorphisms taken to the identity by f∗. Note that, since I ⊆ rad(B), all morphisms
in tPB are automorphisms.

Let
tS(n)

q PB ⊆ iS(n)
q PB

be the subcategory with the same objects, but with morphisms transformations of diagrams
in S

(n)
q PB consisting of morphisms in tPB.
Consider the sequence of (multi) simplicial exact categories n 7→ DnAB given by

obDnAB = obS(n)PA and DnAB(c, d) = S(n)PB(j∗c, j∗d)
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Let tDnAB ⊂ D
n
AB be the subcategory containing all objects, but whose only morphisms are

the automorphisms S(n)MA(c, c⊗A I) considered as the subset {b ∈ S(n)PB(j∗c, j∗c)|f∗b =
1} ⊆ DnAB(c, c).

We set

KAB = {n 7→ BtDnAB =
∐

m∈S(n)PA

B
(
S(n)MA(m,m⊗A I)

)
} (2.5.3) {def:KAB}

where the bar construction is taken with respect to the group structure.

Recall that in the eyes of K-theory there really is no difference between the special
type of automorphisms coming from t and all isomorphisms since by corollary 2.3.2 the
inclusions

obS(n)PB ⊆ BtS(n)PB ⊆ BiS(n)PB

are both weak equivalences.

Note that DnAB depends not only on I as an A bimodule, but also on the multiplicative
structure it inherits as an ideal in B. We have a factorization

S(n)PA
j!−−−→ DnAB

j#
−−−→ S(n)PB

where j! is the identity on object, and j∗ on morphisms, and j# is the fully faithful functor
sending c ∈ obtDnAB = obS(n)PA to j∗c ∈ obS

(n)PB (and the identity on morphisms). We
see that KAB is a subspectrum of {n 7→ BiS(n)PB} via

tDnAB −−−→ tS(n)PB ⊆ iS(n)PB

{theo:KAB}
Theorem 2.5.4 Let f : B → A be a split map of k-algebras with splitting j and kernel
I ⊂ Rad(B). Then

DnAB
j#
−−−→ S(n)PB, and its restriction tDnAB

j#
−−−→ tS(n)PB

are (degreewise) equivalences of simplicial exact categories, and so the chain

KAB(n) = BtDnAB ⊆ BtS(n)PB ⊇ obS(n)PB = K(B)(n)

consists of weak equivalences.

Proof: To show that

DnAB
j#
−−−→ S(n)PB

is an equivalence, all we have to show is that every object in S (n)PB is isomorphic to
something in the image of j#. We will show that c ∈ S(n)PB is isomorphic to j∗f∗c =
j#(j!f∗c).
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Let c = (m, p) ∈ obPB, P = im(p). Consider the diagram with short exact columns

im(p) · I
� _

��

//____ im(jf(p)) · I
� _

��
im(p)

π

��

ηp //_____ im(jf(p))

π′

��
f ∗im(f(p)) f ∗im(fjf(p))

Since im(p) is projective there exist a (not necessarily natural) lifting ηp. Let C be the
cokernel of ηp. A quick diagram chase shows that C · I = C. Since im(f(p)), and hence C,
is finitely generated Nakayama’s lemma tells us that C is trivial. This implies that ηp is
surjective, but im(f(p)) is also projective, so ηp must be split surjective. Call the splitting
ε. Since πε = π′ηpε = π′ the argument above applied to ε shows that ε is also surjective.
Hence ηp is an isomorphism. Thus, every object c ∈ obPB is isomorphic to j∗(f∗c).

Let c ∈ obS(n)PB. Then c and j∗f∗c are splittable diagrams with isomorphic vertices.
Choosing isomorphisms on the “diagonal” we can extend these to the entire diagram, and
so c and j∗f∗c are indeed isomorphic as claimed, proving the first assertion.

To show that

tDnAB
j#
−−−→ tS(n)PB

is an equivalence, note first that this functor is also fully faithful. We know that any
c ∈ obtS(n)PB = obS(n)PB is isomorphic in S(n)PB to j∗f∗c, and the only thing we need
to show is that we can choose this isomorphism in t. Let ι : c → j∗f∗c ∈ iS

(n)PB be any
isomorphism. Consider

c
ι

−−−→ j∗f∗c = j∗f∗j∗f∗c
j∗f∗(ι−1)
−−−−−→ j∗f∗c

Since f∗(j∗f∗(ι
−1) ◦ ι) = f∗(ι

−1) ◦ f∗(ι) = 1f∗c the composite j∗f∗(ι
−1) ◦ ι is an isomorphism

in tSnq P from c to j#(j!f∗c).
We set

{def:tildeKAB}

Definition 2.5.5

K̃AB = KAB/K(A) = {n 7→
∨

m∈S(n)PA

B
(
S(n)MA(m,m⊗A I)

)
}

and theorem 2.5.4 says that

K̃AB
∼
−−−→ K(B)/K(A)

is a (pointwise) equivalence of spectra. The latter spectrum is stably equivalent to the
fiber of K(B)→ K(A). To see this, consider the square

K(B) −−−→ K(A)y
y

K(B)/K(A) −−−→ ∗
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It is a (homotopy) cocartesian square of spectra, and hence (homotopy) cartesian. (In
spectrum dimension n this is a cocartesian square, and the spaces involved are at least
n − 1 connected, and so all maps are n − 1 connected. Then Blakers-Massey A.1.10.0.8
tells us that it is (n − 1) + (n − 1) − 1 = 2n − 3 (homotopy) cartesian.) This means
that the (homotopy) fiber of the upper horizontal map maps by a weak equivalence to the
(homotopy) fiber of the lower horizontal map.

2.5.6 “Analyticity properties” of KA(B)

Although we are not using the notion of calculus of functors in these notes, we will in many
cases come quite close. The next lemma, which show how KA(B) behaves under certain
inverse limits, can be viewed as an example of this. A twist, which will reappear later is
that we do not ask whether the functor turns “cocartesianness” into “cartesianness”, but
rather to what extent the functor preserves inverse limits. The reason for this is that in
many cases the coproduct structure of the source category can be rather messy, whereas
some forgetful functor tells us exactly what the limits should be.

Let A be the category of split radical extensions over a given ring A. The category sA
of simplicial objects in A then inherits the notion of k-cartesian cubes via the forgetful
functor down to simplicial sets. By “final maps” in an n cube we mean the maps induced
from the n inclusions of the subsets of cardinality n−1 in {1, . . . , n}. If AnP ∈ sA it makes
sense to talk about K(An P) by applying the functor in every degree, and diagonalizing.

For the basics on cubes see appendixA.1.10.

{lem:IKanal}

Lemma 2.5.7 Let AnP be a strongly cartesian n-cube in sA such all the final maps are
k connected. Then K(An P) is (1 + k)n cartesian.

Proof: Fix q, p = (p1, . . . , pq) and c ∈ obS
(q)
p PA. The cube S

(q)
p MA(c, c ⊗A P) is also

strongly cartesian (it is so as a simplicial set, and so as a simplicial group), and the final
maps are still k connected. Taking the bar of this gives us a strongly cartesian cube
Y(c) = BS

(q)
p MA(c, c⊗A P), but whose final maps will be k + 1 connected. By ref(?) this

means that Y(c) will be (k + 2)n− 1 cocartesian. The same will be true for

∐

c∈obS
(q)
p PA

Y(c)

Varying p and remembering that each multi-simplicial space is q reduced in the p direction,
we see that the resulting cube is q+(k+2)n−1 cocartesian. Varying also q this means that
the cube of spectra K(AnP) is (k+2)n−1 cocartesian, or equivalently (k+2)n−1−(n−1) =
(k + 1)n cartesian.

The importance of this lemma will become apparent as we will approximate elements
in A by means of cubical diagrams in sA where all but the initial node will be “reduced”
in the sense that the zero skeletons will be exactly the trivial extension A = A.
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2.6 Categories with cofibrations and weak equivalences

The definition above does not cover more general situations where we are interested in
incorporating some structure of weak equivalences, e.g., simplicial rings. Waldhausen [131]
covers this case also, and demands only that the category of weak equivalences wC ⊆ C
contains all isomorphisms and satisfy the gluing lemma, that is, if the left horizontal maps
in the commutative diagram

d � c → e
↓ ↓ ↓
d′ � c′ → e′

are cofibrations and the vertical maps are weak equivalences, then the induced map

d
∐

c

d→ d′
∐

c′

e′

is also a weak equivalence. In this case SC inherits a subcategory of weak equivalences,
wSC satisfying the same conditions by declaring that a map is a weak equivalence if it is
on all nodes. We iterate this construction and define

K(C, w) = {m 7→ BwS(m)C}. (2.6.0)

Corollary 2.3.2 then says that

K(C)
'
−−−→ K(C, i)

is an equivalence of spectra.
One should note that there really is no need for the new definition, since the old covers

all situations by the following situations. If we let NqC be the category of functors [q]→ C
and natural transformations between these, we can let Nq(C, w) be the full subcategory of
NqC with obNq(C, w) = BqwC. Letting q vary this is a simplicial category with cofibrations,
and we have an isomorphism

K(C, w)(m) = BwS(m)C ∼= obS(m)N(C, w) = K(N(C, w)).

2.7 Other important facts about the K-theory spectrum

The following theorems are important for the general framework of algebraic K-theory and
we include them for the reader’s convenience. We will neither need for the development of
the theory nor prove them, but we still want to use them in some examples and draw the
reader’s attention to them.

Theorem 2.7.1 (Additivity theorem: section 1.4 in [131] and [83]) Let C be a cat-
egory with cofibrations and weak equivalences wC. Then

BwSS2C → BwSC ×NwSC

is an equivalence, and the structure map BwS (m)C → ΩBwS(m+1)C is an equivalence for
m > 0.
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Theorem 2.7.2 (Approximation theorem [131])

Theorem 2.7.3 (Localization theorem [131], [41] and [99])

Theorem 2.7.4 (Devissage theorem [99])

Theorem 2.7.5 (Resolution theorem [99])

3 Stable K-theory is homology
{I3}

In this section we will try to connect K-theory to homology. This is done by considering
“small perturbations” in input in K-theory, giving a linear theory: the “directional deriva-
tive” of K-theory. This is then compared with the classical concept of homology, and the
two are shown to be equal.

3.1 Split surjections with square-zero kernels

If A is a unital ring, and P is any A bimodule (with no multiplicative structure as part
of the data), we define the ring A n P simply to be A ⊕ P as an A bimodule, and with
multiplication (a′, p′)(a, p) = (a′a, a′p + p′a), that is P 2 = 0 when P is considered as the
kernel of the projection An P � A.

Algebraically, this is considered to be a small deformation of A. And the difference
between K(A n P ) and K(A) reflects the local structure of K-theory. The goal is of to
measure this difference.

Considered as a functor from A bimodules, P 7→ K(An P ) is not additive, even if we
remove the part coming from K(A). That is, if we let{KAPisnotadditive}

K̃(An P ) = fiber{K(An P ) −−−→ K(A)}

then the natural map K̃(A n (P ⊕ Q)) → K̃(A n P ) × K̃(A n Q) is not an equivalence.
For instance do we have by [62] that π2K̃(Z n P ) ∼=

∧2 P ⊕ P/2P for all abelian groups
P . Hence

π2K̃(Z n (P ⊕Q)) ∼=

2∧
(P ⊕Q)⊕ (P ⊕Q)/2(P ⊕Q)

∼=

(
2∧
P ⊕ P/2P

)
⊕

(
2∧
Q⊕Q/2Q

)
⊕ P ⊗Q

∼= π2K̃(Z n P )⊕ π2K̃(Z nQ)⊕ (P ⊗Q)

where the tensor product expresses the nonlinearity.
There are means of forcing linearity upon a functor, which will eventually give stable

K-theory, and the aim of this section is to prove that this linear theory is equivalent to the
homology of the category of finitely generated projective A-modules.
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3.2 The homology of a category

Let C be anAb-category (that is: a category enriched inAb, the category of Abelian groups,
see appendix B. Ab-categories are also known as “linear categories” and unfortunately, some
call them “additive categories”, a term we reserve for pointed Ab-categories with sum). The
important thing to remember is that the homomorphism sets are really abelian groups, and
composition is bilinear.

We say that C is flat if the morphism sets are flat as abelian groups. A C-bimodule is
an Ab-functor (linear functor) Co ⊗ C → Ab. The category AbC

o⊗C of bimodules forms an
abelian category with enough projectives, so we are free to do homological algebra. If C is
flat, the Hochschild homology of C with coefficients in M ∈ AbC

o⊗C is customarily defined {Def:HHofAbcat}
as

TorAb
Co⊗C

∗ (M, C)

(see [88] ). There is a standard simplicial abelian group (complex) whose homotopy groups
calculate the Hochschild homology groups, namely

HH(C,M)q =
⊕

c0,...,cq∈obC

M(c0, cq)⊗
⊗

1≤i≤q

C(ci, ci−1)

with face and degeneracies as in Hochschild homology (see [88], and also below).
Let C be any category. It is not uncommon to to call functors Co×C → Ab “bifunctors”.

We note immediately that, by adjointness of the free and forgetful functors

Ens
Z

� Ab

connecting abelian groups to sets, a “bifunctor” is nothing but a ZC-bimodule in the Ab-
enriched world (see B); that is an Ab-functor ZCo ⊗ ZC → Ab. So, for any “bifunctor”
(i.e. ZC-bimodule) M we may define the homology of C with respect to M as

H∗(C,M) = π∗HH(ZC,M)

(notice that ZC is flat). The standard complex HH(ZC,M) calculating this homology, is
naturally isomorphic to the complex F (C,M):

Definition 3.2.1 Let C be a category and M a ZC-bimodule. Then the homology of C
with coefficients in M : F (C,M) is the simplicial Abelian group which in degree q is given
by

Fq(C,M) =
⊕

c0←···←cq∈BqC

M(c0, cq) ∼=
⊕

c0,...,cq∈obC

M(c0, cq)⊗
⊗

1≤i≤q

ZC(ci, ci−1)

and with simplicial structure defined as follows. We write elements of Fq(C,M) as sums of
elements of the form (x, α) where x ∈M(c0, cq) and

α = c0
α1←−−− . . .

αq
←−−− cq ∈ BqC.
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Then

di(x, α) =





(M(α1, 1)x, d0α) if i = 0

(x, diα) if 0 < i < q

(M(1, αq)x, dqα) if i = q

and si(x, α) = (x, siα).

Remark 3.2.2 The homology of C, or rather F (C,−) : AbZC
o⊗ZC → sAb is characterized

up to equivalence by the three properties

1. If M ∈ obAbZC
o⊗ZC is projective, then F (C,M)→ H0(C,M) is an equivalence.

2. F (C,−) : AbZC
o⊗ZC → sAb take short exact sequences to fiber sequences, and

3. The values H0(C,M).

In particular, this means that if we have a map to or from some other theory satisfying 1.
and 2, and inducing an isomorphism on π0, then this map is an equivalence.

3.3 Incorporating the S-construction

In order to compare with K-theory, we will incorporate the S-construction into the source
of the homology functor.

Let C be a small category, and M a ZC-bimodule (i.e. a functor from Co×C to abelian
groups). Recall how bimodules are extended to diagram categories (see B NBNBref for the
general situation).

If C be an exact category, consider the full subcategory SqC ⊆ [Ar[q],C]. Let M be a
C-bimodule, then SqM is defined, and is given by

SqM(c, d) = {{mij} ∈
∏

0≤i≤j≤q

M(cij , dij)|M(1, dij → dkl)mij = M(cij → ckl, 1)mkl}

Note that, if M is not pointed (i.e. a Z̃C-bimodule) we may have elements in the groups
M(cii, dii) = M(0, 0), but these are uniquely determined by the values in the other groups.
(In fact, if C is split exact, then the projection SqM(c, d)→M(c0q, d0,q) is a split monomor-
phism – a retract is constructed using a choice of splittings).

The construction q 7→ SqM is functorial in q in the sense that for every map φ : [p] →
[q] ∈ ∆ there are natural maps φ∗ : SpM → φ∗SqM .

We may also iterate the S construction.
Let C be an exact category, and M a pointed C-bimodule. Note that, since for every

φ : [p]→ [q] ∈ ∆ we have a bimodule map φ∗ : SpM → φ∗SqM

F (SC, SM) = {[p], [q] 7→ Fp(SqC, SqM)}

becomes a bisimplicial abelian group. Again we get a map S1∧F (C,M) → F (SC, SM)
making

F(C,M) = {n 7→ F (S(n)C, S(n)M)}
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a spectrum. In the special case C = PA, and M(c, d) = HomA(c, d ⊗A P ) for some A-
bimodule P , we define

F(A, P ) = F(PA, HomA(−,−⊗A P ))

Note that this can not cause any confusion as the F(C,M) spectrum is only defined for
additive categories (and not for rings). We will also consider the associated spectra Fq for
q ≥ 0 (with the obvious definition).

Lemma 3.3.1 Let C be additive category and M ∈ BC be pointed. Let

η : Fq(C,M)→ ΩFq(SC, SM)

denote the (adjoint of the) structure map. Then the two composites in the noncommutative
diagram

Fq(C,M)
dq
0−−−→ F0(C,M)

η

y sq
0

y
ΩFq(SC, SM)

η
←−−− Fq(C,M)

are homotopic.

Proof: There are three maps d0, d1, d2 : Fq(S2C, S2M) → Fq(C,M) induced by the struc-
ture maps S2C → S1C = C. The two maps

ηd1 and ηd0 ∗ ηd2 : Fq(S2C, S2M)→ Fq(C,M)→ ΩFq(SC, SM)

are homotopic, where ηd0 ∗ ηd2 denotes the loop product. This is so for general reasons: if
X is a reduced simplicial set, then the two maps ηd1 and ηd0 ∗ ηd2 are homotopic as maps

X2 → X1
η

−−−→ ΩX

where the latter map is induced by the adjoint of the canonical map S1∧X1 → X.
We define two maps

E,D : Fq(C,M)→ Fq(S2C, S2M)

by sending (α0, {αi}) = (α0 ∈M(c0, cq), {ci−1
αi←− ci}) to E(α0, {αi}) =







0
M(pr2,∆)α0

α0


 ∈ S2M




cq

i1

y
cq ⊕ c0

pr2

y
c0

,

cq

i1

y
cq ⊕ cq

pr2

y
cq



,





cq cq

i1

y i1

y

cq ⊕ ci−1
1⊕αi←−−− cq ⊕ ci

pr2

y pr2

y
ci−1

αi←−−− ci
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and D(α0, {αi}) =






M(β1, 1)α0

M(pr2,∆)α0

0


 ∈ S2M




cq

∆1

y
cq ⊕ c0

∇1

y
c0

,

cq

∆

y
cq ⊕ cq

∇

y
cq



,





cq cq

∆i

y ∆i+1

y

cq ⊕ ci−1
1⊕αi←−−− cq ⊕ ci

∇i

y ∇i+1

y
ci−1

αi←−−− ci








where

1. i1 the inclusion into the first summand, pr2 the second projection, ∆ the diagonal
and ∇ : c⊕ c→ c the difference (a, b) 7→ a− b,

2. βi = αi . . . αq : cq → ci−1, ∆i = (1⊕ βi)∆, and ∇i = ∇(1⊕ βi).

(exercise: check that the claimed elements of S2M(−,−) are well defined).

Since d2E = d0D = 0 we get that

η = ηd0E ' ηd1E = ηd1D ' ηd2D = ηsq0d
q
0

{cor:3.3.2}

Corollary 3.3.2 In the situation of the lemma, the inclusion of degeneracies induces a
stable equivalence of spectra

F0(C,M)
∼
−−−→ F(C,M)

and in particular, if A is a ring and P an A bimodule, then

F0(A, P )
∼
−−−→ F(A, P )

Proof: It is enough to show that for every q the map F0(C,M)→ Fq(C,M) induced by the
degeneracy is a stable equivalence (since loops of simplicial spaces may be performed in
each degree, see A.1.5.0.5, and since a degreewise equivalence of simplicial spaces induces
an equivalence on the diagonal, see A.1.5.0.2). In other words, we must show that for every
q and k

π0 limm→∞Ωm+kF0(S
(m)C, S(m)M)

sq
0−−−→ π0 limm→∞ Ωm+kFq(S

(m)C, S(m)M)

is an isomorphism. It is an injection by definition, and a surjection by the lemma.
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3.4 K-theory as a theory of bimodules

Let A be a ring and let AnP → A be any split radical extension Recall the K̃A construction
of definition 2.5.3. The last part of theorem 2.5.4 says that

K̃(An P ) ' K̃A(An P ) = {n 7→
∨

m∈S(n)PA

B
(
S(n)MA(m,m⊗A P )

)
}

Notice the striking similarity with

F0(PA,M) = {n 7→
⊕

m∈obS(n)PA

M(m,m)}

In the special case where P 2 = 0 the group structure on HomA(c, c⊗AP ) for c ∈ S
(n)
q PA

is just the summation of maps: let f, g ∈ HomA(c, c⊗AP ), then f ·g = (1+f)(1+g)−1 =
f + g + f ◦ g, where f ◦ g is the composite

c
g

−−−→ c⊗A P
f⊗1
−−−→ c⊗A P ⊗A P → c⊗A P

where the last map is induced by the multiplication in P ⊆ A n P , which is trivial. So
f · g = f + g. This means that the isomorphism

BqHomA(c, c⊗A P ) =HomA(c, c⊗A P )×q ∼= HomA(c, (c⊗A P )×q)
∼=HomA(c, c⊗A P

×q) = HomA(c, c⊗A BqP )

induces a simplicial isomorphism. Hence

M = B
(
S(n)MA(−,−⊗A P )

)
∼= S(n)MA(−,−⊗A BP )

is a (simplicial) PA-bimodule, and the only difference between K̃A(AnP ) and F0(PA,M)
is that the first is built up of wedge summands, whereas the second is built up of direct
sums.

Here stable homotopy enters. Recall that a space X is 0-connected if π0X is a point,
and if it is connected it is k-connected for a k > 0 if for all vertices x ∈ X0 we have that
πq(X, x) = 0 for 0 ≤ q ≤ k. A space is −1-connected by definition if it is nonempty. A
map X → Y is k-connected if its homotopy fiber is (k − 1)-connected. We use the same
convention for simplicial rings and modules.

The difference between wedge and direct sum vanishes stably, which accounts for
{theo:3.4.1}

Theorem 3.4.1 Let A be a ring and P a m-connected simplicial A-bimodule, the inclusion∨
⊆
⊕

induces a 2m+ 2-connected map

K̃A(An P )→ F0(A,BP ) ∼= BF0(A, P )

Proof: Corollary A.1.10.0.10 says that if X is n-connected and Y is m-connected, then
the inclusion X ∨ Y → X × Y is m+ n-connected, and so the same goes for finitely many
factors. Now, finite sums of modules is the same as products of underlying sets, and infinite
sums are filtered colimits of the finite sub-sums. Since the functors in question commute
with filtered colimits, the result follows.
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3.4.2 Removing the bar

What is the rôle of the bar construction in theorem 3.4.1? Removing it on the K-theory
side, that is in KA(An P ), we are invited to look at

{n 7→
∐

c∈obS(n)PA

HomA(c, c⊗A P )} (3.4.2) {eq:EAP}

We identify this as follows. Let EAP be the exact category with objects pairs (c, f) with
c ∈ obPA and f ∈ HomA(c, c⊗A P ), and morphisms (c, f)→ (d, g) commutative diagrams
of A-modules

c
h

−−−→ d

f

y g

y

c⊗A P
h⊗1
−−−→ d⊗A P

We have a functor EAP → PA given by (c, f) 7→ c, and a sequence in EAP is exact if it is
sent to an exact sequence in PA. As examples we have that EA0 = PA, and EAA is what
is usually called the category of endomorphisms on PA. We see that the expression 3.4.2
is just the K-theory spectrum K(EAP ) = {x 7→ obS(n)EAP}.

Definition 3.4.3 Let A be a unital ring. Set CA to be the functor from A bimodules to
spectra given by

CA(P ) = K(EAP )/K(A) = {n 7→
∨

c∈S(n)PA

S(n)MA(c, c⊗A P )}

(the homomorphism groups S(n)MA(c, c⊗A P ) are pointed in the zero map).

With this definition we can restate theorem 2.5.4 for the square zero case as

CA(BP ) ' fib{K(An P )→ K(A)}

Note that, in the language of definition 2.5.3, yet another way of writing CAP is as the
spectrum {n 7→ N cy

0 tD
n
A(An P )/N cy

0 tD
n
A(A) = N cy

0 tD
n
A(An P )/obS(n)PA}.

We are free to introduce yet another spectrum direction in CAP by observing that we
have natural maps S1∧CAP → CA(BP ) given by S1∧

∨
M ∼=

∨
(S1∧M) →

∨
(Z̃[S1] ⊗

M) ∼=
∨
BM .

Aside 3.4.4 There are two natural maps K(A)→ K(EAA), given by sending c ∈ obS(n)PA
to either (c, 0) or (c, 1) in obS(n)EAA. The first is used when forming CAP , and the latter
give rise to a map

K(A)→ CAA

Composing this with CAA → ΩCA(BA) = ΩK̃A(A[t]/t2) → ΩK(A[t]/t2)/K(A), we get a
weak map

K(A)→ ΩK(A[t]/t2)/K(A)
∼
←−−− hofib{K(A[t]/t2)→ K(A)}
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(cf. [63] or [129]) where hofib is (a functorial choice representing) the homotopy fiber.
The considerations above are related to the results of Grayson in [42]. Let A be commu-

tative and R = S−1A[t] where S = 1 + tA[t]. The theorem above says that K̃A(A[t]/t2) =
K(EA(BA))/K(A) is equivalent to K(A[t]/t2)/K(A), whereas Grayson’s theorem tells us
that the “one-simplices” of this, i.e. CAA = K(EAA)/K(A) is equivalent to the loop of
K̃A(R) ' K(R)/K(A).

3.4.5 More general bimodules

Before we go on to reformulate theorem 3.4.1 in the more fashionable form “stable K-theory
is homology” we will allow our K-functor more general bimodules so that we have symmetry
between the input.

Definition 3.4.6 Let C be an exact category and M a pointed ZC bimodule. Then we
define the spectrum

CC(M) = {n 7→
∨

c∈obS(n)C

S(n)M(c, c)}

The structure maps

S1∧
∨

c∈obC

M(c, c)→
∨

c∈obSC

SM(c, c)

are well defined, because
∨
c∈obS0C S0M(c, c) = M(0, 0) = 0 since we have demanded that

M is pointed
The notation should not cause confusion, although CAP = CPA

HomA(−, c⊗AP ), since
the ring A is not an exact category (except when A = 0, and then it doesn’t matter).

If M is bilinear, this is the K-theory spectrum of the following category, which we will
call EC(M). The objects are pairs (c, f) with c ∈ obC and f ∈ M(c, c) and a morphism
from (c,m) to (c′, m′) is an f ∈ C(c, c′) such that M(f, 1)m′ = M(1, f)m. A sequence
(c′, m′)→ (c,m)→ (c′′, m′′) is exact if the underlying sequence c′ → c→ c′′ is exact.

3.5 Stable K-theory
{sec:IKS}

Recall that, when considered as a functor from A bimodules, P 7→ K̃(AnP ) is not additive
3.1. If F is a pointed (simplicial) functor from A bimodules to spectra, we define it’s first
differential, D1F , as

D1F (P ) = lim
−→
k

ΩkF (BkP ),

where F is degreewise applied to the k fold bar construction. We have a transformation
F → D1F . If F already were additive, then F → D1F is a weak equivalence. This means
that D1F is initial (in the homotopy category) among additive functors under F , and is a
left adjoint (in the homotopy categories) to the inclusion of the additive functors into all
functors from A bimodules to spectra.
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Definition 3.5.1 Let A be a simplicial ring and P an A bimodule. Then

KS(A, P ) = D1CA(P ) = lim
−→
k

Ωk
CA(BkP )

If C is an exact category and M a C bimodule, then

KS(C,M) = D1CC(M) = lim
−→
k

Ωk
CC(M ⊗ Sk)}

where for a finite pointed set X, M ⊗X is the bimodule sending c, d to M(c, d)⊗ Z̃X.

Again, the equivalence KS(A, P ) ' KS(PA, HomA(−,− ⊗A P )) should cause no con-
fusion. If M is a pointed simplicial C-bimodule, we apply CC degreewise.

We note that

KS(A, P ) = D1ΩCA(BP )

'

y
D1Ω (K(PAnP , i)/K(A))x'

D1Ω (K(An P )/K(A))

'

y
D1Ωhofib{K(An P )→ K(A)} = holim

−→
k

Ωkhofib{K(An Bk−1P )→ K(A)}

and the latter is the (spectrum version of the) usual definition of stable K-theory, c.f. [63]
and [129].

In the rational case Goodwillie proved in [38] that stable K-theory was equivalent to
Hochschild homology (see later). In general this is not true, and we now turn to the
necessary modification.

{theo:KSisF}
Theorem 3.5.2 Let C be an exact category and M an m-connected pointed simplicial
C-bimodule. The inclusion

∨
⊆
⊕

induces a 2m-connected map

CCM → F0(C,M)

and
D1CC

'
−−−→ D1F0(C,−)

'
←−−− F0(C,−)

are equivalences. Hence

KS(C,M) ' F0(C,M)
∼
−−−→ F(C,M)

In particular, for A a ring and P an A-bimodule, the map CAP → F0(A, P ) give rise to
natural equivalences

KS(A, P ) = D1CA
'
−−−→ D1F0(A,−)

'
←−−− F0(A,−)→ F(A, P )
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Proof: The equivalence

D1F0(C,−)
'
←−−− F0(C,−)

follows since by corollary 3.3.2 the inclusion by the degeneracies F0(C,−)→ F(C,−) is an
equivalence, and the fact that F(C,−) is additive, and so unaffected by the differential.
The rest of the argument follows as before.

Adding up the results, we get the announced theorem:

Corollary 3.5.3 Let C be an additive category, and M a bilinear C bimodule. Then we
have natural isomorphisms

π∗K
S(C,M) ∼= H∗(C,M)

and in particular
π∗K

S(A, P ) ∼= H∗(PA,MA(−,−⊗A P ))

Proof: The calculations of homotopy groups follows from the fact that F(C,M) is a Ω-
spectrum (and so π∗F(C,M) ∼= π∗F (C,M) = H∗(C,M)). This follows from theequivalence

F (C,M) ∼ THH(C,M)

and results on topological Hochschild homology in chapter IV. However, for the readers
who do not plan to cover this material, we provide a proof showing that F is an Ω spectrum
directly without use of stabilizations at the end of this section, see proposition 3.6.5.

3.6 A direct proof of “F is an Ω-spectrum”
{subsec:I FisOmega}

Much of what is to follow makes sense in a linear category setting. For convenience, we
work in the setting of additive categories, and we choose zero objects which always will be
denoted 0.

Definition 3.6.1 Let G : A → B be an additive functor. We let the “twisted” product
category A×G B be the linear category with objects ob(A)× ob(B) and

A×G B((a, b), (a′, b′)) = A(a, a′)⊕ B(b, b′)⊕ B(G(a), b′)

with composition given by

(f, g, h) ◦ (f ′, g′, h′) = (f ◦ f ′, g ◦ g′, h ◦G(f ′) + g ◦ h′).

If M is an A-bimodule and N is a B-bimodule, with an A-bimodule map G∗ : M → G∗N
we define the A×G B-bimodule M ×G N by

M ×G N((a, b), (a′, b′)) = M(a, a′)⊕N(b, b′)⊕N(G(a), b′)

with bimodule action defined by

(M ×G N)((f, g, h), (f ′, g′, h′))(m,n, nG)

= (M(f, f ′)m,N(g, g′), N(Gf, h′)G∗m +N(h, g′)n +N(Gf, g′)nG)
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From now on, we assume for convenience that M and N are pointed (i.e. takes zero in
either coordinate to zero).

We have an inclusion

A
inA−−−→ A×G B

sending f : a → a′ obA to (f, 0, 0) : (a, 0) → (a′, 0), and an A-bimodule map M →
in∗A(M ×G N); and a projection

A×G B
prA−−−→ A

and an A×G B-bimodule map M ×G N → pr∗AM . Likewise for B. The composite

F (A,M)⊕ F (B, N)
inA+inB−−−−−→ F (A×G B,M ×G N)

(prA⊕prB)∆
−−−−−−−→ F (A,M)⊕ F (B, N)

(3.6.1)
is the identity.{eq:composite}

Lemma 3.6.2 (F is “additive”) With the notation as above

F (A,M)⊕ F (B, N)
inA+inB−−−−−→ F (A×G B,M ×G N)

is an equivalence.

Proof: We will show that the other composite in 3.6 is homotopic to the identity. Let
x = (x0; x1, . . . , xq) ∈ Fq(A×G B,M ×G N), where

x0 = (m,n, nG) ∈M ×G N((a0, b0), (aq, bq)), and

xi = (fi, gi, hi) ∈ A×G B((ai, bi), (ai−1, bi−1)), fori > 0.

Then x is sent to

J(x) = ((m, 0, 0); inAprAx1, . . . inAprAxq) + ((0, n, 0); inBprBx1, . . . inBprBxq)

We define a homotopy between the identity and J as follows. Let x1
i = (fi, 0, 0) ∈ (A×G

B)((ai, bi), (ai−1, 0)) and x2
i = (0, gi, 0) ∈ (A×G B)((0, bi), (ai−1, bi−1)). If φi ∈ ∆([q], [1]) is

the map with inverse image of 0 of cardinality i, we define

H : F (A×G B,M ×G N)×∆→ F (A×G B,M ×G N)

by the formula

H(x, φi) =((m, 0, 0); inAprAx1, . . . inAprAxi−1, x
1
i , xi+1, . . . xq)

−((0, n, nG); x1, . . . , xi−1, x
2
i , inBprBxi+1, . . . inBprBxq)

+((0, n, 0); inBprBx1, . . . inBprBxq)

+((0, n, nG); x1, . . . , xq)

(note that in the negative summand, it is implicit that nG is taken away when i = 0).
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Lemma 3.6.3 Let C be an additive category and M a bilinear bimodule. Then the natural
map

SqC
c7→(c0,1,...,cq−1,q)
−−−−−−−−−−→ C×q

induces an equivalence

F (SqC, SqM)
∼
−−−→ F (C×q,M×q)

∼
−−−→ F (C,M)×q

Proof: Recall the equivalence ψq : TqC→ SqC of lemma 2.2.5, and note that ifGq : C→ TqC
is defined by c 7→ Gq(c) = (0, . . . , 0, c) then we have an isomorphism Tq+1C ∼= C ×Gq TqC.
Furthermore, if M is a linear bimodule, then we define TqM = ψ∗qSqM , and we have that
Tq+1M ∼= M ×G TqM .

Hence

F (SqC, SqM)
∼
←−−− F (TqC, TqM) ∼= F (C×G Tq−1C,M ×G Tq−1M)

∼
←−−− F (C,M)⊕ F (Tq−1C, Tq−1M)

and by induction we get that

F (SqC, SqM)
∼
←−−− F (C,M)×q

and this map is a right inverse to the map in the statement.

Definition 3.6.4 For any simplicial category D we may define the path category PD by
setting PqD = Dq+1 and letting the face and degeneracy functors be given by raising all
indices by one. The unused d0 defines a functor PD → D, and we have a map D1 =
P0D → PD given by the degeneracies.

Then D0 → PD (given by degeneracies in D) defines a simplicial homotopy equivalence,
with inverse given by

∏
1≤i≤q+1 di : PqD → D0 (see [131, 1.5.1]).

{prop:FOmega}
Proposition 3.6.5 Let C be an additive category, and M a bilinear bimodule, then

F (C,M)→ ΩF (SC, SM)

is an equivalences.

Proof: Consider
F (C,M)→ F (PSC, PSM)→ F (SC, SM) (3.6.5) {eq:FOmega}

For every q we have equivalences

F (C,M) −−−→ F (PqSC, PqSM) −−−→ F (SqC, SqM)∥∥∥ o

y o

y
F (C,M) −−−→ F (C,M)×q+1 −−−→ F (C,M)×q

where the lower sequence is the trivial split fibration. As all terms are bisimplicial abelian
groups the sequence 3.6.5 must be a fiber sequence (see A.1.5.0.4) where the total space is
contractible.
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Chapter II

Γ-spaces and S-algebras

{II}
In this chapter we will introduce the so-called Γ-spaces. The reader can think of these
as (very slight) generalizations of (simplicial) abelian groups. The surprising fact is that
this minor generalization is big enough to encompass a wide and exotic variety of new
examples.

The use of Γ-spaces also fixes another disparity. Quillen defined algebraic K-theory to
be a functor from things with abelian group structure (such as rings or exact categories)
to abelian groups. We have taken the view that K-theory takes values in spectra, and
although spectra are almost as good as abelian groups, this is somehow unsatisfactory.
The introduction of Γ-spaces evens this out, in that K-theory now takes things with a Γ-
space structure (such as S-algebras, or the Γ-space analog of exact categories) to Γ-spaces.

Furthermore, this generalization enables us to include new fields of study, such as the
K-theory of spaces, into serious consideration. It is also an aid – almost a prerequisite –
when trying to understand the theories to be introduced in later chapters.

To be quite honest, Γ-spaces should not be thought of as a generalization of simplicial
abelian groups, but rather of simplicial abelian (symmetric) monoids, since there need not
be anything resembling inverses in the setting we use the term (as opposed to Segal’s orig-
inal approach). On the other hand, it is very easy to “group complete”: it is a stabilization
process.

1 Algebraic structure

1.1 Γ-objects

A gamma-object in a category is a functor from the category of finite sets. We need to be
quite precise about this, and the details follow.

1.1.1 The Category Γo

Roughly, Γo is the category of pointed finite sets – the mother of all mathematics. To
be more precise, we choose a skeleton, and let Γo be the category with one object k+ =

61
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{0, 1, . . . , k} for every natural number k, and with morphism sets Γo(m+, n+) the set of
functions f : {0, 1, . . . , m} → {0, 1, . . . , n} such that f(0) = 0. In [109] Segal considered,
the opposite category and called it Γ, and this accounts for the awkward situation where we
call the most fundamental object in mathematics the opposite of something. Some people
object to this so strongly that write Γ when Segal writes Γo. We follow Segal’s convention.

1.1.2 Motivation

A symmetric monoid is a set M together with a multiplication and a unit element so that
any map M×j →M gotten by composing maps in the diagram

∗ unit //M

m7→(1,m) //

m7→(m,1) //
M ×M

twist

��multiplicationoo M ×M ×M
(m1,m2m3)←(m1,m2,m3)oo

(m1m2,m3)←(m1,m2,m3)oo

are equal. Thinking of multiplication as “two things coming together” as in the map
2+ → 1+ given by

2+ = { 0

��

1

��

2}

����
��

��
��

1+ = { 0 1 }

we see that the diagram is mirrored by the diagram

0+
// 1+

//
// 2+

��
oo 3+oo

oo

in Γo where the two arrows 1+ → 2+ are given by

{0

��

1}

��
{0 1 2}

and {0

��

1}

��?
??

??
??

{0 1 2}

and the maps 3+ → 2+ are

{0

��

1

��

2

����
��

��
��

3}

����
��

��
�

{0 1 2}

and {0

��

1

��

2

��

}

����
��

��
��

{0 1 2}

(there are more maps in Γo, but these suffice for the moment). So we could say that
a symmetric monoid is a functor from this part of Γo to pointed sets sending 0+ to the
one-point set and sending wedge sum to product (e.g., 3+ = 2+ ∨ 1+ must be sent to the
product of the values at 2+ and 1+,i.e., the triple product of the value at 1+).

This doesn’t seem very helpeful until one notices that this extends to all of Γo, and
the requirement of sending 1+ to the one-point set and wedge sum to product fixes the
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behavior in the sense that there is a one-to-one correspondence between such functors from
Γo to sets and symmetric monoids, see example 1.2.1.1 below for more details.

The reason for introducing this new perspective is that we can model multiplicative
structures functorially, and relaxing the requirement that the functor sends wedge to prod-
uct is just the trick needed to study more general multiplicative structures. For instance
one could imagine situations where the multiplication is not naturally defined on M ×M ,
but on some bigger space like M×M×X giving an entire family of multiplications varying
over the set X. This is exactly what we need when we are going to study objects that are,
say, commutative only up to homotopy.

1.1.3 Γ-objects

If C is a pointed category one may consider pointed functors Γo → C and natural transfor-
mations between such functor. This defines a category we call ΓC. Most notably we have
the category

ΓS∗

of Γ-spaces, that is pointed functors from Γo to pointed simplicial sets, or equivalently, of
simplicial Γ-objects in the category of pointed sets. If A = sAb is the category of simplicial
abelian groups, we may define

ΓA

the category of simplicial Γ-objects in abelian groups. Likewise for other module categories.
Another example is the category of Γ-categories, i.e., pointed functors from Γo to categories.
These must not be confused with the notion of ΓS∗-categories (see section 1.6).

1.2 The category ΓS∗ of Γ-spaces

We start with some examples of Γ-spaces.
{ex:gs}{ex:gs1}{Def:Eilenberg MacLane object}

Example 1.2.1 1. Let M be an abelian group. If we consider M as a mere pointed
set, we can not reconstruct the abelian group structure. However, if we consider M
as a Γ-pointed set, HM , as follows, there is no loss of structure. Send k+ to

HM(k+) = M ⊗ Z̃[k+] ∼= M×k

and a map f ∈ Γo(k+, n+) gives rise to a map HM(k+) → HM(n+) sending

(m1, . . . , mk) ∈ M
×k to

(
(
∑

j∈f−1(1) mj), . . . , (
∑

j∈f−1(n)mj)
)

(where m0 = 0). (al-

ternative description: HM(X) = Ens∗(X,M), and if f : X → Y ∈ Γo, then
f∗ : HM(X) → HM(Y ) sends φ to y 7→ f∗φ(y) =

∑
x∈f−1(y) φ(x).) In effect, this

defines a functor {Def:barHongp}

H̄ : sAb = A → ΓA,

and we follow by the forgetful functor U : ΓA → ΓS∗, so that

H = UH̄.
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Both HM and H̄M will be referred to as the Eilenberg-MacLane objects associated
with M . The reason is that these Γ-objects naturally give rise to the so-called
Eilenberg-MacLane spectra.

{ex:gs2}

2. The inclusion Γo ⊂ Ens∗ ⊂ S∗ is called in varying sources, S, Id, “the sphere spec-
trum” etc. We will call it S. Curiously, the Barrat-Priddy-Quillen theorem states
that S ∼ K(Γo), the K-theory of the category Γo (see e.g., [109].

{ex:gs3}

3. If X is a pointed simplicial set and M is a Γ-space, then M∧X is the Γ-space
sending Y ∈ obΓo to M(Y )∧X. Dually, we let S∗(X,M) be the Γ-space Y 7→
S∗(X,M(Y )). Note that ΓS∗(M∧X,N) is naturally isomorphic to ΓS∗(M,S∗(X,N)).
For any simplicial set X, we let S[X] = S∧X+, and we see that this is a left adjoint
to the functor R : ΓS∗ → S∗ evaluating at 1+.{def:R}

{ex:gs4}

4. For X ∈ obΓo, let ΓX ∈ obΓS∗ be given by

ΓX(Y ) = Γo(X, Y )

Note that S = Γ1+.

The notion of Γ-spaces we are working with is slightly more general than Segal’s, [109].
It is usual to call Segal’s Γ-spaces special:

{Def:special}

Definition 1.2.2 A Γ-space M is said to be special if the canonical maps

M(k+)→
∏

k

M(1+)

are equivalences for all k+ ∈ obΓ. This induces an abelian monoid structure on π0M(1+),
and we say that M is very special if this is an abelian group structure.

The difference between Γ-spaces and very special Γ-spaces is not really important.
Any Γ-space M gives rise to a very special Γ-space, say FM , in one of many functorial
ways, such that there is a “stable equivalence” M

∼
→ FM (see 2.1.6). However, the larger

category of all Γ-spaces is nicer for formal reasons, and the very special Γ-spaces are just
nice representatives in each stable homotopy class.

1.2.3 The smash product
{subsec:Gammasmash}

There is a close connection between Γ-spaces and spectra (there is a functor defined in
2.1.12 that induces an equivalence on homotopy categories), and so the question of what
the smash product of two Γ-spaces should be could be expected to be a complicated issue.
M. Lydakis [76] realized that this was not the case: the simplest candidate works just
beautifully.
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If we have two Γ-spaces M and N , we may consider the “external smash”, i.e., the
functor Γo× Γo → S∗ which sends (X, Y ) to M(X)∧N(Y ). The category Γ its own smash
product and we want some “universal filler” in

Γo × Γo
(X,Y )7→M(X)∧N(Y )
−−−−−−−−−−−−→ S∗

∧

y
Γo

The solutions to these kinds of questions are called “left Kan extensions” [79], and in our
case it takes the following form:

Let Z ∈ Γo and let ∧/Z be the over category, i.e., the category whose objects are
tuples (X, Y, v) where (X, Y ) ∈ Γo × Γo and v : X∧Y → Z ∈ Γo, and where a morphism
(X, Y, v) → (X ′, Y ′, v′) is a pair of functions f : X → X ′ and g : Y → Y ′ in Γo such that
v = v′ ◦ (f∧g).

Then the smash product M∧N)(Z) is defined as the colimit of the composite

∧/Z
(X,Y,v)7→(X,Y )
−−−−−−−−−→ Γo × Γo

(X,Y )7→M(X)∧N(Y )
−−−−−−−−−−−−→ S∗,

that is
(M∧N)(Z) = lim

−−−−−−−−−→
(X,Y,v)∈∧/Z

M(X)∧N(Y )

In the language of coends, this becomes particularly perceptive:

(M∧N)(Z) =

∫ (X,Y )

(M(X)∧N(Y ))∧Γo(X∧Y, Z)

the “weighted average of all the handicrafted smash products M(X)∧N(Y )”.

Remark 1.2.4 Note that a map from a smash product M∧M ′ → N ∈ ΓS∗ is uniquely
described by giving a map M(X)∧M ′(Y )→ N(X∧Y ) which is natural in X, Y ∈ obΓo.

1.2.5 The closed structure

The theorem 1.2.6 below states that the smash product endows the category of Γ-spaces
with a structure of a closed category (which is short for closed symmetric monoidal cate-
gory). For a thorough discussion see appendix B, but for now recall that it is symmetric
monoidal means that the functor ∧ : ΓS∗ × ΓS∗ → ΓS∗ is associative, symmetric and unital
(S is the unit) up to coherent isomorphisms, and that it is closed means that in addition
there is an “internal morphism object” with reasonable behavior.

The Γ-space of morphisms from M to N is defined by setting

ΓS∗(M,N) = {k+, [q] 7→ ΓS∗(M,N)(k+)q = ΓS∗(M∧∆[q]+, N(k+∧−))}.
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{theo:gsisSMC}

Theorem 1.2.6 (Lydakis) With these definitions of smash and morphism object (ΓS∗,∧,S)
becomes a closed category.

Proof: (Sketch: see [76] for further details) First one uses the definitions to show that there
is a natural isomorphism ΓS∗(M∧N,P ) ∼= ΓS∗(M,ΓS∗(N,P )). Recall from 1.2.14 that
ΓX(Y ) = Γo(X, Y ) and note that S = Γ1+, ΓS∗(Γ

X ,M) ∼= M(X∧−) and ΓX∧ΓY ∼= ΓX∧Y .
We get that M∧S = M∧Γ1+ ∼= M since ΓS∗(M∧S, N) ∼= ΓS∗(M,ΓS∗(S, N)) ∼= ΓS∗(M,N)
for any N . The symmetry M∧N ∼= N∧M follows from the construction of the smash
product, and associativity follows by comparing with

M∧N∧P = {V 7→ lim
−−−−−−−−−→
X∧Y ∧Z→V

M(X)∧N(Y )∧P (Z)}

That all diagrams that must commute actually do so follows from the crucial observation
1.2.7 below (with the obvious definition of the multiple smash product).

{lem:1.2.7}
Lemma 1.2.7 Any natural automorphism φ of expressions of the form

M1∧M2∧ . . .∧Mn

must be the identity (i.e., Aut(
∧n : ΓS∗

×n → ΓS∗) is the trivial group).

Proof: The analogous statement is true in Γo, since any element in X1∧X2∧ . . .∧Xn is in
the image of a map from 1+∧1+∧ . . .∧1+, and so any natural automorphism must fix this
element.

Fixing a dimension, we may assume that the Mi are discrete, and we must show that
φ(z) = z for any z ∈

∧
Mi(Z). By construction, z is an equivalence class represented

say by an element (x1, . . . , xm) ∈
∧
Mi(Xi) in the f :

∧
Xi → Z summand of the colimit.

Represent each xi ∈ Mi(Xi) by a map fi : ΓXi → Mi (so that fi(Xi = Xi) = xi). Then z
is the image of ∧idXi

in the f summand of the composite

(
∧

ΓXi)(Z)
∧fi−−−→ (

∧
Mi)(Z)

Hence it is enough to prove the lemma for Mi = ΓXi for varying Xi. But
∧

ΓXi ∼= Γ
V
Xi

ΓS∗(Γ
V
Xi,Γ

V
Xi) ∼= Γo(

∧
Xi,
∧

Xi)

and we are done.
Theorem 1.2.6 also follows from a much more general theorem of Day [21], not relying on
the special situation in lemma 1.2.7.

1.3 Variants

The proof that ΓS∗ is a closed category works if S∗ is exchanged for other suitable closed
categories with colimits. In particular ΓA, the category of Γ-objects in A = sAb, is a
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closed category. The unit is H̄Z = {X 7→ Z̃[X]} (it is HZ, but we remember the group
structure, see example 1.2.1.1, the tensor is given by

(M ⊗N)(Z) = lim
−−−−−−→
X∧Y→Z

M(X)⊗N(Y )

and the internal function object is given by

ΓA(M,N) = {X, [q] 7→ ΓA(M ⊗ Z[∆[q]], N(−∧X))}

1.3.1 ΓS∗ vs. ΓA
{gsvsgab}

The adjoint functor pair between abelian groups and pointed sets

Ens∗
Z̃

�
U
Ab

where U is the forgetful functor induces an adjoint functor pair

ΓS∗
Z̃

�
U

ΓA

and since Z̃ : (Ens∗,∧, S
0) → (Ab,⊗,Z) is a (strong) symmetric monoidal functor, so is

Z̃ : (ΓS∗,∧,S) → (ΓA,⊗, H̄Z) (a strong monoidal functor is a monoidal functor F such
that the structure maps F (a) ⊗ F (b) → F (a ⊗ b) and 1 → F (1) are isomorphisms) In
particular Z̃S ∼= H̄Z,

Z̃(M∧N) ∼= Z̃M ⊗ Z̃N

and
ΓS∗(M,UP ) ∼= UΓA(Z̃M,P )

satisfying the necessary associativity, commutativity and unit conditions.
Later, we will see that the category ΓA, for all practical (homotopical) purposes can be

exchanged for sAb = A. The comparison functors come from the adjoint pair

A
H̄

�
R

ΓA

where H̄P (X) = P ⊗ Z̃[X] and RM = M(1+). We see that RH̄ = idA. The other
adjunction, H̄R→ idΓA, is discussed in lemma 1.3.3 below. Both H̄ and R are symmetric
monoidal functors.

1.3.2 Special objects
{Def:specialgab}

We say that M ∈ obΓA is special if UM ∈ obΓS∗ is special, i.e., if

UM(X ∨ Y )
∼
→ UM(X)× UM(Y )

is a weak equivalence in S∗. The following lemma has the consequence that all special
objects in ΓA can be considered to be in the image of H̄ : sAb = A → ΓA:
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{lem:1.4.3}

Lemma 1.3.3 Let M ∈ obΓA be special. Then the unit of adjunction (H̄RM)(k+) →
M(k+) is an equivalence.

Proof: Since M is special, we have that M(k+) →
∏

kM(1+) is an equivalence. On the
other hand, if we precompose this map with the unit of adjunction

(H̄RM)(k+) = M(1+)⊗ Z̃[k+]→M(k+)

we get an isomorphism.

1.3.4 Additivization
{Def:IIL}

There is also a Dold-Puppe–type construction: L : ΓA → A which is left adjoint to H̄, and
given by

LM = coker{pr1 −∇+ pr2 : M(2+)→M(1+)}

where ∇ is the fold map. This functor is intimately connected with the subcategory of ΓA
consisting of “additive”, or coproduct preserving functors Γo → A.

The additive objects are uniquely defined by their value at 1+, and we get an isomor-
phism M ∼= H̄(M(1+)) = H̄RM . Using this we may identify A with the full subcategory
of additive objects in ΓA, and the inclusion into ΓA has a left adjoint given by H̄L.

Note that all the functors L, R and H̄ between A and ΓA are strong symmetric
monoidal.

Just the same considerations could be made with Ab exchanged for the category of
k-modules for any commutative ring k.

1.4 S-algebras

In any monoidal category there is a notion of a monoid (see e.g., appendix B). The reason
for the name is that a monoid in the usual sense is a monoid in (Ens,×, ∗). Furthermore,
the axioms for a ring is nothing but the statement that it is a monoid in (Ab,⊗,Z). For a
commutative ring k, a k-algebra is no more than a monoid in (k −mod,⊗k, k), and so it
is natural to define S-algebras the same way:

{Def:Salg}

Definition 1.4.1 An S-algebra A is a monoid in (ΓS∗,∧,S).

This means that A is a Γ-space together with maps µ = µA : A∧A→ A and 1: S→ A
such that the diagrams

A∧(A∧A)
∼= //

id∧µ

��

(A∧A)∧A
µ∧id // A∧A

µ

��
A∧A

µ // A
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and

S∧A
1∧id //

∼=
$$I

II
II

II
II

I A∧A

µ

��

A∧S
id∧1oo

∼=
zzuuu

uu
uu

uu
u

A

commute, where the diagonal maps are the natural isomorphisms.
We say that an S-algebra is commutative if µ = µ ◦ tw where

A∧A
tw
−−−→
∼=

A∧A

is the twist isomorphism.

{remark:152}
Remark 1.4.2 In the definition of an S-algebra, the symmetric monoidal category struc-
ture is actually never needed, since maps M∧N → P out of the smash products is uniquely
characterized by a map M(X)∧N(Y ) → P (X∧Y ) natural in X, Y ∈ obΓo. So, since the
multiplication is a map from the smash A∧A→ A, it can alternatively be defined as a map
A(X)∧A(Y )→ A(X∧Y ) natural in both X and Y .

This was the approach of Bökstedt [9] when he defined FSPs . These are simplicial
functors from finite spaces to spaces with multiplication and unit, such that the natural
diagrams commute, plus some stability conditions. These stability conditions are auto-
matically satisfied if we start out with functors from Γo (and then apply degreewise and
diagonalize if we want X ∈ sΓo as input), see lemma 2.1.4. On the other hand, we shall
later see that there is no loss of generality to consider only S-algebras.

1.4.3 Variants
{II153}

An H̄Z-algebra is a monoid in (ΓA,⊗, H̄Z). This is, for all practical purposes, equivalent
to the more sophisticated notion of HZ = UH̄Z-algebras arising from the fact that there
is a closed category (HZ−mod,∧HZ, HZ), see below 1.5.6). Since the functors

ΓS∗
Z̃ //

ΓA
U

oo

L //

R
//
A

H̄oo

all are monoidal they send monoids to monoids. For instance, if A is a simplicial ring, then
H̄A is an H̄Z-algebra and HA is an S-algebra (it even is an HZ-algebra):

{ex:IIessalgebras}
{EMofringisessalg}

Example 1.4.4 1. Let A be a simplicial ring, then HA is an S-algebra with multipli-
cation

HA∧HA→ H(A⊗ A)→ HA

and unit S→ Z̃S ∼= HZ→ HA. In particular, note the S-algebra HZ. It is given by
X 7→ Z̃[X], the “integral homology”, and the unit map X = S(X)→ HZ(X) = Z̃[X]
is the Hurewicz map A.
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{spherical group rings}

2. Of course, S is the initial S-algebra. If M is a simplicial monoid, the monoid algebra
S[M ] is given by

S[M ](X) = M+∧X

with obvious unit and with multiplication coming from the monoid structure. Note
that RZ̃S[M ] ∼= Z[M ].

3. If A is an S-algebra, then Ao, the opposite of A, is the S-algebra given by A, but
with the twisted multiplication

A∧A
tw
−−−→
∼=

A∧A
µ

−−−→ A.

4. If A and B are S-algebras, their smash A∧B is a new S-algebra with multiplication

(A∧B)∧(A∧B)
id∧tw∧id
−−−−−→ (A∧A)∧(B∧B)→ A∧B,

and unit S ∼= S∧S→ A∧B.

5. If A and B are two S-algebras, the product A×B is formed pointwise: (A×B)(X) =
A(X) × B(X) and with componentwise multiplication and diagonal unit. The co-
product also exist, but is more involved.

{Matrices of essalgebras}

6. Matrices: If A is an S-algebra, we define the n× n matrices MatnA by

MatnA(X) = S∗(n+, n+∧A(X)) ∼=
∏

n

∨

n

A(X)

– the matrices with only “one entry in every coloumn”. The unit is the diagonal,
whereas the multiplication is determined by

MatnA(X)∧MatnA(Y ) = S∗(n+, n+∧A(X))∧S∗(n+, n+∧A(Y ))y
S∗(n+, n+∧A(X))∧S∗(n+∧A(X), n+∧A(X)∧A(Y ))ycomposition

S∗(n+, n+∧A(X)∧A(Y ))ymultiplication

S∗(n+, n+∧A(X∧Y )) = MatnA(X∧Y )

We note that for a simplicial ring B, there is a natural map of S-algebras (sending
some wedges to products, and rearranging the order)

MatnHB → HMnB
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where MnB are the ordinary matrix ring. This map is a stable eqivalence as defined
in 2.1.6. We also have a “Whitehead sum”

Matn(A)×Matm(A)
∨

−−−→ Matn+m(A)

which is the block sum listing the first matrix in the upper left hand corner and
the second matrix in the lower right hand corner. This sum is sent to the ordinary
Whitehead sum under the map MatnHB → HMnB.

1.5 A-modules

If A is a ring, we define a left A-module to be an abelian group M together with a map
A⊗M →M satisfying certain properties. In other words, it is a “(A⊗−)-algebra” where
(A⊗−) is the triple on abelian groups sending P to A⊗ P . Likewise

{Def:Amod}
Definition 1.5.1 Let A be an S-algebra. A (left) A-module is an (A∧−)-algebra.

To be more explicit, it is a pair (M,µM) where M ∈ obΓS∗ and

A∧M
µM

−−−→ M ∈ ΓS∗

such that

A∧A∧M
id∧µM

−−−−→ A∧M

µA∧id

y µM

y

A∧M
µM

−−−→ M
commutes and such that the composite

M ∼= S∧M
1∧id
−−−→ A∧M

µM

−−−→ M

is the identity.
If M and N are A-modules, an A-module map M → N is a map of Γ-spaces compatible

with the A-module structure (an “(A∧−)-algebra morphism”).

Remark 1.5.2 1. Note that, as remarked for S-algebras in 1.4.2, the structure maps
defining A-modules could again be defined directly without reference to the internal
smash in ΓS∗.

2. One defines right A-modules and A-bimodules similarly as Ao-modules and Ao∧A-
modules.

3. Note that an S-module is no more than a Γ-space. In general, if A is a commutative
S-algebra, then the concepts of left or right modules agree.

4. If A is a simplicial ring, then an HA-module does not need to be of the sort HP for an
A-module P , but we shall see that the difference between A-modules and HA-modules
is for most applications irrelevant.
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{Def:smashA}
Definition 1.5.3 Let A be an S-algebra. Let M be an A-module and M ′ an Ao-module.
The smash product M ′∧AM is the Γ-space given by the coequalizer

M ′∧AM = lim
−→
{M ′∧A∧M ⇒ M ′∧M}

where the two maps represent the two actions.
{Def:HomA}

Definition 1.5.4 Let A be an S-algebra and let M,N be A-modules. The Γ-space of
A-module maps is defined as the equalizer

MA(M,N) = lim
←−
{ΓS∗(M,N) ⇒ ΓS∗(A∧M,N)}

where the first map is induced by the action of A on M , and the second is

ΓS∗(M,N)→ ΓS∗(A∧M,A∧N)→ ΓS∗(A∧M,N)

induced by the action of A on N .

From these definitions, the following proposition is immediate.
{prop:166}

Proposition 1.5.5 Let k be a commutative S-algebra. Then the smash product and mor-
phism object over k endows the category Mk of k-modules with the structure of a closed
category.

{Def:kalg}{Def:kalgebra}
Example 1.5.6 (k-algebras) If k is a commutative S-algebra, the monoids in the closed
monoidal category (k − mod,∧k, k) are called k-algebras. The most important example
to us are the HZ-algebras. A crucial point we shall return to later is that the homotopy
categories of HZ-algebras and simplicial rings are equivalent.

1.6 ΓS∗-categories
{sec:gscat}

Since (ΓS∗,∧,S) is a (symmetric monoidal) closed category it makes sense to talk of a ΓS∗-
category, i.e., a collection of objects obC and for each pair of objects c, d ∈ obC a Γ-space
C(c, d) of morphisms with multiplication

C(c, d)∧C(b, c) −−−→ C(b, d)

and unit
S −−−→ C(c, c)

satisfying the usual identites analogous to the notion of an S-algebra (as a matter of fact:
an S algebra is precisely a ΓS∗-category with one object). See appendix B for more details
on enriched category theory.

In particular, ΓS∗ is itself a ΓS∗-category. As another example; from the definition 1.5.4
of the ΓS∗ of A-module morphisms the following fact follows immediately.
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Proposition 1.6.1 Let A be an S-algebra. Then the category of A-modules is a ΓS∗-
category.

Further examples of ΓS∗-categories:

{130}

Example 1.6.2 1. Any ΓS∗-category C has an underlying S∗-category RC, or just C
again for short, with function spaces (RC)(c, d) = R(C(c, d)) = C(c, d)(1+) (see 3).
The prime example being ΓS∗ itself, where we always drop the R from the notation.

A ΓS∗-category with only one object is what we call an S-algebra (just as a k-
mod-category with only one object is a k-algebra), and this is closely connected to
Bökstedt’s notion of an FSP. In fact, a “ring functor” in the sense of [27] is the same
as a ΓS∗-category when restricted to Γo ⊆ S∗, and conversely, any ΓS∗-category is a
ring functor when extended degreewise to simplicial Γ-spaces.

{1301}

2. Just as the Eilenberg-MacLane construction takes rings to S-algebras 1, it takes
Ab-categories to ΓS∗-categories. Let E be an Ab-category (i.e., enriched in abelian
groups). Then using the Eilenberg-MacLane-construction of 1 on the morphism
groups gives a ΓS∗-category which we will call Ẽ (it could be argued that it ought
to be called HE , but somewhere there has got to be a conflict of notation, and we
choose to sin here). To be precise: if c, d ∈ obE , then Ẽ(c, d) is the Γ-space which
sends X ∈ obΓo to E(c, d)⊗ Z̃[X].

{1302}

3. Let C be a pointed S∗-category. The category ΓC of pointed functors Γo → C is a
ΓS∗-category by declaring that

ΓC(c, d)(X) = ΓC(c, d(X∧−)) ∈ obS∗
{1303}

4. Let (C,t, e) be a symmetric monoidal category. An augmented symmetric monoid in
C is an object c together with maps c t c→ c, e→ c→ e satisfying the usual iden-
tities. A slick way of encoding all the identities of an augmented symmetric monoid
c is to identify it with its bar complex (Eilenberg-Mac Lane spectrum) H̄c : Γo → C
where

H̄c(k+) = tk+c =

k times︷ ︸︸ ︷
c t . . . t c, (t0+c = e)

That is: an augmented symmetric monoid is a rigid kind of Γ-object in C; it is an
Eilenberg-Mac Lane spectrum.

5. Adding 3 and 4 together we get a functor from symmetric monoidal categories to
ΓS∗-categories, sending (C,t, e) to the ΓS∗-category with objects the augmented sym-
metric monoids, and with morphism objects

ΓC(H̄c, H̄d(X∧−))
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{1305}

6. Important special case: If (C,∨, e) is a category with sum (i.e., e is both final and {Def:catwsum}
initial in C, and ∨ is a coproduct), then all objects are augmented symmetric monoids
and

ΓC(H̄c, H̄d(X∧−)) ∼= C(c,
X∨
d)

1.6.3 The ΓS∗-category C∨
{Ceevee}

The last example (1.6.2.6) is so important that we introduce the following notation. Let
(C,∨, e) be a category with sum, then C∨ is the ΓS∗-category with obC∨ = obC and

C∨(c, d)(X) = C(c,
X∨
d).

If (E ,⊕, 0) is an Ab-category with sum (what is often called an additive category), then
the Ẽ of 1.6.2.2 and E⊕ coincide:

Ẽ(c, d)(n+) ∼= E(c, d)×n ∼= E(c, d⊕n) = E⊕(c, d)(n+).

It is worth noting that the structure of 1.6.2.6 when applied to (ΓS∗,∨, 0+) is different
from the ΓS∗-enrichment we have given to ΓS∗ when declaring it to be a symmetric monoidal
closed category under the smash product. Then ΓS∗(M,N)(X) = ΓS∗(M,N(X∧−)).
However, ∨XN ∼= X∧N → N(X∧−) is a stable equivalence (see definition 2.1.6), and in
some cases this is enough to ensure that

ΓS∗
∨(M,N)(X) ∼= ΓS∗(M,X∧N)→ ΓS∗(M,N(X∧−)) = ΓS∗(M,N)(X)

is a stable equivalence.

1.6.4 A reformulation

When talking in the language of Ab-categories (linear categories), a ring is just an Ab-
category with one object, and an A-module is a functor from A to Ab. In the setting of
ΓS∗-categories, we can reinterpret S-algebras and their modules. An S-algebra A is simply
a ΓS∗-category with only one object, and an A-module is a ΓS∗-functor from A to ΓS∗.

Thinking of A-modules as ΓS∗-functors A→ ΓS∗ the definitions of smash and morphism
objects can be elegantly expressed as

M ′∧AM =

∫ A

M ′∧M

and

HomA(M,N) =

∫

A

ΓS∗(M,N)



2. STABLE STRUCTURES 75

If B is another S-algebra, M ′ an B∧Ao-module we get ΓS∗-adjoint functors

MA

M ′∧A−

�
MB(M ′,−)

MB

due to the canonical isomorphism

MB(M ′∧AN,P ) ∼=MA(N,MB(M ′, P )

which follows from playing with the definitions in the usual manner (P ∈ obMB).

2 Stable structures

In this section we will discuss the homotopical properties of Γ-spaces and S-algebras.
Historically Γ-spaces are nice representations of spectra and the choice of equivalences
reflects this. That is, in addition to the obvious pointwise equivalences, we have the
so-called stable equivalences. The functors of S-algebras we will define, such as K-theory,
should respect stable equivalences. Any S-algebra can, up to a canonical stable equivalence,
be replaced by a very special one.

2.1 The homotopy theory of Γ-spaces

To define the stable structure we need to take a different view to Γ-spaces.

2.1.1 Γ-spaces as simplicial functors

Let M ∈ obΓS∗. It is a (pointed) functor M : Γo → S∗, and by extension by colimits and
degreewise application followed by the diagonal we may think of it as a functor S∗ → S∗.
To be precise, if X is a pointed set, we define

M(X) = lim
−−−−−−−−→
finite Y⊆X

M(Y )

and so M is a (pointed) functor Ens∗ → S∗. Finally, if X ∈ obS∗, we set

M(X) = diag∗{[q] 7→M(Xq)}

Aside 2.1.2 For those familiar with the language of coends, the extensions of a Γ-space
M to an endofunctor on spaces can be done all at once: if X is a space, then

M(X) =

∫ k+

X×k+∧M(k+).
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The fact that these functors come from degreewise applications of a functor on (discrete)
sets make them “simplicial” (more precisely: they are S∗-functors), i.e., they give rise to
simplicial maps

S∗(X, Y )→ S∗(M(X), N(Y ))

which results in natural maps

Y ∧M(X)→M(X∧Y )

coming from the identity on X∧Y through the composite

S∗(X∧Y,X∧Y ) ∼= S∗(Y,S∗(X,X∧Y ))

→ S∗(Y,S∗(M(X),M(X∧Y ))) ∼= S∗(Y ∧M(X),M(X∧Y ))

In particular this means that Γ-spaces define spectra: the n-th term is given by M(Sn),
and the structure map is S1∧M(Sn) → M(Sn+1) where Sn is S1 = ∆[1]/∂∆[1] smashed
with itself n times.

{def:piofGamma}

Definition 2.1.3 If M ∈ obΓS∗, then the homotopy groups are defined as

πqM = lim
−→
k

πk+qM(Sk).

Note that πqM = 0 for q < 0, by the following lemma.

{lem:213}
Lemma 2.1.4 Let M ∈ ΓS∗.

{lem:2131}

1. If Y
∼
→ Y ′ ∈ S∗ is an equivalence then M(Y )

∼
→M(Y ′) is an equivalence also.

{lem:2132}

2. If X ∈ obS∗ is n-connected then M(X) is n-connected also.
{lem:2133}

3. If X ∈ S∗ is n-connected then the canonical map Y ∧M(X) → M(Y ∧X) is 2n-
connected.

Proof: Let LM be the simplicial Γ-space given by

LM(X)p =
∨

Z0,...,Zp∈(Γo)×p+1

M(Z0)∧Γo(Z0, Z1)∧ · · · ∧Γo(Zp−1, Zp)∧Γo(Zp, X)

with operators determined by

di(f∧α1∧ . . .∧αp∧β) =





(M(α1)(f)∧α2∧ . . .∧αp∧β) if i = 0

(f∧α1∧ . . . αi+1 ◦ αi . . .∧β) if 1 ≤ i ≤ p− 1

(f∧α1∧ . . .∧αp−1∧(β ◦ αp)) if i = p

sj(f∧α1∧ . . .∧αp∧β) = (f∧ . . . αj∧id∧αj+1 . . .∧β)
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Consider the natural transformation

LM
η

−−−→ M

determined by
(f∧α1∧ . . .∧β) 7→M(β ◦ αp ◦ · · · ◦ α1)(f).

For each Z ∈ obΓo we obtain a simplicial homotopy inverse to ηZ by sending f ∈M(Z) to
(f∧idZ∧ . . .∧idZ). Since LM and M both commute with filtered colimits we see that η is
an equivalence on all pointed sets and so by A.1.5.0.2 η is an equivalence for all pointed
simplicial sets because LM and M are applied degreewise. Thus, for all pointed simplicial
sets X:

LM(X)
∼
→M(X).

(1) If Y
∼
→ Y ′ is an equivalence then S∗(k+, Y ) ∼= Y ×k

∼
→ (Y ′)×k ∼= S∗(k+, Y

′) is an
equivalence for all k. But this implies that LM(Y )p

∼
→ LM(Y ′)p for all p and hence by

A1.6.1 that LM(Y )
∼
→M(Y ).

(2) If X is n-connected then S∗(k+, X) ∼= X×k is n-connected for all k and hence
LM(X)p is n-connected for all p. Thus, by A.6.4 we see that LM(X) is n-connected also.

(3) If X is n-connected and X ′ is m-connected then X ∨ X ′ → X × X ′ is (m + n)-
connected and so Y ∧(X × X ′) → (Y ∧X ′) × (Y ∧X ′) is (m + n)-connected also by the
commuting diagram

Y ∧(X ∨X ′) −−−→ Y ∧(X ×X ′)

∼=

y
y

(Y ∧X) ∨ (Y ∧X ′) −−−→ (Y ∧X)× (Y ∧X ′)

since both horizontal maps are (m+ n)-connected. By induction we see that

Y ∧S∗(k+, X)→ S∗(k+, Y ∧X)

is 2n-connectd for all k and so Y ∧LM(X)p → LM(Y ∧X)p is 2n-connected for all p. By
A1.6.3 and A1.6.4 we can conclude that Y ∧LM(X)→ LM(Y ∧X) is 2n-connected also.

Following Schwede we now define two closed model category structures on ΓS∗. We will
call these the “pointwise” and the “stable” structures”:

{pointwise structure on gs}
Definition 2.1.5 Pointwise structure: A map M → N ∈ ΓS∗ a pointwise fibration (resp.
pointwise equivalence) if M(X) → N(X) ∈ S∗ is a fibration (resp. equivalence) for every
X ∈ obΓ. The map is a (pointwise) cofibration if it has the lifting property with respect
to maps that are both pointwise fibrations and pointwise equivalences.

From this one constructs the stable structure. Note that the cofibrations in the two
structures are the same! Because of this we often omit the words “pointwise” and “stable”
when referring to cofibrations.
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{def:ststr}

Definition 2.1.6 Stable structure: A map of Γ-spaces is a stable equivalence if it induces
an isomorphism on homotopy groups (defined in 2.1.3). It is a (stable) cofibration if it is a
(pointwise) cofibration, and it is a stable fibration if it has the lifting property with respect
to all maps that are both stable equivalences and cofibrations.

As opposed to simplicial sets, not all Γ-spaces are cofibrant. Examples of cofibrant
objects are the Γ-spaces ΓX of 1.2.1.4 (and so the simplicial Γ-spaces LM defined in the
proof of lemma 2.1.4 are cofibrant in every degree, so that LM →M can be thought of as
a cofibrant resolution).

We shall see in 2.1.9 that the stably fibrant objects are the very special Γ-spaces which
are pointwise fibrant.

2.1.7 Important convention

The stable structure will by far be the most important to us, and so when we occasionally
forget the qualification “stable”, and say that a map of Γ-spaces is a fibration, a cofibration
or an equivalence this is short for it being a stable fibration, cofibration or equivalence.
We will say “pointwise” when appropriate.

Theorem 2.1.8 Both the pointwise and the stable structures define closed model category
structures (see A.1.3.2) on ΓS∗. Furthermore, these structures are compatible with the ΓS∗-

category structure. More precisely: If M
i

� N is a cofibration and P
p
� Q is a pointwise

(resp. stable) fibration, then the canonical map

ΓS∗(N,P )→ ΓS∗(M,P )
∏

ΓS∗(M,Q)

ΓS∗(N,Q)

is a pointwise (resp. stable) fibration, and if in addition i or p is a pointwise (resp. stable)
equivalence, then it is a pointwise (resp. stable) equivalence.

Proof: (Outline of proof, cf. Schwede [107]) That the pointwise structure is a closed sim-
plicial model category (with ΓS∗

1+(−,−) as morphism spaces) is essentially an application
of Quillen’s basic theorem [100, II4] to A the category of Γ-sets. The rest of the pointwise
claim follows from the definition of ΓS∗(−,−).

As to the stable structure, all the axioms but one follows from the pointwise structure.

If f : M → N ∈ ΓS∗, one must show that there is a factorization M
∼
� X � N of f as

a cofibration which is a stable equivalence, followed by a stable fibration. However, this
is an axiom we will never use, so we refer the reader to [107]. We refer the reader to the
same source for compatibility of the stable structure with the ΓS∗-enrichment.

Note that, since the cofibrations are the same in the pointwise and the stable structure,
a map is both a pointwise equivalence and a pointwise fibration if and only if it is both a
stable equivalence and a stable fibration.
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{cor:218}
Corollary 2.1.9 Let M ∈ obΓS∗. Then M is stably fibrant (i.e., X → ∗ is a stable
fibration) if and only if it is very special and pointwise fibrant.

Proof: If M is stably fibrant, M → ∗ has the lifting property with respect to all maps that
are stable equivalences and cofibrations, and hence also to the maps that are pointwise
equivalences and cofibrations; that is, it is pointwise fibrant. Let X, Y ∈ obΓo, then
ΓX ∨ ΓY → ΓX∨Y ∼= ΓX × ΓY is a cofibration and a weak equivalence. This means that if
M is stably fibrant, then

ΓS∗(Γ
X∨Y ,M)→ ΓS∗(Γ

X ∨ ΓY ,M)

is a stable equivalence and a stable fibration, which is the same as saying that it is a
pointwise equivalence and a pointwise fibration, which means that

M(X ∨ Y ) ∼= ΓS∗
1+(ΓX∨Y ,M)→ ΓS∗

1+(ΓX ∨ ΓY ,M) ∼= M(X)×M(Y )

is an equivalence. Similarly, the map

S ∨ S
in1pr1+∆
−−−−−→ S× S

is a stable equivalence. When π0ΓS∗
1+(−,M) is applied to this sequence we get (a, b) 7→

(a, a+ b) : π0M(1+)×2 → π0M(1+)×2. If M is fibrant this must be an isomorphism, and so
π0M(1+) has inverses.

Conversely, suppose that M is pointwise fibrant and very special. Let M
i
→
∼
� N � ∗

be a factorization. Since both M and N are very special i must be a pointwise equivalence,
and so has a section (from the pointwise structure), which means that M is a retract of a
stably fibrant object since we must have a lifting in the diagram

M Myi
y

N −−−→ ∗

2.1.10 A simple fibrant replacement functor
{subsec:naivefibrant replacement}

In the approach we will follow, it is a strange fact that we will never need to replace a
Γ-space with a cofibrant one, but we will constantly need to replace them by stably fibrant
ones. There is a particularly easy way to do this: let M be any Γ-space, and set

FM(X) = lim
−→
k

ΩkM(Sk∧X)

Obviously the map M → FM is a stable equivalence, and FM is pointwise Kan and very
special (use e.g., lemma 2.1.4) For various purposes, this replacement F will not be good
enough. Its main deficiency is that it will not take S-algebras to S-algebras.
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2.1.11 Comparison with spectra

We have already observed that Γ-spaces give rise to spectra:
{def:gs2spt}

Definition 2.1.12 Let M be a Γ-space. Then the spectrum associated with M is the
sequence

M = {k 7→M(Sk)}

where Sk is S1 = ∆[1]/∂∆[1] smashed with itself k times, together with the structure maps
S1∧M(Sk)→M(S1∧Sk) = M(Sk+1).

The assignment M 7→M is a simplicial functor

ΓS∗
M 7→M
−−−−→ Spt

(where Spt is the category of spectra, see appendix A1.2 for details). and it follows from
the considerations in [13] that it induces an equivalence between the stable homotopy
categories Γ-spaces and connective spectra.

Crucial for the general acceptance of Lydakis’ definition of the smash product was the
following:

Proposition 2.1.13 Let M and N be Γ-spaces and X and Y spaces. If M is cofibrant,
then the canonical map

M(X)∧N(Y )→ (M∧N)(X∧Y )

is n-connected with n = conn(X) + conn(Y ) + min(conn(X), conn(Y )).

Proof: (Sketch, see [76] for further details). The proof goes by induction, first treat-
ing the case M = Γo(n+,−), and observing that then M(X)∧N(Y ) ∼= X×n∧N(Y ) and
(M∧N)(X∧Y ) ∼= N((X∧Y )×n). Hence, in this case the result follows from lemma 3.

Corollary 2.1.14 Let M and N be Γ-spaces with M cofibrant. Then M∧N is stably
equivalent to a hadicrafted smash product of spectra, e.g.,

n 7→ {lim
−→
k,l

Ωk+l(Sn∧M(Sk)∧N(Sl))}. .. '!&"%#$����

2.2 A fibrant replacement for S-algebras

Note that if A is a simplicial ring, then HA is a very special Γ-space, and so maps be-
tween simplicial rings are stable equivalences if and only if they are pointwise equivalences.
Hence any functor respecting pointwise equivalences of S-algebras will have good homotopy
properties when restricted to simplicial rings.

When we want to apply functors to all S-algebras A, we frequently need to replace
our S-algebras by a very special S-algebras before feeding them to our functor, in order
to ensure that the functor will preserve stable equivalences. This is a potential problem
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since the fibrant replacement functor F presented in 2.1.10 does not take S-algebras to
S-algebras.

For this we need a gadget first explored by Bökstedt. He noted that when he wanted to
extend Hochschild homology to S-algebras or rather FSPs (see chapter IV), the face maps
were problematic as they involved the multiplication, and this was not well behaved with
respect to naïve stabilization.

2.2.1 The category I
{Bostedts I}

Let I ⊂ Γo be the subcategory with all objects, but only the injective maps. This has
much more structure than the natural numbers considered as the subcategory where we
only allow the standard inclusion {0, 1, . . . , n− 1} ⊂ {0, 1, . . . , n}. Most importantly, the
sum of two sets x0, x1 7→ x0 ∨ x1 induces a natural transformation I ×I → I. To be quite
precise, the sum is given by k+ ∨ l+ = (k+ l)+ with inclusion maps k+ → (k+ l)+ sending
i ∈ k+ to i ∈ (k+ l)+, and l+ → (k+ l)+ sending j > 0 ∈ l+ to k+ j ∈ (k+ l)+. Note that
∨ is strictly associative and unital: (x ∨ y)∨ z = x∨ (y ∨ z) and 0+ ∨ x = x = x ∨ 0+ (but
symmetric only up to isomorphism).

This results in a simplicial category {p 7→ Ip+1} with structure maps given by sending {II:Ipsimp}
x = (x0, . . . , xq) ∈ I

q+1 to

di(x) =

{
(x0, . . . , xi ∨ xi+1, . . . , xq) for 0 ≤ i < q,

(xq ∨ x0, , x1, . . . , xp−1) for i = q

si(x) =(x0, . . . , xi, 0+, xi+1, . . . , xp) for 0 ≤ i ≤ q

{Def:T0}
Definition 2.2.2 If x = k+ ∈ obI, we let |x| = k. We will often not distinguish no-
tationally between x and |x|. For instance, an expression like Sx will mean S1 smashed
with itself |x| times: S0+ = S0, S(k+1)+ = S1∧Sk+. Likewise Ωx will mean Map(Sx,−) =
S∗(S

x, sin | − |). If M is a Γ-space we set

T0M = {X 7→ holim
−−→
x∈I

ΩxM(Sx∧X)}

The reason for the notation T0M will become apparent in chapter IV (no, it is not because
it is the tangent space of something).

We have to know that this has the right homotopy properties, i.e., we need to know
that T0M is equivalent to

FM = {X 7→ lim
−→
k

ΩkM(Sk∧X)}.

One should note that, as opposed to N, the category I is not filtering, so we must stick
with the homotopy colimits. However, I possesses certain good properties which overcome
this difficulty. (Bökstedt attributes in [9] the idea behind the following very important
stabilization lemma to Illusie [55])
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Lemma 2.2.3 (cf. [9, 1.5]) Let G : Iq+1 → S∗ be a functor, x ∈ obIq+1, and assume G {Bokstedts approximation lemma}
sends maps in the under category x/Iq+1 to n = nx connected maps. Then the map

G(x)→ holim
−−−→
Iq+1

G

is n-connected.

Proof: Consider the functor

µx : Iq+1 y 7→x∨y
−−−−→ Iq+1

The second inclusion y ⊆ x ∨ y defines a natural transformation from the identity to µx.
Hence, for every y ∈ obIq+1 the under category y/µx is contractible, and by the dual of
[14, XI.9.2] (or A1.9.2.1) we have that

(µx)∗ : holim
−−−→
Iq+1

Gµx
'
−−−→ holim

−−−→
Iq+1

G

is an equivalence. The map G(x) → holim−−−→
Iq+1 G factors through (µx)∗, and so we have

to show that the map G(x) → holim−−−→
Iq+1 Gµx is n-connected. Let G(x) also denote the

constant functor with value G(x). Since Iq+1 has an initial object it is contractible (in the
sense that obN(Iq+1) is contractible). With this notation, we have to show that the last
map in the composite

G(x)
'
−−−→ obN(Iq+1)+∧G(x) = holim

−−−→
Iq+1

G(x)→ holim
−−−→
Iq+1

Gµx

is n-connected, which follows as homotopy colimits preserve connectivity (A.1.9.3.1).

A stable equivalence of S-algebras is a map of S-algebras that is a stable equivalence
when considered as a map of Γ-spaces.

{lemma:T0monoidal}
Lemma 2.2.4 The functor T0 maps S-algebras to S-algebras, and the natural transforma-
tion id→ T0 is a stable equivalence of S-algebras.

Proof: Let A be an S-algebra. We have to define the multiplication and the unit of T0A.
The unit is obvious: S→ T0S→ T0A, and the multiplication is

T0A(X)∧T0A(Y ) −−−→ holim
−−−−−−→
(x,y)∈I2

Ωx∨y (A(Sx∧X)∧A(Sy∧Y ))

mult. in A
−−−−−−→ holim

−−−−−−→
(x,y)∈I2

Ωx∨yA(Sx∨y∧X∧Y )

sum in I
−−−−−→ holim

−−→
z∈I

ΩzA(Sz∧X∧Y ) = T0A(X∧Y )

.

That the map A→ T0A is a map of S-algebras is now immediate.
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{cor:bZA is HB}

Corollary 2.2.5 Any H̄Z-algebra is functorially stably equivalent to H̄ of a simplicial
ring. In particular, if A is an S-algebra, then Z̃A is functorially stably equivalent to H of
a simplicial ring.

Proof: The T0 construction can equally well be performed in H̄Z-modules: let Ω1
AbM

be S∗(S
1,M), which is a H̄Z-modules if M is, and let the homotopy colimit be given

by the usual formula except the the wedges are replaced by sums (see A.1.9.5 for further
details). Let R0A = holim−−→

x∈I
Ωx
AbA(Sx). This is an H̄Z-algebra if A is. There is a natural

equivalence R0A → R0(sin |A|) and a natural transformation T0UA → UR0(sin |A|) (U is
the forgetful functor). By lemma A.1.9.5.2 and lemma 2.1.4.2 you get that T0UA(Sn) →
UR0(sin |A|)(S

n) is (2n − 1)-connected. But since both sides are special Γ-spaces, this

means that T0UA
∼ //UR0 sin |A| UR0A

∼oo is a natural chain of weak equivalences.

(Alternatively, we could have adapted Bökstedt’s approximation theorem to prove directly
that A→ R0A is a stable equivalence.)

Consequently, if A is a H̄Z-algebra, there is a functorial stable equivalence A → R0A
of H̄Z-algebras. But R0A is special and for such algebras the unit of adjunction H̄R→ 1
is an equivalence by lemma 1.3.3.

2.3 Homotopical algebra in the category of A-modules

Although it is not necessary for the subsequent development, we list a few facts pertaining
to the homotopy structure on categories of modules over S-algebras. The stable structure
on A-modules is inherited in the usual way from the stable structure on Γ-spaces.

Definition 2.3.1 Let A be an S-algebra. We say that an A-module map is an equivalence
(resp. fibration) if it is a stable equivalence (resp. stable fibration) of Γ-spaces. The
cofibrations are defined by the lifting property.

Theorem 2.3.2 With these definitions, the category of A-modules is a closed model cat-

egory compatibly enriched in ΓS∗: if M
i

� N is a cofibration and P
p
� Q is a fibration,

then the canonical map

HomA(N,P )
(i∗,p∗)
−−−→ HomA(M,P )

∏
HomA(M,Q)HomA(N,Q)

is a stable fibration, and if in addition i or p is an equivalence, then (i∗, p∗) is a stable
equivalence.

Proof: (For a full proof, consult [107]). For the proof of the closed model category structure,
see [108, 3.1.1]. For the proof of the compatibility with the enrichment, see the proof of
[108, 3.1.2] where the commutative case is treated.

The smash product behaves as expected (see [76] and [107] for proofs):
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Proposition 2.3.3 Let A be an S-algebra, and let M be a cofibrant Ao-module. Then
M∧A− : A − mod → ΓS∗ sends stable equivalences to stable equivalences. If N is an A-
module there are first quadrant spectral sequences

Torπ∗Ap (π∗M,π∗N)q)⇒πp+q(M∧AN)

πp(M∧A(HπqN))⇒πp+q(M∧AN)

If A→ B is an stable equivalence of S-algebras, then the derived functor of B∧A− induces
an equivalence between the homotopy categories of A and B-modules.

2.3.4 k-algebras

In the category of k-algebras, we call a map a fibration or a weak equivalence if it is a
stable fibration or stable equivalence of Γ-spaces. The cofibrations are as usual the maps
with the right (right meaning correct: in this case left is right) lifting property. With these
definitions the category of k-algebras becomes a closed simplicial model category [107]. We
will need the analogous result for ΓS∗-categories:

2.4 Homotopical algebra in the category of ΓS∗-categories

To be converted to LaTeX (02-01-17). For now Appendix A1=A is prioritized due to the
many references.

Included to have references:
{Def:stable equivalence of gs-categories}{Def:weak equivalence of sen-categories}

Definition 2.4.1 A ΓS∗-functor of ΓS∗-categories F : C → D is a stable equivalence if for
all c, c′ ∈ obC the map

C(c, c′)→ D(Fc, F c′) ∈ ΓS∗

is a stable equivalence, and for any d ∈ obD there is a c ∈ obC and an isomorphism Fc ∼= d.
Likewise, an S-functor of S-categories F : C → D is a weak equivalence if for all c, c′ ∈

obC the map C(c, c′) → D(Fc, F c′) ∈ S is a weak equivalence, and for any d ∈ obD there
is a c ∈ obC and an isomorphism Fc ∼= d.

Recall that a ΓS∗-equivalence is a ΓS∗-functor C F //D for which there exists a ΓS∗-

functor C DGoo and ΓS∗-natural isomorphisms idC ∼= GF and idD ∼= FG.

{lemma:IIchar of stable equivalences of gs-cats}
Lemma 2.4.2 Every stable equivalence of ΓS∗-categories can be written as a composite of
a stable equivalence inducing the identity on the objects and a ΓS∗-equivalence.

Proof: Let F : C → D be a stable equivalence. let F be the ΓS∗-category with the same
objects as C, but with morphisms given by F (c, c′) = D(Fc, F c′). Then F factors as
C → F → D where the first map is the identity on objects and a stable equivalence on
morphisms, and the second is induced by F on objects, and is the identity on morphisms.
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The latter map is a ΓS∗-equivalence: for every d ∈ obD choose a cd ∈ obC and an isomor-
phism d ∼= Fcd. As one checks, the application d 7→ cd defines the inverse ΓS∗-equivalence.

So stable equivalences are the more general, and may be characterized as composites
of ΓS∗-equivalences and stable equivalences that induce the identity on the set of objects.
Likewise for weak equivalences of S-categories.

3 Algebraic K-theory
{IISegalH}

3.1 K-theory of symmetric monoidal categories

An abelian monoid can be viewed as a symmetric monoidal category (an SMC) with just
identity morphisms. An abelian monoid M gives rise to a Γ-space HM via the formula
k+ 7→ M×k (see [109]), the Eilenberg-MacLane spectrum of M . Algebraic K-theory as in
Segal’s paper is an extension of this to symmetric monoidal categories (see also [111] or
[121]), such that for every symmetric monoidal category C we have a Γ-category H̄C.

For a finite set X, let PX set of subsets of X. If S and T are two disjoint subsets of
X, then S

∐
T is again a subset of X. For a strict symmetric monoidal category (C,t, e)

(strict means that all coherence isomorphisms are identities) we could define the algebraic
K-theory as the Γ-category which evaluated on k+ ∈ Γo was the category whose objects
were all functions P{1, . . . , k} → obC sending

∐
to t and ∅ to e



P{1, . . . , k}∐

∅


→



C
t
I




Such a function is uniquely given by declaring what its values are on all subsets {i} ⊂
{1, . . . , k} and so this is nothing but C times itself k times.

In the nonstrict case this loosens only up a bit. If (C,t, e) is a symmetric monoidal cat-
egory, H̄C(k+) is the symmetric monoidal category whose objects are the pointed functors
P{1, . . . , k} → C taking

∐
to t up to coherent isomorphisms. More precisely

{Def:IISegalH}
Definition 3.1.1 Let (C,t, e) be a symmetric monoidal category. Let k+ ∈ obΓo. An
object of H̄C(X) is a function a : P{1, . . . , k} → obC together with a choice of isomorphisms

αS,T : aS t aT → aS
‘
T

for every pair S, T ⊆ {1, . . . , k} such that S ∩ T = ∅ satisfying the following conditions:

1. a∅ = e

2. aS,∅ : e t aS → a∅‘
S = aS and a∅,S : aS t e → aS ‘

∅ = aS are the inverses to the
corresponding structure isomorphism in C
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3.
(aS t aT ) t aU //

αS,Ttid

��

aS t (aT t aU)

idtαT,U

��
aS‘

T t aU αS
‘

T,U

// aS
‘
T

‘
U aS t aT ‘

UαS,T
‘

U

oo

where the unlabelled arrow is the corresponding structure isomorphism in C

4.
aS t aT //

αS,T

((QQQQQQQQQQQQ
aT t aS

αT,S

��
aS

‘
T = aT

‘
S

where the unlabelled arrow is the corresponding structure isomorphism in C

A morphism f : (a, α)→ (b, β) ∈ H̄C(X) is a collection of morphisms

fS : aS → bS ∈ C

such that

1. f∅ = ide

2.

aS t aT
fStfT−−−−→ bS t bT

αS,T

y βS,T

y

aS
‘
T

fS
‘

T
−−−→ bS

‘
T

If φ : k+ → l+ ∈ Γo then H̄C(k+) → H̄C(l+) is defined by sending a : P{1, . . . , k} → C
to

P{1, . . . , l}
φ−1

−−−→ P{1, . . . , k}
a

−−−→ C

(this makes sense as φ was pointed at 0).
This defines the Γ-category H̄C, which again is obviously functorial in C, giving the

functor
H̄ : symmetric monoidal categories→ Γ-categories

The nerve obNH̄C forms a Γ–space which is often called the algebraic K-theory of C.{KofSMC}

If C is discrete, or in other words, C = obC is an abelian monoid, then this is exactly the
Eilenberg–Mac Lane spectrum of obC.

Note that H̄C becomes a special Γ-category in the sense that

Lemma 3.1.2 Let (C,t, e) be a symmetric monoidal category. The canonical map

H̄C(k+)→ H̄C(1+)× · · · × H̄C(1+)

is an equivalence of categories.
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Proof: We do this by producing an equivalence Ek : C×k → H̄C(k+) such that

C×k C×k

Ek

y E×k
1

y
H̄C(k+) −−−→ H̄C(1+)×k

commutes. The equivalence Ek is given by sending (c1, . . . , ck) ∈ obC
×k to Ek(c1, . . . , ck) =

{(aS, αS,T )} where
a{i1,...,ij} = ci1 t (ci2 t . . . t (cik−1

t cik) . . . )

and αS,T is the unique isomorphism we can write up using only the structure isomorphisms
in C. Likewise for morphisms. A quick check reveals that this is an equivalence (check the
case k = 1 first), and that the diagram commutes.

3.1.3 Enrichment in ΓS∗

The definitions above makes perfect sense also in the ΓS∗-enriched world, and we may
speak about symmetric monoidal ΓS∗-categories C.

A bit more explicitly: a symmetric monoidal ΓS∗-category is a tuple (C,t, e, α, λ, ρ, γ) {Def:SMgsC}
such that C is a ΓS∗-category, t : C × C → C is a ΓS∗-functor, e ∈ obC and α, λ, ρ and γ
are ΓS∗-natural transformations satisfying the usual requrements listed in appendix B.??.

The definition of H̄C at this generality is as follows: the objects in H̄C(k+) are the
same as before, and the Γ-space H̄C((a, α), (b, β)) is defined as the equalizer

H̄C((a, α), (b, β)) −−−→
∏

S⊆{1,...,k}

C(aS, bS) ⇒
∏

S,T⊆{1,...,k}
S∩T=∅

C(aS t aT , bS ‘
T )

where the upper map is

∏
S⊆{1,...,k}

C(aS, bS)
t

−−−→
∏

S,T⊆{1,...,k}
S∩T=∅

C(aS t aT , bS t bT )
(βS,T )∅
−−−−→

∏
S,T⊆{1,...,k}
S∩T=∅

C(aS t aT , bS ‘
T )

and the lower map is

∏
S⊆{1,...,k}

C(aS , bS)
proj.
−−−→

∏
S,T⊆{1,...,k}
S∩T=∅

C(aS ‘
T , bS

‘
T )

(αS,T )∅

−−−−→
∏

S,T⊆{1,...,k}
S∩T=∅

C(aS t aT , bS‘
T )

3.1.4 Categories with sum
{subsec:IIenrichbysum}

The simplest example of symmetric monoidal ΓS∗-categories comes from categories with
sum (i.e., C is pointed and has a coproduct ∨). If C is a category with sum we consider it
as a ΓS∗-category via the enrichment

C∨(c, d)(k+) = C(c,
k∨
d)



88 CHAPTER II. Γ-SPACES AND S-ALGEBRAS

(see 1.6.3).
The sum structure survives to give C∨ the structure of a symmetric ΓS∗-monoidal cat-

egory:

(C∨ × C∨)((c1, c2), (d1, d2))(k+) = C(c1,
k∨
d1)× C(c2,

k∨
d2)

→ C(c1 ∨ c2,

(
k∨
d1

)
∨

(
k∨
d2

)
) ∼= C(c1 ∨ c2,

k∨
(d1 ∨ d2)) = C∨(c1 ∨ c2, d1 ∨ d2)(k+)

Categories with sum also have a particular transparent K-theory. The data for a sym-
metric monoidal category above simplifies in this case to H̄C(k+) having as objects functors
from the pointed category of subsets and inclusions of k+ = {0, 1, . . . , k}, sending 0+ to 0
and pushout squares to pushout squares, see also section III.2.1.1.

3.2 Quite special Γ-objects

Let C be a Γ-ΓS∗-category, i.e., a functor C : Γo → ΓS∗-categories.Consider a functor

D : Γo → ΓS∗-categories.

We say that D is special if for all finite pointed sets X and Y the canonical ΓS∗-functor
C(X ∨ Y ) → C(X) × C(Y ) are ΓS∗-equivalences of ΓS∗-categories. So, for instance, if C is
a symmetric monoidal category, then H̄C is special. We need a slightly weaker notion.

{Def:quite special}
Definition 3.2.1 Let D be a Γ-ΓS∗-category. We say that D is quite special if for all
X, Y ∈ obΓo the canonical map D(X ∨ Y ) → D(X) × D(Y ) is a stable equivalenceof
ΓS∗-categories (see 2.4.1 for definition).

Likewise, a functor D : Γo → S-categories is quite special if D(X ∨Y )→ D(X)×D(Y )
is a weak equivalence of S-categories 2.4.1.

Typically, theorems about special D remain valid for quite special D.

Lemma 3.2.2 Let D : Γo → S-categories be quite special. Then obND is special.

Proof: This follows since the nerve functor obN preserves products and by [29] takes weak
equivalences of S-categories to weak equivalences of simplicial sets.

Recall the fibrant replacement functor T0 of 2.2.2. The same proof as in lemma 2.2.4
gives that if we use T0 on all the morphism objects in a ΓS∗-category we get a new category
where the morphism objects now are stbly fibrant.

Lemma 3.2.3 Let C : Γo → ΓS∗-categories be quite special. Then T0C is quite special.

Proof: This follows since T0 preserves stable equivalences, and since

T0(M ×N)
∼ // T0M × T0N

is a stable equivalence for any M,N ∈ obΓS∗. Both these facts follow from the definition
of T0 and Bökstedt’s approximation lemma 2.2.3.
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3.3 A uniform choice of weak equivalences
{subsec:IIunif}

In the discrete case, algebraic K-theory focuses on the isomorphisms. In the general case we
still have a canonical choice of weak equivalences, which is good enough for the applications
we have in mind, but might be modified in more complex situations where we must be free
to choose our weak equivalences. For a trivial example of this, see note 3.3.3 below.

Define the functor

ω : ΓS∗ − categories→ S − categories

by means of the pullback

ωC
wC−−−→ RT0Cy

y
iπ0C −−−→ π0C

where iπ0C is the subcategory of isomorphisms in π0C, and R was the forgetful functor
from ΓS∗ to S applied to all morphism objects (see 3). Note that π0C ∼= π0RT0C.

Lemma 3.3.1 Let C be a quite special Γ-ΓS∗-category. Then ωC is a quite special Γ-S-
category

Proof: That C is quite special implies that RT0C is quite special since stable equivalences
of stably fibrant Γ-spaces are pointwise equivalences, and hence taken to weak equivalences
by R. The map RT0C → π0RT0C ∼= π0C is a (pointwise) fibration since R takes fibrant
Γ-spaces to fibrant spaces.

Furthermore π0C is special since π0 takes stable equivalences of ΓS∗-spaces to isomor-
phisms. The subcategory of isomorphisms in a special Γ-category is always special (since
the isomorphism category in a product category is the product of the isomorphism cate-
gories), so iπ0C is special too.

We have to know that the pullback behaves nicely with respect to this structure. The
map RT0C(X ∨ Y ) → RT0C(X) × RT0C(Y ) is a weak equivalence. Hence it is enough to
show that if A → B is a weak equivalence of S-categories with fibrant morphism spaces,
then iπ0A×π0AA → iπ0B×π0BB is a weak equivalence. Notice that obA ∼= ob(iπ0A×π0AA)
and that there is a surjection from the set of isomorphisms of A to the set of isomorphisms
of iπ0A×π0A A (and likewise for B). Hence we only have to show that the map induces a
weak equivalence on morphism spaces, which is clear since pullbacks along fibrations are
equivalent to homotopy pullbacks.

{lemma:IIomegaissometimesi}
Lemma 3.3.2 Let E be an Ab-category with subcategory iE of isomorphisms, and let Ẽ
be the associated ΓS∗-category (see 1.6.2.2) . Then natural map iE → ωẼ is a stable
equivalence.

Proof: Since Ẽ has stably fibrant morphism objects RT0Ẽ Ẽ
∼oo and by construction

RẼ = E (considered as an S-category). This means also that π0Ẽ ∼= E , and the result
follows.
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{II:GammavsSmod}

Note 3.3.3 So for Ab-categories our uniform choice of weak equivalences essentially just
picks out the isomorphisms, which is fine since that is what we usually want. For modules
over S-algebras they also give a choice which is suitable for K-theory (more about later).

However, occasionally this construction will not pick out the weak equivalences you
had in mind. As an example, consider the category Γo itself with its monoidal structure
coming form the sum. It turns out that the category of isomorphisms iΓo =

∐
n≥0 Σn is an

extremely interesting category: its algebraic K-theory is equivalent to the sphere spectrum
by the Barratt-Priddy-Quillen theorem (see e.g., [109, proposition 3.5]).

However, since Γo is a category with sum, by 3.1.4 it comes with a natural enrichment
(Γo)∨. We get that (Γo)∨(m+, n+)(k+) ∼= Γo(m+, k+∧n+). But in the language of 6, this
is nothing but the n by m matrices over the sphere spectrum. Hence (Γo)∨ is isomorphic
to the ΓS∗-category whose objects are the natural numbers, and where the Γ-space of
morphisms from n to m is Matn,mS =

∏
m ∨nS. The associated uniform choice of weak

equivalences are exactly the “homotopy invertible matrices” ĜLn(S) of III.2.3.1, and the
associated algebraic K-theory is the algebraic K-theory of S - also known as Waldhausen’s
algebraic K-theory of a point A(∗), see III.2.3.



Chapter III

Reductions

{III}

In this chapter we will perform two important reductions and clean up some of the mess
due to our use of varying defintions along the way.

The first reduction takes place in section 1 and tells that our handling of simplicial
rings in chapter I is not in conflict with the usual conventions of algebraic K-theory, and in
particular the one we get from chapter II. This is of importance even if one is only interested
in ordinary rings: there are certain points (in chapter V) where even the statements for
ordinary rings relies on functoriality in the category of simplicial rings.

Together with section 2 which tells us that all the various definitions of K-theory agrees,
the ones only interested in ordinary rings are then free to pass on to chapter IV.

The second reduction, which you will find in section 3 is the fact that for most practical
purposes, theorems that are true for simplicial rings are true in general for S-algebras. One
may think of this as a sort of denseness property, coupled with the fact that the requirement
that a functor is “continuous” is rather weak.
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1 Degreewise K-theory.
{sec:III1}

Algebraic K-theory is on one hand a group-completion device, which is apparent from the
definition of K0. When looking at K1 we can also view it is also an “abelianization” device.
You kill off the commutator of the general linear group to get K1. To get K2 you “kill off”
yet another piece where some homology group vanish. The procedure of killing off stuff
for which homology is blind ends in group-theory at this point, but if you are willing to
go into spaces, you may continue, and that is just what Quillen’s plus-construction is all
about.

When studying the stable K-theory, we had to introduce simplicial rings into the picture,
and it turned out that we could be really naïve about it: we just applied our constructions
in every dimension. That this works is quite surprising. When one wants to study K-theory
of simplicial rings, the degreewise application of the K-functor only rarely gives anything
interesting. One way to get an interesting K-theory would be to take the S-construction
of some suitable category of modules, but instead of isomorphisms use weak equivalences.
Another, and simpler way is to use Quillen’s plus construction on a nice space similar to
the classifying space of the general linear group. This is what we will do in this section,
but it will not be proven until the next section that the two approaches are equivalent (by
means of a yet another approach to K-theory due to Segal, see II.3). The plus construction
has the advantage that the comparison between the “correct” and degreewise definitions is
particularly simple.

1.1 K-theory of simplicial rings

A simplicial monoidM is called group-like if π0M is a group. This has the nice consequences{Def:gplike}
that we may form a good classifying space. That is, if BM is (the diagonal of) the space
you get by taking the nerve degreewise, then ΩBM 'M (see corollary A.1.5.0.12

If A is a simplicial (associative and unital) ring, Waldhausen [128] defined ĜLn(A) as
the pullback of the diagram

ĜLn(A) −−−→ Mn(A)y
y

GLn(π0A) −−−→ Mn(π0A)

Similar to the discrete case, ĜLn(A) sits inside ĜLn+1(A) via m 7→ m ⊕ 1, and we let

ĜL(A) be the union of the ĜLn(A). As π0ĜLn(A) = GLn(π0(A)) we get that ĜLn(A),

and hence also ĜL(A), is group-like.

Recall Quillen’s plus construction (see I.1.6.1, or more thoroughly in appendix A.1.6).
In analogywith the definition of the algebraic K-theory space I.1.6.6 of a ring Waldhausen
suggested the following definition.

{Def:Kspacesring}
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Definition 1.1.1 If A is a simplicial ring, then the algebraic K-theory space of A is

K(A) = BĜL(A)+

We note that

π1K(A) = π1BĜL(A)/P (π1BĜL(A)) = GL(π0A)/P (GL(π0A)) = K1(π0A)

(P () denotes the maximal perfect subgroup, I.1.2.1). This pattern does not continue,
the fiber of K(A) → K(π0A) has in general highly nontrivial homotopy groups. Wald-
hausen proves in [128, proposition 1.2] that if k is the first positive number for which
πkA is nonzero, the first nonvanishing group of the fiber sits in dimension k + 1 and is
HH0(π0A, πkA). We shall not prove this now, but settle for the weaker

{lem:1.2.2}
Lemma 1.1.2 If B → A is a k > 0-connected map of simplicial rings, then K(B)→ K(A)
is (k + 1)-connected.

Proof: Obviously MnA → MnB is k-connected. As k > 0, we have π0B ∼= π0A, and so
ĜLn(B) → ĜLn(A) is also k-connected. Hence BĜL(B) → BĜL(A) is k + 1 connected,
and we are done as the plus construction preserves connectivity of maps (A.1.6.3.2).

1.2 Degreewise K-theory

Waldhausen’s construction is very different from what we get if we apply Quillen’s definition
to A degreewise, i.e.,

Kdeg(A) = diag∗{[q] 7→ K(Aq)}

This is also a useful definition. For instance, we know by [35] that if A is a regular
and right Noetherian ring, then K(A) agrees with the Karoubi-Villamajor K-theory of A,
which may be defined to be the degreewise K-theory of a simplicial ring ∆A = {[q] 7→
A[t0, . . . , tq]/

∑
ti = 1} with

ditj =





tj if j < i

0 if i = j

tj−1 if j > i

On the other hand, the homotopy groups of ∆A vanish, and so, by 1.1.2, K(∆A) is
contractible, and so in this case, Waldhausen’s functor give very little information.

The inclusion GL(A) ⊂ ĜL(A) induces a map

BGL(A)+ → BĜL(A)+ = K(A)

As we will see in 1.3, the first space is equivalent to Kdeg(A), and it is of interest to know
when the map preserves information.
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{ex:degisallI}
Example 1.2.1 The following example is rather degenerate, but still of great importance.
For instance, it was the example we considered when talking about stable algebraic K-
theory in section I.3.5.

Let A be a discrete ring, and let P be a reduced A bimodule (in the sense that it is
a simplicial bimodule, and P0 = 0). Then we may form the square zero extension A n P
(that is A n P = A ⊕ P as a simplicial bimodule, and the multiplication is given by
(a1, p1) · (a2, p2) = (a1a2, a1p2 + p1a2)). Then one sees that GL(An P ) is actually equal to

ĜL(An P ): as P is reduced and A discrete GL(π0(An P )) = GL(A) and as P is square

zero ker{GL(An P )→ GL(A)} = (1 +M(P ))× ∼= M(P ). Hence GL(A) = ĜL(A).
If you count the number of occurrences of the comparison of degreewise and ordinary K-

theory in what is to come, it is this trivial example that will pop up most often. However, we
have profound need of the more general cases too. We are content with only an equivalence,
and even more so, only an equivalence in relative K-theory. In order to extend this example
to cases where A might not be discrete and P not reduced, we have to do some preliminary
work.

1.3 The plus construction on simplicial spaces
{subsec:III13}

The “plus” construction on the diagonal of a simplicial space (bisimplicial set) may be
performed degreewise in the following sense. Remember, I.1.2.1, that a quasi-perfect group
is a group G in which the maximal perfect subgroup is the commutator: PG = [G,G].

{lemma:1.4.1}
Lemma 1.3.1 Let {[q] 7→ Xq} be a simplicial space such that Xq is connected for every
q ≥ 0, and let X1 = diag∗{[q] 7→ X+

q }. Consider the diagram

diag∗X −−−→ X1

y
y

(diag∗X)+ −−−→ (X1)+

The lower horizontal map is always an equivalence, and the right vertical map is an equiv-
alence if and only if π1X

1 has no nontrivial perfect subgroup. This is true if e.g. π1(X
+
0 )

is abelian which again follows if π1(X0) is quasi-perfect.

Proof: Let A(Xq) = fiber{Xq → X+
q }, and consider the sequence

{[q] 7→ A(Xq)} −−−→ {[q] 7→ Xq} = X
{[q]7→qXq}
−−−−−−→ {[q] 7→ X+

q }

As Xq and X+
q are connected, theorem A.1.5.0.4 gives that

diag∗{[q] 7→ A(Xq)} −−−→ diag∗X
QX=diag∗{[q]7→qXq}
−−−−−−−−−−−−→ X1

is a fiber sequence. But as each A(Xq) is acyclic, the spectral sequence A.1.5.0.6 calcu-
lating the homology of a bisimplicial set gives that H̃∗(diag

∗{[q] 7→ A(Xq)}) = 0, and so
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QX : diag∗X → X1 is acyclic. The lower horizontal map is thus the plus of an acyclic map,
and hence acyclic itself. But Pπ1((diag

∗X)+) = ∗, so this map must be an equivalence.
The right vertical map is the plus construction applied to X1, and so is an equivalence if

and only if it induces an equivalence on π1, i.e., if Pπ1(X
1) = ∗. If π1(X0) is quasi-perfect,

then π1(X
+
0 ) = π1(X0)/Pπ1(X0) = H1(X0) is abelian, and so the quotient π1X

1 is also
abelian, and hence has no perfect (nontrivial) subgroups.

Remark 1.3.2 Note that some condition is needed to ensure that π1X
1 is without non-

trivial perfect subgroups, for let Xq = BFq where F
∼ //P is a free resolution of a perfect

group P . Then X1 ' BP 6' X2 ' BP+.

Since the Whitehead lemma I.1.2.2 states that K1(A0) is abelian, we get that

{cor:1.4.3}
Corollary 1.3.3 Let A be a simplicial ring. There is a natural chain of weak equivalences

Kdeg(A)
∼
−−−→ Kdeg(A)+ ∼

←−−− BGL(A)+. .. '!&"%#$����

1.4 Nilpotent fibrations and the plus construction

Let π and G be groups, and let π act on G. The action is nilpotent if there exists a finite {Def:nilpotentaction}
filtration

∗ = Gn+1 ⊆ Gn ⊆ · · · ⊆ G2 ⊆ G1 = G

respected by the action, such that each Gi+1 ⊂ Gi is a normal subgroup and such that the
quotients Gi/Gi+1 are abelian with induced trivial action.

A group G is said to be nilpotent if the self action via inner automorphisms is nilpotent. {Def:nilpotentgroup}
{Def:nilpotentmap}

Definition 1.4.1 If f : E → B is a fibration of connected spaces with connected fiber F ,
then π1(E) acts on each πi(F ) (see A.1.4.1), and we say that f is nilpotent if these actions
are nilpotent.

Generally, we will say that a map of connected spaces X → Y is nilpotent if the
associated fibration is.

{lem:1.5.2}

Lemma 1.4.2 F → E → B is any fiber sequence of connected spaces where π1E acts
trivially on π∗F , then the fibration is nilpotent.

Proof: Since πqF is abelian for q > 1, a trivial action is by definition nilpotent, and
the only thing we have to show is that the action of π1E on π1F is nilpotent. Let A′ =
ker{π1F → π1E} and A′′ = ker{π1E → π1B}. Since π1E acts trivially on A′ and A′′, and
both are abelian (the former as it is the cokernel of π2E → π2B, and the latter as it is in
the center of π1E), π1E acts nilpotently on π1F .

{lemma:1.5.3}
Lemma 1.4.3 Let f : X → Y be a map of connected spaces. If either

1. f fits in a fiber sequence X
f //Y //Z where Z is connected and Pπ1(Z) = ∗, or
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2. f is a nilpotent,

then
X −−−→ X+

f

y f+

y
Y −−−→ Y +

is (homotopy) cartesian.

Proof: Part 1. Since Pπ1Z is trivial, Z → Z+ is an equivalence. We may assume that both
maps in Y → Y + → Z+ are fibrations and that X is the fiber of the composite. Consider
the diagram

X −−−→ P = Y +
∏

Z+ ∗ −−−→ ∗y
y

y
Y −−−→ Y + −−−→ Z+

As both the rightmost and the outer squares are cartesian, the leftmost must be cartesian.
This means that X → P is acyclic (it has the same fiber as Y → Y +). We check that
π1X → π1P is surjective (the left square), and that π1P is without perfect subgroups
(Pπ1P is in ker{π1P → π1Y

+} which is isomorphic to coker{π2Y
+ → π2Z

+} which is
abelian). Hence the leftmost square is the square of the lemma.

Part 2. That f is nilpotent is equivalent, up to homotopy, to the statement that f
factors as a tower of fibrations

Y = Y0
f1
←−−− Y1

f2
←−−− . . .

fk←−−− Yk = X

where each fi fits in a fiber sequence

Yi
fi
−−−→ Yi−1 −−−→ K(Gi, ni)

with ni > 1 (see e.g. [14, page 61]). But statement 1 tells us that this implies that

Yi −−−→ Y +
iy
y

Yi−1 −−−→ Y +
i−1

is cartesian, and by induction on k, the statement follows.

1.5 Degreewise vs. ordinary K-theory of simplicial rings

Recall the definition of the subgroup of elementary matrices E ⊆ GL. For this section, we
reserve the symbol K1(A) for the quotient {[q] 7→ K1(Aq)} = GL(A)/E(A), which must

not be confused with π1K(A) ∼= K1(π0A). Let Ê(A) ⊂ ĜL(A) consist of the components
belonging to E(π0A) ⊆ GL(π0A).
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{theo:1.6.1}{theo:degvsWald}
Theorem 1.5.1 Let A be an associative (simplicial) ring. Then

BGL(A) −−−→ BGL(A)+

y
y

BĜL(A) −−−→ BĜL(A)+

is (homotopy) cartesian.

Proof: Note that both horizontal maps in the left square of

BE(A) −−−→ BGL(A) −−−→ BK1(A)y
y

y
BÊ(A) −−−→ BĜL(A) −−−→ BK1(π0A)

satisfy the conditions in lemma 1.4.3.1, since both rows are fiber sequences with base space
simplicial abelian groups.

So we are left with proving that

BE(A) −−−→ BÊ(A)y
y

BE(A)+ −−−→ BÊ(A)+

is cartesian, but by lemma 1.4.3.2 this follows from the lemma below.
{lem:1.6.2}

Lemma 1.5.2 (c.f. [31] or [116]) The map BE(A)→ BÊ(A) is nilpotent.

Proof: Let Fk (resp. F ) be the homotopy fiber of BEk(A) → BÊk(A) (resp. E(A) →

Ê(A)). Instead of showing that the action of π0E(A) ∼= π1BE(A) on π∗(F ) is nilpotent,
we show that it is trivial. In view of 1.4.2 this is sufficient, and it is in fact an equivalent
statement since π0E(A) is perfect (being a quotient of E(A0)) and any nilpotent action of
a perfect group is trivial.

Let jk : Ek(A) → Êk(A) for 1 ≤ k ≤ ∞ be the inclusions (with j = j∞). Consider

the simplicial categories jk/1 with objects Êk(A) and where a morphism in degree q from
m to n is a g ∈ Ek(Aq) such that m = n · g. The nerve N(jk/1) is isomorphic to the

bar construction B(Êk(A), Ek(A), ∗) = {[q] 7→ Êk(A) × Ek(A)×q}. The forgetful functor
jk/1→ Ek(A) induces an equivalence N(jk/1)

∼
−−−→ Fk (see e.g. [130, p, 166]) compatible

with stablization Ek(A)
t

−−−→ Ek+1(A). By A.1.4.2.1, the action on the fiber

N(jk/1)× Ek(A)
∼
−−−→ N(jk/1)× ΩBEk(A)→ N(jk/1)

is induced by the simplicial functor jk/1× Ek(A)
(m,g)7→ig(m)
−−−−−−−→ jk/1 (where Ek(A) now is

considered as a simplicial discrete category with one object for every element in Ek(A) and
only identity morphisms) sending (m, g) to ig(m) = gmg−1.
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Dually, there is an under category 1/jk (with objects Êk(A) and where a morphism
in degree q from m to n is a g ∈ Ek(Aq) such that n = g · m), and an equivalence
N(1/jk) → Fk over Ek(A). Also here the action on the fiber is induced by conjugation

1/jk × Ek(A)
(m,g)7→ig(m)
−−−−−−−→ 1/jk.

We will show that the induced map

π0E(A)→ π0Map∗(F, F )→ End(π∗(F ))

is trivial. Note that
Map∗(F, F ) ∼= lim

←
Map∗(Fk, F )

and
End(π∗(F )) ∼= lim

←
Hom(π∗(Fk), π(F ))

where the limits are over F1 → · · · → Fk → Fk+1 → . . . induced by stabilization. Hence
it is enough to show that that for each k

E(A0) � π0E(A)→ lim
←
π0Map∗(Fk, F )→ π0Map∗(Fk, F )→ Hom(π∗(Fk), π∗(F ))

is trivial. Note that this map factors in two interesting ways:

E(A0) −−−→ π0Map∗(N(jk/1), N(j/1))y
y

π0Map∗(N(1/jk), N(1/j)) −−−→ Hom(π∗(Fk), π∗(F ))

Now we fix a k. The zero simplices E(A0) are considered as simplices in E(A) of
arbitrary dimension by the unique inclusion which we supress from the notation. As natural
transformations give rise to homotopies, we are done if we display a natural simplicial
isomorphism between t and ixt in either of the categories of pointed functors [jk/1, j/1]∗ or
[1/jk, 1/j]∗ (t(m) = m⊕I and ixm = xmx−1) for each given element x in a generating set of
E(A0). As a generating set we may choose the set containing the elements eak+1,i and eai,k+1

for a ∈ A0 and i 6= k+1. To see that this set really generates E(A0), consider the Steinberg
relations of I.1.5: if i 6= j and neither i nor j equals k + 1, then eaij = [eai,k+1, e

1
k+1,j].

If m = (mij) ∈Mk(A) is any matrix we have that eak+1,j · t(m) · e−ak+1,j = t(m) · τ ak+1,j(m)
where

τak+1,j(m) = e−ak+1,j ·
∏

i≤k

e
amji

k+1,i

It is easy to check that τ ak+1,j(m) is simplicial (ψ∗τaij(m) = τ aij(ψ
∗m) for ψ ∈ ∆) and natural

in m ∈ jk/1 So m 7→ τ ak+1,j(m) is the desired natural isomorphism between iea
k+1,j

t and t in

[jk/1, j/1]∗. Likewise we have that eai,k+1 · t(m) · e−ai,k+1 = τ ai,k+1(m) · t(m) where

τai,k+1(m) = eai,k+1 ·
∏

j≤k

e
−mjia
j,k+1
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and τ ai,k+1 is a natural isomorphism in [1/jk, 1/j]∗.
The outcome is that we are free to choose our model for the fiber of the plus construction

applied to BĜL(A) among the known models for the fiber of the plus construction applied
to BGL(A):

{cor:1.6.3}
Corollary 1.5.3 If X is any functor from discrete rings to spaces with a natural trans-
formation X(−)→ BGL(−) such that

X(A)→ BGL(A)→ BGL(A)+

is a fiber sequence for any ring A, then X extended degreewise to a functor of simplicial
rings is such that

X(A)→ BĜL(A)→ BĜL(A)+

is a fiber sequence for any simplicial ring A.

Proof: By the theorem it is enough to show that [q] 7→ X(Aq) is equivalent to the fiber of
BGL(A) → BGL(A)+, but this will follow if {[q] 7→ BGL(Aq)}

+ → {[q] 7→ BGL(Aq)
+}

is an equivalence. But by lemma 1.3.1 this is true since GL(A0) is quasi-perfect, which is
part of the Whitehead lemma I.1.2.2.

Example 1.5.4 The resolving complex and Stein relativization. We have already
seen in I.1.4.1 that the most naïve kind of excision fails for algebraic K-theory. Related
to this is the classical method of describing relative K-theory. In Bass [4] and Milnor’s
[86] books on K-theory, the Stein relativization is used to describe relative K-theory. As is
admitted in Milnor’s book, this is not a satisfactory description, and we will give the reason
why it works in low dimensions, but fails higher up. See [118] to get further examples of
the failure.

Let f : A → B be a surjection of associative rings with unit, and define KStein
i (f) =

coker{Ki(A)→ Ki(A
∏

B A)} given by the diagonal splitting A→ A
∏

B A. The question
is: when do we have exact sequences

→ Ki+1(A)→ Ki+1(B)→ KStein
i (f)→ Ki(A)→ Ki(B)→

or more precisely, how far is

K(A
∏

B A)
pr1
−−−→ K(A)

pr2

y f

y

K(A)
f

−−−→ K(B)

from being cartesian?
The failure turns up for i = 2, but this oughtn’t be considered as bad as was fashionable

at the time: The Stein relativization can be viewed as a first approximation to the fiber as
follows. Let S be the “resolving complex”, i.e., the simplicial ring given in dimension q as
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the q + 1 fold product of A over f with the various projections and diagonals as face and
degeneracies

. . . A
∏

B A
∏

B A
////// A
∏

B A
// // A

This gives a factorization A → S → B where the former map is inclusion of the zero
skeleton, and the latter is a weak equivalence. Now, as one may check directly, GL respects
products, and

GL(Sq) = GL(A)
∏

GL(B)

· · ·
∏

GL(B)

GL(A)

(q + 1 GL(A) factors). Just as for the simplicial ring S, this simplicial group is concen-
trated in degree zero, but as GL does not respect surjections we see that π0(GL(S)) ∼=
im{GL(A) → GL(B)}. But this is fine, for as E(−) respects surjections we get that
GL(B)/im{GL(A) → GL(B)} ∼= K̄1(B) = K1(B)/im{K1(A) → K1(B)}, and we get a
fiber sequence

BGL(S)→ BĜL(S)→ BK̄1(B)

where the middle space is equivalent to BGL(B). Applying theorem 1.6.1 (overkill as

K̄1(B) is abelian) to BGL(S)→ BĜL(S) we get that there is a fiber sequence

Kdeg(S)→ K(B)→ BK̄1(B)

which means that φ(f) = fiber{K(A) → Kdeg(S)} is the connected cover of the fiber of
K(A)→ K(B).

We may regard φ(f) as a simplicial space [q] 7→ φq(f) = fiber{K(A)→ K(Sq)}. Then
φ0(f) = 0 and πi(φ1(f)) = KStein

i+1 (f). An analysis shows that d0 − d1 + d2 : π0(φ2(f)) →
π0(φ1(f)) is zero, whereas d0− d1 + d2− d3 : π0(φ3(f))→ π0(φ2(f)) is surjective, so the E2

term of the spectral sequence associated to the simplicial space looks like

0 KStein
3 (f)/? . . .

0 KStein
2 (f)/? ? . . .

0 KStein
1 (f) 0 ? . . .

This gives that KStein
1 (f) is correct, wheras KStein

2 (f) surjects onto π2 of relative K-theory.

1.6 K-theory of simplicial radical extensions may be defined de-

greewise

If f : B → A is a map of simplicial (associative and unital) rings, we will let K(f) denote

the fiber of K(B)
f

−−−→ K(A). If f is surjective and Iq = ker{fq : Bq → Aq} is inside the

Jacobson radical Rad(Bq) ⊆ Bq for every q ≥ 0 we say that f is a radical extension.

{prop:1.7.1}
Proposition 1.6.1 Let f : B � A be a radical extension of unital simplicial rings. Then
the relative K-theory K(f) is equivalent to diag∗([q] 7→ K(fq)).
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Proof: The proof follows closely the one given in [39] for the nilpotent case. Let I =
ker{f : B → A}. Since all spaces are connected we may just as well consider

[q] 7→ fiber{BGL(Bq)
+ → BGL(Aq)

+}.

As π1(BGL(−)+) has values in abelian groups, we see by lemma 1.3.1. that diag∗{[q] 7→
BGL(−)+} is equivalent to the plus of the diagonal BGL(A)+. Hence to prove the propo-
sition it is enough to prove that

BGL(B)+ −−−→ BĜL(B)+

y
y

BGL(A)+ −−−→ BĜL(A)+

is homotopy cartesian.

Note that GLn(Bq)→ GLn(Aq) is a group epimorphism with kernel (1+Mn(Iq))
×, the

multiplicative group of all n×n matrices of the form 1+m where m has entries in I. Hence
B(1 +M(I)×) is the fiber of BGL(B)→ BGL(A). Similarly, we see that (1 +Mn(I))

× is

the fiber of the map of group-like simplicial monoids ĜLn(B)→ ĜLn(A). This follows as
J = ker{π0(B)→ π0(A)} is a radical ideal in π0(B), which implies that

(1 +Mn(J))× =ker{GLn(π0(B))→ GLn(π0(A))}

=ker{Mn(π0(B))→Mn(π0(A))}

and so fiber{BĜL(B)→ BĜL(A)} = B(1 +M(I))×.

Hence
BGL(B) −−−→ BGL(A)y

y
BĜL(B) −−−→ BĜL(A)

is homotopy cartesian. By theorem 1.5.1 all vertical squares in

BGL(B) //

��

xxqqqqqqqqqq
BGL(B)+

��

wwooooooooooo

BGL(A) //

��

BGL(A)+

��

BĜL(B) //

yyrrrrrrrrrr
BĜL(B)+

xxqqqqqqqqqqq

BĜL(A) // BĜL(A)+
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except possibly

BGL(B)+ −−−→ BĜL(B)+

y
y

BGL(A)+ −−−→ BĜL(A)+

are homotopy cartesian, and so this square is also homotopy cartesian.
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2 Agreement of the various K-theories.
{sec:III2}

This section aims at removing the uncertainty due to the many definitions of algebraic K-
theory that we have used. In 2.1 we show that the approach of Waldhausen and Segal agree,
at least for additive categories. In section 2.2 we show that Segal’s machine is an infinite
delooping of the plus-construction, and show how this is related to group-completion. In
2.3 we give the definition of the algebraic K-theory space of an S-algebra. For “spherical
group rings”, i.e., S-algebras of the form S[G] for G a simplicial group, we show that the
algebraic K-theory space of S[G] is the same as Waldhausen’s algebraic K-theory of the
classifying space BG. Lastly, we show that the definition of the algebraic K-theory of an
S-algebra as defined in chapter II is the infinite delooping of the plus-construction.

2.1 The agreement of Waldhausen and Segal’s approach
{WaldSegal}

We give a quick proof of the fact that the S-construction of I and the H̄-construction of
chapter II coincide on additive categories. This fact is much more general, and applies to a
large class of categories with categories with cofibrations and weak equivalences where the
cofibrations are “splittable up to weak equivalences”, see Waldhausen’s [131, section 1.8].

2.1.1 Segal’s construction applied to categories with cofibrations
{subsec:Honsum}

Let C be a category with cofibration. By forgetting structure, we may consider it as
a category with sum, and apply Segal’s Γ-space machine II.3 to it, or we may apply
Waldhausen’s S-construction I.2.2.1.

Note that Segal’s Γ-space machine could be interpreted as the functor H̄C from the
category Γo of finite pointed sets to categories with sum whose value at k+ = {0, . . . , k} was
the category H̄C described as follows. Its objects are functors from the pointed category
of subsets and inclusions of k+ = {0, 1, . . . , k}, sending 0 to 0 and pushout squares to
pushout squares. The morphisms are simpy natural transformations of such diagrams. For
instance, H̄C(1+) is isomorphic to C, whereas H̄C(2+) consists of pushout diagrams

0 −−−→ c{0,1}y
y

c{0,2} −−−→ c{0,1,2}

.

We see that H̄C(k+) is equivalent as a category to C×k via the map sending a functor
c ∈ obH̄C(k+) to c{0,1}, . . . , c{0,k}. However, C×k is not necessarily functorial in k, making
H̄C the preferred model for the bar construction of C.

Also, this formulation of H̄C is clearly isomorphic to the one we gave in II.3, the
advantage is that it is easier to compare with Waldhausen’s construction.

Any functor from Γo is naturally a simplicial object by precomposing with a the circle
S1 : ∆o → Γo (after all, the circle is a simplicial finite pointed set). We could of course
precompose with any other simplicial finite pointed set, and part of the point about Γ-
spaces was that if M was a functor from Γo to sets, then {m 7→M(Sm)} is a spectrum.
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2.1.2 The relative H̄-construction.

If C → D is an exact functor of categories with sum (or more generally, a monoidal
functor of symmetric monoidal categories), we define the simplicial Γ-category CC→D by
the pullback

CC→D(X) −−−→ H̄D(PS1∧X)y
y

H̄C(S1∧X) −−−→ H̄D(S1∧X)

.

The point of this construction is lemma 2.1.5 which displays it as a relative version of the
H̄-construction, much like the usual construction involving the path space in topological
spaces.

Usually categorical pullbacks are of little value, but in this case it turns out that it is
equivalent to the fiber product.

{Def:IIIfiber product}

Definition 2.1.3 Let C1
f1 //C0 C2

f2oo be a diagram of categories. The fiber product∏
(f1, f2) is the category whose objects are tuples (c1, c2, α) where ci ∈ obCi for i = 1, 2

and α is an isomorphism in C0 from f1c1 to f2c2; and where a morphism from (c1, c2, α) to
(d1, d2, β) is a pair of morphisms gi : ci → di for i = 1, 2 such that

f1c1
α

−−−→ f2c2

f1g1

y f2g2

y

f1d1
β

−−−→ f2d2

commutes.

Fiber products (as homotopy pullbacks) are good because their invariance: if you have a
diagram

C1
f1 //

'
��

C0

'
��

C2
f2oo

'
��

C ′1
f ′1 // C ′0 C ′2

f ′2oo

where the vertical maps are equivalences, you get an equivalence
∏

(f1, f2) →
∏

(f ′1, f
′
2).

Note also the natural map F : C1 ×C0 C2 →
∏

(f1, f2) sending (c1, c2) to (c1, c2, 1f1c1).
This map is occasionally an equivalence, as is exemplified in the following lemma. If C

is a category, then IsoC is the class of isomorphisms, and if f is a morphism, then sf is its
source and tf is its target.

{lemma:IIIpullbackisfiber}

Lemma 2.1.4 Let C1
f1 //C0 C2

f2oo be a diagram of categories, and assume that the map
of classes

IsoC1
g 7→(f1g,sg)
−−−−−−→ IsoC0 ×obC0 obC1
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has a section (the pullback is taken along source and f1). Then the natural map F : C1×C0C2
and C1 ×C0 C2 →

∏
(f1, f2) is an equivalence.

Proof: Let σ : IsoC0×obC0 obC1 → IsoC1 be a section, and define G :
∏

(f1, f2)→ C1×C0 C2
by G(c1, c2, α) = (tσ(α, c1), c2) and G(g1, g2) = (σ(d1, β)g1σ(c1, α)−1, g2). Checking the
diagrams proves that F and G are inverses up to natural isomorphisms built out of σ.

One should think about the condition as a categorical equivalent of the Kan-condition in
simplicial sets. This being one of the very few places you can find an error (even tiny and
in the end totally irrelevant) in Waldhausen’s papers, it is cherished by his fans since in
[131] he seems to claim that the pullback is equivalenct to the fiber products if f1 has a
section (which is false). At this point there is even a small error in [45, page 257], where
it seems that they claim that the relevant map in lemma 2.1.4 factors through f1.

Now, since iH̄D(PS1∧X) → iH̄D(S1∧X) ×obH̄D(S1∧X) obH̄D(PS1∧X) has a section
(given by pushouts in the relevant diagrams) CC→D(X) is equivalent to the fiber product
category, and as such is invariant under equivalences, so the natural map

CC→D(k+)q −−−→ C
×qk ×D×qk D×(q+1)k ∼= C×qk ×D×k

is an equivalence. If the consider categories with sum and weak equivalences, we get a
structure of sum and weak equivalence on CC→D as well with

wCC→D = wH̄C(S1∧X)×wH̄D(S1∧X) wH̄D(PS1∧X).

Notice also that the construction is natural: if you have a commuting diagram

C −−−→ Dy
y

C ′ −−−→ D′

you get an induced map CC→D → CC′→D′ such that

D −−−→ CC→Dy
y

D′ −−−→ CC′→D′

commutes. Furthermore C∗→E(1+) is isomorphic to E , so if we have maps C → D → E
whose composite is trivial, we get a map CC→D(1+)→ E .

{cor:1.4.3}
Lemma 2.1.5 Let C → D be an exact functor of categories with sum and weak equiva-
lences. Then there is a stable fiber sequence

wH̄C → wH̄D → wH̄(CC→D(1+))
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Proof: It is enough to show that

wH̄D(S1)→ wH̄(CC→D(1+))(S1)→ wH̄(H̄(C)(S1))(S1)

is a fiber sequence, and this follows since in each degree n

wH̄D(S1)→ wH̄(CC→D(1+)n)(S
1)→ wH̄(H̄(C)(S1)n)(S

1)

is equivalent to the product fiber sequence

wH̄D(S1)→ wH̄(D × C×n)(S1)→ wH̄(C×n)(S1)

and all spaces involved are connected.
We have a canonical map

H̄C(S1)→ SC

which in dimension q is induced by sending the sum diagram C ∈ obH̄C(q+) to c ∈ obSqC
with cij = C{0,i+1,i+2,...,j−1,j}.

{theo:2.1.2}
Theorem 2.1.6 Let C be an additive category. Then the map

iH̄C(S1)→ iSC

is a weak equivalence.

Proof: Since both BiH̄C and BiSC are connected, the vertical maps in

BiH̄C(S1) −−−→ BiSC

'

y '

y
Ω
(
BiH̄(H̄C(S1))(S1)

)
−−−→ Ω

(
BH̄(iSC)(S1)

)

are equivalences by A.1.5.0.11, and so it is enough to prove that

BiH̄(H̄C(S1))→ BiH̄(SC)

is an equivalence, which again follows if we can show that for every q

BiH̄(H̄C(q+))→ BiH̄(SqC)

is an equivalence.
Essentially this is the old triangular matrices vs. diagonal matrices question, and can

presumably be proven directly by showing that iSqC → iC×q induces an isomorphism in
homology after inverting π0(iSqC) ∼= π0(iC

×q).
Assume we have proven that the projection iH̄(SkC) → iH̄(C×k) is an equivalence

for k < q (this is trivial for k = 0 or k = 1), and we must show that it is also an
equivalence for k = q. Consider the inclusion by zero’th degeneracies C→ SqC (sending c
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to 0 � 0 � . . . � 0 � c), and the last face map SqC → Sq−1C. We want to show that
we have a map of fiber sequences

iH̄(C) −−−→ iH̄(SqC) −−−→ iH̄(Sq−1C)∥∥∥
y

y
iH̄(C) −−−→ iH̄(C×q) −−−→ iH̄(C×q−1)

We do have maps of fiber sequences

iH̄(C) −−−→ iH̄(SqC) −−−→ iH̄(CC→Sq−1C(1+))∥∥∥
y

y
iH̄(C) −−−→ iH̄(C×q) −−−→ iH̄(CC→C×q(1+))

and the only trouble lies in identifying the base spaces of the fibrations. We have a
commuting square

iH̄(CC→SqC(1+)) −−−→ iH̄(CC→C×q(1+))y '

y
iH̄(Sq−1C)

∼
−−−→ iH̄(C×q−1)

and the right vertical map is obviously an equivalence. We have to show that the left
vertical map is an equivalence, and for this purpose it is enough to show that

iCC→SqC(1+)
p

−−−→ iSq−1C

is an equivalence. For every c ∈ obSq−1C the over category p/c is a simplicial category.
If we can show that p/c is contractible for all c we are done by theorem A (prime, ref).
In dimension n p/c consists of certain sum diagrams of dimension n + 1 of objects in SqC
together with some extra data. Call the vertices of cardinality one c0, . . . , cn. Part of the
data is an isomorphism dqc0

∼=
−−−→ c, and c1, . . . , cn only have nonzero elements in the

last column (i.e., (ck)(i ≤ j) = 0 if 0 < k and j < q). Hence (p/c)n is equivalent to the
category iCC→Cx(n+) where x = c0,q−1 and Cx is the category of split inclusions x � y ∈ C

(which is a category with sum by taking pushout over the structure maps from x). The
equivalence is induced by sending c0, . . . cn to x � (c0)0,q, (c1)0,q, . . . , (cn)0,q (considered
as objects in Cx × C×n). The equivalence is natural in n, and so induces an equivalence
p/c→ iCC→Cx(S

1), and we show that the latter is contractible.
This is the group completion part: it does not matter what x we put in Cx. First

we show that π0(iCC→Cx(S
1)) = 0 (which implies that iCC→Cx(S

1) ' ΩiH̄CC→Cx(S
1)) and

then that iH̄C→ iH̄Cx is an equivalence.
The vertices of iCC→Cx(S

1) are split inclusions x � c; the 1-simplices in the nerve
direction are isomorphisms under x, whereas the 1-simplices in the H̄-construction are
pushout diagrams

x −−−→ c

inx

y
y

x ∨ c′′ −−−→ c ∨ c′′
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Hence, in π0(iCC→Cx(S
1)) the class of x � c is equal the class of x

inx

� x � c/x (since the
inclusion was splittable), which is equal to the class of the basepoint x = x.

Finally, consider the map iH̄C → iH̄Cx. It is induced by C
j

−−−→ Cx sending c to

x
i
nx →� x ∨ c, and it has a section Cx

q
−−−→ C given by sending x � c to c/x (there

is no danger in choosing quotients). We have to show that jq induces a selfmap on iH̄Cx
homotopic to the identity. Note that there is a natural isomorphism c

∐
x c → c ∨ c/x ∼=

c× c/x under x given by sending the first summand by the identity to the first factor, and
the second summand to the identity on the first factor and the projection on the second
factor. Hence, 2 (twice the identity) is naturally isomorphic to 1 + jq in iH̄Cx, and since
this is a connected H-space we have homotopy inverses, giving that jq is homotopic to the
identity.

2.2 Segal’s machine and the plus construction
{sec:IIISegvsplus}

We give a brief review of Segal’s results on group completion, focusing on the examples
that are important to our appliciations. There are many excellent accounts related to this
issue (see e.g. [1], [36], [57], [84], [41]), but we more or less follow the approach of [109].

Let C be a symmetric monoidal category with weak equivalences, and consider the
simplicial Γ-category H ′C defined by the pullback

H ′C(X)q −−−→ H̄C(PS1
q∧X)y
y

H̄C(PS1
q∧X) −−−→ H̄C(S1

q∧X)

.

By the same considerations as in corollary 2.1.5 (i.e., by reversal of priorities w.r.t. sim-
plicial directions) we get a fiber sequence

wH̄C(S1) −−−→ wH ′C(S1) −−−→ wH(PS1∧S1),

but the last simplicial category is contractible, and so wH̄C(S1)→ wH ′C(S1) is an equiv-
alence.

Furthermore, the Γ-category wH ′C is not only special, but very special: it has a homo-
topy inverse gotten by flipping the defining square around the diagonal.

{lemma:IIIplusisH}
Lemma 2.2.1 Let C be a symmetric monoidal category with weak equivalences, and let
µ ⊆ wC be a symmetric monoidal subcategory such that the image of π0µ in π0wC is
cofinal. Then the map

wH̄C → wH ′C

is a stable equivalence and wH ′C is very special. Furthermore, if wTC,µ is defined as the
pullback

wTC,µ −−−→ H̄C(PS1)y
y

H̄µ(PS1) −−−→ H̄C(S1)

.



2. AGREEMENT OF THE VARIOUS K-THEORIES. 109

the natural map wTC,mu → wH ′C(S1) is an acyclic map.
Consequently there is a chain of natural equivalences

(obNwTC,mu)
+ ∼
−−−→ (obNwH ′C(S1))+ ∼

←−−− obNwH ′C(S1)
∼
←−−− obNH̄C(S1).

Proof: Only the part about wTC,µ → wH ′C(S1) being an acyclic map needs explanation.
Since wH ′C(S1) is an H-space, this is equivalent to claiming that the map induces an
isomorphism in integral homology.

By coherence theory (ref NBNB), we may assume that wC is strict monoidal (the sym-
metric structure is still free to wiggle). Hence we are reduced to the following proposition:
given a simplicial monoid M (the simplicial set given by the nerve of wC) which is com-
mutative up to all higher homotopies and a submonoid µ ⊆ M whose image in π0M is
cofinal, then the map Y → X given by the pullback squares

Y −−−→ X −−−→ EMy
y

y
Eµ −−−→ EM −−−→ BM

induces an isomorphism in homology. Analyzing the structures, we see that Y → X is
nothing but the map of two-sided bar-constructions B(M×µ, µ, ∗) ⊆ B(M×M,M, ∗) (with
the diagonal action). Segal gives an argument why this is an isomorphism in homology in
[109, page 305-306] by an explicit calculation with arbitrary field coefficients.

The argument is briefly as follows: let k be a field and let H = H∗(M ; k) which is a
graded ring since M is a monoid, and a Hopf algebra due to the diagonal map. The E1-term
of the spectral sequence for computing H∗(B(M×M,M, ∗) is exactly the standard complex
for calculating TorH∗ (H ⊗k H, k) (in dimension q it is (H ⊗k H) ⊗ H⊗kq ⊗ k). But this
complex collapses: (H ⊗k H) ⊗H k ∼= H[π−1] (where π = π0M) and TorH0 (H ⊗k H, k) =
0. This uses that localization in the commutative case is flat. In consequence, we get
that H∗B(M × M,M, ∗; k) ∼= H[π−1]. A similar calculation gives the same result for
H∗B(M × µ, µ, ∗; k), and the induced map is an isomorphism.

2.2.2 Application to the category of finitely generated free modules over a
discrete ring.

As an example we may consider the category of finitely generated free modules over a
discrete ring A. For this purpose we use the model FA of I.2.1.4 whose set of objects is the
natural numbers and morphisms matrices. Assume for simplicity that A has the invariance
of basis property (see I.4). Then obNiFA is the simplicial monoid

∐
n∈NBGLn(A) under

Whitney sum (block sum). If µ = obFA = N then obNiTFA ,N = B(obNiFA×N,N, ∗) is a
model for the homotopy colimit over the maps

∐
n∈NBGLn(A) →

∐
n∈NBGLn(A) given

by Whitney sum (with identity matrices of varying sizes). The homotopy limit is equiv-
alent to the homotopy limit over the natural numbers over the maps

∐
n∈NBGLn(A) →∐

n∈NBGLn(A) given by Whitney sum with the rank one identity matrix. This homotpy
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colimit is equivalent to the corresponding categorical colimit, which simply is Z×BGLA.
Hence lemma 2.2.1 says that there is a chain of weak equivalences beween Z× BGL(A)+

and ΩiH̄FA. Hence, for the category of finitely generated free modules over a ring A with
IBN, the approaches through S, H̄ and + are all equivalent:

Z× BGL(A)+ ' ΩiH̄FA(S1)
'
−−−→ ΩiSFA.

If we instead consider the category PA of finitely generated projective modules over a
ring A, and µ = obFA ⊆ PA, then TiPA,µ ' K0(A)× BGL(A) and we get

Theorem 2.2.3 Let A be a discrete ring. Then there is a chain of equivalences

K0(A)× BGL(A)+ ' ΩiH̄PA(S1)
'
−−−→ ΩiSPA.

Notice that comparing the results for FA (remove the IBN hypothesis) and PA gives
one proof of cofinality in the sense used in e.g., [41]: the connected cover of K-theory does
not see the difference between free and projective modules.

Note 2.2.4 One should notice that the homotopy eqiuvalence K(A) ' K0(A)×BGL(A)+

is not functorial in A. As an example, consider the ring C(X) of continuous maps from a
compact topological space X to the complex numbers. There is a functorial (in X) map

Ω∞obNiH̄PC(X) → Ω∞obNiH̄P topC(X)

'
←−−− obNiP topC(X)

The superscript top means that we shall remember the topology and and consider PC(X)

as a topological category. The latter spectrum is by a theorem of Swan (the connective
cover of) what is known as the Atiyah and Hirzebruch’s topological K-theory of X (see
[2]) and is represented by the spectrum ku = obNiH̄P topC(∗). The map from the algebraic

K-theory of C(X) to the topological K-theory of X is an isomorphism on path component
and a surjection on the fundamental group (see [86, page 61] or [4]). Consider the map
C(B(Z/2)) → C(B(Z)) induced by the projection Z → Z/2. Let F be the fiber of
K(C(B(Z/2))) → K(C(B(Z))), and let G be the fiber of [B(Z/2), ku] → [B(Z), ku]. By
naturality this induces a map of long exact sequences

K1(C(B(Z))) −−−→ π0F −−−→ K0(C(B(Z/2))) −−−→ K0(C(B(Z)))y
y ∼=

y ∼=

y
K1(B(Z)) −−−→ π0G −−−→ K0(B(Z/2)) −−−→ K0(B(Z))

∼=

y ∼=

y ∼=

y ∼=

y

Z
2

−−−→ Z −−−→ Z/2⊕ Z
0+id
−−−→ Z

(since π0G ∼= K̃0(B(Z/2)
∐

B(Z)B(Z)∧I) ∼= K̃0(S0) ∼= Z, and the map K1(B(Z)) →

K1(B(Z)) ∼= K̃0(S0) is induced by multiplication with 2). This means that π0F →
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K̃0C(B(Z/2)) = Z/2 is a nonsplit extension, in contrast with what you get if you consider
the fiber of

K0(C(B(Z/2)))×BGL(C(B(Z/2)))+ → K0(C(B(Z)))× BGL(C(B(Z)))+

We are grateful to D. Grayson and J. Rognes for assistance with this argument.

2.3 The algebraic K-theory space of S-algebras
{subsec:Kspaceofessalg}

The definition of K-theory space for S-algebras follows the idea for simplicial rings. We
will later give spectrum level definitions which agree with this simple definition.

2.3.1 The general linear group like monoid ĜL(A)
{Def:GLhat}

What is to play the rôle of the general linear group? We could of course let it be the
group of automorphisms of A×n (mimicking degreewise K-theory), but this will be much
too restrictive for our applications. Rather we must somehow capture all self-equivalences.
Note that we are to perform some unfriendly operations on the monoid of self-equivalences,
so we had better ensure that our input is fibrant.

Note also that if A is an S-algebra, then the multiplication in A gives rise to a simplicial
monoid structure on T0A(1+) where T0 is the fibrant replacement functor of II.2.2.2. This
would not be true if we had used the other fibrant replacement FA.

Consider the simplicial monoid

M̂nA = T0MatnA(1+) = holim
−−→
x∈I

Ωx(Matn(A)(Sx))

Its monoid of components is π0(M̂n(A)) = Mn(π0A), andwe let ĜLn(A) be the grouplike
simplicial monoid of homotopy units:

ĜLn(A) −−−→ M̂n(A)y
y

GLn(π0A) −−−→ Mn(π0A)

is a pullback diagram.

This stabilises correctly, in the sense that

S0 = S(1+)→ A(1+) = Mat1(A)(1+)→ ΩnMat1(A)(Sn)

and

MatnA×Mat1A
∨

−−−→ Matn+1A
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induce maps

M̂n(A) holim
−−→
x∈I

Ωx(Matn(A)(Sx))

y
holim
−−→
x∈I

Ωx (Matn(A)(Sx)×Mat1(A)(Sx))

y∨

M̂n+1(A) holim
−−→
x∈I

Ωx(Matn+1(A)(Sx))

which in turn induce the usual Whitehead sum Mn(π0A)
m7→m⊕1
−−−−−→ Mn+1(π0A). We let

ĜL(A) denote the colimit of the resulting directed system of ĜLn(A)s.
We now can form the classifying space in the usual way and define the algebraic K-

theory space just as we did for simplicial rings in 1.1.1:

{Def:KspaceSalgs}
Definition 2.3.2 Let A be an S-algebra. Then the algebraic K-theory space of A is

K(A) = BĜL(A)+

From the construction we get

{lem:2.4.2}
Lemma 2.3.3 to k + 1 connected maps. If the S-algebra A comes from a ring, then
this definition is equivalent to the earlier one (and the equivalence is induced by the weak
equivalence of monoids MnA

∼
−−−→ M̂nA).

2.3.4 Comparison with Waldhausen’s algebraic K-theory of a connected space

A particularly important example is the K-theory of groups algebras, that is of the S-
algebra S[G] coming from a simplicial group G. Then Waldhausen essentially shows that
K(S[G]) is equivalent to A(BG), the algebraic K-theory of the connected space BG. (Some
notes on significance). There is a slight difference between the end product in [131, theorem
2.2.1] and the present definition and we must cover this gap (see also the discussion at the
bottom of page 385 in [131]). For our purposes, we may consider Waldhausen’s definition
of (the connected cover of) A(BG) to be

lim
−−→
k,m

BHk
m(G)+

where Hk
m(G) is the simplicial monoid of pointed |G|-equivariant weak self-equivalences of

|m+∧S
k∧G+|. More precisely (see appendix CNBNB), set

Mk
m = GS∗(m+∧S

k∧G+, sin |m+∧S
k∧G+|) ∼= sinMap|G|(|m+∧S

k∧G+|, |m+∧S
k∧G+|)
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This is a simplicial monoid under composition of maps (f, g) 7→ f ◦ g, and Hk
m(G) is the

grouplike submonoid of invertible components. As a simplicial set M k
m is isomorphic to

ΩkMatmS[G](Sk). By Waldhausen’s approximation theorem [131, theorem 1.6.7]

lim
−→
k

BHk
m(G)

'
←−−− holim

−→m
BHk

m(G)
'
−−−→ holim

−−→
x∈I

BHx
m(G)

and we want to compare this with BĜLm(S[G]).

We define a map (for convenience, we here use non-pointed homotopy colimit)

(holim
−−→
x∈I

ΩxMatm(S[G](Sx)))×q ∼= holim
−−−→
x∈Iq

q∏

i=1

Mxi
m → holim

−−−→
x∈Iq

(M∨xm )×q → holim
−−→
x∈I

(Mx
m)×q

The first map is induced by the ith inclusion xi ⊆ ∨x in the ith factor, and the last map is
given by composition with Iq → I. When restricted to homotopy units, this gives by the
approximation lemma the desired equivalence BqĜLm(S[G]) → holim−−→

x∈I
BqH

x
m(G). We

must just show that it is a simplicial map.

Note that the diagram

Mx
m∧M

y
m

S-algebra multiplication
−−−−−−−−−−−−−→ Mx∨y

y
∥∥∥

Mx∨y∧Mx∨y composition
−−−−−−→ Mx∨y

is commutative, where the left vertical map is induced by the first and second inclusion
x ⊆ x ∨ y and y ⊆ x ∨ y. Thus we see, that if 0 < i < q, then the ith face map in
holim−−−→

x∈Iq

∏q
i=1M

xi
m using the S-algebra multiplication, corresponds to the ith face map in

holim−−→
x∈I

(Mx
m)×q, since we have used the ith inclusion in the ith factor, and the i + 1th

inclusion in the i + 1th factor. The face maps d0, dq just drops the first or last factor in
both cases, and the degeneracies include the common unit in the appropriate factor.

2.4 Agreement of the K-theory of S-algebras through Segal’s ma-

chine and the definition through the plus construction

Let Kf
0 (π0A) be the Grothendieck group of the category of finitely generated free π0A-

modules. If π0A has the invariance of basis number property (i.e., (π0A)×k is isomorphic
to (π0A)×l if and only if l = k, which is true for most reasonable rings, and always true for
commutative rings), Kf

0 (π0A) ∼= Z, and otherwise it is finite cyclic.

Definition 2.4.1 Let A be an S-algebra. Then the category FA of finitely generated
free A-modules is the ΓS∗-category whose objects are the natural numbers, and where
FA(m,n) = Matn,mA ∼=

∏
m

∨
nA.
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Note that then Segal’s definition of the algebraic K-theory spectrum of A (with the
uniform choice of weak equivalences II.3.3) is

K(A) = obNωH̄FA.
{theo:2.5.1}

Theorem 2.4.2 There is a chain of weak equivalences

Ω∞K(A) ' Kf
0 (π0A)×BĜL(A)+

Proof: First, note that since K(A) = obNωH̄FA is special

Ω∞K(A) ' ΩobNωH̄FA(S1).

For each n+ ∈ Γo we have that obNωH̄FA(n+) ' (obNωFA)×n. For each k ≥ 0, let wFk

be the full subcategory of ωFA whose only object is k+∧A. Note that by definition, this

is nothing but ĜLk(A) considered as a simplicial category with only one object. Hence we
are done, for by Segal [109]there is a chain of weak equivalences

ΩobNωH̄FA(S1) ' Kf
0 (π0A)× lim

−→
k(obNwFk)+ = Kf

0 (π0A)× BĜL(A)+

If A is a discrete ring, we have a chain of weak equivalences

obNiH̄FA
∼
−−−→ obNωH̄F̃A

∼
←−−− obNωH̄FHA

where F̃A is the construction of 1.6.2.2 making an Ab-category into a ΓS∗-category through
the Eilenberg-MacLane construction. The first weak equivalence follows by lemma II.3.3.2,
whereas the second follows from the fact that the natural map MatnHA→ H(MnA) is a
weak equivalence(wedges are stably products).

3 Simplicial rings are dense in S-algebras.
{sec:III3}

The map S→ HZ from the sphere spectrum to the integral Eilenberg-MacLane spectrum
may either be thought of as the projection onto π0 or as the Hurewicz map. Either way,
we get that it is 1-connected. This implies that there is just a very controlled difference
between their module categories. The argument which we are going to give for this could
equally well be considered in any setting where you have a 1-connected map A→ B of S-
algebras. In fact, it is perhaps easiest to see that the result is true in this setting. Assume
everything is cofibrant and that A → B is a cofibration of S-algebras too, so as to avoid
technicalities. Consider the adjoint pair

MB

−⊗BA

�
f∗
MA

where f ∗ is restriction of scalars, which we will drop from the notation. Let M be any A-
module, and consider the unit of adjunction M → B∧AM . This map has cofiber B/A∧AM ,
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and since A→ B is 1-connected this gives that M → B∧AM is 1-connected, and so B∧AM
is a B-module giving a rather coarse approximation to M .

But we can continue doing this: apply B∧A− to M → B∧AM gives the square

M −−−→ B∧AMy
y

B∧AM −−−→ B∧A∧AM

and a quick analyisis gives that this has iterated cofiber B/A∧AB/A∧AM , and so is “2-
cartesian”, meaning that M is approximated by the pullback of the rest of square, at least
up to dimension two. This continues, and gives that any A-module may be approximated
to any degree of accuracy by means of B-modules. However, the maps connecting the
B-modules are not B-module maps. This is often not dangerous, because of the rapid
convergence, functors satisfying rather weak “continuity” properties and that vanish on
B-modules must vanish on all A-modules.

We will be pursuing this idea, only that we will be working non-stably, and our resolu-
tions will in fact be resolutions of S-algebras (in the setup as sketched above, that would
require commutativity conditions).

3.1 A resolution of S-algebras by means of simplicial rings

Recall the adjoint functor pairs of II.1.3.1

sAb = A
H̄

�
R

ΓA
Z̃

�
U

ΓS∗

(the left adjoints are on the top). All are monoidal (all but U are even strong monoidal),
and so all take monoids to monoids. Furthermore, the construction T0 of II.2.2.2 could
equally well be performed in ΓA, where it is called R0 to remind us that the coproducts
involved are now sums and not wedges. In particular, the approximation lemma II.2.2.3
works equally well in this setting. If A is an H̄Z-algebra, R0A is a special H̄Z-algebra,
and so by lemma II.1.3.3 the rightmost map in

A
∼
−−−→ R0A

∼
←−−− H̄R(R0A)

is a pointwise equivalence. Hence: any H̄Z-algebra is canonically stably equivalent to H̄ of
a simplicial ring (this has already been noted in II.2.2.5). This also works for (bi)modules:
if P is an A-bimodule, then R0P is an R0A-bimodule, stably equivalent to P (as an A-
bimodule); H̄(RR0P ) is an H̄(RR0A)-bimodule and pointwise equivalent to R0P (as an
H̄(RR0A)-bimodule). In short: (A, P )→ (R0A,R0P ) ←−−− (H̄(RR0A), H̄(RR0P )) are
stable equivalences of natural bimodules.

In particular, remembering that H = UH̄:
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{lem3.1.1:}
Lemma 3.1.1 If A is any S-algebra and P an A-bimodule, then (U Z̃A,UZ̃P ) is canon-
ically stably equivalent to a pair (HR,HQ) where R is a simplicial ring and Q an R-
bimodule:

(UZ̃A,UZ̃P )
∼
−−−→ (UR0Z̃A,UR0Z̃P )

∼
←−−− (H(RR0Z̃A), H(RR0Z̃P ))

The adjoint pair connecting ΓA and ΓS∗ defines an adjoint pair

H̄Z− algebras
Z̃

�
U

S− algebras

(that is, U Z̃ is a “triple” in S− algebras) and so we have the canonical resolution of A.0.3
(to be precise and consise in the language of A2NBNB, it is the augmented cobar resolution
of the monoid U Z̃ in the category of endofunctors of S− algebras)

{lem3.1.2:}
Lemma 3.1.2 If A is an S-algebra, then the adjoint pair gives an augmented cosimplicial
object A → {[q] 7→ (U Z̃)q+1A}, which is equivalent to H of a simplicial ring in each
non-negative degree.

It is fairly straightforward to see that A→ holim←−−−
[q]∈∆

(UZ̃)q+1A is an equivalence, but

we will not show that now, since we eventually will use the somewhat stronger Hurewicz
theorem A.1.10.0.17 which tells us that this limit converges fast enough, so that the homo-
topy limit pass through constructions like K-theory. This has the consequence that these
constructions depend on their value on simplicial rings, and on S-algebra maps between
simplicial rings. Generally this is bothersome: we would have liked the diagram we are
taking the limit of to be contained wholly in the category of simplicial rings. This is of
course not possible, since it would imply that all S-algebras were stably equivalent to sim-
plicial rings. For instance, S itself is not stably equivalent to a simplicial ring, but it IS
the homotopy limit of a diagram

HZ
//
// UZ̃HZ

//
//// UZ̃UZ̃HZ . . . .

Remark 3.1.3 The categories sAb = A, ΓA and HZ-mod, are all naturally model cate-
gories, and the functors

A
H̄
−−−→ ΓA

U
−−−→ HZ-mod

induce equivalences between their homotopy categories. This uses the functor L : ΓA → A
of II.1.3.4 to construct an adjoint functor pair (see [107]).

3.1.4 Review on cubical diagrams

We need some language in order to calculate this resolution effectively. For a more thorough
discussion we refer the reader to appendix A1.9?. There the reader also will find explained
why it does not matter whether we look at the cosimplicial resolutions or the cubical
construction.

Let P be the category of finite subsets of the natural numbers {1, 2, . . . }, and inclusions.
We let Pn be the subcategory allowing only subsets of {1, . . . , n}.
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{Def:ncube}
Definition 3.1.5 An n-cube is a functor X from the category Pn. A cubical diagram is
a functor from P.

If we adjoin the empty set [−1] = ∅ as an initial object to ∆, we get Ord, the category of
finite ordered sets. A functor from Ord is what is usually called an augmented cosimplicial
object. There is a functor P → Ord sending a set S of cardinality n to [n− 1]. Hence any
augmented cosimplicial object gives rise to a cubical diagram. In most cases there is no
loss of information in considering augmented cosimplicial objects as cubical diagrams (see
appendix A1.9?).

{Def:kcartesian}
Definition 3.1.6 Let X be an n-cube with values in any of the categories where homotopy
(co)limits are defined. We say that X is k-cartesian if

X∅ → holim
←−−
S 6=∅

XS

is k-connected, and k-cocartesian if

holim
−−−−−−−−→
S 6={1,...,n}

XS → X{1,...,n}

is k-connected. It is homotopy cartesian if it is k-cartesian for all k, and homotopy co-
cartesian if it is k-cocartesian for all k.

When there is no possibility of confusing with the categorical notions, we write just carte-
sian and cocartesian. Homotopy (co)cartesian cubes are also called homotopy pullback
cubes (resp. homotopy pushout cubes), and the initial (resp. final) vertex is then called
the homotopy pullback (resp. homotopy pushout) of the rest of the diagram.

As a convention we shall say that a 0 cube is k-cartesian (resp. k-cocartesian) if X∅ is
(k − 1)-connected (resp. k-connected).

So, a 0 cube is an object X∅, a 1 cube is a map X∅ → X{1}, and a 1 cube is k-(co)cartesian
if it is k-connected as a map. A 2 cube is a square

X∅ −−−→ X{1}y
y

X{2} −−−→ X{1,2}

and so on. We will regard a natural transformation of n cubes X → Y as an n + 1 cube.
In particular, if F → G is some natural transformation of functors of simplicial sets, and
X is an n cube of simplicial sets, then we get an n + 1 cube FX → GX .

We will need the generalized Hurewicz theorem which we cite from appendix A.1.10.0.17:
{theo:3.2.3}{Hurewicz theorem}

Theorem 3.1.7 Let k > 1. If X is an id + k cartesian cube of simplicial sets, then so is
X → Z̃X . .. '!&"%#$����
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{Def:approxcube}

Definition 3.1.8 Let A be an S-algebra and n > 0. Define the n-cube of S-algebras (A)n

by applying the unit of adjunction id→ U Z̃ n-times to A. Carrying this on indefinitly, we
get a functor

P
S 7→(A)S
−−−−−→ S-algebras

such that the restriction to Pn ⊆ P is {S 7→ (A)nS}.

More concretely (A)2 is the 2-cube

A
hA−−−→ U Z̃A

hA

y hUZ̃A

y

UZ̃A
UZ̃hA−−−→ (U Z̃)2A

.

{cor:3.2.4}
Corollary 3.1.9 Let n ≥ 0. The n-cube of spectra (A)n is id-cartesian.

Proof: For each k > 1, the space A(Sk) is (k − 1)-connected by 2.1.4.2 (and so (id + k)-
cartesian as a 0-cube). Hence the Hurewicz theorem 3.1.7 says that S 7→ (A)nS(S

k) is
(id+ k)-cartesian, which is stronger than S 7→ (A)nS being id-cartesian as a spectrum.

The very reason for the interest in this cosntruction stems from the following observation
which follows immediately from II.2.2.5.

{prop:(A)S are rings}
Proposition 3.1.10 Let A be an S-algebra. Then (A)S is canonically equivalent to H of
a simplicial ring for all S 6= ∅.

3.2 K-theory is determined by its values on simplicial rings
{subsec:IIIKapprox}

First note that K-theory behaves nicely with respect to id-cartesian squares (note that
a square being merely highly cartesian is not treated nicely by K-theory, you need good
behaviour on all subskeleta of your cube).

{theo:3.3.1}
Theorem 3.2.1 Let A be an id cartesian n cube of S-algebras, n > 0. Then K(A) is
n+ 1 cartesian.

Proof: Let M = MatmA be the cube given by the m × m matrices in A. This is id
cartesian, and so T0M = holim−−→

x∈I
Ωx(MatmA)(Sx) is an id cartesian cube of simplicial

monoids. As all maps are 1-connected, we get G = ĜLm(A) as the pullback in

GT −−−→ T0MTy
y

GLm(π0A) −−−→ Mm(π0A)
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for all T ⊂ n. Hence ĜLm(A) is id cartesian, and so BĜLm(A) is id+ 1 cartesian. Using
lemma 2.7?NBNB we get that also

K(A) = BĜL(A)+ ∼=

(
lim
−→m
BĜLm(A)

)+

is id+ 1 cartesian.
Note that with any of our other definitions of algebraic K-theory there is a non func-

torially equivalence to
BĜL(AS)

+ ×K0(π0AS)

we still get that the algebraic K-theory of A is n + 1-cartesian (it is not id + 1 cartesian
because it consists of non connected spaces). This is so since all the maps of S-algebras
involved are 1-connected, and so K0(π0A) is the constant cube K0(π0A∅).

{theo:3.3.2}
Theorem 3.2.2 Let A be an S-algebra. Then

K(A)→ holim
←−−−−−
S∈P−∅

K((A)S)

is an equivalence.

Proof: We know there is high connectivity to any of the finite cubes: theorem 3.2.1 tells
us that K(A)→ holim←−−−−−−

S∈Pn−∅
K((A)nS) is (n+ 1)-connected, so we just have to know that

this assembles correctly. Now, by lemma A.1.9.2.4 the map

holim
←−−−−−−−−
S∈Pn+1−∅

K((A)n+1
S )→ holim

←−−−−−−
S∈Pn−∅

K((A)nS)

induced by restriction along Pn ⊆ Pn + 1 is a fibration. By writing out explicitly the
cosimplicial replacement formula of A.1.9.3 for the homotopy limit, you get that

holim
←−
J

F ∼= lim
←−−−
n∈N

holim
←−
Jn

F |Jn.

Hence by lemma A.1.9.3.2 and theorem A.1.9.5.1 you get that holim←−−−−−−
S∈Pn−∅

K((A)nS) ap-

proximates holim←−−−−−
S∈P−∅

K((A)S).
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Chapter IV

Topological Hochschild homology

{IV}
As K-theory is hard to calculate, it is important to know theories that are related to K-
theory, but that are easier to calculate. Thus, if somebody comes up with a nontrivial map
between K-theory and something one thinks one can get hold on, it is considered a good
thing. In 1976 (ch) R. Keith Dennis observed that there existed a map from the K-theory
of a ring A to the so-called Hochschild homology HH(A). This map has since been called
the Dennis trace.

Waldhausen noticed in [129] that there was a connection between the sphere spectrum,
stable K-theory and Hochschild homology. Although the proof appeared only much later
([132]), he also knew before 1980 that stable A-theory coincided with stable homotopy.
Motivated by his machine “calculus of functors” and his study of stable pseudo isotopy the-
ory, T. Goodwillie conjectured that there existed a theory sitting between K-theory and
Hochschild homology, agreeing integrally with stable K-theory for all “rings up to homo-
topy”, but with a Hochschild-style definition. He called the theory topological Hochschild
homology (THH), and the only difference between THH and HH should be that whereas
the ground ring in HH is the the ring of integers, the ground ring of THH should be the
sphere spectrum S, considered as a “ring up to homotopy”. This would also be in agree-
ment with his proof that stable K-theory and Hochschild homology agreed rationally, as the
higher homotopy groups of S are all torsion. He also made some conjectural calculations
of THH(Z) and THH(Z/pZ).

The next step was taken in the mid eighties by M. Bökstedt, who was able to give a
definition of THH, satisfying all of Goodwillie’s conjectural properties, except possibly
the equivalence with stable K-theory. To model rings up to homotopy, he defined functors
with smash products which are closely related to the S-algebras defined in chapter II).

{theo:THHZ}{theo:THHZ/p}

Theorem 0.2.3 (Bökstedt)

πkTHH(Z) ∼=





Z if k = 0

Z/iZ if k = 2i− 1

0 if k = 2i > 0

121
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πkTHH(Z/pZ) ∼=

{
Z/pZ if k is even

0 if k is odd
.

Later it was realized that a work of Breen [15] actually calculated THH(Z/pZ). The
outcome of the two papers of Jibladze, Pirashvili and Waldhausen [58], [95] was that
THH(A) could be thought of as the homology of PA in the sense of I.3, or alternatively as
“MacLane homology”, [78]. This was subsequently used by Franjou, Lannes and Schwartz
and Pirashvili to give purely algebraic proofs of Bökstedt’s calculations, [32] and [33].

For (flat) rings A, there is a (3-connected) map THH(A) → HH(A) which should be
thought of as being induced by the change of base ring S→ Z.

After it became clear that the connection between K-theory and THH was as good
as could be hoped, many other calculations of THH have appeared. For instance, THH
posesses localization, in the same sense as HH does, THH of group rings can be described,
and so on. Many calculations has been done in this setting or in the dual MacLane
cohomology, for instance Pirashvili’s [93], [94] and [92]. For further calculations see Larsen
and Lindenstrauss’ papers [68], [72] and [67]. For A a ring of integers in a number field,
A. Lindenstrauss and I. Madsen obtained in [73] the non-canonical isomorphism

πiTHH(A) ∼=





A if i = 0

A/nDA if i = 2n− 1

0 otherwise

where DA is the different ideal. In [52] Hesselholt and Madsen give a canonical description,
which we will return to later.

For concrete calculations the spectral sequence of Pirashvili and Waldhausen in [95] (see
1.3.7) is very useful. This especially so since in many cases it degenerate, a phenomenon
which is partially explained in [105].

As we have already noted, the first example showing that stable K-theory and THH
are equivalent is due to Waldhausen, and predates the definition of THH. He showed
this in the cases coming from his K-theory of spaces; in particular, he showed the so-called
“vanishing of the mystery homology”: stable K-theory of the sphere spectum S, is equivalent
to S ' THH(S). Based upon this, [106] announced that they could prove KS ' THH in
general, but due to unfortunate circumstances, the proof has not been completed yet.

The second example appeared in [26], and took care of the case of rings, using the
interpretation of THH(A) as the homology of PA. In [24] it was shown how this implies
KS ' THH for all S-algebras.

When A is a commutative S-algebra we get by an appropriate choice of model that
THH(A) is also a commutative S-algebra, and the homotopy groups become a graded
commutative ring. For instance, the calculation of π∗THH(Z/pZ) could be summed up
more elegantly by saying that it is the graded polynomial ring in Z/pZ in one generator
in degree 2.
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0.2.4 Organization

In the first section we will give a definition of topological Hochschild homology for S-
algebras, and prove some basic results w ith a special view on the ring case. In the second
section, we will extend our definition to include ΓS∗-categories in general as input. This
is very similar, and not much more involved; but we have chosen to present the theory
for S-algebras first so that people not interested with anything but rings can have the
definition without getting confused by too much generality. However, this generality is
very convenient when one wants to construct the trace map from K-theory, and also when
one wants to compare with the homology of additive categories. This is particularly clear
when one wants good defintions for the “trace” map from algebraic K-theory, which we
present in the third section. In the fourth section we will discuss what happens in a “dual
numbers” situation.

0.3 Where to read

The literature on THH is not as well developed as for K-theory; and there is a significant
overlap between these notes and most of the other sources. The original paper [9] is good
reading, but has unfortunately not yet appeared. The article [50] develops the ideas in [6]
further, and is well worth studying to get an equivariant point of view on the matter. For
the THH spectrum for exact categories, [27] is slightly more general than these notes.

For a general overview, the survey article of Madsen, [80], is recommended.
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1 Topological Hochschild homology of S-algebras.

As Topological Hochschild homology is supposed to be a modelled on the idea of Hochschild
homology, we recall the standard complex calculating HH(A).

1.1 Hochschild homology of k-algebras
{Def:HH}

Recall the definition of Hochschild homology (see I.3.2): Let k be a commutative ring,
let A be a flat k-algebra, and let P be an A-bimodule. Then we define the Hochschild
homology (over k) of A with coefficients in P to be the simplicial k module

HHk(A, P ) = {[q] 7→ HHk(A, P )q = P ⊗k A
⊗q

k}

with face and degeneracies given by

di(m⊗ a1 ⊗ · · · ⊗ aq) =





ma1 ⊗ a2 · · · ⊗ aq if i = 0

m⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ aq if 0 < i < q

aqm⊗ a1 ⊗ · · · ⊗ aq−1 if i = q

si(m⊗ a1 ⊗ · · · ⊗ aq) = m⊗ a1 ⊗ · · · ⊗ ai−1 ⊗ 1⊗ ai ⊗ · · · ⊗ aq

Just the same definition may be applied to simplicial k-algebras, and this definition of
HHk will preserve weak equivalences. Again we either assume that our ring is flat, or
else we substitute it with one that is, and so we are really defining what some call Shukla
homology. To make this functorial in (A, P ) we really should choose a functorial flat
resolution of rings once and for all, but since our main applications are to rings that are
already flat, we choose to suppress this.

1.1.1 Cyclic structure

In the case P = A something interesting happens. Then HHk(A) = HHk(A,A) is not
only a simplicial object, but also a cyclic object (see C.C.3.2 for a more detailed discussion
of cyclic objects, and section 1.2.7 below for the structure on THH). Recall that a cyclic
object is a functor from Connes’ category Λo, where Λ is the category containing ∆, but
with an additional endomorphism for each object, satisfying certain relations. In terms of
generators, this means that in addition to all maps coming from ∆ for each [q] there is a

map t = tq : [q]→ [q]. In our case t is sent to the map A⊗
q+1
k → A⊗

q+1
k sending a0⊗· · ·⊗aq

to aq ⊗ a0 ⊗ · · · ⊗ aq−1.

To be precise:{Def:Lambda}

Λ([p], [q]) = ∆([p], [q])× Cp+1

with composition subject to the extra relations (where tn is the generator of Cn+1)
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tnd
i = di−1tn−1 1 ≤ i ≤ n

tnd
0 = dn

tns
i = si−1tn+1 1 ≤ i ≤ n

tns
0 = snt2n+1

A cyclic object in some category C is a functor Λo → C and a cyclic map is a natural
transformation between cyclic objects. Due to the inclusion j : ∆ ⊂ Λ, any cyclic object
X gives rise to a simplicial object j∗X.

Hochschild homology is just an instance of a general gadget giving cyclic objects: let M
be a monoid in a symmetric monoidal category (C,�, e). Then the cyclic bar construction {cyclic bar}
is the cyclic object Bcy(M) = {[q] 7→ M�(q+1)}. Hocschild homology is then the example
coming from (k-mod,⊗k, k). The most basic example is the cyclic bar construction of
ordinary monoids: the symmetric monoidal category of sets with cartesian product, a
monoid is just an ordinary monoid, and Bcy

q (M) = M×(q+1). Slightly more fancy are
the cases (Cat,×, ∗): monoids are strict monoidal categories, or (S,×, ∗): monoids are
simplicial monoids. We have already seen an example of the former: the object {[q] 7→
Iq+1} which appeared in II.2.2.1 was simply BcyI.

Just as for Hochschild homology, these constructions can also be applied to “bimodules”,
but will the give only simplicial objects.

1.2 One definition of topological Hochschild homology of S-algebras

In analogy with the above definition of HHk, Bökstedt defined topological Hochschild
homology. Of course, S is initial among the S-algebras, just as k is among k-algebras, and
the idea is that we should try to substitute (k-mod,⊗k, k) with (S-mod,∧,S). That is,
instead of taking tensor product over k, we should take “tensor product over S”, which is,
smash of Γ-spaces. So we could consider

HP∧HA∧ . . .∧HA

(or even smashed over some other commutative S-algebra if desirable), and there is nothing
wrong with this, except that

1. as it stands it is prone to all the nuisances of the classical case: unless we substitute
HA for something fairly free in ΓS∗ first, this will not preserve equivalences; and

2. without some amendment this will not have enough structure to define the goal of
the next chapter: topological cyclic homology.

Inspired by spectra rather than Γ-spaces, Bökstedt defined a compact definition which
takes care of both these problems. But before we give Bökstedt’s definition, we note that
we have already twice encountered one of the obstructions to a too naïve generalization.
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Let A be a ring. The associated S-algebra HA sending X to HA(X) = A ⊗ Z̃[X] has a
multiplication; but if we want to loop this down we have a problem: the multiplication
gives a map from

lim
−−−−→
k,l∈N2

Ωk+l((A⊗ Z̃[Sk])∧(A⊗ Z̃[Sl]))

to
lim
−−−−→
k,l∈N2

Ωk+l(A⊗ Z̃[Sk+l])

which sure enough is isomorphic to lim−−−→
k∈N

Ωk(A⊗ Z̃[Sk]), but not equal. The problem gets
nasty when we consider associativity: we can’t get the two maps from the “triple smash”
to be equal. For Hochschild homology we want a simplicial space which in degree 0 is
equivalent to lim−−−→

k∈N
Ωk(A⊗ Z̃[Sk]), in degree 1 is equivalent to

lim
−−−−→
k,l∈N2

Ωk+l((A⊗ Z̃[Sk])∧(A⊗ Z̃[Sl]))

and so on, and one of the simplicial relations (d2
1 = d1d2) will exacly reflect associativity

and it is not clear how to do this.
In [9], Bökstedt shows how one can get around this problem by using the category

I (the subcategory of Γo with all objects and just injections, see II.2.2.1) instead of the
natural numbers. To ensure that the resulting colimit has the right homotopy properties,
we must use the homotopy colimit, see the approximation lemma II.2.2.3.

Recall that, if x = k+ ∈ obI, then an expression like Sx = Sk will mean S1 smashed
with itself k times, and Ωx = Ωk will mean Map∗(S

k,−) = S∗(S
k, sin | − |).

{Def:1.2.1}{Def:BokTHH(A,P)}
Definition 1.2.1 Let A be an S-algebra, P an A bimodule and X a space, and define for
every q the assignment V (A, P ) : obIq+1 → obS∗ by

(x0, . . . , xq) 7→ V (A, P )(x0, . . . , xq) = P (Sx0)∧
∧

1≤i≤q

A(Sxi)

This gives rise to a functor Gq = G(A, P,X)q : I
q+1 → S∗ given by

x 7→ Gq(x) = Ω∨x(X∧ V (A, P )(x))

and
THH(A, P )(X)q = holim

−−−−−→
x∈Iq+1

Gq(x)

1.2.2 The homotopy type

We have to know that this has the right homotopy properties, i.e., we need to know that
it is equivalent to

lim
−−−−−−−−−−−−→
(n0,...nq)∈Nq+1

Ω
P
ni(X∧P (Sn0)∧

∧

1≤i≤q

A(Sni))
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By the approximation lemma of I II.2.2.3, this will be the case if we can show that a
map x ⊆ y ∈ Iq+1 will induce a map Gq(x) → Gq(y) which gets higher and higher
connected with the cardinality of x. Maps in Iq+1 can be written as compositions of an
isomorphism together with a standard inclusion. The isomorphisms pose no problem, so
we are left with considering the standard inclusions which again can be decomposed into
successions of standard inclusions involving only one coordinate. Since the argument is
rather symmetric, we may assume that we are looking at the standard inclusion

x = (k+, x1, . . . , xq) ⊆ ((k + 1)+, x1, . . . , xq).

Since P is a Γ-space, lemma II.2.1.4.3 says that S1∧P (Sk) → P (Sk+1) is roughly 2k-
connected, and so (by the same lemma II.2.1.4.2) S1∧P (Sk)∧

∧
A(Sxi)→ P (Sk+1)∧

∧
A(Sxi)

is roughly 2k+∨xi connected. The Freudenthal suspension theorem A.1.10.0.9 then gives
the result.

1.2.3 Functoriality

We note that, when varying X in Γo, THH(A, P ;X)q becomes a very special Γ-space
which we simply call THH(A, P )q (it is “stably fibrant” in the terminology of chapter II,
see corollary II.2.1.9), and so defines an Ω-spectrum. Also we see that it is a functor in the

maps of pairs (A, P )
f //(B,Q) where f : A→ B is a map of S-algebras, and P → f ∗Q

is a map of A-bimodules – that is, a map of ΓS∗-natural bimodules in the sense of appendix
B.B.1.4.2.

1.2.4 Simplicial structure

So far, we have not used the multiplicative structure of our S-algebra, but just as for
ordinary Hochschild homology this enters when we want to make [q] 7→ THH(A, P ;X)q
into a functor, that is, a simplicial space. The compact way of describing the face and
degeneracy maps is to say that they are “just as for ordinary Hochschild homology”. This
is true and will suffice for all future considerations, and the pragmatic reader can stop here.
However, we have seen that it is difficult to make this precise, and the setup of Bökstedt
is carefully designed to make this rough definition work.

In detail: Consider the functor Gq = G(A, P,X)q : I
q+1 → S∗ of the definition of

THH(A, P ;X)q. Homotopy colimits are functors of “S∗-natural modules”, in this case
restricted to pairs (I, F ) where I is a small category and F : I → S∗ a functor. A map
(I, F )→ (J,G) is a functor f : I → J together with a natural transformation F → G ◦ f .
So to show that [q] → THH(A, P ;X)q is a functor, we must show that [q] 7→ (Iq+1, Gq)
is a functor from ∆o to S∗-natural modules. Let φ ∈ ∆([n], [q]). The maps φ∗ : Iq+1 →
In+1 comes from the fact that I is symmetric monoidal with respect to the pointed sum
m+ ∨ n+ = (m + n)+, and even strict monoidal if you are careful. Hence Iq+1 is just a
disguise for the q-simplices of the cyclic bar construction BcyI of 1.1.1, and the φ∗ are just
the structure maps for the cyclic bar construction. The maps Gq(x)→ Gn(φ

∗x) are defined
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as follows. The loop coordinates are mixed by the obvious isomorphisms Sφ
∗x ∼= Sx, and

the maps V (A, P )(x)→ V (A, P )(φ∗x) are defined by

for φ ∈ Λ([q], ?) define V (A, P )(x)→ V (A, P )(φ∗x) by means of..

d0 P (Sx0)∧A(Sx1)→ P (Sx0∨x1)
di for 0 < i < q A(Sxi)∧A(Sxi+1)→ A(Sxi∨xi+1)

dq A(Sxq)∧P (Sx0)→ P (Sxq∨x0)
si for 0 ≤ i ≤ q S0 = S(S0)→ A(S0) in the i + 1st slot
t (when A = P ) cyclic permutation of smash factors

We check that these obey the usual simplicial identities. For this, use the associative
and unital properties of I, A and P .

{1.2.5}

Definition 1.2.5 Let A be an S-algebra, P an A bimodule and X a space. Then the
topological Hochschild homology is defined as

THH(A, P ;X) = {[q] 7→ THH(A, P ;X)q}

This gives rise to the very special Γ-space

THH(A, P ) = {Y ∈ obΓo 7→ THH(A, P ;Y )}

and the Ω-spectrum

T (A, P ;X) = {m 7→ sin |THH(A, P ;Sm∧X)|}

The sin | − | in the definition of T will not be of any importance to us now, but will be
convenient when discussing the cyclic structure in chapter IV. We also write THH(A, P ) =
THH(A, P ;S0) and THH(A) = THH(A;S0) and so on.

Note that by lemma 1.3.1 below,

THH(A, P ;X) ' diag∗{[q] 7→ THH(A, P ;Xq)} = THH(A, P )(X)

for all spaces X.

{1.2.6}

Lemma 1.2.6 THH(A, P ;X) is functorial in (A, P ) and X, and takes (stable) equiva-
lences to pointwise equivalences. Likewise for THH and T .

Proof: This follows from the corresponding properties for THH(A, P ;X)q.
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1.2.7 Cyclic structure
{cyclicTHH}

In the case where P = A we have that THH(A;X) = THH(A,A;X) is a cyclic space.
Furthermore, THH(A) = THH(A,A) is a cyclic Γ-space and T (A;X) = T (A,A;X)
becomes an S1-spectrum (where S1 = sin |S1|). This last point needs some explanation,
and will become extremely important in the next chapter.

If Z is a cyclic space, then the realization |Z| of the corresponding simplicial space
has a natural |S1| ∼= T-action (see VI.1.1 for further details), and so sin |Z| has a natural
S1 = sin |S1|-action (of course, there is no such thing as an “S1-space”, since S1 is only an
innocent space - not a group - before realizing).

In the case where Z = THH(A,X) (considered as a simplicial cyclic set) the actual
S1-fixed points are not very exciting: as we will show in more details in chapter VI,

sin |THH(A;X)|S
1 ∼= sin |X|

An important fact in this connection is that, considered as a ΓS∗-category, A has only one
object. In the next section we will consider more general situations, and get more exciting
results.

In chapter VI we shall see that, although the S1-fixed points are not very well behaved,
the finite cyclic subgroups give rise to a very interesting theory.

1.2.8 Hochschild homology over other commutative S-algebras
{IV:HHk}

Bökstedt’s definition of topological Hochschild homology is very convenient, and accessible
for hands on manipulations. On the other hand, it is conceptually more rewarding to view
topological Hochschild homology as Hochschild homology over S. Let k be a commutative
S-algebra. Then (k-mod,∧k, k) is a symmetric monoidal category, and we may form the
cyclic bar construction, see 1.1.1, in this category: if A is a k-algebra which is cofibrant as
a k-module and P is an A-bimodule, then HHk(A, P ) is the simplicial k-module

HHk(A, P ) = {[q]→ P∧kA∧k . . .∧kA}

By the results of the previous chapter, we see that HHS and THH have stably equivalent
values (the smash product has the right homotopy type when applied to cofibrant Γ-spaces,
and so HHS(A, P ) and THH(A, P ) are equivalent in every degree). Many of the results
we prove in the following section have more natural interpretations in this setting.

If we want to talk about Hochschild homology of k-algebras that are not cofibrant as
k-modules, we should use that the category of k-algebras is a model category and apply a
functorial cofibrant replacement before using the construction of HHk above.

{ex:IVTHHSG}
Example 1.2.9 (THH of spherical group rings) Let G be a simplicial group, and
consider the spherical group ring S[G] of II.1.4.4.2 given by sending a finite pointed set
X to S[G](X) = X∧G+. Then THH(S[G])q has the homotopy type of S[G] smashed
with itself q + 1 (S[G] is a cofibrant Γ-space, so one does not have to worry about cofi-
brant replacements), with face and degeneracy maps as in Hochschild homology. Hence
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THH(S[G]) is equivalent to S[Bcy(G)], whose associated infinite loopspace calculates the
stable homotopy of the cyclic bar construction of G.

A particularly nice interpretation is gotten if we set X = |BG|, because there is a
natural equivalence |BcyG| ' ΛX between the cyclic nerve of the loop group and the free
loop space (see e.g., [37, proof of V.1.1]), because then

|THH(S[G])(1+)| ' Ω∞Σ∞ΛX.

1.3 Simple properties of topological Hochschild homology

An important example is THH of an S-algebra coming from a (simplicial) ring. We con-
sider THH as a functor of rings and bimodules, and when there is no danger of confusion,
we write THH(A, P ;X), even though we actually mean THH(HA,HP ;X) and so on.
Whether the ring is discrete or truly simplicial is of less importance as

{1.3.1}
Lemma 1.3.1 Let A be a simplicial S-algebra, P an A-bimodule and X a space. Then

THH(diag∗A, diag∗P ;X) ' diag∗{[q] 7→ THH(Aq, Pq;Xq)}.

Proof: Let x ∈ In+1. Using that smash product is formed degreewise, we get that

|X∧V (diag∗A, diag∗P )(x)| ' |[q] 7→ Xq∧V (Aq, Pq)(x)|

This means that |Ω∨x(X∧V (diag∗A, diag∗P )(x))| ' |[q] 7→ Ω∨x(Xq∧V (Aq, Pq))| (the loop
may be performed degreewise, see A.1.5.0.5), and by Bökstedt’s approximation lemma
II.2.2.3 we get that

|THH(diag∗A, diag∗P ;X)n| ' |[q] 7→ THH(Aq, Pq;Xq)n|

which gives the result.

1.3.2 Relation to Hochschild homology (over the integers)
{IV:132}

Since, à priori Hochschild homology is a simplicial Abelian group, whereas topological
Hochschild homology is a Γ-space, we could consider HH to be a Γ-space by the Eilenberg-
MacLane construction H : A = sAb→ ΓS∗ in order to have maps between them.

We make a slight twist to make the comparison even more straight-forward. Recall
the definitions of H̄ : A = sAb → ΓA II.1, and the forgetful functor U : A → S∗ which is
adjoint to the free functor Z̃ : S∗ → A of II.1.3.1. By definition H = UH̄. An H̄Z-algebra
A is a monoid in (ΓA,⊗, H̄Z) (see II.1.4.3), and is always equivalent to H̄ of a simplicial
ring (II.2.2.5). As noted in the proof of corollary II.2.2.5 the loops and hocolim used to
stabilize could be exchanged for their counterpart in simplicial abelian groups if the input
has values in simplicial abelian groups. This makes possible the following definition (loops
and homotopy colimits are in A):
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{Def:IVHHZ}
Definition 1.3.3 Let A be an H̄Z-algebra, P an A-bimodule, and X ∈ obΓo. Define the
simplicial abelian group

HHZ(A, P ;X)q = holim
−−−−−→
x∈Iq+1

Ω∨x

(
Z̃[X]⊗ P (Sx0)⊗

⊗

1≤i≤q

A(Sxi)]

)

with simplicial structure maps as for Hochschild homology. Varying X and q, this defines
HHZ(A, P ) ∈ obΓA.

{IV:onHHZ}
Remark 1.3.4 Again (sigh), should A not take flat values, we replace it functorially by
one that does. One instance where this is not necessary is when A = Z̃B for some S-
algebra B. Note that a Z̃B-module is a special case of a B-module via the forgetful map
U : ΓA → ΓS∗ (it is a B-module “with values in A”).

If A is a simplicial ring and P an A-bimodule, HHZ(H̄A, H̄P ) is clearly (pointwise)
equivalent to

H̄(HH(A, P )) = {X 7→ HH(A, P ;X) = HH(A, P )⊗ Z[X]}

For A an H̄Z-algebra and P an A-bimodule, there is an obvious natural map

THH(UA,UP )(X)→ UHHZ(A, P )(X)

given by sending X → Z̃[X] and smash of simplicial abelian groups to tensor product
(again, if A should happen to be nonflat, we should take a functorial flat resolution, and in
this case the “map” is really the one described preceeded by a homotopy equivalence pointing
in the wrong direction). This is generally far from being an equivalence (it is for general
reasons always two-connected). If P = A it is a cyclic map.

However, we may factor THH(UA,UP )→ UHHZ(A, P ) through a useful equivalence:
{lemma:IVTHHvsHZ}

Lemma 1.3.5 Let A be an S-algebra, P a Z̃A-bimodule and X ∈ obΓo. The inclusion

X∧P (Sx0)∧
∧

1≤i≤q

A(Sxi)→ Z̃[X]⊗ P (Sx0)⊗
⊗

1≤i≤q

Z̃[A(Sxi)]

induces an equivalence

THH(A,UP )
∼
−−−→ UHHZ(Z̃A, P ).

Proof: It is enough to prove it degreewise. If M ∈ sAb is m-connected, and Y ∈ S∗ is
y-connected, then M∧Y → M ⊗ Z̃[Y ] is 2m + y + 2 connected (by induction on the cells
of Y : assume Y = Sy+1, and consider M → Ωy+1(M∧Sy+1) → Ωy+1M ⊗ Z̃[Sy+1]. The
composite is an equivalence, and the first map is 2m + 1 connected by the Freudenthal
suspension theorem A.1.10.0.9). Setting M = P (Sx0) and Y = X∧

∧
1≤i≤q A(Sxi) we get

that the map is 2x0 − 2 +
∑q

i=1(xi − 1) + conn(X) + 2 connected, and so, after looping
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down the appropriate number of times, x0− q+ conn(X) connected, which goes to infinity
with x0.

In the future we may not always be as pedantic as all this. We will often supress

forgetful functors, and write this as THH(A, P )
∼ //HHZ(Z̃A, P ) .

If A is an H̄Z-algebra and P an A-bimodule, this gives a factorization

THH(UA,UP )
∼
−−−→ UHHZ(Z̃UA, P )→ UHHZ(A, P ).

{Remark 1.3.4}
Remark 1.3.6 Two words of caution:

1. Note, that even if P = A, HHZ(Z̃A, P ) is not a cyclic device.
{ZHAneqHZA}

2. Note that if A is a simplicial ring, then Z̃HA is not equal to HZ̃A. We will discover
an interesting twist to this when we apply these lines of thought to additive categories
instead of rings (see section 2.4).

3. In view of the equivalence HZ∧A ' Z̃A, this result should be interpreted as a change
of ground ring equivalence

HHS(A,UP ) ' UHHHZ(HZ∧A, P )

More generally, if k → K is a map of S-algebras, A a cofibrant k-algebra and P a
K∧kA-bimodule, then

HHk(A, f ∗P ) ' f ∗HHK(K∧kA, P )

where f : A ∼= k∧kA→ K∧kA.

For comparison the following lemmas are important (see [95, 4.2])

{1.3.5}{lemma:PWSS}
Lemma 1.3.7 If A is a ring and P an A-bimodule, then there is a spectral sequence

E2
p,q = HHp(A, πqTHH(Z, P ;X);Y )⇒ πp+qTHH(A, P ;X∧Y ).

Proof: For a proof, see [95].On a higher level, it is just the change of ground ring spectral
sequence: let k → K be a map of commutative S-algebras, A a K-algebra and P a K∧kA
bimodule, and assume A and K cofibrant as k-modules, then

HHk(A, P ) ' HHK(K∧kA, P ) ' HHK(A,HHk(K,P ))

where by abuse of notation P is regarded as a bimodule over the various algebras in question
through the obvious maps.

{1.3.6}
Lemma 1.3.8 If A be a ring and P an A-bimodule, then the map THH(A, P )→ HHZ(A, P )
(and all the other variants) is a pointwise equivalence after rationalization, and also after
profinite completion followed by rationalization.
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Proof: In the proof of the spectral sequence of the previous lemma, we see that the
edge homomorphism is induced from the map π∗THH(A, P ) → π∗HH(A, P ). From
the calculation of π∗THH(Z, P ) we get that all terms in the spectral sequence above
the base line are torsion groups of bounded order. Thus πjTHH(A, P ) = πjTHH(A, P )
and πjHH

Z(A, P ) = πjHH(A, P ) differs at most by groups of this sort, and the ho-
motopy groups of the profinite completions THH(A, P )b and HHZ(A, P )b also differ by
torsion groups of bounded order, and hence we have an equivalence THH(A, P )b(0) →

HHZ(A, P )b(0).

If we the reader prefers not to use the calculation of THH(Z), one can give a direct
proof of the fact that the fiber of THH(A, P ) → HH(A, P ) has homotopy groups of
bounded order directly from the definition.

Sketch:

1. Enough to do it in each dimension.

2. As A and P are flat as abelian groups we may resolve each by free abelian groups
(mult. plays no role), and so it is enough to prove it for free abelian groups.

3. Must show that Z̃[X]∧Z̃[Y ]∧Z → Z̃[X∧Y ]∧Z has fiber whose homotopy is of
bounded order in a range depending on the connectivity of X, Y and Z, and this
follows as H∗(K(Z, n)) are finite in a range.

1.4 THH is determined by its values on simplicial rings
{IV:approx THH of S-alg}

In this section we prove the analogous statement of theorem III.3.2.1 for THH.
Let A be an S-algebra. Recall the definition of the functorial cube A = {S 7→ (A)S}

of S-algebras from III.3.1.8 whose nodes (A)S were all equivalent to simplicial rings by
proposition III.3.1.10. In particular, the S’th node was obtained by applying the free-
forgetful pair (Z̃, U) as many times as there are elements in S. The functor S 7→ (−)nS
can clearly be applied to A bimodules as well, and S 7→ (P )nS will be a cube of S 7→ (A)nS
bimodules.

We will need the following result about the smashing of cubes
{1.4.1}

Lemma 1.4.1 be id+ xi cartesian cubes for i = 1, . . . , n. Then

X = {S 7→
∧

1≤i≤n

X i
S}

is id+
∑

i xi cartesian.

Proof: Note that each d-subcube of X can be subdivided into d-cubes, each of whose maps
are the identity on all the smash factors but one. Each of these d-cubes are by induction
2 · id+

∑
i xi− 1-cocartesian, and so the d-subcube we started with was 2 · id+

∑
i xi − 1-

cocartesian.
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{1.4.2}

Proposition 1.4.2 Let A be an id-cartesian cube of S-algebras, and P an id-cartesian
cube of A bimodules (i.e., each S → T induces a map of natural bimodules (AS,PS) →
(AT ,PT )) and X a k-connected space. Then THH(A,P;X) is id+ k + 1 cartesian.

Proof: Since realization commutes with homotopy colimits, this will follow if we can prove
that for each q ≥ 0, S 7→ THH(AS,PS;X)q is 2 · id+ k cocartesian.

For any q ≥ 0 the lemma above tells us that

S 7→ X∧PS(S
x0)∧

∧

1≤i≤q

AS(S
xi)

is id + k + 1 +
∑q

i=0 xi cartesian. Looping down the appropriate number of times, this is
id+ k + 1 cartesian, and so

S 7→ THH(AS,PS;X)q

is id+ conn(X) + 1 cartesian.

{1.4.3}{theo:THH}
Theorem 1.4.3 (THH) Let A be an S-algebra and P an A-bimodule. Then the natural
map

THH(A, P )→ holim
←−−−−−
S∈P−∅

THH((A)S, (P )S)

is an equivalence.

Proof: This is a direct consequence of the above proposition applied to

A = {S 7→ (A)S} and P = {S 7→ (P )S}

since the hypotheses are satisfied by theorem III.3.1.9.
This means that we can reduce many questions about THH of S-algebras to questions

about THH of (simplicial) rings, which again often may be reduced to questions about
integral Hochschild homology by means of the spectral sequence 1.3.7.

As an example of this technique consider the following proposition.

{1.4.4}
Proposition 1.4.4 Let A be an S-algebra and P an A-bimodule, then Morita invariance
holds for THH, i.e., the natural map

THH(A, P )
∼
−−−→ THH(MatnA,MatnP )

is a pointwise equivalence. If B is another S-algebra and Q a B-bimodules, then THH
preserves products, i.e., the natural map

THH(A×B,P ×Q)
∼
−−−→ THH(A, P )× THH(B,Q)

is a pointwise equivalence.
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Proof: Since

Z̃[MatnA(X)] ∼= Z̃[
∏

n

∨
nA(X)] ←−−− Z̃[

∨
n

∨
nA(X)] ∼= ⊕n ⊕n Z̃[A(X)] ←−−− MatnZ̃A(X)

and

Z̃[A(X)×B(Y )] ←−−− Z̃[A(X) ∨B(Y )] ∼= Z̃[A(X)]⊕ Z̃[B(Y )] ←−−− Z̃[A(X)] ∨ Z̃[B(X)]

are stable equivalences, it is in view of theorem 1.4.3, enough to prove the corresponding
statements for rings. Appealing to the spectral sequence of lemma 1.3.7 together with the
easy facts that

πqTHH(Z,MnP ) ∼= Mn(πqTHH(Z, P ))

and

πqTHH(Z, P ⊕Q) ∼= πqTHH(Z, P )⊕ πqTHH(Z, Q)

it follows from the corresponding statements in Hochschild homology, see e.g. [74, page
17] (use that matrices (resp. products) of flat resolutions of are flat resolutions of matrices
(resp. products)).

There are of course direct proofs of these statements, and they are essentially the same as
in [74, page 17], except that one has to remember that sums are just equivalent to products
(not isomorphic), see e.g. [27].

1.5 An aside: A definition of the trace from the K-theory space
to topological Hochschild homology for S-algebras

{MSRI trace}

In the next section we will give a natural construction of the (Bökstedt–Dennis) trace on
the categorical level. However, for those not interested in this construction we give an
outline of the trace map construction as it appeared in the unpublished MSRI notes [120],
and later in [?, ?, 6] and also, some of the elements showing up in the general definitions
make an early appearance in the one we are going to give below.

This is only a weak transformation, in the sense that we will encounter weak equiva-
lences going the wrong way, but this will cause no trouble in our context. Indeed, such
arrows pointing the wrong way, can always be rectified by changing our models slightly.
Furthermore, as we present it here, this only gives rise to a map of spaces, and not of
spectra. We give a quick outline at the end, of how this can be extended to a map of
spectra.

For any S-algebra A we will construct a weak map from BA∗ = BĜL1(A), the classify-
ing space of the monoid of homotopy units of A, to THH(A)(S0). Applying this to the S-

algebrasMatnA, we get weak maps fromBĜLn(A) to THH(MatnA)(S0) ' THH(A)(S0).



136 CHAPTER IV. TOPOLOGICAL HOCHSCHILD HOMOLOGY

The map produced will respect stabilization, in the sense that

BĜLn(A) −−−→ THH(MatnA)(S0)y
y

BĜLn(A)× BĜL1(A) −−−→ THH(MatnA)(S0)× THH(Mat1A)(S0)

'

x '

x
B((MatnA×Mat1A)∗) −−−→ THH(MatnA×Mat1A)(S0)y

y
BĜLn+1(A) −−−→ THH(Matn+1A)(S0)

commutes where the upper vertical maps are induced by the indentity on the first factor,
and the inclusion of 1 ∈ M̂1(A) = THH0(Mat1A) into the second factor. (Note that the
horizontal maps are just weak maps, and that some of the intermediate stages may not
have the property that the upwards pointing map is an equivalence, but this does not affect
the argument.) Stabilizing this with respect to n and take the plus construction on both

sides to get a weak transformation from BĜL(A)+ to limn→∞ THH(MnA)+ ' THH(A).

1.5.1 Construction

If M is a monoid, we may use the free forgetful adjoint pair to form a functorial free

simplicial resolution F (M)
' //M . This extends to a functorial free resolution of any

simplicial monoid, and in particular of A∗ = ĜL1(A). The forgetful functor from groups
to monoids has a left adjoint M 7→ M−1M = lim←G where the limit is over the category
of groups under M . In the case M is free this is gotten by just adjoining formal inverses
to all generators, and the adjunction M → M−1M induces a weak equivalence BM →
B(M−1M) (|BM | is just a wedge of circles, and the “inverses” are already included as going
the opposite way around any circle. Alternatively, consider the “fiber” of M ⊂ M−1M ,
that is the category C of objects elements in M−1M , and a single morphism m : g ·m→ g
for every m ∈ M and g ∈ M−1M . Now, C is obviously connected, and between any two
objects there is at most one morphism, and so C is contractible.)

In the case of the simplicial monoids F (M) we get a transformation F (M)→ G(M) =
F (M)−1F (M). If M is a group-like, then corollary A.1.5.0.12 tells us that the natural map
M → ΩBM is a weak equivalence. Furthermore, if M is group-like, then so is F (M), and
the diagram

F (M) −−−→ G(M)

'

y '

y
ΩBF (M)

'
−−−→ ΩBG(M)

tells us that F (M)→ G(M) is an equivalence.
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Now, for any category C, the nerve NC may be considered as a simplicial category
whose objects in NqC are the elements in the ordinary nerve BqC = {c0 ← c1 ← · · · ← cq}
(see A.1.1.5), and morphisms simply diagrams (in C) like

c0 ←−−− c1 ←−−− . . . ←−−− cqy
y

y
d0 ←−−− d1 ←−−− . . . ←−−− dq

If all morphisms in C are isomorphisms (i.e., C is a groupoid), then the face and degeneracies
are all equivalences of categories. Hence, for any functor X from categories to simplicial
sets sending equivalences to weak equivalences, X(C) = X(N0C)

∼ //X(NC) .

Also, just as we extended Hochschild homology from rings to (small) Ab-categories in
I.3.2, the cyclic bar construction can be extended from monoids to categories: If C is a
category and P is a C-bimodule we define the cyclic nerve Bcy(C, P ) to be the space whose
q-simplices are given as

Bcy
q (C, P ) =

∐

c0,c1,...,cq∈obC

P (c0, cq)×

q∏

i=1

C(ci, ci−1).

In particular, ifG is a (simplicial) group regarded as a one point category in the ordinary

sense, then we have a chain BG = obNG //BcyNG BcyG
∼oo where the first map sends

x ∈ BG to x = x = · · · = x ∈ Bcy
q NG and the last map is the weak equivalence induced

by the equivalences G→ NqG.
Assembling this information, we have a diagram

BM
∼
←−−− BFM BcyFM

∼
−−−→ BcyM

'

y '

y
BGM −−−→ BcyNGM

∼
←−−− BcyGM

where the marked arrows are weak equivalences if M is group-like, giving a weak map
BM → BcyM .

Recall the notation T0 and R from chapter II (T0 was like THH0 used as a “fibrant
replacement” for S-algebras, and R takes a Γ-space and evaluates at 1+ = S0). For any
S-algebra A, we have a map BcyRT0A→ THH(A)(S0) given by

Bcy
q RT0(A) =

∏

0≤i≤q

holim
−−→
xi∈I

ΩxiA(Sxi)→ holim
−−−−−→
x∈Iq+1

Ω∨x
∧

0≤i≤q

A(Sxi)

where the map simply smashes functions together.
Composing weak map BA∗ → BcyA∗ from the diagram above with the cyclic nerve of

the monoid map A∗ = ĜL1(A) → M̂1A(S0) = RT0(A) and BcyRT0(A) → THH(A)(S0)
we have the desired “trace map” BA∗ → THH(A)(S0). End construction.

If we insist upon having a transformation on the spectrum level, we may choose a Γ
space approach as in [6]. The action on the morphisms is far from obvious, and we refer
the reader to [6] for the details.
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2 Topological Hochschild homology of ΓS∗-categories.

Recall the definition of ΓS∗-categories. They were just like categories, except that instead of
just morphism sets C(c, d) we have morphism Γ-spaces C(c, d), the unit is a map S→ C(c, c)
and the composition is a map

C(c, d)∧C(b, c)→ C(b, d)

Rings are Ab-categories with one object, and S-algebras are ΓS∗-categories with one
object, so just like the extension in I.3.2 of Hochschild homology to cover the case of
Ab-categories, we define topological Hochschild homology of general ΓS∗-categories.

{2.1.1}
Definition 2.0.2 Let C be a ΓS∗-category, and P a C-bimodule. Define for each tuple
x = (x0, . . . , xq) ∈ obΓ

q+1

V (C, P )(x) =
∨

c0,...,cq∈obC

P (c0, cq)(S
x0)∧

∧

1≤i≤q

C(ci, ci−1)(S
xi)

and for each X ∈ obΓ and q ≥ 0

THH(C, P ;X)q = holim
−−−−−→
x∈Iq+1

Ω∨x(X∧V (C, P )(x)).

This is a simplicial space as before. It is functorial in X, and we write THH(C, P ) for the
corresponding Γ-object, and T (C, P ;X) for the corresponding Ω-spectrum.

2.1 Functoriality

We see that THH(−,−) (as well any of the other versions) is a functor of ΓS∗-natural
bimodules (C, P ) B.NBNB.

Example 2.1.1 The example (C∨, P∨) of II.1.6.3 in the case where C an additive category
is a slight generalization of the case considered in [27, part 2]. Here C∨(c, d) = H(C(c, d)),
but P∨(c, d) = H(P (c, d)) only if P is “bilinear”. The restriction that P has to be additive
(i.e., send sums in the first variable to products) is sometimes annoying. For instance, this
is the reason that the comparison between THH and the homology of categories is often
not done in the category of all “bifunctors” Co × C → Ab (see ref)NBNB.

Note 2.1.2 Since ΓS∗-categories are examples of what was called ring functors in [27], it
is worth noting that our current definition of THH agrees with the old one. In fact, a ΓS∗-
category is simply a ring functor restricted to Γo considered as the discrete finite pointed
simplicial sets. The distinction between ΓS∗-categories and ring functors is inessential in
that topological Hochschild homology does not see the difference, and so all the general
statements in [27, part 1] carries over to the new setting.



2. TOPOLOGICAL HOCHSCHILD HOMOLOGY OF ΓS∗-CATEGORIES. 139

2.1.3 Cyclic structure and fixed points under the circle action
{II2.1.5}

Let C be a ΓS∗-category and X a space. Then, as before, THH(C;X) = THH(C, C;X) is
a cyclic space.

We promised in subsection 1.2.7 that we would take a closer look at the S1-fixed points.
We consider THH(C;X) as a simplicial cyclic set, and so if we apply sin | − | in the cyclic
direction we get a simplicial S1-space which we write sin |THH(C;X)|. As explained in
A3?NBNB., if Z is a cyclic set, then the S1-fixed points of sin |Z| is nothing but lim←

→Λo Z,
or more concretely, the set of zero-simplices z ∈ Z0 such that ts0z = s0z ∈ Z1. So, we
consider the simplices in the space

THH(C;X)0 = holim
−−→
x∈I

Ωx(X∧
∨

c∈obC

C(c, c)(Sx))

whose degeneracy is invariant under the cyclic action. In dimension q

holim
−−→
x∈I

Ωx(X∧
∨

c∈obC

C(c, c)(Sx))q =
∐

x0←···←xq∈I

S∗(S
xq∧∆[q]+, sin |(X∧

∨

c∈obC

C(c, c)(Sxq)|)0

The degeneracy sends (x0 ← · · · ← xq, f : Sxq∧∆[q]+ → sin |X∧
∨
c∈obC C(c, c)(S

xq)|) to

(
x0 ← · · · ← xq
0+ = · · · = 0+

, Sxq∧S0∧∆[q]+ → sin |(X∧
∨

c0,c1∈obC

C(c0, c1)(S
xq)∧C(c1, c0)(S

0))|

)

where the map is determined by f and the unit map S0 = S(S0) → C(c, c)(S0). For this
to be invariant under the cyclic action, we first see that we must have x0 = · · · = xq = 0+.
So f is a q-simplex in sin |X∧

∨
c∈obC C(c, c)(S

0)| ∼= sin(|X|∧
∨
c∈obC |C(c, c)(S

0)|) such that

|∆[q]|+
f

−−−→ |X|∧
∨
c∈obC |C(c, c)(S

0)| −−−→ |X|∧
∨
c∈obC |C(c, c)(S

0)|∧|C(c, c)(S0)|

is invariant under permutation, where the last map is induced by the unit map C(c, c)(S0) ∼=
C(c, c)(S0)∧S0 → C(c, c)(S0)∧C(c, c)(S0). Hence f only takes the value of the unit and
factors through |∆[q]| →

∨
c∈obC |X|

∼= sin |X|∧(obC)+, i.e.,

lim
←
→Λo

THH(C;X) ∼= sin |THH(C;X)|S
1 ∼=

∨

c∈obC

sin |X|

We may be tempted to say that
∨
c∈obCX is the “S1-fixed point space” of THH(C;X)

because this is so after applying sin | − | to everything.

NB: If G is a topological group and X a G-space, then sin(XG) ∼= (sinX)sinG. Likewise
for homotopy fixed points (up to homotopy).
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2.2 The trace
{trace:CtoTHHC}

There is a map, the “Dennis trace map” {Def:Dennis on C}

obC −−−→ THH(C)(S0)0
degeneracies
−−−−−−−→ THH(C)(S0)

sending d ∈ obC to the image of the non-basepoint of the unit map

S0 = S(S0)→ C(d, d)(S0)

composed with the obvious map

C(d, d)(S0) ⊆
∨

c∈obC

C(c, c)(S0)→ holim
−−−−→
x∈obI

Ωx
∨

c∈obC

C(c, c)(Sx) = THH(C)(S0)0

In other words, in view of the discussion in 2.1.3 the trace is (almost: just misses the
base point) the inclusion of the S1 fixed points.

2.3 Comparisons with the Ab-cases
{subsec:IV comparisons with the ab-cases}

The statements which were made for H̄Z-algebras in section 1.3.2. have their analoges for
ΓA-categories:

{2.3.1}
Definition 2.3.1 Let C be a ΓA-category, P a C-bimodule and X ∈ obΓo. Consider the
simplicial Abelian group

HHZ(C, P ;X)q = holim
−−−−−→
x∈Iq+1

Ω∨x
⊕

c0,...,cq∈obC

(
P (c0, cq)(S

x0)⊗
⊗

1≤i≤q

C(ci, ci−1)(S
xi)

)

where loop and homotopy colimit is performed in simplicial abelian groups and with face
and degeneracies as in Hochschild homology. Varying q and X, this defines HHZ(C, P ) ∈
obΓA.

This is natural in ΓA-natural pairs (C, P ) (and is prone to all the irritating nonsense about
nonflat values).

The prime example come from ordinary Ab-categories: by using the Eilenberg-MacLane
construction on every morphism group, an Ab-category E cal be promoted to a ΓA-category
Ẽ (see II.1.6.2.2). Similarly we promote an E-bimodule P to an Ẽ bimodule P̃ . Since this
construction is so frequent (and often in typographically challenging situations) we commit
the small sin of writing THH(E , P ) when we really ought to have written THH(Ẽ, P̃ ).

Also, as in 1.3.4 it is clear that if C is an Ab-category and P a C-bimodule, then
HHZ(C, P ) is pointwise equivalent to H̄ (HH(C, P ))

The proofs of the following statements are the same as the proofs for lemma ?? and
1.3.7
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{2.3.2}

Lemma 2.3.2 Let C be a ΓS∗-category, P a Z̃C-bimodule and X ∈ obΓo. The map
THH(C, UP )→ UHHZ(Z̃C, P ) is an equivalence.

{2.3.3}
Lemma 2.3.3 Let C be an Ab-category and P an C-bimodule. Then there is a first quad-
rant spectral sequences

E2
p,q = HHZ

p (C, πqTHH(HZ, HP ;X);Y )⇒ πp+qTHH(HC, HP ;X∧Y ).

2.4 Topological Hochschild homology calculates the homology of

additive categories
{THH of additive categories}

There is another fact where the HHZ(Z̃−,−)-construction is handy, but which has no
analogy for S-algebras.

Let C be an Ab-category, and let P be a C-bimodule (i.e., an Ab-functor Co⊗C → Ab).
Then, by the results of section 2.3 you have that

THH(HC, HP ) ' U HHZ(Z̃H̄C, H̄P ), and HHZ(H̄Z̃C, H̄P ) ' H̄ HH(Z̃CP ),

but HHZ(Z̃H̄C, H̄P ) is vastly different from HHZ(H̄Z̃C, H̄P ). As an example on may
note that THH(Z,Z) is not equivalent to HH(Z̃Z,Z) = HH(Z[t, t−1],Z).

However, for additive categories (Ab-categories with sum) something interesting hap-
pens. Let C be an additive category, and consider it as a ΓA-category through the construc-

tion II.1.6.3: C⊕(c, d)(k+) = C(c,
k
⊕d). Since C is additive we see that there is a canonical

isomorphism C̃ ∼= C⊕, but this may not be so with the bimodules: if M is a Z̃C-bimodule
(which by adjointness is the same as a UC-bimodule) we define the C⊕-bimodule M⊕ by

the formula M⊕(c, d)(k+) = M(c,
k
⊕d). If M is “linear” in the second factor (i.e., M is

actually a Z̃Co⊗ C-module) the canonical map M̃ →M⊕ is an isomorphism, but for more
general cases it won’t even be a weak equivalence.

Theorem 2.4.1 Let C be an additive category and let M be a Co⊗ Z̃C-module. Then there
is a canonical equivalence

THH(UC⊕, UM⊕) ' H (HH(Z̃C,M)).

Proof: In this proof we will use the model HHZ(Z̃(C⊕),M⊕) instead of THH(UC⊕, UM⊕)
(see lemma 2.3.2), and since both expressions are very special it is enough to prove that
the cononical stabilization map HH((Z̃C,M)→ HHZ(Z̃(C⊕),M⊕)(1+) is an equivalence.
Since the functors in the statement are homotopy functors in M , it is enough to prove the
theorem for projective M . But all projectives are retracts of sums of projectives of the
standard type

Px,y(−,−) = C(−, y)⊗ Z̃C(x,−)
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and hence it is enough to show that the higher homotopy groups vanish, and the map in-
duces an isomorphism on π0 for these projectives. For HHZ(Z̃(C⊕),M⊕) and HH(Z̃C,M)
this vanishing comes from the “extra degeneracy” defined by means of

Px,y(c, d)(k+) C(c, x)⊗ Z̃C(y,
k
⊕d)

f⊗|
P
gi|7→f⊗|1y|⊗|

P
gi|

y

Px,y(c, y)(1+)⊗ Z̃C⊕(y,⊕d)(k+) C(c, x)⊗ Z̃C(y, y)⊗ Z̃C(y,
k
⊕d)

(the vertical lines are supposed to remind the reader that whatever is inside these are
considered as generators in a free abelian group). This defines a contracting homotopy

sq+1 : HH(Z̃C, Px,y)q → HH(Z̃C, Px,y)q+1,

and likewise for HHZ(Z̃C⊕, P⊕x,y).

On π0 we proceed as follows. Notice that π0(HH
Z(Z̃C⊕, P⊕x,y)0) ∼=

⊕
c∈obC C(c, y) ⊗

C(x, c) (essentially the Hurewicz theorem: if M is an abelian group π0 lim−→
k

ΩkZ̃(M ⊗

Z̃[Sk]) ∼= M) and π0(HH
Z(Z̃C⊕, P⊕x,y)1) ∼=

⊕
c,d∈obC C(c, y)⊗ C(x, d) ⊗ C(d, c). Hence the

map π0HH(Z̃C, Px,y)→ π0HH
Z(Z̃C⊕, Px,y) is the map induced by the map of coequalizers

⊕
cC(c, y)⊗ Z̃C(x, c)

��

⊕
c,dC(c, y)⊗ Z̃C(x, d)⊗ Z̃C(d, c)oo oo

��⊕
cC(c, y)⊗ C(x, c)

⊕
c,dC(c, y)⊗ C(x, d)⊗ C(d, c)oooo

.

But both these coequalizers are isomorphic to C(x, y), as can be seen by the unit map
C(x, y) → C(x, y) ⊗ Z̃C(y, y) and the composition C(c, y) ⊗ C(x, c) → C(x, y) (here the
linearity in the first factor is crucial: the class of f ⊗ |g| ∈ C(c, y) ⊗ Z̃C(x, c) equals the
class of fg ⊗ |1x| ∈ C(x, y)⊗ Z̃C(x, x)).

Remark 2.4.2 The proof of this theorem is somewhat delicate in that it stears a middle
course between various variants. We used the nonlinearity in the second factor of M to
reduce to the projectives Px,y where this nonlinearity gave us the contracting homotopy. We
then used the linearity in the first factor to identify the π0 parts. A more general statement
is that THH(UC⊕, UM⊕) is HH(Z̃C, LM) where L is linearization in the second factor.
This first/second factor asymmetry is quite unnecessary and due to the fact that we stabilize
in the second factor only. We could dualize and stabilize in the first factor only (the opposite
of an additive category is an additive category), or we could do both at once. We leave the
details to the interested reader.

Corollary 2.4.3 (Pirashvili-Waldhausen [95]) Let A be a discrete ring and M a bi-
module. Then there is a natural chain of weak equivalences connecting THH(HA,HM)
and (the Eilenberg-MacLane spectrum associated to) HH(Z̃PA,M), where PA is the cat-
egory of finitely generated projective modules, and M is considered as a PA-bimodule by
setting M(c, d) = PA(c, d)⊗M .
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2.5 General results

Many results are most easily proven directly for ΓS∗-categories, and not by referring to a
reduction to special cases. We collect a few which will be of importance.

2.5.1 THH respect equivalences

This is the first thing that we should check, so that we need not worry too much about
choosing this or that model for our categories.

{2.5.2}

Lemma 2.5.2 Let F0, F1 : (C, P ) → (D, Q) be maps of ΓS∗-natural bimodules, and X a
space. If there is a natural isomorphism η : F0 → F1, then the two maps

F0, F1 : THH(C, P )(X)→ THH(D, Q)(X)

are homotopic.

Proof: We construct a homotopy H : THH(C, P )(X)∧∆[1]+ → THH(D, Q)(X) as fol-
lows. If φ ∈ ∆([q], [1]) and x ∈ Iq+1 we define the map Hφ,x : V (C, P )(x) → V (D, Q)(x)
by sending the c0, . . . , cq ∈ C

q+1 summand into the Fφ(0)(c0), . . . , Fφ(q)(cq) ∈ obD summand
via the maps

C(c, d)
(ηj

d)∗(η
−i
c )∗F0

−−−−−−−−→ D(Fi(c), Fj(d))

for i, j ∈ {0, 1} (and P (c, d) //Q(F0(c), F0(d))
(ηj

d)∗(η
−i
c )∗

//Q(Fi(c), Fj(d)) )

{2.5.3}

Corollary 2.5.3 (THH respects ΓS∗-equivalences) Let C F //D be ΓS∗-equivalence
of ΓS∗-categories, P a D bimodule and X a space. Then

THH(C, F ∗P )(X)
'
−−−→ THH(D, P )(X).

Proof: Let G be an inverse, and η : 1C
∼= //GF and ε : 1D

∼= //FG the natural isomor-

phisms. Consider the (non commutative) diagram

THH(C, F ∗P )(X)
η //

F
��

THH(C, (FGF )∗P )(X)

F
��

THH(D, P )(X)
ε // THH(D, (FG)∗P )(X)

G
jjUUUUUUUUUUUUUUUUU

The corollary above states that we get a map homotopic to the identity if we start with
one of the horizontal isomorphism and go around a triangle.

Recall the notion of stable equivalences of ΓS∗-categories II.2.4.1.
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{2.5.4}

Lemma 2.5.4 (THH respects stable equivalences of ΓS∗-categories) Let F : (C, P )→
(D, Q) be a map of ΓS∗-natural bimodules, and assume F is a stable equivalence of ΓS∗-
categories inducing stable equivalences

P (c, c′)→ Q(F (c), F (c′))

for every c, c′ ∈ obC. Then F induces a pointwise equivalence

THH(C, P )→ THH(D, Q).

Proof: According to lemma II.2.4.2 we may assume that F is either a ΓS∗-equivalence,
or a stable equivalence inducing an identity on the objects. If F is a ΓS∗-equivalence we
are done by corollary 2.5.3 once we notice that the conditions on P and Q imply that
THH(C, P )→ THH(C, F ∗Q) is a pointwise equivalence.

If F is a stable equivalence inducing the identity on objects, then clearly F induces a
pointwise equivalence

THH(C, P )q → THH(C, F ∗Q)q → THH(D, Q)q

in every simplicial degree q.

2.5.5 A collection of other results

The approximation in 1.4 of THH of arbitrary S-algebras by means of THH simplicial
rings also works, mutatis mutandis, for ΓS∗-categories to give an approximation of any
ΓS∗-category in terms of sAb-categories.

The proof of the following lemma is just as for S-algebras (lemma 1.3.1)

Lemma 2.5.6 Let C be a simplicial ΓS∗-category andM a C-bimodule (i.e., {[q] 7→ (Cq,Mq)}
is a natural bimodule). Then there is a natural pointwise equivalence

THH(diag∗C, diag∗M) ' diag∗{[q] 7→ THH(Cq,Mq)}.

{Def:UT in gs}
Definition 2.5.7 Let A and B be ΓS∗-categories and M an Ao − B-bimodule. Then the
upper triangular matrix ΓS∗-category

[A M
B ]

is the ΓS∗ category with objects obA× obB and with morphism object from (a, b) to (a′, b′)
given by [

A(a, a′) M(a, b′)
B(b, b′)

]

and with obvious matrix composition.
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{lemma:UT in gs}
Lemma 2.5.8 With the notation as in the definition, the natural projection

THH ([A M
B ])→ THH(A)× THH(B)

is a pointwise equivalence.

Proof: Exchange some products with wedges and do an explicit homotopy as in [27,
1.6.20].

For concreteness and simplicity, let’s do the analogous statement for Hochschild homol-
ogy of k-algebras instead, where k is a commutative ring: let A11 and A22 be k-algebras,
and let A12 be an Ao11 ⊗k A22-module. The group of q simplices in HH

([
A11 A12

A22

])
can be

written as
⊕ q⊗

i=0

Ari,si

where the sum is over the set of all functions (r, s) : {0, 1 . . . , q} → {(11), (12), (22)}. The
projection to HH(A11) ⊕ HH(A22) is split by the inclusion onto the summands where
r0 = . . . rq = s0 = · · · = sq. We make a simplicial homotopy showing that the non-
identity composite is indeed homotopic to the identity. Let φ ∈ ∆([q], [1]) and y in the
(r, s) summand of the Hochschild homology of the upper triangular matices. With the
convention that sq+1 = r0 we set

H(φ, y) = y, if rk = sk+1 for all k ∈ φ−1(0)

and zero otherwise. We check that for j ∈ [q] we have equalitity djH(φ, y) = H(φdj, djy),
and so we have a simplicial homotopy. Note that H(1,−) is the identity and H(0,−) is
the projection (r0 = s1, . . . rq−1 = sq, rq = s0 implies that all indices are the same due to
the upper triangularity).

The general result is proven by just the same method, exchanging products with wedges
to use the distributivity of smash over wedge, and keeping track of the objects (this has the
awkward effect that you have to talk about nonunital issues. If you want to avoid this you
can obtain the general case from the Ab-case by approximating as in 1.4). Alternatively
you can steal the result from I.3.6 via the equivalences

THH(C) ' HHH(Z̃C,C) ' HHH(ZC,C) = F (C,C)

to get an only slightly weaker result.
Setting M to be the trivial module you get that THH preserves products (or again, you
may construct an explicit homotopy as in [27, 1.6.15] (replacing products with wedges).
There are noe added difficulties with the bimodule statement.

{2.4.4}

Corollary 2.5.9 Let C and D be ΓS∗-categories, P a C-bimodule, Q a D-bimodule. Then
the canonical map is a pointwise equivalence

THH(C × D, P ×Q)→ THH(C, P ;X)× THH(D, Q;X). .. '!&"%#$����



146 CHAPTER IV. TOPOLOGICAL HOCHSCHILD HOMOLOGY

2.5.10 Cofinality

Another feature which is important is the fact that topological Hochschild homology is
insensitive to cofinal inclusions (see below). Note that this is very different from the K-
theory case where there is a significant difference between the K-theories of the finitely
generated free and projective modules: Kf

0 (A)→ K0(A) is not always an equivalence.
{2.5.7}

Definition 2.5.11 Let C ⊆ D be a ΓS∗-full inclusion of ΓS∗-categories. We say that C is
cofinal in D if for every d ∈ obD there exist maps

d
ηd−−−→ c(d)

πd−−−→ d

such that c(d) ∈ obC and πdηd = 1d.
{2.5.8}

Lemma 2.5.12 Let j : C ⊂ D be an inclusion of a cofinal ΓS∗-subcategory. Let P be a
D-bimodule. Then

THH(C, P )→ THH(D, P )

is a pointwise equivalence.

Proof: For simplicity we prove it for P = D. For each d ∈ obD choose

d
ηd−−−→ c(d)

πd−−−→ d,

such that ηc is the identity for all c ∈ obC. Then for every x ∈ Iq+1 we have a map
V (D)(x) → V (C)(x) sending the d0, . . . , dq ∈ UDq+1 summand to the c(d0), . . . , c(dq) ∈
UCq+1 summand via

D(πd0 , ηdq)(S
x0)∧ . . .∧D(πdq , ηdq−1)(S

xq)

This map is compatible with the cyclic operations and hence defines a map

D(π, η) : THH(D)→ THH(C)

Obviously D(π, η) ◦ THH(j) is the identity on THH(C) and we will show that the other
composite is homotopic to the identity. The desired homotopy can be expressed as follows.
Let φ ∈ ∆([q], [1]) and let

d
ηi

d−−−→ ci(d)
πi

d−−−→ d be

{
d

ηd−−−→ c(d)
πd−−−→ d if i = 1

d = d = d if i = 0

The homotopy THH(D)∧∆[1]+ → THH(D) is given by Hφ,x : V (D)(x)→ V (D)(x) send-
ing the d0, . . . , dq ∈ obUD

q+1 summand to the cφ(0)(d0), . . . , c
φ(q)(dq) ∈ obUD

q+1 summand
via

D(π
φ(0)
d0

, η
φ(q)
dq

)(Sx0)∧ . . .∧D(π
φ(q)
dq

, η
φ(q−1)
dq−1

)(Sxq).
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2.5.13 Application to the case of discrete rings

As an easy application, we will show how these theorems can be used to analyze the
topological Hochschild homology of a discrete ring. The more general case of S-algebras
will be treated later.

Let A be a discrete ring, and let P be an A bimodule, and by abuse of notation let P
also denote the PA-bimodule HomA(−,−⊗A P ) ∼= PA(−,−)⊗A P : PA × P

o
A → Ab.

{2.5.10}
Lemma 2.5.14 Let A be a ring, PA the category of finitely generated projective modules
(I.2.1.3) and FA the category of finitely generated free modules (I.2.1.4). Then the inclusion
FA ⊆ PA induces a pointwise equivalence

THH(PA)
∼
−−−→ THH(FA). .. '!&"%#$����

In the statement of the theorem we have again used the shorthand of writing THH(A)
when we really mean THH(HA), and likewise for THH(PA).

{2.5.11}
Theorem 2.5.15 The inclusion of A in PA as the rank 1 free module induces a pointwise
equivalence

THH(A, P )
∼
−−−→ THH(PA, P ).

Proof: Let FA be the category of finitely generated free modules, and let F k
A be the

subcategory of free modules of rank less than or equal to k. We have a cofinal inclusion
MkA → F

k
A, given by regarding MkA as the subcategory with only object: the rank k

module. Consider the diagram where the limit is taken with respect to inclusion by zeros

THH(A, P )
Morita
−−−−→
'

limk→∞ THH(MkA,MkP )
y '

ycofinality

THH(FA, P )
filtered colimits
←−−−−−−−−

'
limk→∞ THH(FkA, P )

'

ycofinality

THH(PA, P )

The leftward pointing map is a weak equivalence as loops respect filtered colimits (A.1.1.7.3)
and V (FA, P )(x) = limk→∞ V (FkA, P )(x) for all x ∈ Iq+1. The other maps are weak equiv-
alences for the given reasons and the result follows.

2.5.16 Topological Hochschild homology of an finitely genrated free modules
over an S-algebra

The category of finitely generated A-modules FA is the ΓS∗-category whose objects are the
natural numbers (including zero), and where the morphisms are given by

FA(k+, l+) =MA(k+∧A, l+∧A) ∼=
∏

k

∨

l

A
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An A-bimodule P is considered as an FA-bimodule in the obvious way. Except that the
cofinality is not needed in the present situation, exactly the same proof as for the discrete
case above give:

{2.6.1}
Lemma 2.5.17 Let A be an S-algebra and P an A-bimodule. Then the inclusion of the
rank one module A→ FA gives rise to an equivalence

THH(A, P )→ THH(FA, P ). .. '!&"%#$����



Chapter V

The trace K → THH

{IV2}

In this chapter we explain how the Dennis trace map IV.2.2 can be lifted to a trace map
from algebraic K-theory to topological Hochschild homology. We first concentrate on the
Ab-case since this is somewhat easier. This case is however sufficent to define the trace
for discrete rings, and carries all the information we need in order to complete our proofs.
The general construction is more complex, but this need not really concern us: the only
thing we actually use it for is that it exists and is as functorial as anybody can wish.

The general construction occupies the second section, and tries to reconcile this con-
struction with the others we have seen. In the third section we have another look at stable
K-theory and verify that it agrees with topological Hochschild homology for S-algebras in
general.

1 THH and K-theory: the Ab-case

In this section we define the trace map from algebraic K-theroy to the topological Hochschild
homology of an additive or exact category much as was done in [27].

Before we do so, we have to prepare the ground a bit, and since these results will be
used later we work in a wider generality for a short while.

Algebraic K-theory is preoccupied with the weak equivalences, topological Hochschild
homology with the enrichment. The Dennis trace map 2.2 should seek to unite these
opposite points of view.

Let C be a symmetric monoidal ΓS∗-category (see II.3.1.3), and recall the construction
H̄C from chapter II. This is a functor from Γo to symmetric monoidal ΓS∗-categories such
that for each k+ ∈ obΓ

o the canonical map

H̄C(k+)→ C×k

is a ΓS∗-equivalence. Hence
THH(H̄C)

is a functor from Γo to ΓS∗ or more symmetrically: a functor Γo×Γo → S∗. For such functors
we have again a notion of stable equivalences: if X and Y are functors Γo × Γo → S∗, a

149
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map X → Y is a stable equivalence if

lim
−→
k,l

Ωk+lX(Sk, Sl)→ lim
−→
k,l

Ωk+lY (Sk, Sl)

is a weak equivalence.
For each k+ ∈ obΓ

o there is a map k+∧THH(C)→ THH(H̄C(k+)) (induced by the k
functors C → H̄C(k+) given by the injections 1+ → k+) which assemble to a natural map
Σ∞THH(C)→ THH(H̄C) of functors Γo → ΓS∗.

{prop:IVTHHvsH for additives}
Proposition 1.0.1 Let C be a symmetric monoidal ΓS∗-category. Then for each l+ ∈ Γo

the Γ-space
k+ → THH(H̄C(k+))(l+)

is special, and the natural map

Σ∞THH(C)→ THH(H̄C)

is a stable equivalence.

Proof: For each k+, l+ ∈ obΓ
o the map

THH(H̄C(k+))(l+)→ THH(C×k)(l+)

is a weak equivalence (since H̄C is special and THH sends ΓS∗-equivalences to pointwise
equivalences 2.5.4), and so is

THH(C×k)(l+)→ THH(C)(l+)×k

(since THH respects products 2.5.9), and so the first part of the proposition is shown:
THH(H̄C)(l+) is special. For each k+, the composite

k+∧THH(C) −−−→ THH(H̄C(k+)) −−−→ THH(C)×k

is a stable equivalence, and the last map is a pointwise equivalence, hence the first map is
a weak equivalence, assembling to the stated result.

This is a special case of a more general statement below which is proved similarly.
A functor (C, P ) from Γo to ΓS∗-natural bimodules is nothing but a functor C : Γo →
ΓS∗-categories and for each X ∈ obΓo a C(X)-bimodule P (X), such that for every f : X →
Y ∈ Γo there is a map of C(X)-bimodules f̄ : P (X) → f ∗P (Y ) such that gf = f ∗(ḡ) ◦ f̄ .
(i.e., if in addition g : Y → Z, then the diagram

P (X)
f̄ //

gf ))SSSSSSSSSSSSSSS f ∗P (Y )

f∗(ḡ)
��

(gf)∗P (Z) = f ∗(g∗P (Z))

commutes). In particular (C, C) will serve as the easiest example.
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{3.2.1}
Proposition 1.0.2 Let (C, P ) be a functor from Γo to ΓS∗-natural bimodules. Assume that
C is quite special (see II.3.2.1) and for all X, Y ∈ obΓo the map

P (X ∨ Y )
(prX ,prY )
−−−−−−→ pr∗XP (X)× pr∗Y P (Y )

is a stable equivalence of C(X ∨ Y )-bimodules. Then

THH(C, P )
∼
←−−− Σ∞THH(C(1+), P (1+))

is a stable equivalence. .. '!&"%#$����

Preparing for the way for the trace from the algebraic K-theory of exact categories,
we make the following preliminary nerve construction (a more worked-out version will
be needed later, see 2.1.4 below, but this will do for now). Note the connections to
the nerve construction used in the proof of corollary I.2.3.2. Recall that THH preserves
ΓS∗-equivalences (2.5.4), and that if C is an Ab-category, then the degeneracy map C =
N0(C, i)→ Nqi(C, i) is an Ab-equivalence of categories.

{Def:nerve wrt isos}
Definition 1.0.3 Let C be a category. The nerve of C with respect to the isomorphisms is
the simplicial category N(C, i) whose simplicial set of object is the classifying space BiC of
the subcategory of isomorphisms, and whose set of morphisms between c0 ← c1 ← · · · ← cq
and c′0 ← c′1 ← · · · ← c′q is the set of all commuting diagrams

c0
'
←−−− c1

'
←−−− . . .

'
←−−− cqy

y
y

c′0
'
←−−− c′1

'
←−−− . . .

'
←−−− c′q

in C.

Note that the vertical maps need not be isomorphisms. Furthermore we have that

Lemma 1.0.4 For all q the map C = N0(C, i)→ Nq(C, i) induced by the degeneracies (i.e.,
sending c to c = c = · · · = c) is an equivalence of categories.

Lastly, if C is an Ab-category, N(C, i) will be a simplicial Ab-category.
If C is an Ab-category we will abuse notation by writing THH(C) when we really should

have written THH(C̃) (where the functor C 7→ C̃ from Ab-categories to ΓS∗-categories of
II.1.6.2.2 allows us to consider all Ab-categories as ΓS∗-categories.

A consequence of the lemma is that if C is an Ab-category the map

THH(C)→ THH(N(C, i))

induced by the degeneracies becomes a pointwise equivalence (since the functor C 7→ C̃
sends Ab-equivalences to ΓS∗-equivalences and THH sends ΓS∗-equivalences to pointwise
equivalences).

This paves the way for our first definition of the trace from algebraic K-theory to
topological Hochschild homology:
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{Def:trace additive}
Definition 1.0.5 (The trace for additive categories) Let E be an additive category.
The trace map for E in the Segal formalism is the following chain of natural transformations
where the leftward pointing arrows are all stable equivalences

Σ∞BiH̄E = Σ∞obN(H̄E , i) −−−→ THH(N(H̄E , i))
∼
←−−− THH(H̄E)

∼
←−−− Σ∞THH(E)

where the first map is the Dennis trace of 2.2, the second is the equivalence coming from
the equivalences of categories E → Nq(E , i) and the third from from lemma 1.0.1.

1.1 Doing it with the S construction

We may also use the S construction of Waldhausen (see definition I.2.2.1). This has sim-
plicial exact categories as output, and we may apply THH degreewise to these categories.

If C is an exact category and X a space, there is a map S1∧THH(S(k)C;X) →
THH(S(k+1)C;X) (since S0C is trivial), and so THH(SC;X) = {k 7→ THH(S(k)C;X)}
defines a spectrum. It is proven in [27] that the adjoint

THH(S(k)C;X)→ ΩTHH(S(k+1)C;X)

is an equivalence for k > 0. Furthermore if C is split exact, that is all short exact sequences
split, then it is an equivalence also for k = 0. Note that any additive category can be viewed
as a split exact category by choosing exactly the split exact sequences as the admissible
exact sequences. In fact, if we apply the S construction to an additive category with no
mention of exact sequences, this is what we mean.

1.1.1 Split exact categories

Let C be an additive category. We defined the n × n upper triangular matrices, TnC, in
I.2.2.4, to be the category with objects obC×n, and morphisms

TnC((c1, . . . , cn), (d1, . . . , dn)) =
⊕

1≤j≤i≤n

C(ci, dj)

and with composition given by matrix multiplication. Since C is additive, so is TnC.
Consider the two functors

C×n → TnC→ C×n.

The first is the inclusion of C×n as the diagonal subcategory of TnC, the second forgets
about off-diagonal entries, and the composite is the identity.

{3.4.2}
Proposition 1.1.2 Let C be an additive category. Then the inclusion of the diagonal
C×n → TnC induces a pointwise equivalence

THH(C×n)→ THH(TnC).
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Proof: Using the stable equivalence of products and wedges, we see that the map of ΓS∗-
categories [

C⊕ (C×n−1)⊕

(Tn−1C)⊕

]
→ (TnC)⊕,

where the left hand category is defined in 2.5.7, is a stable equivalence. Hence the statement
follows by induction on n from lemma 2.5.4 and lemma 2.5.8.

Alternatively you can steal the result from I.3.6 via the equivalences

THH(C) ' HHH(Z̃C,C) ' HHH(ZC,C) = F (C,C).

Considering the additive category C as a split exact category, the forgetful map TnC→
C×n factors through SnC

TnC→ SnC→ C×n

The first map is given by sending (c1, . . . , cn) to i ≤ j 7→ ci+1 ⊕ · · · ⊕ cj, and the second
projects i ≤ j 7→ cij onto i 7→ ci−1,i.

{3.4.3}
Corollary 1.1.3 Let C be a additive category. Then

THH(C×n)→ THH(SnC)

is a pointwise equivalence, and so for every X ∈ Γo the natural map

THH(C;X)→ ΩTHH(SC;X)

is a weak equivalence.

Proof: This follows by proposition 1.1.2 since by I.2.2.5 TnC is equivalent to SnC, and
THH sends equivalences to pointwise equivalences.

Hence we get
{cor:IV THHSvsH}

Corollary 1.1.4 Let C be an additive category. Then for every k ≥ 0 the natural map
H̄C(Sk)→ S(k)C induces a pointwise equivalence

THH(H̄C(Sk))
∼
−−−→ THH(S(k)C).

Substituting C with S(k)C in corollary 1.1.3 we get
{3.4.4}

Corollary 1.1.5 Let C be an additive category. Then the natural map

THH(SkC)→ ΩTHH(Sk+1C)

is a pointwise equivalence for all k ≥ 0.

and exactly the same proof give the
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{3.4.5}
Corollary 1.1.6 Let C be an additive category, and M a bilinear C bimodule. Then the
natural map

THH(SkC, SkM)→ ΩTHH(Sk+1C, Sk+1M)

is a pointwise equivalence for all k ≥ 0.

This allows us to define the trace used in [27], competing with the one we gave in ??.
{Def:nerveless trace}

Definition 1.1.7 (The nerveless trace for split exact categories) Let E be an ad-
ditive category. The trace map for E in the Waldhausen formalism is the following chain
of natural transformations where the leftward pointing arrows are all stable equivalences

Σ∞obSE −−−→ THH(SE)
∼
←−−− Σ∞THH(E)

where the first map is the Dennis trace of 2.2, the second is the equivalence coming from
from corollary 1.1.3.

whose zeroth space is equivalent to the usual THH(A, P ;X).

1.1.8 Comparison of traces for the Waldhausen and Segal approaches

As a last step, we need to know that the two definitions for the trace for additive categories
agree.

This information is collected in the following commutative diagram of bispectra (the
Γ-spaces are tacitly evaluated on spheres)

Σ∞obSE

∼2.3.2
�� ++WWWWWWWWWWWWWWWWWWWWWWWWWW

Σ∞BiSE // T (N(SE , i)) T (SE)∼
oo

Σ∞BiH̄E //

∼2.1.6

OO

T (N(H̄E , i))

∼

OO

T (H̄E)∼
oo

∼

OO

Σ∞T (E)∼
1.0.1oo

∼
1.1.3

eeKKKKKKKKKK

where each number refer to the result showing that the corresponding arrow is a weak
equivalence.

1.2 Comparison with the homology of an additive category and

the S-construction
{subsec: Vcompare S and H trace}

One thing that needs clarification is the relationship with the homology of a category which
we used in I.3, and which we showed was equivalent to stable K-theory when applied to an
additive category. We used the S-construction there, and we use it here, and in both places
the outcome are Ω-spectra, and these coincide. We use as a comparison tool the model for
topological Hochschild homology by means of abelian groups discussed in section 2 (where
it was called something else??)
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{3.5.1}
Remark 1.2.1 If C is an additive category, and M an additive bimodule, we have strict
equivalences of spectra (indexed by m)

F (S(m)C, S(m)M)
∼
−−−→ HHZ(S(m)C, S(m)M)

∼
←−−− THH(S(m)C, S(m)M).

We have two independent proofs that these spectra are Ω spectra. Furthermore, the maps

F0(S
(m)C, S(m)M)

∼
−−−→ HHZ(S(m)C, S(m)M)0

∼
←−−− THH(S(m)C, S(m)M)0

are also strict equivalences, and so all maps in

F0(S
(m)C, S(m)M)

∼
−−−→ HHZ(S(m)C, S(m)M)0

∼
←−−− THH(S(m)C, S(m)M)0

'

y '

y '

y
F (S(m)C, S(m)M)

∼
−−−→ HHZ(S(m)C, S(m)M)

∼
←−−− THH(S(m)C, S(m)M)

are (stable) equivalences of spectra.

1.3 More on the trace map K → THH for rings

For comparison with earlier constructions, it is often fruitful to give a slightly different
view of the trace map, where the cyclic nerve plays a more prominent rôle.

Furthermore, the comparison with the map defining the equivalence between stable K-
theory and topological Hochschild homology has not yet been seen to relate to the trace.
This will be discussed further in the next section.

In this section we let T(A, P ;X) be the Ω-spectrum

{k 7→ THH(S(k)PA, S
(k)MA(−,−⊗A P );X).

Consider

obSPA
c7→c=c
−−−−→ holim−−→

x∈I
Ωx
∨
c∈obSPA

SPA(c, c)⊗Z Z̃[Sx]∥∥∥

T(A,A;S0)
degeneracies
←−−−−−−− T0(A,A;S0)

This map agrees with the trace map given in the previous section, and displays the map
as the composite K(A) = T(A)S

1
⊂ T(A) and so tells you that the S1 action on THH is

important. You do not expect to be able to calculate fixed point sets in general, and so
any approximation to the fixed points which are calculable should be explored.

If one want maps from NiSPA instead, one can either do as we did in section 1.2, or
one may rewrite this slightly (and so destroying the circle action, but that does not concern
us right now). As for groups, there is a map BiC → N cyiC for any category C, given by

sending c0 c1
α1oo . . .

α2oo cq ∈ BqiC
αqoo to

cq c0
(
Q
αi)
−1

oo c1
α1oo . . .α2oo cq ∈ N

cy
q iC

αqoo
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This splits the natural map N cyiC → BiC given by forgetting (which is there regardless
of maps being isomorphisms). If C is a linear category we have a map N cyiC → N cyC →
THH(C), where the first one is given by the inclusion of the isomorphism into all of C,
and the second is stabilization. The diagram

BiC ←−−− B0iC = obCy
y

N cyiC −−−→ THH(C)

commutes, where the rightmost map is defined as above. Setting C = S(m)PA we obtain
the diagram

BiSPA ←−−− obSPAy tr

y
N cyiSPA −−−→ T(A)

.

There is no contradiciton to be had from the fact that the diagram

BiSPA −−−→ T (N(SPA, i))y
x∼

N cyiSPA −−−→ T (SPA)

.

does not commute.

1.4 The trace, and the K-theory of endomorphisms

Let C be an exact category and let End(C) be the category of endomorphisms in C. That
is, it is the exact category with objects (c, f), with f : c → c ∈ C, and with morphisms
(c, f)→ (d, g) commuting diagrams

c −−−→ d

f

y g

y
c −−−→ d

A sequence (c′, f ′) → (c, f) → (c′′, f ′′) is exact if the underlying sequence c′ → c → c′′ is
exact. We note that

obSEnd(C) ∼=
∐

c∈obSC

End(c)

There are two functors C → End(C) given by c 7→ {
0
→ c} and c 7→ {c = c} splitting the

forgetful projection End(C)→ C given by (c, f) 7→ c. We let

End(C) =
∨

c∈obSC

End(c) ' fiber{obSEnd(C)→ obSC}
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(the End(c)s are here pointed at the zero maps) and note that the first step in the trace,
obSC→ T(C)0 facors through obSC→ End(C) via the map c 7→ c = c.

If C ⊆ D is cofinal (ref) then End(C) ⊆ End(D) is also cofinal, and a quick calculation
tells us that K0(End(D))/K0(End(C)) ∼= K0(D)/K0(C), and hence by [113] we get that
End(C) → End(D) is an equivalence. This tells us that the “strong” cofinality of THH
appears at a very early stage in the trace; indeed before we have started to stabilize.

2 The general construction of the trace

In order to state the nerve in the full generality, it is necessary to remove the dependence on
the enrichment in Ab we have used so far. This is replaced by an enrichment in ΓS∗ which is
always present for categories with sum. The second thing we have to relax is our previous
preoccupation with isomorphisms. In general this involves a choice of weak equivalences,
but in order to retain full functoriality of our trace construction we choose to restrict to
the case where the weak equivalences come as a natural consequence of the ΓS∗-category
structure. This is sufficient for all current applications of the trace, and the modifications
one would want in other (typically geometric) applications are readily custom built from
this.

2.1 The category of pairs P, nerves and localization

For applications to K-theory, one needs to consider categories with a given choice of weak
equivalences. The weak equivalences are at the outset unaware of the enrichment of our
categories: they only form a S-category (just like the units in a ring only form a group,
disregarding the additive structure). This is the reason we have to introduce pairs of
categories.

Let the category of free pairs Pfree be the category whose objects are pairs (C, w) where
C is a small ΓS∗-category and w : W → RC an S-functor of small S-categories.

A morphism
(C, w) −−−→ (C ′, w′)

in Pfree is a pair
F : C −−−→ C ′, G : W −−−→ W ′

where F is a ΓS∗-functor and G an S-functor such that

W
w
−−−→ RC

G

y RF

y

W ′
w′
−−−→ RC ′

commutes.
A weak equivalence in Pfree is a map

(C, w)
(F,G)
−−−→ (C ′, w′)
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such that F is a stable equivalence of ΓS∗-categories and G is a weak equivalence of S-
categories.

2.1.1 The object functor

from the category of free pairs to sets is the functor ob which sends (C, w : W → RC) to
the set of objects obW. If for some reason the objects in question are naturally pointed
(as they will be in the applications to algebraic K-theory), we use the same letters for the
functor into pointed sets.

2.1.2 The subcategories Pfix ⊆ P ⊆ Pfree

Consider the full subcategory P ⊆ Pfree whose objects are the pairs (C, w) that have the
property that w : W → RC is the identity on objects. The subcategory of fixed pairs
Pfix ⊆ P contains all objects, but a morphism of fixed pairs is a morphism of pairs

(C, w)
(F,G)
−−−→ (C ′, w′)

where F (and hence G) is the identity on objects.

These subcategories inherit the notion of weak equivalences from Pfree by requiring that
the relevant maps lie in the appropriate category.

2.1.3 The right adjoint φ : Pfree → P

The inclusion functor P ⊆ Pfree has a right adjoint φ : Pfree → P given by sending
(C, w : W → RC) ∈ obPfree to φ(C, w) = (φwC, φw) each of whose factors are defined
below.

The set of objects of φ(C, w) is obW, and given two objects c and d the Γ-space of
morphism is given by

φwC(c, d) = C(wc, wd)

and φw is

W(c, d)
w
−−−→ RC(wc, wd) = RφwC(c, d).

Note that the composite

P ⊆ Pfree φ
−−−→ P

is the identity. When considered as an endofunctor on Pfree φ is idempotent (φ2 = φ) and
there is a natural transformation φ → idPfree given by the obvious map φwC → C which
is the identity on morphisms. Using this we get that φ is right adjoint to the inclusion as
promised.
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2.1.4 The nerve
{subsec: enrichednerve}

For each nonnegative integer q, let [q] = {0 < 1 < · · · < q}, and consider it as the category
{0← 1← · · · ← q}. If D is a category, the nerve of D is the simplicial category which in
dimension q is the category of functors NqD = [[q],D].

In contrast, if W is a S-category, we get a bisimplicial category NW which in bidegree
p, q is the functor category (NqW)p = [[q],Wp]. Note that NW is not a simplicial S-
category since the set of objects may vary in both the p and q direction. However, it is
convenient to consider NW as a bisimplicial S-category with discrete morphism spaces.
Likewise, if C is a ΓS∗-category, NC is the bisimplicial ΓS∗-category [p], [q] 7→ [[q], Cp]. Both
constructions are appropriately functorial.

Let the free nerve
N free : Pfree → [∆o ×∆o,Pfree]

be the functor which sends (C, w : W → RC) to the bisimplicial pair N free(C, w) which in
bidegree q, p is given by

Nq(C, w)p = (NqCp, NqWp
Nqw
−−−→ NqRCp = RNqCp).

More interestingly, we have the nerve N which is defined by the following diagram

Pfree N free

−−−→ [∆o ×∆o,Pfree]

⊆

x φ

y

P
N
−−−→ [∆o ×∆o,P]

.

We will often write (NwC, Nw) for the bisimplicial ΓS∗-category N(C, w). Note that
obN(C, w) is (the simplicial set of objects of) the usual degreewise nerve of W.

2.1.5 The localization functor

In a pair (C, w) one may think of the map w : W → RC as an inclusion of a subcategory of
“weak equivalences”, and the purpose of the localization of [25] is to invert the weak equiv-
alences. More precisely, the localization consists of two functors L,B : P → P connected
by natural transformations

(C, w) ←−−− B(C, w) −−−→ L(C, w)

where L(C, w) is the localization of (C, w) (“with respect to the weak equivalences”). This
construction enjoys various properties listed in 2.4.2 below. First we recall the relevant
definitions concerning groupoids.

2.1.6 Groupoids and groupoid-like pairs

Let B be a S-category. The category π0B is the category with the same objects as B, but
with morphism sets from a to b the path components π0B(a, b).
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We say that a S-category B is groupoid-like if π0B is a groupoid (i.e., all its morphisms
are isomorphisms). We say that B is a groupoid if for every q the category Bq is a groupoid.
A pair (C, w : W → RC) ∈ P is called a groupoid(-like) pair (resp. a groupoid-like pair) if
W is a groupoid (resp. groupoid-like). We say that a functor

(C, w : W −−−→ RC) : Γo −−−→ P

is groupoid-like if W(X) is groupoid-like for all X ∈ Γo.

2.1.7 Properties of the localization.
{ssec:localization}

See [25] for further information. Given a pair (C, w) ∈ P the following is true.

1. The maps giving the natural transformations

(C, w) ←−−− B(C, w) −−−→ L(C, w)

are in Pfix.{ssec:localization1}

2. L(C, w) is a groupoid pair.{ssec:localization2}

3. B(C, w)→ (C, w) is a weak equivalence.{ssec:localization3}

4. If (C, w)→ (C ′, w′) ∈ Pfix is a weak equivalence, then L(C, w)→ L(C ′, w′) is a weak
equivalence.{ssec:localization4}

5. If (C, w) is a groupoid-like pair, then B(C, w)→ L(C, w) is a weak equivalences.{ssec:localization5}

6. On the subcategory of Pfix of groupoid pairs (C, w) there is a natural weak equivalence

L(C, w)
∼
−−−→ (C, w)

such that
L(C, w)

%%LLLLLLLLLL
B(C, w)oo

��
(C, w)

commutes.{ssec:localization6}

2.1.8 A definition giving the K-theory of a symmetric monoidal ΓS∗-category
using the canonical choice of weak equivalences

We are ready for yet another definition of algebraic K-theory to be used in this book. This
formulation uses the uniform choice of weak equivalences we made in section II.3.3. This
is convenient, and covers most known examples, however we must be open to relax this if
a given application is not of this sort.
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Let
k : symmetric monoidal ΓS∗-categories −−−→ [Γo,P]∗

(the ∗ subscript means that the functors are pointed) be the composite

symmetric monoidal ΓS∗-categories

H̄

y
[Γo,ΓS∗-categories]∗

T0

y
[Γo,ΓS∗-categories]∗

C7→W (C)=(C,wC)

y
[Γo,P]∗

.

and let
K : symmetric monoidal ΓS∗-categories −−−→ [∆o, [Γo,P]∗]

be the composite
symmetric monoidal ΓS∗-categories

k

y
[Γo,P]∗

L

y
[Γo,P]∗

N

y
[∆o, [Γo,Pfree]∗]

φ

y
[∆o, [Γo,P]∗]

If D is a symmetric monoidal category, then we call K(D) the algebraic K-theory
category of D, whereas its objects obK(D) is the algebraic K-theory spectrum of D.

2.2 Redundancy in the definition of K from the point of view of

algebraic K-theory

From K we get algebraic K-theory by applying the object functor, and then the extra stuff
which is put there to make the morphisms right, can be peeled away.

Lemma 2.2.1 Let (C, w : W → RC) ∈ P and assumeW is groupoid like. Then the natural
maps

obφNL(C, w) ←−−− obφNB(C, w) −−−→ obφN(C, w)
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are weak equivalences.

Proof: This follows from the properties 2.4.2.2.3.5, 2.4.2.2.3.5 and 2.4.2.2.4.2 of the local-
ization since by [29, 9.5] the nerve preserve weak equivalences of S(obW)-categories, and
so the claim follows.

Together with lemma II.3.3.2 this gives the following theorem justifying our claim that
K measures algebraic K-theory. Recall that BiH̄C (the nerve of the isomorphisms of the
Segal construction which we call H̄) is one of the formulae for the algebraic K-theory, which
we in III.2 compared with Waldhausen’s construction and in III.3 compared with the plus
construction.

Theorem 2.2.2 Let D be a symmetric monoidal ΓS∗-category. Then obK(D) is connected
to obNk(D) = obNWT0H̄D by a chain of natural weak equivalences. If D has stably fi-
brant morphism spaces, then this is naturally equivalent to obNWH̄D, and if it has discrete
morphism spaces it is naturally equivalent to obNiH̄D.

2.3 The cyclotomic trace

Due to the fact that our nerves give simplicial discrete ΓS∗-categories as output, it is
convenient to consider a ΓS∗-category C as a simplicial category enriched in Γ-sets {[q] 7→
Cq} before applying THH, and we define

thh(C) = {[q] 7→ THH(Cq)}.

By an argument just like the proof of lemma IV.1.3.1 regarding THH of simplicial objects
we get that the canonical map

thh(C)
∼
−−−→ THH(C)

is a pointwise equivalence, and so it does not really matter.
We need these constructions to be functors on the level of pairs, and for (C, w) ∈ P we

simply set
thh(C, w) = thh(C).

Consider the transformation

thh(N(C, w)) ←−−− thh(N0(C, w)) thh(C, w)

induced by the degeneracies (note that the equality thh(C, w) = thh(N0(C, w) gets all
messed up if we use THH instead of our equivalent thh).

{lem:IV3.3}
Lemma 2.3.1 If (C, w : W → RC) ∈ P is a groupoid pair, then the natural map

thh(C, w) −−−→ thh(N(C, w))

is a pointwise equivalence.



2. THE GENERAL CONSTRUCTION OF THE TRACE 163

Proof: Fix a simplicial dimension p. Note that since all maps in Wp are isomorphisms,
the map induced by the degeneracy maps

(C, w)p = N0(C, w)p → Nq(C, w)p

gives an equivalence Cp = Nw
0 Cp → Nw

q Cp of (Γ-set)-categories for each q ≥ 0. The
statement follows immediately.

Because of naturality, the same goes through, even though our applications will not be
to individual pairs, but rather to functors

(C, w) : Γo → P

2.3.2 The Dennis trace and cyclotomic trace maps of ΓS∗-categories

Let C be a ΓS∗-category. There is a map, the “Dennis trace map”

obC −−−→ thh(C0)(S
0)0

degeneracies
−−−−−−−→ thh(C)(S0).

Here the first map is defined by sending d ∈ obC to the image of the non-base point under
the unit map

S0 = 1+ = S(1+) −−−→ C0(d, d)(1+)

composed with the obvious map

C0(d, d)(S
0) ⊆

∨
c∈obC C0(c, c)(S

0) −−−→

(
holim
−−−−→
x∈obI

Ωx
∨
c∈obC C0(c, c)(S

x)

)

0

= thh(C0)(S
0)0.

If C has an initial object, then the Dennis trace is a pointed map, and we get a map of
Γ-spaces Σ∞obC → thh(C) given by the “assembly”

X∧obC −−−→ X∧thh(C)(S0) −−−→ thh(C)(X).

Definition 2.3.3 The THH-trace of symmetric monoidal ΓS∗-categories is the natural
transformation of bispectra which to a symmetric monoidal ΓS∗-category D gives the map

Σ∞obK(D) −−−→ THH(K(D))

induced by the Dennis trace.
{theo:IV3.6}

Theorem 2.3.4 Let D be a symmetric monoidal ΓS∗-category. Then THH(K(D)) is nat-
urally equivalent to Σ∞THH(D).

Proof: This is corollary 2.3.8 below.
Before we prove theorem 2.3.4, we must make some preparations which will also be

useful later in the paper. Let
(C, w) : Γo −−−→ P

and consider the commutative diagram
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2.3.5 Main Diagram

Σ∞obN(C, w) −−−→ THH(N(C, w)) ←−−− THH(C, w)
j

←−−− Σ∞THH(C(1+))

'

x
x '

x
Σ∞obN(B(C, w)) −−−→ THH(N(B(C, w))) ←−−− THH(B(C, w))

iK

y
y iTHH

y
Σ∞obN(L(C, w)) −−−→ THH(N(L(C, w)))

'
←−−− THH(L(C, w))

We note that if (C, w) = k(D) where D is a symmetric monoidal ΓS∗-category NBNBrefonk,{maindiagram}
the lower left hand horizontal map is exactly the cyclotomic trace Σ∞obK(D)→ THH(KD),
and the top rightmost spectrum is THH(T0D) ' THH(D).

Σ∞obNkD −−−→ THH(NkD) ←−−− THH(kD)
j

←−−− Σ∞THH(T0D)

'

x
x '

x '

x
Σ∞obN(B(kD)) −−−→ THH(N(B(kD))) ←−−− THH(B(kD)) Σ∞THH(D)

iK

y
y iTHH

y
Σ∞obK(D) −−−→ THH(K(D))

'
←−−− THH(L(kD))

Lemma 2.3.6 The arrows marked with ' in the main diagram 2.3.5 are stable equiva-
lences.

Proof: It is enough to consider the simpler case where (C, w : W → RC) is a single object
in P (and not a functor Γo → P).

First consider the two maps induced by B(C, w) → (C, w) ∈ Pfix. By . B(C, w) →{ssec:localization}{ssec:localization3}
(C, w) is a weak equivalence, giving the result since both Σ∞obN and THH send weak
equivalences to stable equivalences.

Lastly the map

THH(N(L(C, w)))
∼
←−−− THH(L(C, w))

is a stable equivalence by 2.3.1 since L(C, w) is a groupoid pair.

Theorem 2.3.7 Let (C, w) : Γo → P.

1. If (C, w) is groupoid-like then the arrows marked iK and iTHH in the main diagram
2.3.5 are stable equivalences of spectra.

2. If C is quite special, then the arrow marked j in the main diagram 2.3.5 is a stable
equivalence.

Proof: Assume that (C, w) is groupoid-like. That iK is a stable equivalence follows from
lemma NBNBrefThat iTHH is a stable equivalence follows by . since THH preserves stable{ssec:localization}{ssec:localization5}
equivalences.

If C is quite special, j is a stable equivalence since THH preserves products and stable
equivalences.
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{cor:IV3.10}
Corollary 2.3.8 If D is a symmetric monoidal ΓS∗-category, then the main diagram gives
a natural chain of stable equivalences

THH((kD)
∼
←−−−

j
Σ∞THH(T0D)

∼
←−−− Σ∞THH(D)

'

x
THH(B(kD))

'

yiTHH

THH(K(D))
∼
←−−− THH(L(kD))

2.4 Weak cyclotomic trace

The price we have to pay for having a single map representing our cyclotomic trace is
that the models of either side are more involved than their classical counterparts. At the
cost of having to talk about weak transformations (some weak equivalences point in the
“wrong” direction) this can be remedied by just exchanging the complicated models with
their simpler, but equivalent cousins.

This is useful when we want to compare our definition to previous definitions of cyclo-
tomic traces which were all examples of quite special groupoid-like pairs.

Definition 2.4.1 1. Let
(C, w) : Γo → P

be quite special and groupoid-like. Then the weak cyclotomic trace is the functorial
weak composite Σ∞obN(C, w)→ Σ∞THH(C(1+)) along the lower outer edge of the
diagram 2.3.5 above.

2. If D is a symmetric monoidal ΓS∗-category, then the weak trace of D is the composite
weak map

Σ∞obNk(D) −−−→ Σ∞THH(k(D)(1+)) = Σ∞THH(T0D)
∼
←−−− Σ∞THH(D)

where the leftmost weak map is the weak trace of k(D) (which is quite special and
groupoid-like).

Note that the only map in this weak trace of D that is not a weak equivalence is
the cyclotomic trace Σ∞obK(D)→ THH(K(D)) of definition 3.5(̇recall that by definition
K(D) = NLk(D)).

2.4.2 The quite special groupoid case

If (C, w) ∈ P is a groupoid pair, then lemma 2.3.1 says that

THH(N(C, w)) ←−−− THH(C, w)
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is an equivalence, and we are free to consider the weak map

Σ∞obN(C, w) −−−→ THH(N(C, w))
∼
←−−− THH(C, w)

from the upper line of the main diagram 2.3.5. This gives rise to the simpler definition of
the cyclotomic trace which was used in refNBNB. Compare Wald and Segal In our context
we have to keep the nerves in place, and in view of the commutativity of

obSE −−−→ THH(SẼ)(S0)

'

x '

x
obNiSE −−−→ THH(N(SẼ, iSE ⊆ SE))(S0)

the relevant translation is the following:

Definition 2.4.3 Let E be a symmetric monoidal Ab-category. The weak cyclotomic trace
of E is the weak map

Σ∞obNiH̄E −−−→ THH(N(H̄Ẽ, iH̄E ⊆ H̄E))
∼
←−−− THH(H̄Ẽ)

∼
←−−− Σ∞THH(Ẽ)

obtained from the top row of the main diagram 2.3.5 with (C, w) = (H̄ Ẽ, iH̄E ⊆ H̄E).

The following gives the comparison between the weak traces. That two weak transfor-
mations “agree up to homotopy” can have many interpretations. We use the term for the
equivalence relation generated by the relation gotten by saying that if

A0 −−−→ B0
∼
←−−− C0 −−−→ . . .

∼
←−−− Y0 −−−→ Z0∥∥∥ '

y '

y '

y
∥∥∥

A1 −−−→ B1
∼
←−−− C1 −−−→ . . .

∼
←−−− Y1 −−−→ Z1

is a commutative diagram of natural transformations where the marked arrows are weak
equivalences, then the top and the bottom row define weak transformations that agree up
to homotopy.

{prop:IV4.4}
Proposition 2.4.4 Let E be a symmetric monoidal Ab-category. Then the weak cyclo-
tomic trace of Ẽ precomposed with the map Σ∞obNiH̄E

∼
→ Σ∞obNkẼ agrees up to homotopy

with the weak cyclotomic trace of E .

Proof: If we let (C, w) = (H̄Ẽ , iH̄E ⊆ H̄E)), in the main diagram 2.3.5, we have by . that{ssec:localization}{ssec:localization6}
there are natural vertical equivalences from the bottom to the top rows making everything
commute

Σ∞obN(C, w) −−−→ THH(N(C, w))
∼
←−−− THH(C, w)

∼
←−−− Σ∞THH(C(1+))

'

x
x '

x
Σ∞obN(L(C, w)) −−−→ THH(N(L(C, w)))

'
←−−− THH(L(C, w))
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The top row is the weak cyclotomic trace of E whereas going around the lower edge agrees
up to homotopy with the weak cyclotomic trace of (C, w). But all nodes of the weak trace
are homotopy invariants, and so the weak equivalence (C, w) → kẼ shows that the weak
cyclotomic trace of (C, w) agrees up to homotopy with the weak cyclotomic trace of Ẽ
precomposed with the map Σ∞obNiH̄E

∼
→ Σ∞obNkẼ .

2.5 The category of finitely generated A-modules

Let A be an S-algebra, and consider the ΓS∗-full subcategory of category of A-modules
with objects k+∧A for k ≥ 0. More precisely we could equally characterize it as the ΓS∗-
category whose objects are the natural numbers (including zero), and where the morphisms
are given by

FA(k+, l+) =MA(k+∧A, l+∧A) ∼=
∏

k

∨

l

A

This forms a symmetric monoidal ΓS∗-category via the sum. Let

k(FA) = (CA, wA) : Γo → P

be the functor produced by the machinery of section 2: CA = T0H̄FA and wA : WA → RCA
the pullback of iπ0CA → π0CA ← RCA.

By Morita equivalence NBNBref, the map THH(FA) ← THH(A) induced by the
inclusion of the rank one module is also a stable equivalence.

Definition 2.5.1 The algebraic K-theory of an S-algebra A is the ΓS∗

K(A) = obNk(FA)

and the trace for S-algebras is the weak natural transformation

Σ∞K(A) −−−→ Σ∞THH(A)

given by the weak cyclotomic trace for FA followed by the equivalence induced by the
inclusion of the rank one module

THH(FA)
∼
←−−− THH(A).

Hence the only thing left to claim is that

1. this definition of K-theory agrees with the one in NBNBref, and

2. this definition of the cyclotomic trace agrees with the one in NBNBref.

Recall the definition of the group-like simplicial monoid ĜLk(A) where A is an S-algebra
as the pullback of GLk(π0A)→Mk(π0A)← RT0MkA.
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Theorem 2.5.2 There is a natural chain of weak equivalences

Ω∞obK(FA) ' Ω∞K(A) ' Kf
0 (π0A)× BĜL(A)+.

Proof: The first weak equivalence follows from NBNBref. To simplify notation, let W =
WT0H̄FA

. Note that K(A) ' obNW . Since the associated spectrum is special

Ω∞K(A) ' ΩobNW (S1),

and for each n+ ∈ Γo we have that obNW (n+) ' (obNW (1+))×n. For each k ≥ 0, let W k

be the full subcategory of W (1+) whose only object is k+∧A. Note that by definition, this

is nothing but ĜLk(A) considered as a simplicial category with only one object. Hence we
are done, for by Segal [?] there is a chain of weak equivalences

ΩobNW (S1) ' Kf
0 (π0A)× lim

−→
k

(obNW k)+ = Kf
0 (π0A)× BĜL(A)+.

Theorem 2.5.3 The current definition of the weak cyclotomic trace agrees up to homotopy
with the one given in NBNBref for rings.

Proof: There are two steps to this. The first is to note that if A is a ring, then the
definition we have given of the category of finitely generated HA-modules, agrees with
the more down-to-earth definition of the category of finitely generated A-modules. More
precisely, let MA be the symmetric monoidal Ab-category whose objects are the natural
numbers (including zero) , and where a morphism from m to n is an n×m-matrix. Consider
this as a ΓS∗-category M̃A as in NBNBref We see that there is a ΓS∗-weak equivalence
FA → M̃A given by sending ∨ to ⊕, and so also an equivalence

RT0FA
∼
→ RT0M̃A

∼
←−−− MA.

Hence the K theory and THH as given in this paper are naturally equivalent to the usual
ones when we choose the weak equivalences to be the isomorphisms, since ĜLk(HA) '
GLk(A).

The second thing we have to see is that the two definitions of the trace agree. Since the
model we have for finitely generated free HA-modules is equivalent to M̃A, this follows
from proposition 2.4.4.

3 Stable K-theory and topological Hochschild homol-

ogy.

In this section we are going to give a proof of Goodwillies conjecture KS ' THH for
S-algebras. For rings, this is almost clear already, but for S-algebras we need to know that
some of the maps used in the ring case have their analog in the S-algebra world. These
considerations runs parallel with a need which will be apparent in chapter IV, namely: we
need to know what consequences the equivalence KS ' THH has for the trace map.
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3.1 Stable K-theory

Recall the discussion of stable K-theory in (ref?). The discussion in the previous chapter
give that

{4.1.1}
Theorem 3.1.1 Let A be a simplicial ring and P a simplicial A bimodule. Then

KS(A, P ) ' T(A, P )

and the equivalence is induced by

KS(A, P ) ' D1CA(P ) ∼= T(A, P )0
'
−−−→ T(A, P )

and this is compatible with the definition for the F construction.

Proof: As both K-theory (of radical extensions) and THH may be computed degreewise
we may assume that A and P are discrete. Then the only thing which need verification is
the compatibility. Recall that the equivalence KS(A, P ) ' F(A, P ) was given by

D1CA(−)
'
−−−→ D1F0(A,−)

'
←−−− F0(A,−)

'
−−−→ F(A,−)

Now considering the diagram

D1CA(P )
∼=
−−−→ T(A, P )0 −−−→ T(A, P )

'

y '

y '

y

D1F0(A,−)(P )
∼=
−−−→ R(A, P )0 −−−→ R(A, P )

'

x '

x
F0(A, P )

'
−−−→ F(A, P )

where R(A, P ) represents the spectrum R(SPA,SMA(−,− ⊗A P )) and R is as in (ref?)
we see that the equivalences are compatible.

3.2 THH of split square zero extensions

Let A be an S-algebra and P an A bimodule. We want to study THH(A ∨ P ) closer. In
the ring case, we see that A ∨ P → A n P is a stable equivalence of S-algebras, and so
A ∨ P will cover all the considerations for split square zero extensions of rings.

The first thing one notices, is that the natural distributivity of smash and wedge give
us a decomposition of THH(A∨P ;X), or more precisely a decomposition of V (A∨P )(x)
for every x ∈ I, as follows. Let

V (j)(A, P )(x) =
∨

φ∈∆m([j−1],[q])

∧

0≤i≤q

Fiφ(xi)
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where

Fi,φ(x) =

{
A(Sx) if i /∈ imφ

P (Sx) if i ∈ imφ

Then
V (A ∨ P )(x) ∼=

∨

j≥0

V (j)(A, P )(x)

(note that V (j)(A, P )(x) = ∗ for j > q + 1). Set

THH(j)(A, P ;X)q = holim
−−−−−→
x∈Iq+1

Ω∨x(X∧V (j)(A, P )(x))

and
T (j)(A, P ;X) = {k 7→ THH (j)(A, P ;Sk∧X)}

We see that this define cyclic objects (the transformations used to define THH respect the
number of occurrences of the bimodule), when varying q. The inclusions and projections

V (j)(A, P )(x) ⊆ V (A ∨ P )(x)→ V (i)(A, P )(x)

define cyclic maps

∨

j≥0

THH(j)(A, P ;X)→ THH(A ∨ P ;X)→
∏

j≥0

THH(j)(A, P ;X)

The approximation lemma assures us that

holim
−−−−−→
x∈Iq+1

∏

j≥0

Ω∨x(X∧V (j)(A, P )(x))→
∏

j≥0

THH(j)(A, P ;X)q

is an equivalence. In effect, the cyclic map

THH(A ∨ P ;X)
∼
−−−→

∏
0≤j THH

(j)(A, P ;X)

is a weak equivalence (more is true, see...). As THH (j)(A, P ;X) is j − 1 reduced, the
product is equivalent to the weak product, and so both maps in

∨

j≥0

T (j)(A, P ;X)→ T (A ∨ P ;X)→
∏

j≥0

T (j)(A, P ;X)

are equivalences.
If P is k − 1 connected and X is m − 1 connected, we see that THH (j)(A, P ;X) is

jk +m− 1 connected, and so

THH(A ∨ P ;X)→ THH(A;X)× THH (1)(A, P ;X)

is 2k+m connected. This means that the space THH (1)(A, P ;X) merits special attention
as a first approximation to the difference between THH(A ∨ P ;X) and THH(A;X).



3. STABLE K-THEORY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY. 171

3.3 Free cyclic objects

Let C be a category with finite sums. Then the forgetful functor from cyclic C objects to
simplicial C objects have a left adjoint, the free cyclic functor N cy defined as follows (see
[129]: it is just yet another example of the fact that Hochschild homology can be defined
in any monoidal category: this time in sets). If φ ∈ Λ we can write τ−sφτ s = ψτ r in a
unique fashion with ψ ∈ ∆. If X is a simplicial object, N cyX is given in dimension q by∐

Cq+1
Xq, and with φ∗ sending x in the s ∈ Cq+1 summand to ψ∗x in the r+sth summand.

Example: if X is a constant simplicial object, then this is S1
+ ⊗X.

Lemma 3.3.1 Lemma 3.3.2 4.2.2 The map adjoint to the inclusion

N cyT (A, P ;X)→ T (1)(A, P ;X)

is an equivalence. More precisely, if P is k − 1 connected and X is m− 1 connected, then

N cyTHH(A, P ;X)→ THH (1)(A, P ;X)

is a 2k + 2m connected cyclic map.
Proof: Note that, V (A, P )(x) ⊆ V (1)(A, P )(x) defines the summand in which the P
appears in the zeroth place. There are q other possibilities for placing P , and we may
encode this by defining the map

Cq+1+∧THH(A, P ;X)q → THH (1)(A, P ;X)q

taking ti ∈ Cq+1, x ∈ Iq+1 and f : S∨x → X∧V (A, P )(x) and sending it to

tix,

S∨t
ix X∧V (1)(A, P )(tix)

∼=

x
x

S∨x
f

−−−→ X∧V (A, P )(x)
⊆
−−−→ X∧V (1)(A, P )(x)

Varying q, this is the cyclic map

N cyTHH(A, P ;X)→ THH (1)(A, P ;X)

Let V (1,i)(A, P )(x) ⊂ V (1)(A, P )(x) be the summand with the P at the ith place. The
map may be factored as

∨
ti∈Cq+1

holim
−−−−−→
x∈Iq+1

Ω∨x(X∧V (A, P )(x))
∼=
−−−→ holim

−−−−−→
x∈Iq+1

∨
ti∈Cq+1

Ω∨x(X∧V (1,i)(A, P )(x))

y
holim
−−−−−→
x∈Iq+1

Ω∨x(X∧V (1)(A, P )(x))



172 CHAPTER V. THE TRACE K → THH

where the first map is given by the same formula with V (1,i) instead of V (1), and where the
latter is induced by the inclusions

V (1,j)(A, P )(x) ⊆
∨

ti∈Cq+1

V (1,i)(A, P )(x) ∼= V (1)(A, P )(x)

We may exchange the wedges by products

holim
−−−−−→
x∈Iq+1

∨
ti∈Cq+1

Ω∨x(X∧V (1,i)(A, P )(x)) −→ holim
−−−−−→
x∈Iq+1

Ω∨x(X∧V (1)(A, P )(x))

y '

y

holim
−−−−−→
x∈Iq+1

∏
ti∈Cq+1

Ω∨x(X∧V (1,i)(A, P )(x))
∼=
−→ holim

−−−−−→
x∈Iq+1

Ω∨x(X∧
∏

ti∈Cq+1
V (1,i)(A, P )(x))

and the left vertical arrow is 2(k +m) connected and the right vertical arrow is an equiv-
alence by Blakers–Massey.

These considerations carry over to the T(AnP ) spectra. As we saw in (ref), D
(m)
A P ⊆

S(m)PAnP were degreewise isomorphisms of categories, so THH(DAP )
∼ //T(An P ) .

Furthermore, recall that the objects of DAP were obSPA, and DAP (c, d) = SPA(c, d) ⊕
SMA(c, d⊗A P ). Substituting X 7→ DAP (c, d)⊗Z Z̃[X] with the stably equivalent X 7→
SPA(c, d)⊗Z Z̃[X]∨ SMA(c, d⊗A P )⊗Z Z̃[X] we may define T(j)(A, P ) as before, and we
get that the cyclic map

∨

j≥0

T(j)(A, P ;X)→ THH(DAP )→ T(An P )

is an equivalence, and that if P is k − 1 connected then

T(A;X) ∨T(1)(A, P ;X)→ T(An P ;X)

is jk − 1 connected. Furthermore, as N cy preserves equivalences, have that the composite

S1
+∧T(A, P ;X)0 = N cy(T(A, P ;X)0)→ N cyT(A, P ;X)→ T(1)(An P )

is an equivalence, and so N cyT(A, P ;X) → S1
+∧T(A, P ;X) is an equivalence (this is a

shadow of a more general fact about N cy which we won’t need, see [?]).

3.4 Relations to the trace K̃(An P )→ T̃(An P )

Our definition of the trace K̃(An P )→ T̃HH(An P ) is the map

K̃(An P ) = õbSPAnP
tr
−−−→ T̃HH(SPAnP ) = T̃(An P )

(ref). Another definition could be via

CA(BP ) −−−→ CA(N cyP ) ∼= Ñ cytDAP −−−→ T̃HH(DAP )
'
−−−→ T̃HH(SPAnP )
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The two are related by the diagram

CA(BP )
∼ //

=

�� &&MMMMMMMMMMM
Ñ iSPAnP

''PPPPPPPPPPPP
õbSPAnP∼

oo

tr
��

CA(BP ) CA(N cyP )oo // ˜THH(SPAnP )

(3.4.0){4.3.1}

{4.3.2}
Lemma 3.4.1 If P is k − 1 connected, and X a finite pointed simplicial set, then

X∧CA(P )→ CA(P ⊗Z Z̃[X])

is 2k connected.

Proof: It is enough to prove it for a finite set X. The smash moves past the wedges in
the definition of CA, and the map is simply

∨
c∈obS

(m)
q PA

of the inclusion

X∧S
(m)
q M(c, c⊗A P )

∼=
−−−→

∨
X−∗ S

(m)
q M(c, c⊗A P )

⊆

y

Z̃[X]⊗Z S
(m)
q M(c, c⊗A P )

∼=
←−−−

∏
X−∗ S

(m)
q M(c, c⊗A P )

which is 2k connected by BM. The usual considerations about m reducedness in the q
direction(s), give the lemma

{4.3.3}
Lemma 3.4.2 If P is k − 1 connected, then the composite

CA(BP ) −−−→ CA(N cyP ) ←−−− S1
+∧CA(P ) −−−→ S1∧CA(P )

is 2k connected (i.e., induce isomorphism on homotopy groups in the expected range).

Proof: Follows from lemma 3.4.1, and the diagram 3.4.0 preceding it
Consider the diagram (of bispectra)

T̃(An P )
∼
−−−→ T̃(An P )

∼
←−−− T̃ (An P )x

x
x

N cyT(A, P )
∼
−−−→ N cyT(A, P )

∼
←−−− N cyT (A, P )

∼

y
y

y
S1

+∧T(A, P )
∼
−−−→ S1

+∧T(A, P )
∼
←−−− S1

+∧T (A, P )y
y

y
S1∧T(A, P )

∼
−−−→ S1∧T(A, P )

∼
←−−− S1∧T (A, P )

The upwards pointing arrows are induced by the inclusion V (A, P )(x) ⊆ V (A n P )(x)
(likewise with V (SPA, P ) instead of V (A, P )). The rightmost upper vertical map is 2k
connected by (ref) and so all up going arrows are 2k connected.



174 CHAPTER V. THE TRACE K → THH

{4.3.4}
Proposition 3.4.3 If P is k − 1 connected, then the composites

K̃(An P ) −−−→ T̃(An P ) ←−−− N cyT(A, P )
∼
−−−→ S1

+∧T(A, P ) −−−→ S1∧T(A, P )

and

K̃(An P ) −−−→ T̃(An P )
∼
←−−− T̃ (An P ) ←−−− N cyT (A, P ) −−−→ S1∧T (A, P )

are 2k connected (i.e., induce isomorphism on homotopy groups in the expected range).

Proof: The second statement follows from the first. As CA(P )→ (D1CA)(P ) ' T(A, P )0

is 2k connected (ref), the lemma gives that all composites from top left to bottom right in

CA(BP ) −−−→ CA(N cyP ) ←−−− S1
+∧CA(P ) −−−→ S1∧CA(P )y
y

y
T̃(An P ) ←−−− S1

+∧T(A, P )0 −−−→ S1∧T(A, P )0x '

y '

y
N cyT(A, P )

'
−−−→ S1

+∧T(A, P ) −−−→ S1∧T(A, P )

are 2k connected. Diagram (?) then imply the proposition.

3.5 Stable K-theory and THH for S-algebras

The functor S 7→ An
S displayed in section III.3.1.8, can clearly be applied to A bimodules

as well, and S 7→ P n
S will be a cube of S 7→ An

S bimodules, which ultimately gives us a
cube S 7→ An

S ∨ P
n
S of S-algebras. If P is an A bimodule, so is X 7→ Σm(X) = P (Sm∧X).

We defined

KS(A, P ) = holim
−→
k

Ωkfiber{K(A ∨ Σk−1P )→ K(A)}

The trace map induces a map to

holim
−→
k

Ωkfiber{THH(A ∨ Σk−1P )→ THH(A)}

and we may compose with the weak map to

holim
−→
k

Ωk(S1∧THH(A,Σk−1P )

given by the discussion of the previous section. We know that this is an equivalence for A
a simplicial ring and P a simplicial A bimodule.

{4.4.1}
Theorem 3.5.1 Let A be an S-algebra and P an A bimodule. ThenKS(A, P ) ' THH(A, P ).
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Proof: There is a stable equivalence An
S ∨ P

n
S → (A ∨ P )nS, consisting of repeated

applications of the 2k connected map Z̃[A(Sk)] ∨ Z̃[P (Sk)] → Z̃[A(Sk)] ⊕ Z̃[P (Sk)] ∼=
Z̃[A(Sk) ∨ P (Sk)]. The noninitial nodes in these cubes are all equivalent to a simplicial
ring case, and is hence taken care of by theorem 3.1.1 (or rather proposition 3.4.3 since the
identification of the equivalence in theorem 3.1.1 with the trace map is crucial in order to
have functoriality for S-algebras), and all we need to know is that

K(A ∨ P )→ holim
←−−
S 6=∅

K(AnS ∨ P
n
S )

in n+ 1 connected, that

THH(A ∨ P )→ holim
←−−
S 6=∅

THH(AnS ∨ P
n
S )

and
THH(A, P )→ holim

←−−
S 6=∅

THH(AnS, P
n
S )

are n connected. This follow from the theorems III.3.2.2 and 1.4.3.
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Chapter VI

Topological Cyclic homology, and the

trace map

{V}
A motivation for the definitions to come can be found by looking at the example of a
ΓS∗-category C. Consider the trace map

obC → THH(C)

Topological Hochschild homology is a cyclic space, obC is merely a set. However, the trace
IV.2.2 is universal in the sense that obC = lim←−

Λo THH(C). A more usual way of putting
this, is to say that obC → |THH(C)| is the inclusion of the T-fixed points, which
also makes sense since the realization of a cyclic space is a topological spaces with a circle
action (see 1.1 below).

In particular, the trace from K-theory has this property. The same is true for the other
definition of the trace (IV.1.5), but this follows more by construction than by fate. In
fact, any reasonable definition of the trace map should factor through the T-fixed point
space, and so, if one wants to approximate K-theory one should try to mimic T-fixed point
space by any reasonable means. The awkward thing is that forming the T-fixed point
space as such is really not a reasonable thing to do, in the sense that it does not preserve
weak equivalences. Homotopy fixed point spaces are nice approximations which are well
behaved, and strangely enough it turns out that so are the actual fixed point spaces with
respect to finite subgroups of the circle. The aim is now to assemble as much information
from these nice construction as possible.

0.6 Connes’ Cyclic homology

The first time the circle comes into action for trace maps, is when Alain Connes defines his
cyclic cohomology [20]. We are mostly concerned with homology theories, and in one of
its many guises, cyclic homology is just the T homotopy orbits of the Hochschild homology
spectrum. This is relevant to K-theory for several reasons, and one of the more striking
reasons is the fact of Loday and Quillen [75] and Tsygan [124]: just as the K-theory is

177
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rationally the primitive part of the group homology of GL(A), cyclic homology is rationally
the primitive part of the Lie-algebra homology of gl(A).

However, in the result above there is a revealing dimension shift, and, for the purposes of
comparison with K-theory via trace maps, it is not the homotopy orbits, but the homotopy
fixed points which play the central rôle. The homotopy fixed points of Hochschild homology
give rise to T. Goodwillie and J. D. S. Jones’ negative cyclic homology HC−(A). In [39]
Goodwillie proves that if A → B is a map of simplicial Q-algebras inducing a surjection
π0(A)→ π0(B) with nilpotent kernel, then the relative K-theoryK(A→ B) was equivalent
to the relative negative cyclic homology HC−(A→ B).

All told, the cyclic theories associated with Hochschild homology seem to be right
rationally, but just as for the comparison with stable K-theory, we must replace Hochschild
homology by topological Hochschild homology to obtain integral results.

0.7 [6] and TC p̂

Topological cyclic homology appears in Bökstedt, Hsiang and Madsen’s proof on the alge-
braic K-theory analog of the Novikov conjecture [6], and is somewhat of a surprise. The
obvious generalization of negative cyclic homology would be the T homotopy fixed point
space of topological Hochschild homology, but this turns out not to have all the desired
properties. Instead, they consider actual fixed points under the actions of the finite sub-
groups of T.

After completing at a prime, looking only at the action of the finite subgroups is not an
unreasonable thing to do, since you can calculate the T homotopy fixed points by looking
at a tower of homotopy fixed points with respect to cyclic groups of prime power order
(see example A.1.9.8.5). The equivariant nature of Bökstedt’s formulation of THH is such
that the actual fixed point spaces under the finite groups are nicely behaved 1.3.14, and in
one respect they are highly superior to the homotopy fixed point spaces: The fixed point
spaces with respect to the finite subgroups of T are connected by more maps than you
would think of by considering the homotopy fixed points or the linear analogs, and the
interplay between these maps can be summarized in topological cyclic homology, TC, to
give an amazingly good approximation of K-theory.

Topological cyclic homology, as we define it, is a a non-connective spectrum, but its
completions TC(−)̂p are all−2-connected. As opposed to topological Hochschild homology,
the topological cyclic homology of a ring is generally not an Eilenberg-MacLane spectrum.

In [6] the problem at hand is reduced to studying topological cyclic homology and trace
maps of S-algebras of the form S[G] where S is the sphere spectrum (see chapter II) and G
is some simplicial group, i.e., the S-algebras associated to Waldhausen’s A theory of spaces
(see II.2.4.6). In this case, TC is particularly easy to describe: for each prime p, there is
a cartesian square

TC(S[G])̂p −−−→ (ΣT (S[G])hT)̂py
y

T (S[G])̂p −−−→ T (S[G])̂p
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(in the homotopy category) where the right vertical map is the circle transfer, and the
lower horizontal map is analogous to something like the difference between the identity
and a pth power map.

0.8 TC of the integers

Topological cyclic homology is much harder to calculate than topological Hochschild homol-
ogy, but according to Goodwillie’s ICM’90 conjecture, it is worth while pursuing anyhow.
The first calculation to appear is in fact one of the hardest ones produced to date, but
also the most prestigious: in [7] Bökstedt and Madsen set forth to calculate TC(Z)̂p for
p > 2, and found that they could describe TC(Z)̂p in terms of objects known to homotopy
theorists:

TC(Z)̂p ' imJ p̂ ×BimJ p̂ × SU p̂

provided a certain spectral sequence behaved as they suspected it did. In his thesis “The
equivariant structure of topological Hochschild homology and the topological cyclic homol-
ogy of the integers”, [Ph.D. Thesis, Brown Univ., Providence, RI, 1994] Stavros Tsalidis
proved that the spectral sequence was as Bökstedt and Madsen had supposed, by adapting
an argument in G. Carlsson’s proof of the Segal conjecture [17] to suit the present situation.
Using this Bökstedt and Madsen calculates in [8] TC(A)̂p for A the Witt vectors of finite
fields of odd characteristic, and in particular get the above formula for TC(Z)̂p ' TC(Zp̂)̂p.
See also Tsalidis’ papers [122] and [123]. Soon after J. Rognes showed in [101] that an anal-
ogous formula hold for p = 2 (you do not have the splitting, and the image of J should be
substituted with the complex image of J) in a series of papers ending with .

0.9 Other calculations of TC

All the calculations below are due to the impressive effort of Hesselholt and Madsen. As
the calculations below were made after Goodwillie’s conjecture was known for rings, they
were stated for K-theory whenever possible, even though they were actually calculations of
TC. For a ring A, let W (A) be the p-typical Witt vectors, see [110] for the commutative
case and [48] for the general case. Let W (A)F be the coinvariants under the Frobenius
action, i.e., the cokernel of 1− F : W (A)→W (A). Note that W (Fp) = W (Fp)F = Zp̂.

1. Hesselholt [48] π−1TC(A)̂p ∼= W (A)F .

2. Hesselholt and Madsen (cf. [49] and [80]) Let k be a perfect field of characteristic
p > 0. Then TC(A) is an Eilenberg-MacLane spectrum for any k-algebra A, and

πiTC(k)̂p =





W (k)F if i = −1

Zp̂ if i = 0

0 otherwise
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and

πiTC(k[t]/tn)̂p =





πiTC(k)̂p if i = −1 or i = 0

Wnm−1/VnWm−1 if i = 2m− 1 > 0

0 otherwise

where Wj = (1 + tk[[t]])×/(1 + tj+1k[[t]])× is the truncated Witt vectors, and
Vn : Wm−1 →Wnm−1 is the Vershibung map sending f(t) = 1 + t

∑∞
i=0 ait

1 to f(tn).
Let C be the cyclic group of order pN . Then

πiTC(k[C])̂p =





πiTC(k)̂p if i = −1 or i = 0

K⊕
n

1 if i = 2n− 1

0 otherwise

where K1 is the p part of the units k[C]∗.

3. Hesselholt ([48]). Let A be a free associative Fp algebra. Then

πiTC(A)̂p =





W (A)F if i = −1

Zp̂ if i = 0

0 otherwise

On the other hand,

πiTC(Fp[t1, . . . tn])̂p =

{
(
⊕

g∈Gm
Zp̂)̂p for −1 ≤ i ≤ n− 2

0 otherwise

where Gm is some explicit (non-empty) set (see [?, page 140])

4. Hesselholt and Madsen [52]. Let K be a complete discrete valuation field of char-
acteristic zero with perfect residue field k of characteristic p > 2. Let A be the
valuation ring of K. Then Hesselholt and Madsen analyze TC(A)̂p and in particular
they give very interesting algebraic interpretations of the relative term of the transfer
map TC(k)̂p → TC(A)̂p (gotten by inclusion of the k-vector spaces into the torsion
modules of A). See [52].

5. Rognes and Ausoni [3]. As a first step towards calculating the algebraic k-theory
of connective complex K-theory ku, Ausoni and Rognes calculate topological cyclic
homology of the Adams summand `p.

0.10 Where to read

The literature on TC is naturally even more limited than on THH. Böksted, Hsiang and
Madsen’s original paper [6] is still very readable. The first chapters of Hesselholt and
Madsen’s [51] can serve as a streamlined introduction for those familiar with equivariant
G-spectra. For more naïve readers, the unpublished lecture notes of Goodwillie can be of
great help. Again, the survey article of Madsen [80] is recommendable.
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1 The fixed point spectra of THH.

We will define TC by means of a homotopy cartesian square of the type (i.e., it will be the
homotopy limit of the rest of the diagram)

TC(−) −−−→ THH(−)hT

y
y

∏
p prime TC(−; p)̂p −−−→ (

∏
p prime THH(−)̂p)

hT

(as it stands, this strictly does not make sense: there are some technical adjustments
we shall return to) The T homotopy fixed points are formed with respect to the cyclic
structure.

In this section we will mainly be occupied with preparing the ground for the lower
left hand corner of this diagram. Let Cn ⊆ T be the n-th roots of unity, and we choose
our generator of the cyclic group Cn to be tn−1 = t = e2πi/n. For each prime number
p, the functor TC(−; p) is defined as the homotopy limit of a diagram of fixed point
spaces |THH(−)|Cpn . The maps in the diagrams are partially inclusion of fixed points
|THH(−)|Cpn+1 ⊆ |THH(−)|Cpn , and partially some more exotic maps - the “restriction
maps” - which we will describe below. The contents of this section is mostly fetched from
the very readable, but unpublished, MSRI notes of Goodwillie [120]. If desired, the reader
can consult appendix C for some facts on group actions.

1.1 Cyclic spaces and the edgewise subdivision
{cyclic sets}

First we need to revisit Connes’ category Λ. For once we record a formal definition.

Definition 1.1.1 Let Λ be the category with the same objects as ∆, but with morphism
sets given by

Λ([n], [q]) = ∆([n], [q])× Cn+1

where a pair (σ, ta) is considered as a composite

[n]
ta
−−−→ [n]

σ
−−−→ [q]

(where t = tn is the generator of Cn+1, so that tn+1
n = 1[n]). Composition is subject to the

extra relations

tnd
i = di−1tn−1 1 ≤ i ≤ n

tnd
0 = dn

tns
i = si−1tn+1 1 ≤ i ≤ n

tns
0 = snt2n+1

A cyclic object in some category C is a functor Λo → C and a cyclic map is a natural
transformation between cyclic objects.
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Notice that the description above gives that any map in Λ can be written as a composite
φta where φ ∈ ∆. Furthermore, this factorization is unique.

Due to the inclusion j : ∆ ⊂ Λ, any cyclic object X gives rise to a simplicial object
j∗X.

As noted by Connes [19], cyclic objects are intimately related to objects with a circle
action (see also [59], [28] and [6]). In analogy with the standard n-simplices ∆[n] = {[q] 7→
∆([q], [n])}, we define the cyclic sets

Λ[n] = Λ(−, [n]) : Λo → Ens

Lemma 1.1.2 For all n, |j∗Λ[n]| is an T-space, naturally (in [n] ∈ obΛo) homeomorphic
to T× |∆[n]|.

Proof: For a proof, see e.g., [28, 2.7]. For a more visual idea, you can stare at the
homeomorphism e.g., between |j∗Λ[1]| and T× |∆[1]| directly:

d1 d1s0t //

t

))RRRRRRRRRRRRRRRRRRR

s1t

d1

d0

id

OO

d0s0t // d0

id

OO

s0t2

where the left edge is identified with the right edge (notice that s1t and s0t2 are the only
non-degenerate two-simplices).

We note two adjoint pairs that are nice to have. We have already seen half of the
first pair in IV.1.1.1, namely the cyclic bar construction. If C is a category with finite
coproducts we get an adjoint pair

CΛo Bcy

�
j∗
C∆o

where j∗ is induced by j : Λ ⊂ ∆, and the cyclic bar construction (with respect to the
coproduct ∨) Bcy

∨ = Bcy is the left adjoint to j∗ given in degree q by BcyX([q]) =
∨
Cq+1

Xq,

but with a twist in the simplicial structure (in fact, Λ[n] ∼= Bcy∆[n]). To be precise,
consider the bijection

Λ([m], [n])
f 7→ψ(f)=(ψ∆(f),ψC(f))
−−−−−−−−−−−−−−→ ∆([m], [n])× Cm+1

∼= Bcy
m∆[n]

given by the unique factorization of maps in Λ, with inverse given by composition ψ−1(σ, ta) =
σta. Hence we can identify Λ[n] with Bcy∆[n] if we give the latter the cyclic struc-
ture φ∗ ((σ, ta)) = ψ(σtaφ). In general, for y ∈ Bcy

mX in the ta-summand this reads
φ∗ (y)) = (φ∆(taφ)∗y in the ∆C(taφ)-summand.

The other adjoint pair is given by the realization/singular functors connecting (pointed)
cyclic sets with T-spaces

T− Top∗
|−|Λ
�
sinΛ

Ens∗
Λo
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given by

|X|Λ =

∫ [q]∈Λo

|Λ[q]|Λ +∧Xq
∼=
∐

[q]∈Λo

|Λ[q]|Λ +∧Xq/ ∼

where X is a cyclic set and |Λ[q]|Λ is |j∗Λ[q]| ∼= T× |∆[n]| considered as a T-space, and for
a T-space Z

sinΛ Z = {[q] 7→ (T− Top)(|Λ[q]|Λ, Z)}.

We record some formal isomorphisms. Let U be the forgetful functor from T-spaces to
(topological pointed) spaces (right adjoint to T+∧−).

Lemma 1.1.3 There are natural isomorphisms

j∗ sinΛ Z ∼= sin(UZ), U |X|Λ ∼= |j
∗X| and |N cyY |Λ ∼= T+∧|Y |

where X is a cyclic set, Y a simplicial set and Z an T-space (the statements are true both
in the pointed and unpointed case).

Proof: The first follows by the isomorphism |Λ[q]|Λ ∼= T × |∆[n]|, and the adjointness of
U with T+∧−; and the last two follow by formal nonsense.

These isomorphisms will mean that we won’t be fanatic about remembering to put the
subscript Λ on sin and | − |.

Lemma 1.1.4 Let X be a pointed cyclic set. Then

lim
←−
Λo

X ∼= {x ∈ X0|s0x = ts0x} ∼= |X|
T

Λ

Proof: The first equation is a direct calculation, and the second from the adjunction
isomorphism |X|TΛ = (T− Top∗)(S

0, |X|Λ) ∼= EnsΛo

∗ (S0, X) = lim←−
Λo X.

Note in particular that if we consider a cyclic space as a simplicial cyclic set, then the
formula always holds true if applied degreewise. For those who worry about the difference
between spaces (simplicial sets) and topological spaces, we note that if G is a group and
X a simplicial G-set, then the two fixed-point constructions |XG| and |X|G are naturally
homeomorphic.

1.2 The edgewise subdivision

Let a ∈ N. The subdivision functor sda : ∆→ ∆ is the composite of the diagonal ∆→ ∆×a

composed with the concatenation ∆×a → ∆ which sends (S1, . . . Sa) to the concatenation
§1 t · · · t Sa which as a set is the disjoint union, but with ordering such that s ∈ Si is less
that t ∈ Sj if either i < j or i = j and s < t ∈ Si. Note that sda[j − 1] = [ja − 1]. This
construction extends to the cyclic world as follows

∆
sda

−−−→ ∆yinclusion

yinclusion

Λ× Ca −−−→ Λ
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where the cyclic group Ca is considered as a category with one object, and where the lower
map sends (tm, T n) ∈ (Λ×Ca)([j− 1], [j− 1]) to tam+jninΛ([ja− 1], [ja− 1]), and T is our
chosen generator for Ca.

Precomposing any simplicial object X with sda gives sdaX = X ◦ sda, the a-fold
edgewise subdivision of X. We note that (sdaX)j−1 = Xaj−1.

Furthermore, given a cyclic object X, we see that sdaX becomes a new cyclic object,
with a Ca-action.

Lemma 1.2.1 ([6]) Let X be a cyclic space. There is a natural Ca-equivariant homeo-
morphism |sdaX| ∼= |X|, where the action on |sdaX| comes from the Ca-action on sdaX,
and the action on |X| comes from the cyclic structure on X. The resulting homeomorphism
|sdaX

Ca| ∼= |X|Ca is T-equivariant if we let T act on |sdaXCa| via the cyclic structure, and
on |X|Ca through the isomorphism T ∼= T/Cq.

Proof: Must write

1.3 The restriction map

Let A be an S-algebra and X a space. We will now define an important cyclic map

R : sdqTHH(A;X)Cq → THH(A;X)

called the restriction map. This map is modeled on the fact that if C is a group and
f : Z → Y is a C-map, then f sends the C-fixed points to C-fixed points; and hence we
get a map

Map∗(Z, Y )C →Map∗(Z
CY C)

by restricting to fixed points. Notice that the j − 1 simplices of sdaTHH(A;X) are given
by

THH(A,X)aj−1 = holim
−−−−−−−−−−−−−−−−→
xk,l∈I,1≤k≤a,1≤l≤j

Map∗(
∧

k,l

Sxk,l, X∧V (A)((xk,l)))

The Ca fixed points under the action on Iaj are exactly the image of the diagonal Ij → Iaj

sending x to xa = (x, . . . ,x), and the Ca fixed points are given by

THH(A,X)Ca
aj−1
∼= holim
−−−−−−−−→
x1,...,xj∈I

j

Map∗

(
(
∧

1≤i≤j

Sxi)∧a, X∧V (A)((x1, . . . xj)
a)

)Ca

Note that V (A)((x1, . . . xj)
a) ∼= V (A)(x1, . . . , xj)

∧a = (
∧

1≤i≤j A(Sxi))∧a. In the mapping
space, both the domain and target are a-fold smash products with Ca-action given by
permutation (except for the Ca-fixed space X which just stays on for the ride) and so we
get a restriction map to the mapping space of the fixed points:

Map∗(
∧

1≤i≤j

Sxi, X∧V (A)(x1, . . . , xj))
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Taking the homotopy limit we get a map sdaTHH(A;X)Ca
j−1 → THH(A;X)j−1 which

assembles to a cyclic map

R : sdaTHH(A,X)Ca → THH(A;X)

giving the pair (THH(A;X), R) the structure of an epicyclic space in the sense of Good-
willie’s MSRI notes:

Definition 1.3.1 An epicyclic space (Y, φ) is a cyclic space Y equipped with maps

φq : Y
Cq

qj−1 → Yj−1

for all q, j ≥ 1 satisfying

1. φq : (sdqY )Cq → Y is simplicial

2. φqt = tφq (which implies that φq(Y
Caq

qaj−1) ⊆ Y Ca
aj−1)

3. φaφq = φaq : Y
Caq

aqj−1 → Yj−1

4. φ1 = 1

Note that φq can be regarded as a cyclic map (sdqY )Cq → Y , and also as a Ca-
equivariant simplicial map (sdaqY )Cq → sdaY for any a. Let for a ≥ 1

Y 〈a〉 = |(sdaY )Ca|

In addition to the map φq : Y 〈aq〉 → Y 〈a〉 we have a map – the “inclusion of fixed points”
– given as iq : Y 〈aq〉 ∼= |Y |

Cqa ⊆ |Y |Ca ∼= Y 〈a〉. By the definition of an epicyclic space we
get that these maps obey the following relations

φqφr = φqr φ1 = i1 = id
iqir = iqr iqφr = φriq

In other words, a 7→ Y 〈a〉 is a functor to topological spaces from the category RF :

Definition 1.3.2 Let RF be the category whose objects are the natural numbers, and
where

RF(a, b) = {fr,s|a = rsb}

with composition fr,s ◦ fp,q = frp,sq. An epicyclic space (Y, φ) give rise to a functor from
RF to spaces by sending a to Y 〈a〉, fq,1 to φq and f1,q to iq. Sloppily, we write R = fr,1
and F = f1,r for any unspecified r (and range), hence the name of the category. For any
given prime p, the full subcategory of RF containing only the powers of p is denoted RFp.
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Example 1.3.3 We have seen that THH is defines an epicyclic space, and a map of
S-algebras give rise to a map respecting the epicyclic structure.

Another example is the cyclic nerve. Let C be any category, and consider the cyclic
nerve N cyC. This is a straight-forward generalization of the cyclic bar of a monoid:

N cy
q C = {cq ← c0 ← c1 ← · · · ← cq−1 ← cq ∈ C}

with face and degeneracies given by composition and insertion of identities, and with cyclic
structure given by cyclic permutation. This is a cyclic set, and |N cyC|T ∼= lim←−

Λo N cyC = obC
where an object is identified with its identity morphism in N cy

0 C. The fixed point sets under
the finite subgroups of the circle are more interesting as sdrN

cyCCr ∼= N cyC. In fact, an
element x ∈ (sdrN

cyC)q−1 = N cy
rq−1C which is fixed by the Cr action must be of the form

cq
f1
←− c1

f2
←− . . .

fq
←− cq

f1
←− c1

f2
←− . . .

fq
←− cq

f1
←− c1

f2
←− . . .

fq
←− cq

and we get an isomorphism φr : sdrN
cyCCr ∼= N cyC by forgetting the repetitions. This

equips the cyclic nerve with an epicyclic structure, and obviously a functor of categories
give rise to a map of cyclic nerves respecting the epicyclic structure.

An interesting example is the case where C is replaced by the simplicial monoid M =
THH0(A) connected to any S-algebra A. We have a map N cyM → THH(A) given by
smashing together functions Sxi → A(Sxi)

∏

0≤i≤q

holim
−−−→
xi∈I

ΩxiA(Sxi)→ holim
−−−−−→
x∈Iq+1

Ω∨x
∧

0≤i≤q

A(Sxi)

This map preserves the epicyclic structure.

1.3.4 Remark

Our notion of an epicyclic space is not the same as the one earlier Goodwillie proposed
in a letter to Waldhausen [119], and which later was used by Burghelea, Fiedorowicz, and
Gajda in [16] to compare Adams operators. This older definition generalized the so-called
power maps Pq = φ−1

q : N cyC → (sdqN
cyC)Cq instead. Cyclic nerves are epicyclic spaces

under either definition.

Remark 1.3.5 An epicyclic space (Y, φ) is more than a functor from RF to spaces. In
fact, as each (sdaY )Ca is again a cyclic space, each Y 〈a〉 = |(sdaY )Ca| comes equipped
with an T-action. However, Y 〈a〉 is not a functor to T-spaces: the inclusion of fixed point
spaces under the finite subgroups of T are not T-equivariant, but speed up the action. We
may encode this as a continuous functor sending θ ∈ R/Z ∼= T to ρθ : Y 〈a〉 → Y 〈a〉 we get
the additional relations

φqρθ = ρθφq iqρθ = ρqθiq ρθρτ = ρθ+τ
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This can again be encoded in a topological category SRF with objects the natural numbers
and morphisms SRF(a, b) = T×RF(a, b). Composition is given by

(θ, fr,s)(τ, fp,q) = (θ + sτ, frp,sq)

Sending θ to ρθ we see that any epicyclic space give rise to a continuous functor a 7→ Y 〈a〉
from SRF to topological spaces. In the MSRI notes Goodwillie defines

TC(A;X) = {k 7→ holim
←−−−−−
a∈SRF

|sdaTHH(A;Sk∧X)Ca|}

(the homotopy limit remembers the topology in T), and gives a proof that this elegant defi-
nition agrees with the one we are going to give. The only reasons we have chosen to refrain
from giving this as our definition is that our definition is custom built for our application
(and for computations), and the proof that they agree would lengthen the discussion further.

1.3.6 Properties of the fixed point spaces

We now make a closer study of the Cq-fixed point spaces of THH when q is a prime
power. The most important result is proposition 1.4.1, often referred to as “the fundamental
cofibration sequence” which guarantees that the actual fixed point spaces will have good
homotopical properties.

Definition 1.3.7 Let
T 〈 〉(A;X) : RF → S∗

with T 〈a〉(A,X) = sin |sdaTHH(A,X)Ca|, be the functor associated with the epicyclic
space (THH(A;X), R). We set R = T 〈fr,1〉 (for “Restriction”, which it is) and F = T 〈f1,r〉
(for “Frobenius”, see 1.18, which here is the inclusion of fixed points

T 〈rq〉 ∼= sin |THH(A,X)|Crq ⊆ sin |THH(A,X)|Cq ∼= T 〈〉q)

This construction is functorial in A and X, and we set

T 〈a〉(A;X) = {k 7→ T 〈a〉(A;Sk∧X)}

Remember that each T 〈a〉 can be considered as functors to cyclic spaces (but they do
not assemble when varying a). We will not distinguish notationally whether we think of
T [a](A;X) as a simplicial or cyclic space, and we offer the same ambiguity to T (A;X) ∼=
T 〈1〉(A;X).

The T 〈a〉(A;X) are Ω-spectra for any a, but we will just now we prove this only for a
a prime power (which is all we will really need due to the form of our definition of integral
TC. For the general result see remark 1.3.17 below.). It follows as a corollary of:

{prop:Vfundcofseq}
Proposition 1.3.8 Let p be a prime. Then there is a chain of natural equivalences from
the fiber of

T 〈pn〉(A;X)
R
−−−→ T 〈pn−1〉(A;X)
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to sdpnT (A;X)hCpn . Indeed, for each j, the fiber of

(sdpnTHH(A,X)Cpn)j−1
R
−−−→ (sdpn−1THH(A,X)Cpn−1)j−1

is naturally weakly equivalent to holim−→
k

Ωk((sdpnTHH(A, Sk∧X)j−1)hCpn ).

Proof: The first statement follows from the second. Let q = pn, G = Cq and H = Cp. For
x ∈ Ij, let

Z(x) =

( ∧

1≤i≤j

Sxi

)∧q
, and W (x) = X∧

( ∧

1≤i≤j

A(Sxi)

)∧q

By the approximation lemma, the fiber of R is naturally equivalent to

holim
−−−→
x∈Ij

fiber{Map∗(Z(x),W (x))G →Map∗(Z(x)H ,W (x)H)G/H}

which, by the isomorphism

Map∗(Z(x)H ,W (x)H)G/H ∼= Map∗(Z(x)H ,W (x))G

is isomorphic to
holim
−−→
x∈I

Map∗(U(x),W (x))G

where U(x) = Z(x)/(Z(x)H). As U(x) is a free finite based G complex, corollary C.C.2.1.3
tells us that there is a natural chain

Map∗(U(x),W (x))G −−−→ Map(U(x), lim
−→
k

Ωk(Sk∧W (x)))G

∼
←−−− lim

−→
k

ΩkMap∗(U(x), Sk∧W (x))hG)
.

and that the first map is ∨x−1 connected. Furthermore, the cofibration sequence Z(x)H ⊆
Z(x)→ U(x) = Z(x)/(Z(x)H) induces a fibration sequence

ΩkMap∗(U(x), Sk∧W (x))hG) −−−→ ΩkMap∗(Z(x), Sk∧W (x))hG)y
ΩkMap∗(Z(x)H , Sk∧W (x))hG)

.

Since Z(x)H is xq/p-dimensional and Sk∧W (x))hG is xq + k − 1-connected, the first map
in the fiber sequence is x(q − q/p)− 1-connected.

Taking the homotopy colimit over Ij, this gives the proposition.
A variant of this proposition was proven by Madsen in a letter to Hsiang around 1988.

It does not play a major role in [6] (perhaps too obvious to mention in the equivaraint
context in which that paper was written), but it is vital for all calculations of TC. In [120]
Goodwillie shows how it can be used to simplify many of the arguments in [6]. This is how
we will use it. For instance, the following important results are immediate corollaries. The
proofs are by induction on n, noting that homotopy orbits preserve equivalences.
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Corollary 1.3.9 Any map A → B of S-algebras inducing an equivalence THH(A) →
THH(B) induces an equivalence

T 〈pn〉(A;X)→ T 〈pn〉(B;X)

Corollary 1.3.10 Let A be an S-algebra and X a space. Then for any prime power pn

1. T 〈pn〉(A;X) is a connective Ω-spectrum.

2. T 〈pn〉(−;X) takes stable equivalences of S-algebras to equivalences.

3. T 〈pn〉(−;X) is Morita invariant.

4. T 〈pn〉(−;X) preserves products up to equivalence.

Proof: Follows by 1.3.8 and the corresponding properties of THH, plus the fact that
homotopy orbits preserve loops and products of spectra.

The corollary is true if we exchange pn for an arbitrary number a, but that does not
follow from the proposition, but rather from a more complicated argument running over
all the prime factors of a, see [120, 11].

1.3.11 ΓS∗-categories

Essentially just the same construction can be applied to the case of ΓS∗-categories.
If C is a ΓS∗-category THH(C;X) also has its restriction map R, and (THH(C;X), R)

is an epicyclic space: If x ∈ Iq, then we have a restriction map

(Ω∨x
a

(X∧V (C)(xa)))Ca → Ω∨x(X∧V (C)((xa))Ca)

as before, and note that V (C)(xa)Ca = V (C)(x). Proceeding just as for S-algebras we see
that

a 7→ T 〈a〉(C;X) = sin |sdaTHH(C;X)Ca|

defines a functor from RF (or better: from SRF) to spaces.

Lemma 1.3.12 Let p be a prime, C a ΓS∗-category and X a space. The R map fits into
a fiber sequence

|T (C;X)|hCpn −−−→ T 〈pn〉(C;X)
R
−−−→ T 〈pn−1〉(C;X)

Indeed, for each j, the fiber of

(sdpnTHH(C, X)Cpn)j−1
R
−−−→ (sdpn−1THH(C, X)Cpn−1)j−1

is naturally weakly equivalent to holim−→
k

Ωk((sdpnTHH(C, Sk∧X)j−1)hCpn ).

Proof: Exactly the same as the S-algebra case.
As before, this gives a series of corollaries.
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{lem:VTHHeqgivesTCeq}
Corollary 1.3.13 Any ΓS∗-functor F : C → D inducing an equivalence THH(C)→ THH(D)
induces an equivalence

T 〈pn〉(C;X)→ T 〈pn〉(D;X) .. '!&"%#$����

{cor:V148}
Corollary 1.3.14 Let C be a ΓS∗-category and X a space. Then for any prime power pn

{cor:V1481}

1. T 〈pn〉(C;X) is a connective Ω-spectrum.
{cor:V1482}

2. The functor T 〈pn〉(−;X) takes ΓS∗-equivalences of categories to equivalences.
{cor:V1483}

3. If A is a ring, then the inclusion A ⊆ PA as a rank one module induces an equivalence
T 〈pn〉(A;X)

∼
→ T 〈pn〉(PA;X)

4. T 〈pn〉(−;X) preserves products up to equivalence. .. '!&"%#$����

Corollary 1.3.15 If C is a symmetric monoidal ΓS∗-category, then T 〈pn〉(H̄C;X) = {k 7→
T 〈pn〉(H̄C(Sk);X)} is an Ω-spectrum, equivalent to T 〈pn〉(C;X).

Proof: That T 〈pn〉(H̄C;X) is an Ω-spectrum follows for instance from 1.3.14.2 and
1.3.14.?? since H̄C(k+) is ΓS∗-equivalent to C×k. That the two Ω-spectra are equivalent
follows by comparing both to the bispectrum T 〈pn〉(H̄C;X).

Corollary 1.3.16 If C is an exact category, then

T 〈pn〉(H̄C;X)→ {k 7→ T 〈pn〉(S(k)C;X)}

is an equivalence of Ω-spectra.

Proof: Follows by corollary 1.3.13 since THH(H̄C(Sk);X) → THH(S(k)C;X) is an
equivalence NBNB(ref).

{remark:Rfiber}
Remark 1.3.17 An analog of lemma 1.3.8 holds for integers q that are not prime powers
as well. The statement is that if a is a positive integer the homotopy fiber of the map

T (A)Cq → holim
←−
r|q

T (A)Cq/r

induced by the restriction map and where the homotopy limit is over the positive numbers
dividing q is naturally equivalent to T (A)hCq . The proof is gotten by entering the proof of
lemma 1.3.8, and letting G = Cq, Z(x) and W (x) be as before, but forgetting that q was
a prime power. Assume by induction that the statement has been proven for all groups of
cardinality less than G, and so that all for these groups the fixed point spectra of THH are
homotopy functors and Bökstedt’s approximation lemma applies.

This means that the canonical map

holim
−−−→
x∈Ij

holim
←−−−−−
06=H⊂G

Map∗(Z(x)H ,W (x)H)G/H −−−→ holim
←−−−−−
06=H⊂G

holim
−−−→
x∈Ij

Map∗(Z(x)H ,W (x)H)G/H
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is an equivalence. The right hand side is isomorphic to

holim
←−−−−−
06=H⊂G

(
holim
−−−−−−−−→
x∈Ij·|G/H|

Map∗(Z(x)H ,W (x)H)

)G/H

= holim
←−−−−−
06=H⊂G

sd|G/H|THH(A,X)G/H,

and the left hand side is isomorphic to

holim
−−−→
x∈Ij

holim
←−−−−−
06=H⊂G

Map∗(Z(x)H ,W (x))G

which is equivalent to
holim
−−−→
x∈Ij

Map∗(∪06=H⊂GZ(x)H ,W (x))G

(the union can be replaced by the corresponding homotopy colimit). Via this equivalence
the homotopy fiber of

sd|G|THH(A,X)Gj−1 −−−→ holim
←−−−−−
06=H⊂G

sd|G/H|THH(A,X)
G/H
j−1

is equivalent to
holim
−−−→
x∈Ij

Map∗(U(x),W (x))G

where U(x) = Z(x)/ ∪06=H⊂G Z(x)H . Then the same argument leads us to our conclusion,
using that U(x) is a free finite based G-space.

1.4 Spherical group rings

In the special case of spherical group rings the restriction maps split, making it possible to
give explicit models for the Cpn fixed point spectra of topological Hochschild homology.

{lem:Rsplits}
Lemma 1.4.1 The restriction maps split for spherical group rings.

Proof: LetG be a simplicial group. We will prove that the restriction map sdabTHH(S[G], X)Cab →
sdaTHH(S[G], X)Ca splits. We fix an object x ∈ Ij , and consider the restriction map

Map∗

((∧j
i=1 S

xi

)∧ab
, X∧

(∧j
i=1(S

xi∧G+)
)∧ab)Cab

y

Map∗

((∧j
i=1 S

xi

)∧a
, X∧

(∧j
i=1(S

xi∧G+)
)∧a)Ca

.

Let S =
(∧j

i=1 S
xi

)∧a
, and consider the isomorphism

|S∧b| ∼= |S|∧S⊥
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coming from the one-point compactification of

Rn ⊗Rb ∼= Rn ⊗ (diag⊕ diag⊥) ∼= Rn ⊕ (Rn ⊗ diag⊥)

where diag ⊆ Rb is the diagonal line and n = a · ∨x. The desired splitting

Map∗(S,X∧S∧G
×ja
+ )Ca →Map∗(S

∧b, X∧S∧b∧G×jab+ )Cab

is gotten by sending f : |S| → |X∧S∧G×ja+ | to

|S∧b|∼= |S|∧S⊥
f∧id
−−−→ |X∧S∧G×ja+ |∧S

⊥

∼= |X∧S|∧S⊥∧|G×ja+ |

∼= |X∧S∧b∧G×ja+ |
id∧diag
−−−−→ |X∧S∧b∧G×jab+ |

.

Example 1.4.2 To see how the isomorphism |S|∧b ∼= |S|∧S⊥ of the above proof works,
consider the following example.

S = S1, b = 2, |S|2 ∼= |S|∧S⊥ is gotten from

R2 ∼= R⊕R, [ ab ] 7→ ((a + b)/2, (a− b)/2)

and the Z/2 action is trivial in the first factor and mult by −1 in the other. Notice that
if f : |S| → |X∧S∧G+| sends a ∈ R∗ = |S| to xa∧sa∧ga, then the composite

|S2| ∼= |S|∧S⊥
f∧id
−−−→ |X∧S∧G+|∧S

⊥ ∼= |X∧S2∧G+| → |X∧S
2∧G×2

+ |

sends [ ab ] to ((a+ b)/2, (a− b)/2) to

x(a+b)/2∧s(a+b)/2∧g(a+b)/2∧(a− b)/2

to
x(a+b)/2∧

[
s(a+b)/2+(a−b)/2

s(a+b)/2−(a−b)/2

]
∧g(a+b)/2

to
x(a+b)/2∧

[
s(a+b)/2+(a−b)/2

s(a+b)/2−(a−b)/2

]
∧g(a+b)/2∧g(a+b)/2.

Exchanging a and b in this formula transforms it to

x(a+b)/2∧
[
s(a+b)/2−(a−b)/2

s(a+b)/2+(a−b)/2

]
∧g(a+b)/2∧g(a+b)/2.

{cor:fixptofsphgprings}
Corollary 1.4.3 The map

n∨

j=0

|THH(S[G])|hC
pj
→ |THH(S[G])|Cpn

induced by the splitting is a stable equivalence, and the restriction map correspond to the
projection.
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2 Topological cyclic homology.
{sec:VTC}

In this section we finally will give a definition of topological cyclic homology. We first will
define the pieces TC(−, p) which are relevant to the p-complete part of TC, and later merge
this information with the rational information coming from the homotopy fixed points of
the whole circle action.

2.1 The definition and properties of TC(−, p)

as an intermediate stage, we define the functors TC(−, p) which captures the information
of topological cyclic homology when we complete at the prime p. We still list the case of
an S-algebra separately, in case the reader feels uncomfortable with ΓS∗-categories.

Definition 2.1.1 Let p be a prime, A an S-algebra andX a space. Recall thatRFp ⊂ RF
is the full subcategory of powers of p. We define

TC(A;X, p) = holim
←−−−−−−
pn∈RFp

T 〈pn〉(A;X)

This gives rise to the spectrum

TC(A,X; p) = holim
←−−−−−−
pn∈RFp

T 〈pn〉(A;X) = {k 7→ TC(A;Sk∧X, p)}

If C is a ΓS∗-category we define

TC(C;X, p) = holim
←−−−−−−
pn∈RFp

T 〈pn〉(C;X)

with associated spectrum

TC(C;X, p) = holim
←−−−−−−
pn∈RFp

T 〈pn〉(C;X) = {k 7→ TC(C;Sk∧X, p)}

If C is a symmetric monoidal ΓS∗-category we have a spectrum

TC(H̄C;X, p) = {k 7→ TC(H̄C(Sk);X, p)}

We get the analogs of the results in the previous chapter directly:

Lemma 2.1.2 Let C be a ΓS∗-category, X a space and p a prime. Then

1. TC(C;X, p) is an Ω-spectrum.

2. The functor TC(−;X, p) takes ΓS∗-equivalences of categories to equivalences.

3. If A is a ring, then the inclusion A ⊆ PA as a rank one module induces an equivalence
TC(A;X, p)

∼
→ TC(PA;X, p)
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4. TC(−;X, p) preserves products up to pointwise equivalence.

5. If C → D is a ΓS∗-functor inducing an equivalence THH(C) → THH(D), then it
induces an equivalence

TC(C;X, p)→ TC(D;X, p)

6. If C is a symmetric monoidal ΓS∗-category, then TC(H̄C;X, p) is an Ω-spectrum
equivalent to TC(C;X, p).

Proof: This follows from the corresponding properties for T 〈pn〉 from section 1.4, and the
properties of homotopy limits.

Here we see that it made a difference that we considered T 〈a〉(H̄C;X) as the spectrum
{n 7→ T 〈a〉(H̄C(Sn);X)}, and not as a Γ-space {k+ 7→ T 〈a〉(H̄C(k+);X)}: the spectrum
associated to the (pointwise) homotopy limit of a Γ-space is not the same as the (pointwise)
homotopy limit of the spectrum, since the homotopy limits can destroy connectivity. We
will shortly see that this is not a real problem, since TC(C;X, p) is always −2-connected,
and so TC(H̄C;X, p) and the spectrum associated with {k+ 7→ TC(H̄C(k+);X, p)} will be
equivalent once X is connected. In any case, it may be that the correct way of thinking of
this, is to view TC of symmetric monoidal ΓS∗-categories as Γ-spectra:

{k+ 7→ TC(H̄C(k+);X, p)}

This point will become even more acute when we consider the homotopy fixed point spectra
for the entire circle actions since these are not connective.

revise!! If C is exact we have an equivalent Ω-spectrum

TC(C;X, p) = holim
←−−−−−−
pn∈RFp

T 〈pn〉(§C;X) = {k 7→ TC(S(k)C;X, p)}

If A is a ring we let

TC(A,X; p) = TC(PA, X)}

and we see that TC(A;X, p) is equivalent to TC(A;X, p).

2.2 Some structural properties of TC(−, p)

A priori, the category RFp can seem slightly too big for comfort, but it turns out to be
quite friendly, especially if we consider the F and R maps separately. This separation
gives us good control over the homotopy limit defining TC(−, p). For instance, we shall
see that it implies that TC is connective, can be computed degreewise and almost preserves
id-cartesian cubes, and hence is “determined” by its value on ordinary rings.
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2.2.1 Calculating homotopy limits over RFp

Consider the two subcategories Fp and Rp of RFp, namely the ones with only the F
(Frobenius = inclusion of fixed points) maps or only the R (restriction) maps. We will
typically let

TR(A;X; p) = holim
←−−−−
pn∈Rp

T 〈pn〉(A;X) and TF (A,X; p) = holim
←−−−−
pn∈Fp

T 〈pn〉(A;X)

and similarly for the spectra and the related functors of ΓS∗-categories.
Let L be any functor from RFp to spaces, and let 〈x, y, . . . 〉 be the monoid generated

by some number of commuting letters. If 〈x〉 acts on a space Y , we write holim←−
〈x〉
Y as

Y hx, in analogy with the group case, and it may be calculated as the homotopy limit

Y hx = holim
←−




Map(I+, Y )

f 7→(f(0),f(1))

y

Y
(1,x)∆
−−−−→ Y × Y




We see that 〈R,F 〉 acts on
∏

pn∈RFp
L(pn), and writing out the cosimplicial replacement

carefully, we see that

holim
←−−
RFp

L ∼=Tot(q 7→
∏

Nq〈F,R〉

(
∏

pn∈RFp

L(pn)))

∼= holim
←−−−
〈R,F 〉

(
∏

pn∈RFp

L(pn)) ∼= holim
←−−−−−−
〈R〉×〈F 〉

(
∏

pn∈RFp

L(pn))

We may choose to take the homotopy limit over the product 〈R〉 × 〈F 〉 in the order we
choose. If we take the R map first we get

Lemma 2.2.2 Let L be a functor from RFp to spaces. Then

holim
←−−
RFp

L ∼= holim
←−
〈F 〉

(holim
←−
〈R〉

(
∏

pn∈RFp

L(pn)))

∼= holim
←−
〈F 〉

holim
←−−−−
pn∈Rp

L(pn) = (holim
←−−−−
pn∈Rp

L(pn))hF

Similarly we may take the F map first and get the same result with R and F inter-
changed.

For our applications we note that

TC(A;X, p) ' TR(A;X, p)hF ' TF (A;X, p)hR

Lemma 2.2.3 The spectrum TC(−; p) is −2 connected, and likewise for the other vari-
ants.
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Proof: Consider the short exact sequence

0→ lim
←−−−−
pn∈Rp

(1)πk+1T 〈p
n〉(C;X)→ πkTR(C;X, p)→ lim

←−−−−
pn∈Rp

πkT 〈p
n〉(C;X)→ 0

of the tower defining TR. Since π0T 〈p
n〉(C;X) → π0T 〈p

n−1〉(C;X) is always surjective
(its cokernel is π−1sdpnT 〈pn〉(C;X)Cpn = 0), the lim←−

R
(1) part vanishes, and TR is always

−1-connected (alternatively, look at the spectral sequence of the R tower, and note that
all the fibers are −1-connected). Hence the pullback TC(C; p) ' TR(C; p)hF cannot be less
than −2-connected.

{lemma:VTCpdegwise}

Lemma 2.2.4 If A is a simplicial S-algebra, then TC(A;X, p), may be calculated degree-
wise in that

diag∗{[q] 7→ TC(Aq;X, p)} ' TC(diag∗A;X, p)

Proof: This is true for THH (lemma III.1.3.1), and so, by the fundamental cofibration
sequence (ref) it is true for all sdpnTHH(A;X)Cpn . By corollary A1.9.? of the appendix,
homotopy limits of towers of connective simplicial spectra may always be computed de-
greewise, so

TR(A; p) = holim
←−
R

sdpnT (A)Cpn

is naturally equivalent to diag∗{[q] 7→ TR(Aq; p)}. Now, TC(A; p) ' TR(A; p)hF , a homo-
topy pullback construction which may be calculated degreewise.

{lemma:VTCconn}
Lemma 2.2.5 Let f : A → B be a k-connected map of S-algebras and X an l-connected
space. Then

TC(A;X, p)→ TC(B;X, p)

is k + l − 1-connected.

Proof: Since THH(−;X), and hence the homotopy orbits of THH(−;X), rise connectiv-
ity by l, we get by the tower defining TR that TR(−;X, p) also rises connectivity by l. We
may loose one when taking the fixed points under the F action to get TC(−;X, p).

When restricted to simplicial rings, there is a cute alternative to this proof using the fact
that any functor from simplicial rings to n-connected spectra which preserves equivalences
and may be computed degreewise, sends k ≥ 0-connected maps to n + k + 1-connected
maps.

Lemma 2.2.6 Assume A is a cube of S-algebras such that T (A;X) is id-cartesian. Then
TR(A;X, p) is also id cartesian.

Proof: Choose a big k such that THH(A, Sk∧X) is id + k cartesian Let X be any
m subcube and X l = sdplX C

pl . We are done if we can show that holim←−
R
X l is (m + k)-

cartesian. Let Z l be the iterated fiber of X l (i.e., the homotopy fiber of X l
∅ → holim←−−

S 6=∅
X l
S).

Then Z = holim←−
R
Z l is the iterated fiber of holim←−

R
X l, and we must show that Z is

m+ k− 1 connected. Since homotopy orbits preserve connectivity and homotopy colimits,
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THH(A, Sk∧X)hC
pl

must be id+ k cartesian, and so the fiber of R : X l → X l−1 is id + k

cartesian. Hence πqZ
l → πqZ

l−1 is surjective for q = m + k and an isomorphism for
q < m + k, and so πqZ ∼= lim

←−
R(1)πq+1Z

l × lim
←−
R πqZ

l = 0 for q < m+ k.

{prop:VTCp and id cart}
Proposition 2.2.7 Assume A is a cube of S-algebras such that T (A;X) is id cartesian.
Then TC(A;X, p) is id− 1 cartesian.

Proof: This follows from the lemma, plus the interpretation of TC(−, p) ' TR(−, p)hF

as a pullback.
When applying this to the canonical resolution of S-algebras byHZ-algebras of III.3.1.8,

we get the result saying essentially that TC is determined by its value on simplicial rings:

{theo:VTCpappr}
Theorem 2.2.8 Let A be an S-algebra and X a space. Let S 7→ (A)S be the cubical
diagram of III.3.1.8. Then

TC(A;X, p)
∼
−−−→ holim←−−

S 6=∅
TC(AS;X, p) .. '!&"%#$����

2.2.9 The Frobenius maps

The reason the inclusion of fixed points map F now often is called the Frobenius map is that
Hesselholt and Madsen [50] has shown that if A is a commutative ring, then π0TR(A; p) is
isomorphic to the p-typical Witt vectors W (A, p), and that F corresponds to the Frobenius
map.

Even better, they prove that there is an isomorphism

π0THH(A)Cpn ∼= Wn(A)

where Wn(A) is the ring of truncated p-typical Witt vectors, i.e., it is An as an abelian
group, but with multiplication gotten by requiring that the “ghost map”

w : Wn(A)→ An, (a0, . . . , an−1) 7→ (w0, . . . , wn−1)

where

wi = ap
i

0 + pap
i−1

1 + · · ·+ piai

is a ring map. If A has no p-torsion the ghost map is injective.
The map

R : Wn+1(A)→Wn(A) (a0, . . . , an) 7→ (a0, . . . , an−1),

is called the restriction and the isomorphisms

π0THH(A)Cpn ∼= Wn(A)

respect the restriction maps.
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On the Witt vectors the Frobenius and Verschiebung are given by

F, V : W (A)→ W (A)

F (w0, w1, . . . ) = (w1, w2, . . . )

V (a0, a1, . . . ) = (0, a0, a1, . . . ).

. satisfying the relations

x · V (y) = V (F (x) · y), FV = p, V F = multV (1)

(if A is an Fp-alg. then V (1) = p).

2.2.10 TC(−; p) of spherical group rings

Let G be a simplicial group. We briefly sketch the argument of [6] giving TC(S[G]; p) (see
also [103]). Recall from corollary 1.4.3 that

|THH(S[G])|Cpn ∼
→

n∏

j=0

|THH(S[G])|hC
pj
,

and that the restriction map corresponds to the projection

n∏

j=0

|THH(S[G])|hC
pj
→

n−1∏

j=0

|THH(S[G])|hC
pj
.

What is the inclusion of fixed point map |THH(S[G])|Cpn ⊆ |THH(S[G])|Cpn−1 in this
factorization? Write T as shorthand for |THH(S[G])|, and consider the diagram

ThCp ∨ T

��

proj

##G
GG

GG
GG

GG
G

ThCp
//

trf
%%K

KKKKKKKKK TCp
R //

F

��

T
S

oo

T

where S is the section of R defined in the proof of lemma 1.4.1.
The trf in the diagram above is the composite (in the homotopy category)

ThCp = (ET+∧T )Cp ' (ET+∧T )Cp
F
−−−→ ET+∧T ' T

and is called the transfer. Generally we will let the transfer be any (natural) map in the
stable homotopy category making

ThCpn ' (ET+∧T )Cpn −−−→ TCpn

trf

y F

y F

y
ThCpn−1 '(ET+∧T )Cpn−1 −−−→ TCpn−1
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commute.

Hence, the inclusion of fixed points F : T Cpn+1 → TCpn acts as FS : T → T on the
zero’th factor, and as trf : ThCpn → ThCpn−1 on the others

T

FS

��

× ThCp

trf

wwooooooooooooooo
× ThCp2

trf
vvnnnnnnnnnnnnnn

T

FS

��

× ThCp

trf
wwnnnnnnnnnnnnnn

T

TC(S[G], p) = holim
←−−
RFp

T 〈pn〉(S[G]) '

(
holim
←−
R

T 〈pn〉(S[G])

)hF

which is the homotopy equalizer of the map

T

FS

��

× ThCp

trf

wwppppppppppppppp
× ThCp2

trf
vvnnnnnnnnnnnnnn

× . . .

trf
wwooooooooooooooo

T × ThCp × ThCp2 × . . .

and the identity; or equivalently, the “diagram”

TC(S[G], p) −−−→ holim
←−
trf

|THH(S[G])|hCpn

y
y

|THH(S[G])|
FS−1
−−−→ |THH(S[G])|

is homotopy cartesian (in order to make sense of this, one has to have chosen models for
all the maps, see e.g., [103]).

We will identify these terms more closely in VII.3

2.2.11 Relation to the homotopy fixed points

Lemma 2.2.12 The natural maps (T (A;X)hS
1

)̂p → holim←−
Fp
T (A;X)hCpr

p̂ is an equiva-
lence.

Proof: This follows from the general fact A.1.9.8.5 that (Y hT)̂p
∼
→ holim←−

Fp
Y hCpr

p̂ for any

T-spectrum Y .
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2.3 The definition and properties of TC

Definition 2.3.1 We define TC to be the functor from S-algebras, or more generally
ΓS∗-categories, to spectra to be the homotopy limit of

T (−)hT

y
∏

p prime TC(−; p)̂p −−−→
∏

p prime holim
←−−−−
pr∈Fp

T (−)hCpr
p̂

where the lower map is given by the projection onto Fp ⊆ RFp

TC(−; p) = holim
←−−−−−
pr∈RFp

T 〈pr〉(−)→ holim
←−−−−
pr∈Fp

T 〈pr〉(−)

followed by the map from the fixed points to the homotopy fixed points

T 〈pr〉(−) ∼= T (−)Cpr → T (−)hCpr .

More useful than the definition is the characterization given by the following lemma.
{lemma:VsqTC}

Lemma 2.3.2 All the squares in

TC(−) −−−→ T (−)hT −−−→ (T (−)(0))
hT

y
y

y
TC(−)̂ −−−→ (T (−)̂ )hT −−−→ (T (−)̂ (0))

hT

are homotopy cartesian.

Proof: The rightmost square is cartesian as it is an arithmetic square to which −hT is
applied, and the leftmost square is cartesian by the definition of TC since

TC(−)̂ '
∏

p prime

TC(−)̂p '
∏

p prime

TC(−, p)̂p

and by the equivalence
holim
←−−−−
pr∈Fp

T (−)hCpr
p̂ ←−−− T (−)hT

p̂.

{cor:TCsq srings}

Corollary 2.3.3 Let A be a simplicial ring. Then

TC(A;X) −−−→ (HH(A;X)(0))
hT

y
y

TC(A;X )̂ −−−→ (HH(A;X )̂ (0))
hT

is homotopy cartesian.
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Proof: This follows from lemma 2.3.2 by extending the square to the right with the T-
homotopy fixed point spectra of the square

T (−)(0)
'
−−−→ HH(−)(0)y

y
T (−)̂ (0)

'
−−−→ HH(−)̂ (0)

which is cartesian by lemma IV.1.3.8 which says that the horizontal maps are equivalences.

{theo:VTCapprox}

Theorem 2.3.4 Let A be an S-algebra and X a space. Let A be the cubical diagram of
III.3.1.8. Then

TC(A;X)
∼
−−−→ holim←−−

S 6=∅
TC(AS;X).

Proof: By theorem 2.2.8 this is true for TC(−;X )̂ (products and completions of spectra
commute with homotopy limits). Since T (A;X) is id-cartesian, so are T (A;X)(0) and
T (A;X )̂ (0), and hence

T (A;X)(0)
∼
−−−→ holim

←−−
S 6=∅

(T (AS;X)(0))

and
T (A;X )̂ (0)

∼
−−−→ holim

←−−
S 6=∅

(T (AS;X )̂ (0))

Since homotopy fixed points commute with homotopy limits we are done since we have
proved the theorem for all the theories but TC in the outer homotopy cartesian square of
lemma 2.3.2.

3 The homotopy T-fixed points and the connection to

cyclic homology of simplicial rings

Theorem 2.3.4 tells us that we can obtain much information about TC from our knowledge
of simplicial rings. We have seen (corollary 2.3.3) that, when applied to a simplicial ring
A, TC fits into the cartesian square

TC(A;X) −−−→ (HH(A;X)(0))
hT

y
y

TC(A;X )̂ −−−→ (HH(A;X )̂ (0))
hT

We can say something more about the right hand column, especially in some relative cases.
As a matter of fact, it is calculated by negative cyclic homology, a theory which we will
recall the basics about shortly, and which much is known about.
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If A is a simplicial ring, we let (C∗(A), b) be the chain complex associated to the
bisimplicial abelian group. HH(A)

To make the comparison easier we first describe spectral sequences computing the
homotopy groups of the homotopy fixed and orbit spectra.

3.1 On the spectral sequences for the T- homotopy fixed point and
orbit spectra

Let T be the circle group and let X be a T-spectrum. The collapse maps give an isomor-
phism

π∗(Σ
∞T+) ∼= π∗(Σ

∞S1)⊕ π∗(Σ
∞S0),

and let σ, η be the elements in π1(Σ
∞T+) projecting down to the identity class

{Sn+1 = Sn+1} ∈ π1(Σ
∞S1) ∼= Z

and the stable Hopf map

{Sn∧S3 → Sn∧CP1 ∼= Sn∧S2} ∈ π1(Σ
∞S0) ∼= Z/2Z

respectively. The spectral sequences coming from the homotopy limit and colimit spectral
sequences have interesting E1-terms. The following is shown in [44], and for identification
of the differential, see [47, 1.4.2].

{lemma:A3S1fixptSS}

Lemma 3.1.1 Let T be the circle group and let X be a T-spectrum. The E2 sheet of the
spectral sequence for XhT, comes from an E1 sheet with

E1
s,t(XhT) = πt−sX, t ≥ s ≥ 0

and where the differentials

d1
s,t : E

1
s,t = πt−sX → πt−s+1X = E1

s−1,t

are induced by the map σ + s · η : πt−sX → πt−s+1(T+∧X) composed with πt−(s−1) of the
T-action T+∧X → X.

Likewise, the E2 sheet of the spectral sequence for XhT, comes from an E1 sheet with

E1
s,t(X

hT) = πt−sX, t ≥ s ≤ 0

and where the differentials are the same as for the homotopy orbit spectral sequence.
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The picture is as follows:

...
...

...

π2−(−1)X
d12,−1oo π2−0X

d12,0oo π2−1X
d12,1oo

d12,2oo

π1−(−1)X
d11,−1oo π1−0X

d11,0oo π1−1X
d11,1oo

π0−(−1)X
d10,−1oo π0−0X

d10,0oo

π−1−(−1)X
d1−1,−1oo

.

Note that for rational T-spectra – like the ones we are talking about in connection with
TC – or more generally, Eilenberg-MacLane T-spectra the Hopf map η is trivial, and so
the differentials are simply the T-action:

{cor:V Tate diff when eta=0}

Corollary 3.1.2 Let X be a T-spectrum such that η : π∗X → π∗−1X is trivial, then the
differential

d1
s,t : E

1
s,t = πt−sX → πt−s+1X = E1

s−1,t

is induced by S1∧X ⊆ S1∧X ∨S0∧X ' T+∧X → X where the latter map is the T-action.

For convenience we reconstruct the bare essentials of the spectral sequence in a pedes-
trian language.

There is a particularly convenient model for E(T) given as follows. Consider S2n−1

as the subspace of vectors in Cn of length 1. T = S1 ⊂ C acts on S2n−1 by complex
multiplication in each coordinate, and this action is (unbased) free. The inclusion Cn−1 ⊆
Cn into the first coordinates gives an T inclusion S2n−3 ⊆ S2n−1. So, taking the union of all
S2n−1 as n varies we get a contractible free T-space which we call E(T). This space comes
with a filtration, namely by the S2n−1s, and this filtration is exactly the one giving rise to
the above mentioned spectral sequence. In order to analyze the spectral sequence we need
to know the subquotients of the filtration, but this is easy enough: there is a T-isomorphism
S2n+1/S2n−1 ∼= S1

+∧S
2n given by considering S2n as CPn/CPn−1 (with trivial T action)

and sending the class of (z0, . . . zn) in S2n+1/S2n−1 to the class of
(
zn

|zn|
∧[z0, . . . zn]

)
in

S1
+∧CPn/CPn−1.

The spectral sequence for XhT comes from this filtration, and there are no convergence
issues associated to this spectral sequence.

The spectral sequence for XhT is from the point of view of [44] simply dual, but for the
more pedestrian users we note that this actually makes sense even if you are very naïve
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about things. Using that XhT = Map∗(ET, X)T, and ET = lim−→
k
S2k+1 we can write XhT

as the limit
XhT ∼= lim

←−n
Map∗(S

2n+1
+ ,−)T

Recall the Bousfield–Kan spectral sequence of a tower of fibrations

lim
←−
k

(Mk) � . . . � Mn+1
� Mn

� Mn−1
� . . .M1

� M0 = ∗.

It is a first quadrant spectral sequence, with Es,t
1 = πt−sF

s where F s is the fiber of M s.
The differential Es,t

1 → Es+1,t is induced given by πt−sF
s → πt−sM

s → πt−s−F
s+1.

This means that F s = Map∗(S
1
+∧S

2s, X)T ∼= Ω2sX, and we get that E1
s,t = πt−sΩ

2sX ∼=
πt+sX.

Strictly speaking, the Bousfield-Kan spectral sequence is set to zero outside 0 ≤ s ≤ t,
but in our case this restriction is not really relevant since we are going to apply the spectral
sequence to (connective) T-spectra. By reindexing, we shall think of this as a homologically
indexed spectral sequence in the left half plane with

E1
s,t(X

hT) = πt−sX, t ≥ s ≤ 0.

These spectral sequences fit into a bigger spectral sequence (corresponding to the Tate
spectrum of [44])

E1
s,t(Tate) = πt−sX, t ≥ s

and there is a short exact sequence of spectral sequences

0→ E1
s,t(X

hT)→ E1
s,t(Tate)→ E1

s−1,t−1(XhT)→ 0

and the norm map induces the edge homomorphism. This has the following consequence:
{lemma:A3 S1 norm is equivalence}

Lemma 3.1.3 Let X be an T-spectrum. If the Tate spectral sequence converges to zero,
then the norm map

S1∧XhT → XhT

is a stable equivalence.

3.2 Cyclic homology and its relatives

Let Z be a cyclic module, i.e., a functor from Λo to simplicial abelian groups. Let B : Zq →
Zq+1 be Connes’ operator

Zq
N=

P
(−1)qj tj

−−−−−−−−→ Zq
(−1)qsq
−−−−→ Zq+1

(1+(−1)q t)
−−−−−−→ Zq+1

satisfying B ◦ B = 0 and B ◦ b + b ◦ B = 0 where b =
∑

(−1)jdj. Due to these relations,
the B operator defines a complex

(π∗Z,B) = (π0Z
B
−−−→ π1Z

B
−−−→ . . .

B
−−−→ πqZ

B
−−−→ . . . )
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whose homology HdR
∗ (Z) = H∗(π∗Z,B) we call the deRham homology of Z.

Using the b and the B, and their relations one can form bicomplexes (called (b, B)-
bicomplexes, see e.g., [74, 5.1.7] for more detail) with s, t-entry Zt−s connected by the bs
vertically and the Bs horizontally (the relations guarantee that this becomes a bicomplex).

...
...

b

y b

y

. . .
B
←−−− Z2

B
←−−− Z1

B
←−−− . . .

b

y b

y

. . .
B
←−−− Z1

B
←−−− Z0

b

y

. . .
B
←−−− Z0

If you allow t ≥ s you get the so-called periodic (b, B)-bicomplex Bper(Z) (called BZper in
[74]), if you allow t ≥ s ≥ 0 you get the positive (b, B)-bicomplex B+(Z) and if you allow
t ≥ s ≤ 0 you get the negative (b, B)-complex B−(Z).

If −∞ ≤ m ≤ n ≤ ∞ we let Tm,nZ be the total complex of the part of the normalized
(b, B)–bicomplex which is between the mth and nth column: Tm,nq Z =

∏n
k=m C

norm
k,q−k(Z)

(where Cnorm denotes the normalized chains defined in A.1.7.0.7). The associated homolo-
gies H∗(T

−∞,0Z), H∗(T
−∞,∞Z) and H∗(T

0,∞Z) are called periodic, negative and (simply)
cyclic homology, and often denoted HP∗(Z), HC−(Z) and HC(Z). The associated short
exact sequence of complexes

0→ T−∞,0Z → T−∞,∞Z → T 1,∞Z → 0

together with the isomorphism T 1,∞
q Z ∼= T 0,∞

q−2Z gives rise to the well-known long exact
sequence

. . . −−−→ HCq−1(Z) −−−→ HC−q (Z) −−−→ HPq(Z) −−−→ HCq−2(Z) −−−→ . . .,

and similarly one obtains the sequence

. . . −−−→ HCq−1(Z)
B
−−−→ HHq(Z)

I
−−−→ HCq(Z)

S
−−−→ HCq−2(Z) −−−→ . . .

(the given names of the maps are the traditional ones, and we will have occasion to discuss
the S-map a bit further).

Notice that T−∞,nZ = lim←−m T
m,nZ, and so if . . . � Zk+1 � Zk � . . . is a sequence of

surjections of cyclic modules with Z = lim←−
k
Zk, then T−∞,nZ ∼= lim←−

k
T−∞,nZk, and you

have lim←−
(1)-lim←− exact sequences, e.g.,

0→ lim
←−
k

(1)HC−q+1(Z
k)→ HC−q (Z)→ lim

←−
k

HC−q (Zk)→ 0.
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Also, from the description in terms of bicomplexes we see that we have a short exact
sequence

0→ lim
←−
k

(1)HCq+1+2k(Z)→ HPq(Z)→ lim
←−
k

HCq+2k(Z)→ 0

describing the periodic homology of a cyclic complex Z in terms of the cyclic homology
and the S-maps connecting them.

We see that filtering Bper(Z) by columns we get a spectral sequence for HP∗(Z) with
E2 term given by HdR(Z).

These homology theories have clear geometrical meaning in terms of orbit and fixed
point spectra as is apparent from theorem 3.2.5 below.

Connes’ used B to define cyclic homology, and probably documented a variant of the
following fact somewhere. The only available source we know is Jones [59], see also the
closely related statements in [37] and [74, chap. 7]. Note that the identification between the
T-action and the differentials in the Tate spectral sequence follows by 3.1.2 since |HM |Λ
is an Eilenberg-MacLane spectrum.

{lemma:A3Bisd1}
Lemma 3.2.1 Let M be a cyclic abelian group. Then the Eilenberg-MacLane spectrum
|HM |Λ is a T-spectrum, and the T-action and the B-maps agree on homotopy groups in
the sense that the diagram

π∗M
∼=
−−−→ π∗|HM |Λ

B

y d1

y

π∗+1M
∼=
−−−→ π∗+1|HM |Λ

commutes where the horizontal isomorphisms are the canonical isomorphisms relating the
homotopy groups of simplicial abelian groups and their related Eilenberg-MacLane spectra,
and d1 is induced by the T-action (and so is the differential in the spectral sequences of the
homotopy orbit and fixed point spectra of |HM | in lemma 3.1.1).

Notice that if we filter by columns, lemma 3.2.1 says that the resulting E1 sheet agrees
with the Tate, orbit and fixed point spectrum spectral sequences of lemma 3.1.1. For the
record:

{cor:A3Tate is periodic}

Corollary 3.2.2 Let M be a cyclic abelian group. Then E1(Tate) (resp. E1(|HM |hT),
resp. E1(|HM |hT)) equals the E1 term of the spectral sequence given by filtering the periodic
(resp. positive, resp. negative) (b, B)-bicomplex by columns.

As a matter of fact, there is a natural isomorphism between the periodic (resp. negative,
resp. cyclic) homology of M and the homotopy groups of the Tate spectrum (resp. T-fixed
point spectrum, resp. T-orbit spectrum). See [44] in general, or [74] for the cyclic homology
part. We won’t need all that much, but only the following fact.

{cor:VHP0normeq}
Corollary 3.2.3 Let M be a cyclic abelian group. If the periodic homology of M vanishes,
then the T-norm map S1∧|HM |hT → |HM |

T is a stable equivalence.
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Proof: Since the periodic homology of M vanishes, so the spectral sequence gotten by
filtering by columns must converge to zero. Hence by corollary 3.2.2 the Tate spectral
sequence converges to zero, and we get the result from 3.1.1.

3.2.4 Negative cyclic homology and fixed point spectra

The above statements say that the spectral sequences coming from the cyclic actions have
E1-sheets have E1-sheets that are naturally isomorphic to the E1-sheets we get by filter-
ing the associated cyclic homology theories by column. This is all we need to make our
argument work, but it is satisfactory to know that these natural isomorphisms come from
spectrum level equivalences.

By a spectrum M of simplicial abelian groups, we mean a sequence {n 7→ Mn} of
simplicial abelian groups together with homomorphisms Z̃[S1] ⊗Mn → Mn+1 (according
to the notion of spectra in any simplicial model category). Maps between spectra are
as usual. There is a correspondence between spectra of simplicial abelian groups and
(unbounded) chain complexes (probably a Quillen equivalence in some model structure)
given by

Cspt
∗ M = lim

−→n
Cnorm
∗ (Mn)[n]

where the maps are given by the adjoint of the structure map Mn → S∗(S
1,Mn+1) ∼=

sAb(Z̃[S1],Mn+1) followed by the isomorphism

Cnorm
∗ sAb(Z̃[S1],Mn+1) ∼= Cnorm

∗ Mn+1[1][0,∞)

and the inclusion Cnorm
∗ M [1][0,∞) ⊆ Cnorm

∗ M [1].
{theo:HCisfixedpoint}

Theorem 3.2.5 Let M : Λo → sAb be a cyclic simplicial abelian group. There are natural
chains of weak equivalences

Cspt
∗ sin |HM |hT ' T 0,∞M

Cspt
∗ sin |HM |hT ' T−∞,0M.

Proof: The first statement follows from the corresponding statement in Loday’s book [74]
which shows that there is a natural chain of weak equivalences between Cnorm sin |M |hT

and T 0,∞M and the fact that sin |HM |hT is a connected Ω-spectrum.
Both statements can be proved hands on by the standard filtration on ET: Choose as

your model for the contractible free T-space ET in the definition of the homotopy fixed
points to be the colimit of

|S1| → |S3| → · · · → |S2n+1| → . . .

The maps in question are the inclusions gotten by viewing |S2n+1| as the space you get by
attaching a free T-cell to |S2n−1| along the action:

T× |S2n−1|
id×inclusion
−−−−−−−→ T×D2n

action

y
y

|S2n−1| −−−→ |S2n+1|
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Then we have a natural equivalence

sin |HM |hT(X)
∼
←−−− lim

←−n
(T− Top∗)(|S

2n+1|+, |M ⊗ Z̃[X]|)

(this is only a natural equivalence and not an isomorphism since the definition of the
homotopy fixed points of a topological spectrum involves a fibrant replacement, which is
unnecessary since HM is an Ω-spectrum).

Hence we are done once we have shown that there is a natural (in n and M) chain of
maps connecting

Cnorm
∗ (T− Top∗)(|S

2n+1|+, |M |), and T−n,0M

inducing an isomorphism in homology in positive dimensions.
This is done by induction on n taking care to identify all maps in question. In particular,

you need a refinement of the statement in lemma 3.2.1 to a statement about natural
homotopies between the T-action and the B-map.

An important distinction for our purposes between homotopy orbits and fixed points is
that homotopy orbits may be calculated degreewise. This is false for the homotopy fixed
points.

{lem:VHCdegwise}
Lemma 3.2.6 Let X be a simplicial T-spectrum. Then diag∗(XhT) is naturally equivalent
to (diag∗X)hT. In particular, if A is a simplicial ring, then HC(A) can be calculated
degreewise.

Proof: True since homotopy colimits commute, and the diagonal may be calculated as
holim−−−→

[q]∈∆
Xq.

3.2.7 Derivations

The following is lifted from [37], and we skip the gory calculations. Let A be a simplicial
ring. A derivation is a simplicial map D : A → A satisfying the usual Leibniz relation
D(ab) = D(a)b + aD(b). A derivation D : A → A induces an endomorphism of cyclic
modules LD : HH(A)→ HH(A) by sending a = a0 ⊗ . . . aq ∈ A

⊗q+1
p to

LD(a) =

q∑

i=0

a0 ⊗ . . . ai−1 ⊗D(ai)⊗ ai+1 ⊗ . . . aq

From [37] we get that there are maps

eD : Cq(A)→ Cq−1(A), and ED : Cq(A)→ C̄q+1(A)

satisfying
{lemma:Vderivations formula}

Lemma 3.2.8 Let D : A→ A be a derivation. Then

eDb + beD = 0,
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eDB +BeD + EDb+ bED = LD

and
EDB +BED

is degenerate.

To be explicit, the maps are given by sending a = a0 ⊗ . . . aq ∈ A
⊗q+1
p to

eD(a) = (−1)q+1D(aq)a0 ⊗ a1 ⊗ · · · ⊗ aq−1

and

ED(a) =
∑

1≤i≤j≤q

(−1)iq+1 ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ aj−1 ⊗D(aj)⊗ aj+1 ⊗ · · · ⊗ aq ⊗ a0 ⊗ ai−1

+ degenerate terms (3.2.8)

The first equation of lemma 3.2.8 is then a straightforward calculation, but the second is
more intricate (see [37] or [74]).

{cor:VderivonHC}
Corollary 3.2.9 ([37]) Let D be a derivation on a flat ring A. Then

LDS : HC∗A→ HC∗−2A

is the zero map.

Proof: Collecting the relations in lemma 3.2.8 we get that (ED+eD)(B+b)+(B+b)(ED+
eD) = LD on the periodic complex. However, this does not respect the truncation to the
positive part of the complex. Hence we shift once and get the formula ((ED + eD)(B+ b)+
(B + b)(ED + eD))S = LDS which gives the desired result.

{cor:VHPvanish}
Corollary 3.2.10 ([37]) Let f : A→ B be a map of simplicial rings inducing a surjection
π0A → π0B with nilpotent kernel. Let X be the homotopy fiber of HH(A) → HH(B).
Then HP∗(X(0)) = HP∗(X̂(0)) = 0.

Proof: By considering the square

A −−−→ By
y

π0A −−−→ π0B

we see that it is enough to prove the case where f is a surjection with nilpotent kernel and
f is a surjection with connected kernel separately.

Let P be completion followed by rationalization or just rationalization. The important
thing is that P is an exact functor with rational values.
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The basic part of the proof, which is given in [37, II.5], is the same for the connected
and the nilpotent case. In both situations we end up by proving that the shift map S is
nilpotent on the relative part, or more precisely: for every q and every k > q the map

Sk : HCq+2kY → HCqY

is zero, where Y is the homotopy fiber of P (HH(A)) → P (HH(B)) (actually in this
formulation I have assumed that the kernel was square zero in the nilpotent case, but we
will see that this suffices for giving the proof). From this, and from the fact that periodic
homology sits in a lim←−

S
(1)-lim←−

S
short exact sequence, we conclude the vanishing of periodic

homology.

The main difference between our situation and the rational situation of [?]Goodfreeloop
is that we can not assume that our rings are flat. That means that HH is not necessarily
calculated by the Hochschild complex.

In the connected case, this is not a big problem, since the property of being connected
is a homotopy notion, and so we can replace everything in sight by degreewise free rings
and we are in business as explained in [37, IV.2.1]. Being nilpotent is not a homotopy
notion, and so must be handled with a bit more care. First, by considering

A→ A/In → A/In−1 → · · · → A/I2 → A/I = B

we see that it is enough to do the sqare zero case. Let X
∼
� B be a free resolution of B

and consider the pullback
P −−−→ Xy

y
A −−−→ B

.

Since the vertical maps are equivalences we have reduced to the case where A → B is
a surjection of simplicial rings with discrete square zero kernel I and where B is free in
every degree. But since cyclic homology can be calculated degreewise by lemma 3.2.6, it
is enough to prove this in every degree, but since B is free in every degree it is enough
to prove it when A → B is a split surjection of discrete rings with square zero kernel I.
Choosing a splitting we can write A ∼= B n I, where I is a B-bimodule with square zero

multiplication. Let J
∼
� I be a free resolution of I as B-bimodules. Then we have an

equivalence Bn J
∼
→ Bn I, and again since cyclic homology can be calculated degreewise

we have reduced to the case B n I → B where B is free and I is a free B module.

Hence we are in the flat case, and can prove our result in this setting.
First consider the case where f is split with square zero kernel. Then the distributive

law provides a decomposition of A⊗q+1 = (B ⊕ I)⊗q+1, and if we let F k
q consist of the

summands with k or more I-factors we get a filtration

0 = F∞ =
⋂

n

F n ⊂ · · · ⊂ F 2 ⊂ F 1 ⊂ F 0 = HH(A)
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(it is of finite length in each degree, in fact F n
k = 0 for all n− 1 > k). Note that we have

isomorphisms of cyclic modules HH(B) = F 0/F 1, HH(A) = F 0 ∼= ⊕k≥0F
k/F k+1.

We must show that for every q and every k > q the map

Sk : HCq+2k(P (F 1))→ HCq(P (F 1))

is zero. Since F n
k = 0 for all n − 1 > k we have that HCq(P (F n)) = 0 for all q < n − 1.

Hence it is enough to show that for every q

Sk : HCq+2k(P (F 1/F k+1))→ HCq(P (F 1/F k+1))

is zero.

The projection D : B n I → I is a derivation, and it acts as multiplication by m
on Fm/Fm+1. Therefore we have by corollary 3.2.9 (whose proof is not affected by the
insertion of P ) that

m · S = LDS = 0

onHC∗(P (Fm/Fm+1)). Sincem ≥ 0 is invertible in Q, we get that S = 0 onHC∗(P (Fm/Fm+1)),
and by induction Sk = 0 on HC∗(P (F 1/F k+1)).

The proof of the connected case is similar: first assume that I is reduced (has just one
zero-simplex: this is obtained by the lemma 3.2.11 we have cited below). Use the “same”
filtration as above (it no longer splits), and the fact that F k is zero in degrees less than k
since I is reduced.

Filter A by the powers of I:

· · · ⊆ Im ⊆ · · · ⊆ I1 ⊆ I0 = A

This gives rise to a filtration of the Hochschild homology

0 = F∞ =
⋂

n

F n ⊂ · · · ⊂ F 2 ⊂ F 1 ⊂ F 0 = HH(A)

by defining

F k
q = im




⊕

P
ki=k

q⊗

i=0

Iki → HH(A)q



 .

Consider the associated graded ring gr(A) with grkA = Ik/Ik+1. Note that we have isomor-
phisms of cyclic modules HH(B) = F 0/F 1, HH(A) = F 0 and HH(grA) ∼= ⊕k≥0F

k/F k+1.

We define a derivation D on grA by letting it be multiplication by k in degree k. Note
that LD respects the filtration and acts like k on F k/F k+1. The proof then proceeds as in
the nilpotent case.

In the above proof we used the following result of Goodwillie [39, I.1.7]:
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{lem:Vconnvsreduced}
Lemma 3.2.11 Let f : A � B be a k-connected surjection of simplicial rings. Then there
is a diagram

R
∼
−−−→ A

g

y f

y
S

∼
−−−→ B

of simplicial rings such that the horizontal maps are equivalences, the vertical maps sur-
jections, and the kernel of g is k-reduced (i.e., its (k − 1)-skeleton is a point). If A and B
were flat in every degree, then we may choose R and S flat too.

{prop:VHHrel}
Proposition 3.2.12 Let f : A → B be a map of simplicial rings inducing a surjection
π0A→ π0B with nilpotent kernel, then the diagrams induced by the norm map

S1∧(THH(A)(0))hT −−−→ (THH(A)(0))
hT

y
y

S1∧(THH(B)(0))hT −−−→ (THH(B)(0))
hT

and
S1∧(THH(A)̂ (0))hT −−−→ (THH(A)̂ (0))

hT

y
y

S1∧(THH(B)̂ (0))hT −−−→ (THH(B)̂ (0))
hT

are homotopy cartesian.

Proof: Recall that by lemma IV.1.3.8 THH is equivalent to HH after rationaliztion, or
profinite completion followed by rationalization, and so can be regarded as the Eilenberg-
MacLane spectrum associated with a cyclic module.

By corollary 3.2.3 lemma C.3.1.3 and corollary C.3.2.2 we are done if the corresponding
periodic cyclic homology groups vanish, and this is exactly the contents of corollary 3.2.10.

Remark 3.2.13 A priori (T (0))
hT should not preserve connectivity, and does not do so

(look e.g., at the zero-connected map Z � Z/pZ: (T (Z)(0))
hT is not connective (its homo-

topy groups are the same as rational negative cyclic homoloy of the integers and so have a
Q in in every even nonpositive dimension), but (T (Z/pZ)(0))

hT vanishes.
However, since homotopy colimits preserve connectivity proposition 3.2.12 gives that we

do have the following result.
{cor:Vs1fixptandconn}

Corollary 3.2.14 If A → B is k > 0-connected map of simplicial rings, and let X be
either THH(0)

hT or THH (̂0)
hT considered as a functor from simplicial rings to spectra.

Then X(A) → X(B) is k + 1 connected If A → B induces a surjection π0A → π0B with
nilpotent kernel, then X(A)→ X(B) is −1-connected.
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3.3 Structural properties for integral TC

The importance of the results about the T-homotopy fixed point spectra in the section
above comes, as earlier remarked, from the homotopy cartesian square of lemma 2.3.2

TC(−) −−−→ (T (−)(0))
hT

y
y

TC(−)̂ −−−→ (T (−)̂ (0))
hT

.

So combining these facts with the properties of TC(−, p) exposed in section 2 we get several
results on TC quite for free.

Proposition 3.3.1 If A → B is k > 0-connected map of S-algebras, then TC(A) →
TC(B) is (k − 1)-connected. If A → B induces a surjection π0A → π0B with nilpotent
kernel, then TC(A)→ TC(B) is −1-connected.

Proof: Consider the cubical approximation in III.3.1.8. In this construction the conditions
on the maps of S-algebras are converted to conditions on homomorphisms of simplicial
rings (that the maps in the cubes are not themselves homomorphisms does not affect the
argument). Hence by theorem 2.3.4. Follows from the homotopy cartesian square, corollary
3.2.14 and lemma 2.2.5.

In fact, for the same reason this applies equally well to higher dimensional cubes:

Proposition 3.3.2 Let A be cubical diagram of positive dimension of S-algebras, and
assume that all maps are k-connected and induce surjections with nilpotent kernel on π0.
Assume that we have shown that T (A) is id − k cartesian. Then TC(A) is id − k − 1
cartesian.

Proof: Again we do the proof for each of the vertices in the cartesian square giving TC.
For TC(−)̂ '

∏
p prime TC(−, p)̂p this is proposition 2.2.7. For the two other vertices we

again appeal to theorem 2.3.4 which allow us to prove it only for simplicial rings, and then
to proposition 3.2.12 which tells us that the cubes involving (T (0))

hT and (T p̂(0))
hT are as

(co)cartesian as the corresponding cubes, Σ(HH(A)(0))hT and Σ(HH(A)̂ (0))hT. Thus we
are done since homotopy colimits preserve cocartesianness.

Notice that this is slightly stronger than what we used in theorem 2.3.4 to establish
the approximation property for TC: There we went all the way in the limit, obtaining
stable equivalences before taking the homotopy fixed point construction. Here we actually
establish that the connectivity grows as expected in the tower, not just that it converges.

3.3.3 Summary of results

In addition to the above results depending on the careful analysis of the homotopy fixed
points of topological hochschild homology we have the following more trivial results follow-
ing from our previous analyses of TC(−, p) and the general properies of homotopy fixed
points:
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• TC is an Ω-spectrum.

• TC can be calculated degreewise in certain relative situations

• TC preserves ΓS∗-equivalences

• TC is Morita-equivariant

• TC preserves products

• TC of triangular matrices give the same result as products.

• TC satisfies strict cofinality

• TC depends only on its value on simplicial rings

4 The trace.

4.1 Lifting the trace to topological cyclic homology

In this section we prove the

Lemma 4.1.1 Let C be a ΓS∗-category. Then the Bökstedt-Dennis trace map obC →
T (C)(S0) factors through TC(C;S0).

Proof: Remember that the Bökstedt-Dennis trace map was defined as the composite

obC →
∨

c∈obC

C(c, c)(S0)→ THH(C)0 → THH(C)

where the first map assign to every object its identity map, and the last map is the
inclusion by degeneracies. With some care, using the simplicial replacement descrip-
tion of the homotopy colimit, one sees that this inclusion can be identified with the
inclusion lim←−

Λo THH(C) ⊆ THH(C) (see lemma 1.1.4.), and so is invariant under the
circle action on |THH(C)|. In particular, the Bökstedt-Dennis trace map yields maps
obC → sdrTHH(C)Cr . To see that it commutes with the restriction maps, one chases an
object c ∈ obC through obC → sdrsTHH(C)Crs@ > R >> sdrTHH(C)Cr , and see that it
coincides with its image under obC → sdrTHH(C)Cr

Recall the notion of the K-theory K(C, w) of a symmetric monoidal ΓS∗-category C
with weak equivalences from II.?. The letter combination TC(K(C, w)) is supposed to
signify the bispectrum m,n 7→ TC(K(C, w)(Sn);Sm). In order to have the following
definition well defined, we consider K-theory as a bispectrum in the trivial way: m,n 7→
obK(C, w)(Sn)∧Sm without changing the notation.
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Definition 4.1.2 Let C be a symmetric monoidal ΓS∗-category with weak equivalences.
Then the cyclotomic trace is the lifting of the Bökstedt-Dennis trace

obK(C, w)→ TC(K(C, w))

considered as a map of bispectra.

This section must be (re)written. Put the Γ space stuff in II.
In the case of rings we have already produced a satisfactory “trace map” to THH,

namely
K(A) = ob§PA = T(A)T → T(A)

This defines a map to TC as follows. The diagram

T(A)T −−−→ T(A)hT

y
y

∏
pprime TC(A; p)̂p −−−→

∏
pprime holim

←−−−−
pr∈Fp

T(A)hCpr
p̂

commutes, and so we have a map T(A)T → TC(A), which we may call the trace. The
unfortunate thing is of course that as we have defined it, this only works for rings. There
are many approaches to defining the trace map for S-algebras in general We will follow the
outline of [120]. This is only a weak transformation, in the sense that we will encounter
weak equivalences going the wrong way, but this will cause no trouble in our context.

For any S-algebra A we will construct a weak map from BA∗ = BĜL1(A), the classify-
ing space of the monoid of homotopy units of A, to TC(A). Applying this to the S-algebras

MatnA, we get weak maps from BĜLn(A) to TC(MatnA) ' TC(A). Then we have a
choice of strategies:

Either we stabilize with respect to n and take the plus construction on both sides to
get a weak transformation from BĜL(A)+ to lim−→n TC(MnA)+ ' TC(A).

Or, we insists upon having a transformation on the spectrum level. Then we may
choose the Γ space approach. Let KΓ(A) and and TCΓ(A) be two Γ spaces defined on
objects by sending the finite set K to the space

∐

f∈Map∗(K,N0)

B(
∏

k∈K

Matf(k)(A)∗)× EΣP
k∈K f(k)

and ∐

f∈Map∗(K,N0)

TC(
∏

k∈K

Matf(k)(A))× EΣP
k∈K f(k)

The action on the morphisms are far from obvious, and we refer the reader to [6] for the
details. The transformation we have defined give rise to a map of Γ spaces, and hence a
spectrum-level transformation KΓ(A)→ TCΓ(A).

We will only need the former, and have to prove that it is compatible with the definition
we already have given for rings.

Note that the inclusion BGM → N cyNGM is onto N cy(NGM)S
1
, and is fixed by the

restriction maps, and so our trace factors through a weak transformation K(A)→ TC(A).
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5 Split square zero extensions and the trace

Let A be an S-algebra and P an A bimodule. Then we define A ∨ P as before, and recall
that we have for every x ∈ Iq+1 a decomposition of V (A ∨ P )(x) by letting

V (j)(A, P )(x) =
∨

φ∈∆m([j−1],[q])

∧

0≤i≤q

Fiφ(xi)

where

Fi,φ(x) =

{
A(Sx) if i /∈ imφ

P (Sx) if i ∈ imφ

Then V (A∨P )(x) ∼=
∨
j≥0 V

(j)(A, P )(x) and THH(A∨P ;X)@ >∼>>
∏

j≥0 THH
(j)(A, P ;X)

where
THH(j)(A, P ;X)q = holim

−−−−−→
x∈Iq+1

Ωtx(X∧V (j)(A, P )(x))

We want to get control over the various actions, to get a description of TC of a split
square zero extension.

Lemma 5.0.3 For every prime power a = pr

sdaTHH(A ∨ P ;X)Ca
∼
−−−→

∏
j≥0 sdaTHH

(j)(A, P ;X)Ca

is an equivalence.

Proof: Note that, for every a

X∧V (A ∨ P )(xa) ∼=
∨

j≥0

(X∧V (j)(A, P )(xa))

is a Ca isomorphism, and the action respects the wedge decomposition. We note that

V (j)(A, P )(xa)Ca ∼=

{
V (j/a)(A, P )(x) if j ≡ 0 mod a

∗ otherwise

If a = pn where p is a prime, we have maps of fibrations

Map(Stx
ap
, X∧

∨
j≥0 V

(j)(A, P )(xap))Cap −→ Map(Stx
a
, X∧

∨
j≥0 V

(j)(A, P )(xa))Ca

y
y

∏
j≥0Map(Stx

ap
, X∧V (j)(A, P )(xap))Cap −→

∏
j≥0Map(Stx

a
, X∧V (j)(A, P )(xa))Ca

with homotopy fiber

holim
−→
k

ΩkMap(Stx
ap
, Sk∧X∧

∨
j≥0 V

(j)(A, P )(xap))hCap

y
∏

j≥0 holim
−→
k

ΩkMap(Stx
ap
, Sk∧X∧V (j)(A, P )(xap))hCap
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The map of fibers factors through

holim
−→
k

Ωk(
∏

j≥0

Map(Stx
ap

, Sk∧X∧V (j)(A, P )(xap)))hCap

By Blakers–Massey the map into this space is an equivalence, and also the map out of this
space (virtually exchange the product for a wedge to tunnel it through the orbits).

Hence

sdapTHH(A ∨ P ;X)Cap
R
−−−→ sdaTHH(A ∨ P ;X)Ca

y
y

∏
j≥0 sdapTHH

(j)(A ∨ P ;X)Cap
R
−−−→

∏
j≥0 sdaTHH

(j)(A ∨ P ;X)Ca

is cartesian. But the right vertical map is an equivalence for a = 1, and hence by induction
for all a = pn.

Assume from now on that P is n− 1 connected, and X is m− 1 connected. We want
to study the maps

sdapTHH
(jp)(A, P ;X)Cap

R
−−−→ sdaTHH

(j)(A, P ;X)Ca

a bit closer. The fiber is

holim
−→
k

(ΩksdapTHH
(jp)(A, P ;Sk∧X)hCap)

and is by assumption jpn + m − 1 connected. If p does not divide j, the base space is
equivalent to

holim
−→
k

(ΩksdaTHH
(j)(A, P ;Sk∧X)hCa)

which is jn+m− 1 connected.
So consider

sdprTHH(lps)(A, P ;X)Cpr

where p does not divide l. If s ≥ r the R maps will compose to an lps−r+1n + m con-
nected map to THH (lps−r)(A, P ;X) which is lps−rn + m − 1 connected. If r ≥ s the R
maps will compose to an lpn + m connected map to to sdpr−sTHH(l)(A, P ;X)Cpr−s '
holim−→

k
(sdpr−sTHH(l)(A, P ;Sk∧X))hCpr−s which is ln+m− 1 connected.

Hence
holim
←−−−−
pt∈Rp

sdpr+tTHH(lps+t)(A, P ;X)Cpr+t

will be max(ln + m − 1, lps−rn + m − 1) connected. This means that there is a 2n + m
connected map

TR(A ∨ P ;X, p)→ TR(A;X, p)×
∏

r≥0

holim
←−−−−
pt∈Rp

sdpt+rTHHpt

(A, P ;X)Cpt+r

→ TR(A;X, p)×
∏

r≥0

sdprTHH(1)(A, P ;X)Cpr
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(the last map is pn+m ≥ 2n+m connected as all maps in the homotopy limit on the first
line are pn+m connected).

Lemma 5.0.4 Let A, P , X and a = pr be as before. Then

|THH(1)(A, P ;X)|Ca
'
−−−→ |THH (1)(A, P ;X)|hCa.

Proof: Let x ∈ Iq, and set S(x) = Stx
a
, Y (x) = X∧V (1)(A, P )(xa) and U(x) =

S(x)/S(x)Cp. Notice that U(x) is finite and free, S(x)Cp is a(tx)/p dimensional, and
Y (x) is a(tx) +m− 1 connected and Y Cp = ∗. Consider the map of fibrations

Map(U(x), Y (x))Ca −−−→ Map(S(x), Y (x))Ca −−−→ Map(S(x)Cp , Y (x))Ca

y
y

y
Map(U(x), QY (x))hCa −−−→ Map(S(x), QY (x))hCa −−−→ Map(S(x)Cp , QY (x))hCa

The left vertical map is highly connected, and goes to infinity with tx (ref). The upper
right hand corner is isomorphic to MapCa/p

(S(x)Cp, Y (x)Cp) = ∗. By the approximation
lemma, holim−−−→

x∈Iq commutes with finite homotopy limits, and so

holim−−−→
x∈Iq Map(S(x)Cp , QY (x))hCa

∼
−−−→ (holim−−−→

x∈Iq Map(S(x)Cp , QY (x)))hCa,

but as S(x)Cp is only a(tx)/p dimensional, and QY (x) is a(tx) +m − 1 connected, this
means that the homotopy colimit is contractible.

Collecting the information so far we get

Lemma 5.0.5 There is a 2n+m connected map

TC(A;X, p)→ TC(A;X, p)× holim
←−−−−
pr∈Fp

|T (1)(A, P ;X)|hCpr .

Proof: Take −h〈F 〉 of the TR expression, and insert the lemma.
Recall that T (1)(A, P ;X)@ <<< N cyT (A, P ;X) → S1

+∧T (A, P ;X) are equivalences.
Let Q be the endofunctor of spectra sending X to the equivalent Ω spectrum QX = {m 7→
holim−−→

x∈I
ΩxXx+k}.

Theorem 5.0.6 (Hesselholt) Let A, P , X and p as above. The “composite”

˜TC(A ∨ P ;X, p) −−−→ T̃ (A ∨ P ;X) ←−−− N cyT (A, P ;X)
∼
−−−→ S1

+∧T (A, P ;X)y
S1∧T (A, P ;X)

is 2n+m−? connected after p completion.
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Proof: In a 2n+m−? range, this looks like

holim
←−−−−
pr∈Fp

(N cyT (A, P ;X))hCpr −→ QN cyT (A, P ;X)
∼
←− N cyT (A, P ;X)

∼
−→ S1

+∧T (A, P ;X)

y
S1∧T (A, P ;X)

but the diagram

holim
←−−−−
pr∈Fp

(N cyT (A, P ;X))hCpr ∼
−→ holim

←−−−−
pr∈Fp

(S1
+∧T (A, P ;X))hCpr ←− (S1

+∧T (A, P ;X))hS
1

y
y '

y
QN cyT (A, P ;X)

∼
−→ Q(S1

+∧T (A, P ;X)) −→ Q(S1∧T (A, P ;X))

gives the result as the upper right hand map is an equivalence after p completing (ref).
The right hand vertical map is an equivalence (refapp)

Corollary 5.0.7 Let A be a simplicial ring and P a simplicial A bimodule. The trace
induces an equivalence

D1K(An−)(P )→ D1TC(An−)(P ).

Proof: We have seen that this is so after profinite completion, and we must study what
happens for the other corners in the definition of TC. But here we may replace the
S1 homotopy fixed points by the negative cyclic homology, and as we are talking about
square zero extensions, even by shifted cyclic homology. But as cyclic homology respects
connectivity we see that the horizontal maps in

(N cyT (A, P ;X)(0))
hS1
−−−→ (T̃ (An P ;X)(0))

hS1

y
y

(N cyT (A, P ;X )̂ (0))
hS1
−−−→ (T̃ (An P ;X )̂ (0))

hS1

are both 2k +m connected if P is k − 1 connected and X is m− 1 connected.
Summing up: both maps going right to left in

K̃(An P ) −−−→ T̃C(An P ) ←−−− (N cyT(A, P ))hS
1 ∼
−−−→ (S1

+∧T(A, P ))hS
1

y
y

y
T̃(An P ) ←−−− QN cyT(A, P )

∼
−−−→ Q(S1

+∧T(A, P ))

'

x '

x
N cyT(A, P )

∼
−−−→ S1

+∧T(A, P )y
S1∧T(A, P )

are 2k connected, and all composites from top to the bottom are 2k connected.
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Chapter VII

The comparison of K-theory and TC

{VI}
At long last we come to the comparison between algebraic K-theory and topological cyclic
homology. The reader should be aware, that even though we propose topological cyclic
homology as an approximation to algebraic K-theory, there are marked differences between
the two functors. This is exposed by a number of different formal properties, as well as
the fact that in most cases they give radically different output.

However, the local structure is the same. We have seen that this is the case if we use
the myopic view of stabilizing, but we will now see that they have the same local structure
even with the eyes of deformation theory.

More precisely, we prove the integral version of the Goodwillie conjecture

{GC}

Theorem 0.0.8 Let A → B be a map of S-algebras inducing a surjection π0A → π0B
with nilpotent kernel, then

K(A) −−−→ TC(A)y
y

K(B) −−−→ TC(B)

is homotopy cartesian.

The version where the map is in fact 1-connected was proposed as a conjecture by the
second author at the ICM in Kyoto 1990. The current proof was found in 1996.

Some history
Something about consequences and related results.
We prove it in two steps. In section 1 we prove the result for the case where A→ B is

a split surjection of simplicial rings with square zero kernel. This case is possible to attack
by means of a concrete cosimplicial resolution calculating the loops of the classifying space
of the fiber. Some connectedness bookkeeping then gives the result. In section 2 we get
rid of the square zero condition and the condition that A → B is split. This last point
requires some delicate handling made possible by the fact that we know that in the relative
situations both K-theory and TC can be calculated degreewise. Using the “denseness” of
simplicial rings in S-algebras, and the “continuity” of K and TC we are finished.

221
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1 K-theory and cyclic homology for split square zero

extensions of rings

Recall that if A is a ring and P is an A-bimodule we write A × P for the ring whose
underlying abelian group is A⊕P and whose multiplication is defined by (a1, p1) ·(a2, p2) =
(a1a2, a1p2 + p1a2). Then the projection A n P → A is a surjection of rings whose kernel
is a the square zero ideal which we identify with P ..

{def:VI1.1}
Definition 1.0.9 For A a simplicial ring and P an A bimodule, let FAP be the iterated
fiber of

K(An P ) −−−→ TC(An P )y
y

K(A) −−−→ TC(A)

regarded as a functor from A bimodules to spectra.

{theo:VI1.2}
Theorem 1.0.10 Let A be a simplicial ring. Then FAP ' ∗ for all A-bimodules P .

That is, the diagram in definition 1.0.9 is homotopy cartesian.
The proof of this theorem will occupy the rest of this section. In the next, we will show

how the theorem extends to S-algebras to prove Goodwillie’s ICM90 conjecture.
We may without loss of generality assume that A is discrete. We know by ref that

if P is k-connected, then FAP is 2k-connected; so for general P it is natural to study
ΩkFA(BkP ) (whose connectivity goes to infinity with k), or more precisely, the map

FAP
ηk

P−−−→ ΩkFA(BkP ).

This map appears naturally as the map of fibers of FA applied to the (co)cartesian
square

P −−−→ 0y
y

0 −−−→ BP

Since FA is not a priori linear, we don’t know that ηP is an equivalence, but we will show
that it is as connected as FA(BP ) is. This means that FAP is as connected as ΩFA(BP ),
and by induction FAP must be arbitrarily connected, and we are done.

To see this, model P ' ΩBP by means of the cosimplicial object

ω(∗, BP, ∗) = {[q] 7→ S∗(S
1
q , BP ) ∼= BP×q}

(refappend)NBNB. We coaugment this by P
∼
→ ω(∗, BP, ∗), and let S 7→ PnS be the

composite

Pn
⊂
−−−→ ∆ ∪ ∅

ω(∗,−,∗)∪P
−−−−−−→ simplicial A bimodules.
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For any n-cube X , we have a tower

Fn+1 −−−→ Fn −−−→ . . . −−−→ F1 −−−→ F0y
y

y
Φn . . . Φ1 Φ0

where

F0 = X∅,

Φ0 = X{1},

Fj = fib{Fj−1 → Φj−1} and

Φj = fib
{
Xj → holim

←−
X |Pn[j]− {j}

}

where Pn[j] = {S ∈ Pn|j ∈ S, {j + 1, . . . , n} ∩ S = ∅}. This is nothing more than a spe-
cific choice of path for computing the iterated fiber Fn+1 of X .

In the case X = FAP
n we get F1 = F0 = FAP and Φ1 = ΩFABP . Theorem 1.0.10

follows from the claim that F2 is as connected as ΩFABP is. This will again follow if we
know this to be true for the Φis and for Fn+1.

We first consider the question for the Φjs. Note that the maps in Pn[j] always preserve
j, which is the last element. Translated to ∆, for all 0 < l < j, it has all the inclusions
di : [l] → [l + 1] but the one omitting l + 1. This leaves som room for a change of base
isomorphism of j cubes Pn|Pn[j] ∼= Qj given by sending di to δi which omits the i + 1th
coordinate, and is the identity on the vertices of cardinality ≤ 1. Here we have used that
the cubes are strongly (co)cartesian. The important outcome is that Qj can be constructed
iteratively by taking products with BP .

Thus Φj
∼= iterated fiberFAQ

j, which can be analyzed as follows. Let P0, . . . Pn be A
bimodules, and define

FA(P0;P1 . . . , Pj)

inductively by letting FA(P0) be as before, and setting

FA(P0;P1, . . . , Pj) = fiber{FA(P0;P1, . . . , Pj−1) −−−→ FA(P0 × Pj;P1, . . . , Pj−1)}

We see that

FA(∗;BP, . . . , BP ) ' Φj

Now, assume that we know that FA(∗;BP ) ' ΩFABP is m-connected for all A and
P . We will show that Φj ' FA(∗;BP, . . . , BP ) is also m-connected.

This will follow from the more general statement, that if all the Pi are 1-reduced, then
FA(−;P1, . . . , Pj) is m-connected. For j = 1 this is immediate as

FA(P0;P1) = fiber{FA(P0)→ FA(P0 × P1)} ' ΩFAnP0(P1)}
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so assume that FA(−;P1, . . . , Pj−1) is m-connected. In particular FA(P0;P1, . . . , Pj−1) and
FA(P0 × (Pj)q;P1, . . . , Pj−1) are m-connected, and using that FA(−) may be calculated
degreewise we see that

FA(P0;P1, . . . , (Pj)q) is

{
0 if q = 0

m− 1 connected

and hence the conclusion follows.
We are left with showing that the iterated fiber of FAP

n is as highly connected as we
need. In fact, we will show that FAP

n is (n− 3)-cartesian, and so choosing n big enough
we are done. In order to prove this, and so to prove the triviality of FAP , it is enough to
prove the two following lemmas.

{lem:VI1.3}
Lemma 1.0.11 K(An Pn) is n-cartesian.

Proof: Follows from NBNBref with k = 0.
and

{lem:VI1.4}

Lemma 1.0.12 TC(An Pn) is n− 3 cartesian.

Proof: This proof occupies the rest of the section and involves several sublemmas.
For each 0 ≤ i ≤ n, let Pi be an A bimodule, and let T (A;P0, . . . , Pn) = {k 7→

T (A;P0, . . . , Pn;S
k)} be the n reduced simplicial spectrum given by

[q] 7→ holim
−−−−−→
x∈Iq+1

Ωtx(Sk∧
∨

φ∈∆m([n],[q])

∧

0≤i≤q

F j ⊗ Z̃Sxi)

for q ≥ n, where ∆m([n], [q]) is the set of injective order preserving maps φ : {0 < · · · <
n} → {0 < · · · < q}, and where F j = A if j 6∈ imφ and F j = Pφ−1(j) otherwise. The
simplicial operations are the ordinary Hochschild ones, where the P s multiply trivially.
This is a functor from simplicial A bimodules to spectra, and restricted to each factor it
preserves cartesian diagrams. We let T (n+1)(A, P ) be the composite with the diagonal. We
see that this agrees with our earlier definition.

{lem:VI1.5}
Lemma 1.0.13 LetM be a strongly (co)cartesian S-cube of simplicial A bimodules. Then
T (n)(A,M) is cartesian if |S| > n.

Proof: The proof follows Goodwille’s argument in [40, proposition 3.4]. We define a new
S-cube Z as follows. If T ⊆ S, let ST ⊆ PS be the full subcategory with objects U
containing T and with |S − U | ≤ 1.

ZT = holim
←−−−−
U1∈ST

. . .holim
←−−−−−
Un∈ST

T (A, {MUi
})

AsM was strongly cartesianM|ST is cartesian, and so the map T (n)(A,MT )→ ZT is an
equivalence for each T . The homotopy limits may be collected to be over S×nT which may
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be written as ∩s∈TAs where As is the full subcategory of A = S×n∅ such that s is in every
factor. As |S| > n the As cover A as in the hypothesis of [40, lemma 1.9], and so Z is
cartesian.

{lem:VI1.6}

Lemma 1.0.14 If P is (k − 1)-connected, then

T (An P )
∼
←−−−

∨
0≤j<∞ T

(j)(A, P ) −−−→
∨

0≤j<n T
(j)(A, P )

is (n(k + 1)− 1)-connected.

Proof: NBNB(ref) gives that

T (An P )
∼
←−−−

∨
0≤j<∞ T

(j)(A, P ).

If P is (k − 1)-connected each simplicial dimensions contains smash of j copies of P :

T (A, P )q is

{
0 if q < j − 1

kj − 1 connected

and so T (j)(A, P ) is j − 1 + kj − 1 = (k + 1)j − 2 connected.
{lem:VI1.7}

Lemma 1.0.15 T (An Pn) is id− 2 cartesian.

Proof: Consider

T (An P )
a

−−−→
∨

0≤j<n T
(j)(A, P )

d

y b

y
holim
←−

S 6= ∅T (An PnS )
c

−−−→ holim
←−

S 6= ∅
∨

0≤j<n T
(j)(A,PnS )

By lemma 1.0.14 a is (n−1)-connected. By lemma 1.0.13 T (j)(A,−) is n-excisive for j < n,
and so ∨

0≤j<n T
(j)(A, P )

∼
−−−→

∨
0≤j<n holim←−−

S 6=∅
T (j)(A,PnS ).

Since ∨ ∼
∏

for spectra, this implies that b is an equivalence.
Again, by lemma 1.0.14

T (An PnS )
a

−−−→
∨

0≤j<n T
(j)(A,PnS )

is (2n−1)-connected for S 6= ∅, with fiber, say FS, (2n−2)-connected. The fiber of c equals
holim←−−

S 6=∅
FS, and must then be 2n− 2− n+ 1 = n− 1 connected (an n cube consisting of

l connected spaces must have (l − n)-connected iterated fiber: by induction). Hence c is
n-connected.

This means that d must be (n − 2)-connected. Likewise for all subcubes (some are
id-cartesian).

Applying proposition NBNB5.? with k = n − 2, this concludes the proof of lemma
1.0.12

This also concludes the proof of theorem 1.0.10.
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2 Goodwillie’s ICM’90 conjecture.

In this section we will prove

Theorem 2.0.16 (Goodwillie’s ICM’90 conjecture) Let A→ B be a map of S-algebras
inducing a surjection π0A→ π0B with nilpotent kernel, then

K(A) −−−→ TC(A)y
y

K(B) −−−→ TC(B)

is homotopy cartesian.

Following the procedure of [39] we first prove it in the case A→ B is a simplicial ring
map, and then use the density argument to extend it to S-algebras.

We start up with some consequences of the split square zero case.
{VI2.2}

Lemma 2.0.17 Let f : B → A be a simplicial ring map such that each fq is an epimor-
phism with nilpotent kernel. Then

K(B) −−−→ TC(B)y
y

K(A) −−−→ TC(A)

is homotopy cartesian.

Proof: Let I = ker(f). As we may calculate the K-theory and TC of a simplicial radical
extension degreewise, the statement will follow if we can prove the it for fq : Bq → Aq for
each q. That is, we may assume that B and A are discrete, and that I = ker(f) satisfies
In = 0. Note that each of the maps

B = B/In → B/In−1 → . . . B/I2 → B/I = A

are square zero extensions, so it will be enough to show the corollary when I 2 = 0.

Let F
∼
� A be a free resolution of A, and perform pullback

P −−−→ F

'

y '

y

B
f

−−−→ A

Using again that we may calculate the K-theory and TC of a simplicial radical extension
degreewise, the result will follow for P → F (and hence for f) if we can prove the statement
for Pq → Fq for each q. But as each Fq is a free ring Pq → Fq must be a split square zero
extension, for which the theorem is guaranteed by 1.0.10.



2. GOODWILLIE’S ICM’90 CONJECTURE. 227

{lem:VI2.3}
Lemma 2.0.18 Let f : B → A be a 1-connected epimorphism of simplicial rings, then

K(B) −−−→ TC(B)y
y

K(A) −−−→ TC(A)

is homotopy cartesian.

Proof: Note that if R → S is a k-connected map of simplicial rings, then K(R)→ K(S)
and TC(R) → TC(S) will be (at least) (k − 1)-connected. We will clearly be done if we
can show that any k ≥ 1 connected map f : A→ B has a diagram of the following sort

B

f

��

B′

��

g

  A
AA

AA
AA'

oo

C

h~~}}
}}

}}
}

A A′'
oo

where g is a (k+1)-connected epimorphism and h is a square zero extension. The horizontal
maps are simply the replacement of I by a k-reduced ideal I ′ ⊆ B′ described in ??. We set
g to be the projection B ′ → B′/(I ′)2 = C. We have a short exact sequence of simplicial
abelian groups

0 −−−→ ker(m) −−−→ I ′ ⊗Z I
′ m
−−−→ (I ′)2 −−−→ 0.

As I ′ is k-reduced, so is ker(m), and I ′ ⊗Z I ′ is (2k − 1)-connected, and accordingly
ker(g) = (I ′)2 must be at least k-connected.

{theo:VI2.4}
Theorem 2.0.19 Let f : A→ B be a map of simplicial rings inducing a surjection π0A→
π0B with nilpotent kernel, then

K(A) −−−→ TC(A)y
y

K(B) −−−→ TC(B)

is homotopy cartesian.

Proof: Consider the diagram

B
f

−−−→ Ay
y

π0B −−−→ π0A
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The theorem will follow for f if it is true for the three other maps. This follows for the
vertical maps by lemma 2.0.18, and for the horizontal map by lemma ??.
Proof: (Proof of theorem ??. As in the preceding proof, it is enough to consider the maps
A→ π0A. We know that for every S ∈ obP, the diagram

K(AS) −−−→ TC(AS)y
y

K(π0A) −−−→ TC(π0A)

is cartesian, and furthermore, that

K(A)
∼
→ holim
←−−−−−
S∈P−∅

K(AS)

and
TC(A)

∼
→ holim
←−−−−−
S∈P−∅

TC(AS)

and the result follows.

3 Some hard calculations and applications
{calc}

To be written. Must contain reviews of the relevant results of Bökstedt, Brun, Hesselholt,
Hsiang, Madsen, Rognes and Tsalidis. (will contain no original mathematics)



Appendix A

Simplicial techniques

{A1}
For the convenience of the reader, we give a short review of simplicial techniques. This is
meant only as a reference, and is far from complete. Most results are referred away, and we
only provide proofs when no convenient single reference was available, or when the proofs
have some independent interest. Most of the material in this appendix can be found in
Bousfield and Kan’s book [14] or in Goerss and Jardine’s book [36].

0.1 The category ∆
{subsec:Delta}

Let ∆ be the category consisting of the finite ordered sets [n] = {0 < 1 < 2 < · · · < n} for
every nonnegative integer n, and monotone maps. In particular, for 0 ≤ i ≤ n we have the
maps

di : [n− 1]→ [n], di(j) =

{
j j < i

j + 1 i ≤ j
“skips i”

si : [n + 1]→ [n], si(j) =

{
j j ≤ i

j − 1 i < j
“hits i twice”

Every map in ∆ has a factorization in terms of these maps. Let φ ∈ ∆([n], [m]). Let
{i1 < i2 < · · · < ik} = [m]− im(φ), and {j1 < j2 < · · · < jl} = {j ∈ [n]|φ(j) = φ(j + 1)}.
Then

φ(j) = dikdik−1 · · ·di1sj1sj2 · · · sjl(j)

This factorization is unique, and hence we could describe ∆ as being generated by the
maps di and si subject to the “cosimplicial identities” :

djdi = didj−1 for i < j

sjsi = si−1sj for i > j

and

sjdi =





disj−1 for i < j

id for i = j, j + 1

di−1sj for i > j + 1

229
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0.2 Simplicial and cosimplicial objects

If C is a category, the opposite category, Co is the same category, but where you have
reversed the direction of all arrows. A functor from Co is sometimes called a contravariant
functor.

If C is any category, a simplicial C object is a functor ∆o → C, and a cosimplicial C
object is a functor ∆→ C.

If X is a simplicial object, we let Xn be the image of [n], and for a map φ ∈ ∆ we
will often write φ∗ for X(φ). For the particular maps di and si, we write simply di and
si for X(di) and X(si), and call them face and degeneracy maps. Note that the face and
degeneracy maps satisfy the “simplicial identities” which are the duals of the cosimplicial
identities. Hence a simplicial object is often defined in the literature to be a subcategory
of C, consisting of a sequence of objects Xn and maps di and si satisfying these identities.

Dually, for a cosimplicial object X, we let Xn = X([n]), φ∗ = X(φ), and the coface
and codegeneracy maps are written di and si.

A map between two (co)-simplicial C objects is a natural transformation. Generally,
we let sC and cC be the categories of simplicial and co-simplicial C objects.

Functor categories like sC and cC inherits limits and colimits from C (and in particular
sums and products), when these exist. We say that (co)limits are formed degreewise.

Example 0.2.1 (the topological standard simplices)
There is an important cosimplicial topologi-
cal space [n] 7→ ∆n, where ∆n is the standard
topological n-simplex

∆n = {(x0, . . . , xn) ∈ Rn+1|
∑

xi = 1, xi ≥ 0}

with

di(x0, . . . , xn−1) =(x0, . . . , xi, 0, xi+1, . . . , xn−1)

si(x0, . . . , xn+1) =(x0, . . . , xi−1, xi + xi+1, xi+2, . . . , xn+1)

0

1

–0.4

0.2
0.4

0.6
0.8

1
1.2

1.4

y–0.4
–0.2

0.4
0.6

0.8
1
1.2

1.4

x

The standard topological

2-simplex ∆2 ∈ R.

0.3 Resolutions from adjoint functors
{A103}

Adjoint functors are an important source of (co)simplicial objects. Let

D
F

�
U
C

be a pair of adjoint functors: we have a natural bijection of morphism sets

C(F (d), c) ∼= D(d, U(c))
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induced by the unit σd : d→ UF (d) (corresponding to idF (d) ∈ D(F (d), F (d))) and counit
δc : FU(c)→ c (corresponding to idU(c) ∈ C(U(c), U(c))). Then

[q] 7→ (FU)q+1(c)

defines a simplicial C object with structure maps defined by

di = (FU)iδ(FU)q−i+1 : (FU)q+2(c)→ (FU)q+1(c)

and

si = (FU)iFσU(FU)q−i : (FU)q(c)→ (FU)q+1(c).

Dually, [q] 7→ (UF )q+1(d) defines a cosimplicial D object. These (co)simplicial objects are
called the (co)simplicial resolutions associated with the adjoint pair.

The coposite T = UF (together with the associated natural transformations 1 → T
and TT → T ) is occasionally referred to as a triple or monad (probably short for “monoid
in the monoidal category of endofunctors and composition”), and likewise FU a cotriple
or comonad, but never mind: the important thing to us are the associated (co)simplicial
resolutions,

1 Simplicial sets

Let Ens be the category of sets (when we say “sets” they are supposed to be small in some
fixed universe). LetS = sEns the category of simplicial sets. Since all (co)limits exist in
Ens, all (co)limits exist in S. The category of simplicial sets has close connections with the
category T op of topological spaces. In particular, the realization and singular functors (see
1.1) induce equivalences between their respective “homotopy categories” (see 1.3.3 below).

In view of this equivalence, we let a “space” mean a simplicial set (unless explicitly
called a topological space). We also have a pointed version. A pointed set is a set with
a preferred element, called the base point, and a pointed map is a map respecting base
points. The category of pointed spaces (= pointed simplicial sets = simplicial pointed sets)
is denoted S∗. Also S∗ has (co)limits. In particular we let

X ∨ Y = X
∐

∗

Y

and

X∧Y = X × Y/X ∨ Y

If X ∈ S we can add a disjoint basepoint and get the pointed simplicial set

X+ = X
∐
∗
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1.1 Simplicial sets vs. topological spaces
{subsec:A111}

There are adjoint functors

T op
|−|

�
sin
S

defined as follows. For Y ∈ T op, the singular functor is defined as

sin Y = {[n] 7→ T op(∆n, Y )}

(the set of unbased continuous functions from the topological standard simplex to Y ). As
[n] 7→ ∆n was a cosimplicial space, this becomes a simplicial set. For X ∈ S, the realization
functor is defined as

|X| =

(∐

n

Xn ×∆n

)
/(φ∗x, u) ∼ (x, φ∗u).

The realization functor is left adjoint to the singular functor, i.e. there is a bijection

T op(|X|, Y )↔ S(X, sin Y )

The bijection is induced by the adjunction maps

X → sin |X|

x ∈ Xn 7→(∆n u7→(x,u)
→ Xn ×∆n → |X|) ∈ sin |X|n

and

| sinY | →Y

(y, u) ∈ sin(Y )n ×∆n 7→y(u) ∈ Y

If S∗ is the category of simplicial pointed sets(i.e. “pointed spaces”), then the singular
and realization functor also define adjoint functors between S∗ and the category of pointed
topological spaces, T op∗.

If X ∈ S∗ we define

π∗(X) = π∗(|X|), and H∗(X) = H(|X|).

1.2 Simplicial abelian groups

Let Ab be the category of abelian groups. Since Ab has all (co)limits, so has the category
A = sAb of simplicial abelian groups. A simplicial abelian group M may be regarded as a
chain complex:

C(M) = {M0
d0−d1←−−− M1

d0−d1+d2←−−−−−− M2
d0−d1+d2−d3←−−−−−−−− . . . }
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We define the homotopy groups of M by

π∗(M) = H∗(C(M))

There are free/forgetful functors

Ab
Z[−]

�
U
Ens

where Z[X] is the free abelian group on the set X. One can prove that the definition of
homotopy groups of simplicial abelian groups agree with the definition for simplicial sets:
π∗(|U(M)|) ∼= π∗(M) = H∗(C(M)) see e.g. [36, ?]. Note that the singular homology of a
topological space Y is defined as H∗(Y ) = π∗(Z[sin Y ]). For X ∈ S we define H∗(X) =
π∗(Z[X]). The map X = 1 · X ⊆ UZ[X] induces the Hurewicz map π∗(X) → H∗(X) on
homotopy groups.

1.3 The standard simplices, and homotopies

We define a cosimplicial space (cosimplicial simplicial set)

[n] 7→ ∆[n] = {[q] 7→ ∆([q], [n])}.

The spaces ∆[n] are referred to as the standard simplices. Note that the realization |∆[n]| of
the standard simplex equals ∆n, the topological standard simplex. The standard simplices
are in a precise way, the building blocks (representing objects) for all simplicial sets: if X
is a simplicial set, then there is a functorial isomorphism

S(∆[n], X) ∼= Xn, f 7→ f([n] = [n])

A homotopy between two maps f0, f1 : X → Y ∈ S is a map H : X × ∆[1] → Y such
that the composites

X ∼= X ×∆[0]
id×di−−−→ X ×∆[1]

H
−−−→ Y, i = 0, 1

are f1 and f0. Since |X ×∆[1]| ∼= |X| × |∆[1]|, we see that the realization of a homotopy
is a homotopy in T op. The pointed version is a map

H : X∧∆[1]+ → Y

(the subscript + means a disjoint basepoint added).
We say that f0 and f1 are strictly homotopic if there is a homotopy between them,

and homotopic if there is a chain of homotopies which connect f0 and f1. In this way,
“homotopic” forms an equivalence relation.

Another way to say this is that two maps f0, f1 : X → Y are homotopic if there is a
map

H : X × I → Y, or in the pointed case H : X∧I+ → Y
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which is equal to f0 and f1 at the “ends” of I, where I is a finite number of ∆[1]s glued
together at the endpoints, i.e. for some sequence of numbers ij ∈ {0, 1}, 1 ≤ j ≤ n, I is
the colimit of

∆[1] ∆[1] . . . ∆[1]

∆[0]
d1

bbEEEEEEEE di1

<<yyyyyyyy
∆[0]

d1−i1

bbEEEEEEEE di2

??���������
∆[0]

d1−in

__????????? d0

<<yyyyyyyy

We still denote the two end inclusions d0, d1 : ∗ = ∆[0]→ I.
We note that elements in π1(X) can be represented by maps α : I → X such that

αd0 = αd1 = 0.

1.1.4 Function spaces

In analogy with the mapping space, we define the simplicial function space of maps from
X to Y to be the simplicial set

S(X, Y ) = {[q] 7→ S(X ×∆[q], Y )}

the cosimplicial structure of the standard simplices makes this into a simplicial set. In the
pointed case we set

S∗(X, Y ) = {[q] 7→ S∗(X∧∆[q]+, Y )

We reserve the symbol Y X for the pointed case: Y X = S∗(X, Y ), and so Y X+ = S(X, Y ).
Unfortunately, these definition are not homotopy invariant; for instance, the weak equiva-
lence BN→ sin |BN| does not induce an equivalence S∗(S

1, BN)→ S∗(S
1, sin |BN|) (on

π0 it is the inclusion N ⊂ Z). To remedy this we define

Map(X, Y ) = S(X, Y )

and
Map∗(X, Y ) = S∗(X, sin |Y |)

In fact, using the adjointness of the singular and realization functor, we see that

Map(X, Y ) ∼={[q] 7→ T op(|X| × |∆[q]|, |Y |} ∼= {[q] 7→ T op(∆q, T op(|X|, |Y |)}

=sin(T op(|X|, |Y |))

and likewise in the pointed case.
These function spaces still have some sort of adjointness properties, in that

Map(X × Y, Z) ∼= S(X,Map(Y, Z))
∼
→Map(X,Map(Y, Z))

and
Map∗(X∧Y, Z) ∼= S∗(X,Map∗(Y, Z))

∼
→Map∗(X,Map∗(Y, Z))

where the equivalences have canonical left inverses.
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1.1.5 The nerve of a category
{A115}

Let C be a small category. For every n ≥ 0, regard [n] = {0 < 1 < · · · < n} as a category
(if a ≤ b there is a unique map a← b: beware that many authors let the arrow point in the
other direction. The choice of convention does not matter to the theory). Furthermore, we
identify the maps in ∆ with the corresponding functors, so that ∆ sits as a full subcategory
of the category of (small) categories.

{Def:nerve}
Definition 1.1.5.1 The nerve NC of the small category C is the simplicial category

[q] 7→ obNqC = {category of functors [q]→ C}

The nerve is a functor from the category of small categories to simplicial categories.

We see that the set of objects obNqC, is the set of all chains c0 ← c1 ← · · · ← cq in C,
and in particular obN0C = obC.

Frequently, the underlying simplicial set obNC is also referred to as the nerve of C. Note
that obN [q] ∼= ∆[q].

The nerve obN , as a functor from categories to spaces, has a left adjoint given by sending
a simplicial set X to the category CX defined as follows. The set of objects is X0. The
set of morphisms is generated by X1, where y ∈ X1 is regarded as an arrow y : d0y → d1y,
subject to the relations that s0x = 1x for every x ∈ X0, and for every z ∈ X2

d0d0z
d0z //

d1z

$$I
IIII

II
II

d1d0z

d2zzzuu
uu

uu
uuu

d1d1z

commutes. The adjunction map CobND → D is an isomorphism, and the nerve obN is a
full and faithful functor.

1.1.5.2 Natural transformations and homotopies

The nerve takes natural transformations to homotopies: if η : F1 → F0 is a natural transfor-
mation of functors C → D, regard it as a functor η : C × [1]→ D by sending (c← c′, 0 < 1)
to

F1(c) ←−−− F1(c
′)

ηc

y ηc′

y
F0(c) ←−−− F0(c

′)

Thus we have defined a homotopy between F0 and F1:

obNC ×∆[1] ∼= obNC × obN [1] ∼= obN(C × [1])→ obND
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1.1.5.3 Over and under categories

If C is a category and c an object in C, the category over c, written C/c, is the category
whose objects are maps f : d → c ∈ C, and a morphism from f to g is a factorization
f = gα. Dually the under category is defined. Over and under categories are frequently
referred to as comma categories in the literature.

1.1.6 Subdivisions and Kan’s Ex∞

Consider the subcategory ∆m ⊂ ∆ with all objects, but just monomorphisms. For any
n ≥ 0 we consider the subdivision of the standard n-simplex ∆[n]. To be precise, it is
N(∆m/[n]), the nerve of the category of order preserving monomorphisms into [n]. For
every φ : [n] → [m] ∈ ∆ we get a functor φ∗ : ∆m/[n] → ∆m/[m] sending α : [q] ⊆ [n]
to the unique monomorphism φ∗(α) such that φα = φ∗(α)φ where φ is an epimorphism
(see section 0.1). This means that N(∆m/−) is a cosimplicial space, and the functor
∆m/[n]→ [n] sending α : [p] ⊆ [n] to α(p) ∈ [n] defines a cosimplicial map to the standard
simplices {[n] 7→ ∆[n] = N [n]}.

For any simplicial set X Kan then defines

Ex(X) = {[q] 7→ S(N(∆m/[q]), X)}

This is a simplicial set, and N(∆m/[q])→ ∆[n], defines an inclusion X ⊆ Ex(X). Set

Ex∞X = lim
−→
k

Ex(k)(X).

The inclusion X ⊆ Ex∞X is a weak equivalence, and Ex∞X is always a “Kan complex”,
that is a fibrant object in the sense of section 1.3. In fact, they give the possibility of
defining the homotopy groups without reference to topological spaces via

πqX = π0S∗(S
q, Ex∞X)

where π0 component classes.

1.1.7 Filtered colimits in S∗

Filtered colimits are colimits over filtered categories (see [79, p. 207]). Filtered colimits of
sets especially nice because they commute with finite limits (see [79, p. 211]). This fact
has an analog for simplicial sets, and this is one of the many places we should be happy for
not considering general topological spaces. Recall that a filtered category J is a nonempty
category such that for any j, j ′ ∈ obJ there are maps j → k, j ′ → k to a common object,
and such that if f, g : j → j ′, then there is an h : j ′ → k such that hf = hg.

Given a space Y , its N-skeleton is the subspace skNY ⊆ Y generated by simplices in
dimension less than or equal to N .
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A space Y is finite if it has only finitely many non degenerate base points. Alternatively
finiteness can be spelled out as, Y = skNY for some N , Y0 is finite, and its q-skeleton for
q ≤ N is formed by iterated pushouts over finite sets Dq

∨
Dq
∂∆[q]+ −−−→

∨
Dq

∆[q]+y
y

skq−1Y −−−→ skqY

{lemma:A1finite is small}
Lemma 1.1.7.1 Let J be a filtered category and Y finite.Then the canonical map

lim
−→
J

S∗(Y,X)→ S∗(Y, lim−→
J

X)

is an isomorphism

Proof: Since S∗(Y,−)q = S∗(Y ∧∆[q]+,−) and Y ∧∆[q]+ is finite, it is clearly enough to
prove that

lim
−→
J

S∗(Y,X) ∼= S∗(Y, lim−→
J

X).

Remember that filtered colimits commute with finite limits. Since Y is a finite colimit of
diagrams made out of ∆[q]’s, this means that it is enough to prove the lemma for Y = ∆[q],
which is trivial since S∗(∆[q], X) = Xq and colimits are formed degreewise.

Lemma 1.1.7.2 If J is a filtered category, then the canonical map

lim
−→
J

Ex∞X → Ex∞ lim
−→
J

X

is an isomorphism.

Proof: Since colimits commute with colimits, it is enough to prove that Ex commute with
filtered colimits, but this is clear since Ex(X)n = S∗(N(∆m/[n]), X) and N(∆m/[n]) is a
simplicial finite set equal to its n-skeleton.

{lemma:pi vs filteredcolims}
Proposition 1.1.7.3 Homotopy groups commute with filtered colimits.

Proof: Let X ∈ obS∗ and J be a filtered category. First note that π0, being a colimit itself,
commutes with arbitrary colimits. For q ≥ 0 we have isomorphisms

πq lim
−→
J

X ∼=π0S∗(S
q, Ex∞ lim

−→
J

X)

∼=π0S∗(S
q, lim
−→
J

Ex∞X)

∼= lim
−→
J

π0S∗(S
q, Ex∞X) ∼= lim

−→
J

πqX
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1.1.8 The classifying space of a group

Let G be a group, and regard it as a one point category whose morphisms are the group
elements. Then NqG = G×q, and BG = NG is called the classifying space of G. The
homotopy groups of BG are given by

πi(BG) =

{
G if i = 1

0 otherwise

If G is abelian, BG becomes a simplicial abelian group. Hence we may apply the construc-
tion again, and get a bisimplicial abelian group, and so on. Taking the diagonal, we get a
sequence G, BG, diag∗BBG, . . . The nth term diag∗BnG is isomorphic to Z̃[Sn]⊗G, and
is often written H(G, n), and is characterized up to homotopy by having only one nonzero
homotopy group πn = G, and such spaces are called Eilenberg-MacLane spaces. We call
any space (weakly) equivalent to a simplicial abelian group, an Eilenberg-MacLane space.
Note that there is a map S1∧H(G, n)→ Z̃[S1]⊗H(G, n) ∼= H(G, n+ 1), and so they are
examples of spectra (see section 1.2 below).

If G is a simplicial group there is an alternative construction for the homotopy type
of diag∗BG, called W̄G, which is most easily described as follows: We have a functor
t : ∆×∆→ ∆ sending two ordered sets S and T to the naturally ordered disjoint union
S t T . For any simplicial set X we may consider the bisimplicial set sd2X gotten by
precomposing X with t (so that the (sd2X)p,q = Xp+q+1: the diagonal of this construction
was called the (second) edgewise subdivision in chapter VI). We define W̄G to be space
with q-simplices

W̄qG = {bisimplicial maps sd2∆[q]→ BG} ,

where the simplicial structure is induced by the cosimplicial structure of [q] 7→ ∆[q]. This
description is isomorphic to the one given in [82] (with reversed orientation).

1.1.9 Kan’s loop group
{A1Kanloop}

The classifying space BG of a group G is a reduced space (i.e. it only has one zero simplex).
On the category of reduced spaces X there is a particularly nice model GX for the loop
functor due to Kan [61], see [82, p. 118] or [36]. If q ≥ 0 we have that GqX is the free group
generated by Xq+1 modulo contracting the image of s0 to the base point. The degeneracy
and face maps are induced from X except the extreme face map (which extreme depends
on your choice of orientation, see [82, definition 26.3] for one choice). The Kan loop group
is adjoint to the W̄ -construction described above. As a matter of fact, W̄ and G form
a “Quillen equivalence” which among other things implies that the homotopy category of
reduced spaces is equivalent to the homotopy category of simplicial groups.

1.1.10 Path objects
{A1pathobject}

Let Y be a simplicial object in a category C. There is a convenient combinatorial model
mimicking the path space Y I . Let t : ∆×∆→ ∆ be the ordered disjoint union.
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Definition 1.1.10.1 Let Y be a simplicial object in a category C. Then the path object
is the simplicial object PY given by precomposing Y with [0]t? : ∆ −−−→ ∆.

Hence PqX = Xq+1.
The map PY → Y corresponding to evaluation is given by the natural transformation

d0 : id→ [0] t id (concretely: it is PqX = Xq+1
d0 //Xq ).

Lemma 1.1.10.2 The maps Y0 → PY → Y0 induced by the natural maps [0]→ [0]t [q]→
[0] are simplicial homotopy equivalences.

Proof: That PY → Y0 → PY is simplicially homotopic to the identity follows from the
natural transformation of functors (∆/[1])o → ∆o sending φ : [q] → [1] to φ∗ : [0] t [q] →
[0] t [q] with φ∗(0) = 0 and

φ∗(j + 1) =

{
0 if φ(j) = 0

j + 1 if φ(j) = 1
.

The connection to the path-space is the following: considering ∆ as a subcategory of
the category of small categories in the usual way, there is a (non-naturally) split projection
[1] × [q] → [0] t [q] collapsing everything in {0} × [q] through the natural [0] ⊆ [0] t [q],
and sending {1} × [q] isomorphically to the image of the natural [q] ⊆ [0] t [q]. If X is a
simplicial set, the usual path space is

XI+ = S(∆[1], X) = {[q] 7→ S(∆[1]×∆[q], X) = S(N([1]× [q]), X)}

whereas PX = {[q] 7→ S(N([0] t [q]), X)}, and the injection PX ⊆ X I+ is induced by the
above projection.

1.2 Spectra
{A12spt}

A spectrum is a sequence of spaces X = {X0, X1, X2, . . . } together with (structure) maps
S1∧Xk → Xk+1 for k ≥ 0. A map of spectra f : X → Y is a sequence of maps f k : Xk → Y k

compatible with the structure maps: the diagrams

S1∧Xk −−−→ Xk+1

yfk

yfk+1

S1∧Y k −−−→ Y k+1

We let Spt be the resulting category of spectra. This category is enriched in S∗, with
morphism spaces given by

Spt0(X, Y ) = {[q] 7→ Spt(X∧∆[q]+, Y )}
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In fact, this is the zero space of a function spectrum

Spt(X, Y ) = {k 7→ Spt0(X, Y (k+?))}

There is a specially important spectrum, namely the sphere spectrum

S = {k 7→ Sk = S1∧ . . .∧S1}

whose structure maps are the identity. Note that there is a natural isomorphism Spt(S, X) ∼=
X.

Recall that if Y ∈ S∗, then ΩkY = S∗(S
k, sin |Y |). Let ηnX : sin |Xn| → Ω1Xn+1 be

the adjoint of S1∧ sin |Xn| → sin |S1∧Xn| → sin |Xn+1|. We say that a spectrum X is an
Ω-spectrum if ηnX is an equivalence for all n.

For X ∈ obSpt we define the spectrum

QX = {n 7→ lim
−→
k

ΩkXk+n}

where the colimit is taken over the maps

ΩkXk+n
(ηn+k

X )∗
−−−−→ Ωk+1Xk+n+1.

This is an Ω-spectrum. The homotopy groups of X are set to

πqX = lim
−→
k

πq+kX
k

where the colimit is over the maps πq+kX
k → πq+kΩX

k+1 ∼= πq+k+1X
k+1 for k > q. In

effect, this means that a map of spectra X → Y induces an isomorphism in homotopy if
and only if QXk → QY k is a weak equivalence for every k.

We say that a spectrum X is cofibrant if all the structure maps S1∧Xk → Xk+1 are
cofibrations (i.e., inclusions). We say that a spectrum X is n-connected if πqX = 0 for
q ≤ n. We then get the trivial observation:

{lemma:A1filtering by connective}

Lemma 1.2.0.3 There is a canonical pointwise equivalence
⋃
n≥0 Cn(X)

∼
→ X such that

for given n, Cn(X) is a cofibrant −n− 1-connected spectrum.

Proof: By induction we use the functorial factorizations in S∗ to build a pointwise equiv-
alence (and fibration) C(X)

∼
→ X such that C(X) is cofibrant. Let

Cn(X) = {C(X)0, C(X)1, . . . , C(X)n, S1∧C(X)n, . . . }

with the obvious structure maps, and we see that C(X) =
⋃
n≥0 Cn(X).
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1.3 Homotopical algebra
{sec:HA}{A13HA}

Categories like sC or csC sometimes have structure like we are used to in homotopy theory
in T op. Technically speaking, they often form what is called a simplicial closed model
category, see either one of [100], [54], [53] or [36].

In homotopy theory there are three important concepts: fibrations, cofibrations and
weak equivalences. The important thing is to know how these concepts relate to each
other: Consider the (solid) commuting diagram

A //
��

i
��

E

f
����

X

s
>>}

}
}

}
// B

where i is a cofibration and f is a fibration. If either i or f are weak equivalences, then
there exists a (dotted) map s : X → E making the resulting diagram commutative. The
map s will in general only be unique up to homotopy (there is a general rule in this game
which says that “existence implies uniqueness”, meaning that the existence property also
can be used to prove that there is a homotopy between different liftings).

Note that there may be many meaningful choices of weak equivalences, fibrations and
cofibration on a given category.

1.3.1 Examples
{A41}{A131}
{A411}

1. Spaces. In S the weak equivalences are the maps f : X → Y which induce an
isomorphism on homotopy groups π∗(X, x) → π∗(Y, f(x)) for all x ∈ X0. The cofi-
brations are simply the injective maps, and the fibrations are all maps which have
the lifting property described above with respect to the cofibrations which are weak
equivalences. These are classically called Kan fibrations.

These notions also pass over to the subcategory S∗ of pointed simplicial sets. The
inclusion of the basepoint is always a cofibration (i.e. all spaces are cofibrant), but
the projection onto a one point space is not necessarly a fibration (i.e. not all spaces
are fibrant). The fibrant spaces are also called Kan spaces (or Kan complex).

{A412}

2. Topological spaces. In T op and T op∗, weak equivalences are still those which
induce isomorphism on homotopy. The fibrations are the Serre fibrations, and the
cofibrations are those which satisfy the lifting property with respect to the Serre
fibrations which are weak equivalences. All topological spaces are fibrant, but not
all are cofibrant. CW-complexes are cofibrant. Both the realization functor and the
singular functor preserve weak equivalences, fibrations and cofibrations.

{A413}

3. Simplicial groups, rings, monoids, abelian groups. In sG, the category of
simplicial groups, a map is a weak equivalence or a fibration if it is in S∗, and
the cofibrations are the maps which have the lifting property with respect to the
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fibrations which are weak equivalences. Note that this is much more restrictive,
than just requiring it to be a cofibration (inclusion) in S∗ (the lifting is measured in
different categories). However, if X → Y ∈ S∗ is a cofibration, then F (X) → F (Y )
is also a cofibration, where F : Ens∗ → G is the free functor, which sends a pointed
set X to the free group on X modulo the basepoint.

Likewise in A, the category of simplicial abeilan groups, and sRing, the category of
simplicial rings.

{A414}

4. Functor categories. Let I be any small category, and let [I,S∗] be the category of
functors from I to S∗. This is a closed simplicial model category in the “pointwise”
structure: a map X → Y (natural transformation) is a weak equivalence (resp.
fibration) if X(i) → Y (i) is a weak equivalence (resp. fibration) of simplicial sets,
and it is a cofibration if it has the left lifting property with respect to all maps that
are both weak equivalences and fibrations. An important example is the pointwise
structure on Γ-spaces (see chapter II.2.1.5), G-spaces (see below).

Generally, it is the pointwise structure which is used for the construction of homotopy
(co)limits (see section 1.9 below).

{A415}

5. The pointwise structure on spectra. A map X → Y of spectra is a pointwise
equivalence (resp. fibration) if for every k it gives an equivalence (resp. pointwise
fibration) Xk → Y k of pointed simplicial sets. A map is a cofibration if it has the
lifting property with respect to maps that are both pointwise fibrations and pointwise
equivalences. A spectrum X is cofibrant if all the structure maps S1∧Xk → Xk+1

are cofibrations (i.e., inclusions).
{A416}

6. The stable structure on spectra. A map X → Y of spectra is a stable equivalence
if it induces an isomorphism on homotopy groups, and a (stable) cofibration if it is
a cofibration in the pointwise structure. The map is a fibration if it has the lifting
property with respect to maps that are both cofibrations and stable equivalences.

{A417}

7. G-spaces and G-spectra. Let G be a simplicial monoid. The category of G-spaces
(see CNBNBref) is a closed simplicial model category with the following structure:
a map is a G-equivalence (resp. G-fibration) if it is an equivalence (resp. fibration)
of spaces, and a cofibration if it has the left lifting property with respect to all maps
that are both G-equivalences and G-fibrations. Also, the category of G-spectra (see
CNBNBref) has a pointwise and a stable structure giving closed simplicial model
categories. Pointwise fibrations and pointwise equivalences (resp. stable fibrations
and stable equivalences) er given by forgetting down to spectra, and pointwise (resp.
stable) cofibrations are given by the left lifting property.

The examples 1.3.1.1–1.3.1.3 can be summarized as follows: Consider the diagram

T op∗
|−|

�
sin
S∗

F

�
U
sG

H1(−)

�
U
A

TZ(−)

�
U

sRing
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where the U are forgetful functors, TZ(A) the tensor ring on an abelian group, and H1(−) =
−/[−,−] : G → Ab (applied degreewise). We know what weak equivalences in T op∗ are,
and we define them everywhere else to be the maps which are sent to weak equivalences
in T op∗. We know what cofibrations are in S∗, and use the axiom to define the fibrations.
We then define fibrations everywhere else to be the maps that are sent to fibrations in S∗,
and use the axioms to define the cofibrations.

The proof that 1.3.1.1–1.3.1.4 define closed simplicial model categories is contained in
[100, II4], and the proof 1.3.1.5 and 1.3.1.6 is in [13]. None of these proofs state explicitly
the functoriality of the factorizations of the axiom CM5 below, but for each of the cases it
may be easily reconstructed from a “small object” kind of argument. For a discrete group
G, the case of G-spaces is a special case of 1.3.1.4 but a direct proof in the general case
is fairly straight forward, and the same proof works the pointwise structure on G-spectra.
The proof for the stable structure then follows from the pointwise structure by the same
proof as in [13] for the case G = ∗.

1.3.2 The axioms
{Def:CMC}

For convenience we list the axioms for a closed simplicial model category C. It is a category
enriched in S, it is tensored and cotensored (see B.?? and B.??). We call the function spaces
C(−,−). Furthermore C has three classes of maps called fibrations, cofibrations and weak
equivalences satisfying the following axioms

{CM1}

CM1 C is closed under finite limits and colimits.
{CM2}

CM2 (The saturation axiom) For two composable morphisms

b
f

−−−→ c
g

−−−→ d ∈ C,

if any two of f , g and gf are weak equivalences, then so is the third.
{CM3}

CM3 (Closed under retracts) If a map f is a retract of g (in the arrow category), and g is
a weak equivalence, a fibration or a cofibration, then so is f .

{CM4}

CM4 Given a solid diagram

A //
��

i
��

E

����
X

s
>>}

}
}

}
// B

where i is a cofibration and f is a fibration. If either i or f are weak equivalences, then
there exists a (dotted) map s : X → E making the resulting diagram commutative.

{CM5}

CM5 (Functorial factorization axiom) Any map f may be functorially factored as f = ip =
jq where i is a cofibration, p a fibration and a weak equivalence, j a cofibration and
a weak equivalence, and q a fibration.
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{SM7}

SM7 If i : A � B is a cofibration and p : X → Y is a fibration, then the canonical map

C(B,X)
(i∗,p∗)
−−−→ C(A,X)

∏
C(A,Y ) C(B, Y )

is a fibration of simplicial sets. If either i or p are weak equivalences, then (i∗, p∗) is
also a weak equivalence.

An object X is a retract of Y if there are maps X → Y → X whose composite is idX .
Note that the demand that the factorizations in CM5 should be functorial is not a part
of Quillen’s original setup, but is true in all examples we will encounter, and is sometimes
extremely useful. Furthermore, with the exception of S and T op, all our categories will be
S∗-categories, that is the function spaces have preferred basepoints.

1.3.3 The homotopy category
{subsec:Hocat}{A14}

It makes sense to talk about the homotopy category Ho(C) of a closed simplicial model
category C. These are the categories where the weak equivalences are formally inverted
(see e.g. [100]).

The realization and singular functor induce equivalences

Ho(S∗) ' Ho(T op∗)

This has the consequence that for all practical purposes we can choose whether we rather
want to work with simplicial sets or topological spaces. Both categories have their draw-
backs, and it is useful to know that all theorems which are proven for either homotopy
category holds for the other.

1.4 Fibrations in S∗

Let f : E → B ∈ S∗ be a fibration. We call F = ∗
∏

B E the fiber of f . Recall that we get
a long exact sequence

· · · → πq+1E → πq+1B → πqF → πqE → πqB → . . . .

The πis are groups for i > 0 and abelian groups for i > 1, and π2E maps into the center
of π1F .

1.4.1 Actions on the fiber
{A141}

If π and G are groups and π → Aut(G) is a group homomorphism from π to the group os
automorphisms on G we say that π acts on G. If H ⊂ G is a normal subgroup we have an
action G→ Aut(H) via g 7→ {h 7→ g−1hg}. In particular, any groups acts on itself in this
fashion, and these automorphisms are called the inner automorphisms.
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Let f : E � B be a fibration and assume B is fibrant. Let i : F = E
∏

B ∗ ⊆ E be the
inclusion of the fiber. Then there are group actions

π1E → Aut(π∗F )

and

π1B → Aut(H∗F )

and the actions are compatible in the sense that the obvious diagram

π∗F × π1E −−−→ π∗Fy
y

H∗F × π1B −−−→ H∗F

commutes. For future reference, we review the construction.

The spaces F , E, and B are fibrant, so function spaces into these spaces are homotopy
invariant. For instance is BS1

= S∗(S
1, B) a model for the loops on B. We write X I for

the free path space X∆[1]+.

Consider the map p : X → F ×BS1
defined by

X lim←− {F
i

−−−→ E
d0←−−− EI d1−−−→ E

i
←−−− F}

p

y
∥∥∥ f

y fI

y f

y
y

F ×BS1
lim←− {F

∗
−−−→ B

d0←−−− BI d1−−−→ B ←−−− ∗}

We see that p is both a fibration and a weak equivalence.

Hence there exists splittings F×BS1
→ X, unique up to homotopy, which by adjointness

give rise to a homotopy class of maps BS1
→ Hom(F,X). Via the projection onto the last

factor

X = F ×E E
I ×E F

pr3
−−−→ F ,

this gives rise to a homotopy class of maps BS1
→ Hom(F, F ). For every such we have a

commuting diagram

BS1
−−−→ Hom(F, F )y

y
π0B

S1
= π1B −−−→ π0Hom(F, F )→ End(H∗(F ))

and the lower map does not depend on the choice of the upper map. As F is fibrant
π0Hom(F, F ) is the monoid of homotopy classes of unbased self maps. Any homotopy
class of unbased self maps defines an element in End(H∗(F )), and the map from π1B is a
monoid map, and giving rise to the desired group action π1B → Aut(H∗(F )).
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For the pointed situation, consider the (solid) diagram

F ∨ ES1 in1+j //
��

��

X

p
����

pr3 // F

F × ES1

88q
q

q
q

q
q

// F × BS1

(1.4.1.0) {eq:A1410}

where in1 : F → X = F ×E E
I ×E F is inclusion of the first factor, and j is the inclusion

ES1
= ∗ ×E E

I ×E ∗ ⊆ F ×E E
I ×E F = X. Again there is a homotopy class of liftings,

and since the top row in the diagram is trivial, the composites

F × ES1
→ X

pr3
−−−→ F

all factor through F∧ES1
. So, this time the adjoints are pointed: ES1

→ Hom∗(F, F ),
giving rise to a unique

π1E = π0E
S1

→ π0(Hom∗(F, F ))→ End(π∗(F )).

Again the map is a map of monoids, and so factors through the automorphisms, and we
get the desired group action π1E → Aut(π∗(F )), compatible with the homology operation.

1.4.2 Actions for maps of grouplike simplicial monoids

If j : G ⊆M is the inclusion of a subgroup in a monoid, then j/1 is the over category of j
considered as a functor of categories. Explicitly, it has the elements of M as objects, and
a map from m to m′ is a g ∈ G such that m′g = m.

We have an isomorphism M ×G×q
∼=
−−−→ Nq(j/1) given by

(m, g1, . . . , gq) 7→ m
g1
←−−− mg1

g2
←−−− . . .

gq
←−−− mg1g2 · · · gq

and B(M,G, ∗) = {[q] 7→ M × G×q} with the induced simplicial structure, is called the
one-sided bar construction.

{A1GinMaction}

Theorem 1.4.2.1 Let M be a group-like simplicial monoid, and j : G ⊆M a (simplicial)
subgroup. Then

N(j/1)→ NG→ NM

is a fiber sequence, and the action

ΩNG×N(j/1)→ N(j/1) ∈ Ho(S∗)

may be identified with the conjugate action

G×N(j/1)→N(j/1)

(g, (m, g1, . . . , gq)) ∈ Gq ×Nq(j/1) 7→(gmg−1, gg1g
−1, . . . ggqg

−1)
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Proof: That the sequence is a fiber sequence follows from e.g. Waldhausen’s theorem B’
(NBNBref-can’t we find a better reference?). As to the action, replace the fiber sequence
with the equivalent fiber sequence

F
i

−−−→ E
f

−−−→ B

defined by B = sin |NM |, and the pullback diagrams

E −−−→ NGy
y

BI d0−−−→ B

, and

F −−−→
i

E
y f

y
∗ −−−→ B

where f is the composite

E = NG×B B
I pr2
−−−→ BI d1−−−→ B.

To describe the action, consider the diagram (the maps will be described below)

F ∨G // ∼ //
��

��

F ∨ (NG)S
1 // ∼ //

��

��

F ∨ ES1 in1+j //
��

��

X

p
����

F ×G // ∼ // F × (NG)S
1 // ∼ // F × ES1 // BS1

× F

The rightmost square is the same as the lifting square in 1.4.1.0. The horizontal weak
equivalences are induced by

NG −−−→ E = NG×B B
I , x 7→ (x, f(x)) (the constant map at f(x))

G −−−→ (NG)S
1

= S∗(S
1, NG), adjoint to the canonical inclusion S1∧G −−−→ NG

By the uniqueness of liftings, any lifting F × G → X is homotopic to F × G
∼
→ G × ES1

composed with a lifting F×ES1
→ X. Hence we may equally well consider lifings F×G→

X. We will now proceed to construct such a lifting by hand, and then show that the
constructed lifting corresponds to the conjugate action.

We define a map NG × G ×∆[1] → (NG) by sending (x, g, φ) = (g, (x1, . . . , xq), φ) ∈
Gq ×NqG×∆([q], [1]) to

Hg(x)(φ) = (gφ(0)x1g
−φ(1), gφ(1)x2g

−φ(2), . . . , gφ(q−1)xqg
−φ(q))

(where g0 = 1 and g1 = g). Note that, if 1 is the constant map [q]→ [1] sending everything
to 1, then Hg(x)(1) = (gx1g

−1, . . . , gxqg
−1). We let H : NG × G → NGI be the adjoint,

and by the same formula we have a diagram

NG×G
H
−−−→ (NG)Iy

y

NM ×G
H̄
−−−→ (NM)Iy

y

B ×G
H̄
−−−→ BI
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This extends to a map E×G→ EI by sending (x, α) ∈ NG×BB
I = E to g 7→ Hg(x, α) =

(Hg(x), H̄g(α)). Since

G ⊂ B ×G
H̄
−−−→ BI di−−−→ B

is trivial for i = 0, 1 (and so, if (x, α) ∈ F , we have Hg(x, α)(i) = (Hg(x)(i), H̄g(α)(i)) ∈ F
for i = 0, 1), we get that, upon restricting to F ×G this gives a lifting

F ×G→ F ×E E
I ×E F = X

Composing with

X = F ×E E
I ×E F

pr3
−−−→ F

we have the “conjugate” action

F ×G→ F, (g, (x, α)) 7→ cg(x, α) = Hg(x, α)(1) = (Hg(x)(1), H̄g(α)(1))

is equivalent to the action of G on the fiber in the fiber sequence of the statement of the
theorem.

Let C = sin |N(M/1)| ×B B
I and F̃ = C ×B E. Since C is contractible, F

∼
→ F̃ is an

equivalence. We define a conjugate action on C using the same formulas, such that C → B
is a G-map, and this defines an action on F̃ such that

F ×G −−−→ Fy
y

F̃ ×G −−−→ F̃x
x

N(j/1)×G −−−→ N(j/1)

commutes, where the lower map is the action in the theorem. As the vertical maps are
equivalences by the first part of the theorem, this proves the result.

1.5 Bisimplicial sets

A bisimplicial set is a simplicial object in S, that is, a simplicial space. From the functors

∆
diag
−−−→ ∆×∆

pr1
−−−→
pr2

∆

we get functors

S
diag∗

←−−− sS ←−−− S
where the leftmost is called the diagonal and sends X to diag∗(X) = {[q] 7→ Xq,q}, and
the two maps to the right reinterpret a simplicial space X as a bisimplicial set by letting
it be constant in one direction (e.g. pr∗1(X) = {[p], [q] 7→ Xp}).

There are important criteria for when information about each Xp may be sufficient to
conclude something about diag∗X. We cite some useful facts. Proofs may be found either
in the appendix of [13] or in [36].
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{theo:A1degreewise equ}
Theorem 1.5.0.2 Let X → Y be a map of simplicial spaces inducing a weak equivalence
Xq

∼
→ Yq for every q ≥ 0. Then diag∗X → diag∗Y is a weak equivalence.

Definition 1.5.0.3 (The π∗-Kan condition, [13]) Let

X = {[q] 7→ Xq} = {[p], [q] 7→ Xp,q}

be a simplicial space. For a ∈ Xq, consider the maps

di : πp(Xq, a)→ πp(Xq−1, dia), 0 ≤ i ≤ q

We say that X satisfies the π∗-Kan condition at a ∈ Xq if for every tuple of elements

(x0, . . . , xk−1, xk+1, . . . xq) ∈
∏

0 ≤ i ≤ m
i 6= k

πp(Xq−1, dia)

such that dixj = dj−1xi for k 6= i < j 6= k, there is an

x ∈ πp(Xq, a)

such that dix = xi for i 6= k.

For an alternative description of the π∗-Kan condition see [36].
Examples of simplicial spaces which satisfies the π∗-Kan condition are bisimplicial

groups and simplicial spaces {[q] 7→ Xq} where each Xq is connected, see [13].
Recall that a square is (homotopy) catesian if it is equivalent to a categorically cartesian

square of fibrations.
{theo:A1BFsq}

Theorem 1.5.0.4 [[13]] Let
V −−−→ Xy

y
W −−−→ Y

be a commutative diagram of simplicial spaces, such that

Vp −−−→ Xpy
y

Wp −−−→ Yp

is homotopy cartesian for every p. If X and Y satisfy the π∗-Kan condition and if {[q] 7→
π0(Xq)} → {[q] 7→ π0(Yq)} is a fibration, then

diag∗V −−−→ diag∗Xy
y

diag∗W −−−→ diag∗Y

is homotopy cartesian.
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As an immediate corollary we have the important result that loops can often be cal-
culated degreewise. Recall that if X is a space, then the loop space of Y is ΩX =
S∗(S

1, sin |X|).
{cor:A1degwise loop}

Corollary 1.5.0.5 Let X be a simplicial space such that Xp is connected for every p ≥ 0.
Then there is a natural equivalence between Ωdiag∗X and diag∗{[p] 7→ ΩXp}.

Proof: Let Yp = sin |Xp|, and consider the homotopy cartesian square

S∗(S
1, Yp) −−−→ S∗(∆[1], Yp)y

y
∗ −−−→ Yp

.

Now, since each Yp is connected, this diagram satisfies the conditions of theorem 1.5.0.4,
and so

diag∗{[p] 7→ S∗(S
1, Yp)} −−−→ diag∗{[p] 7→ S∗(∆[1], Yp)}y

y
∗ −−−→ diag∗{[p] 7→ Yp}

is homotopy cartesian. Since S∗(∆[1], Yp) is contractible for every p we get a natural
equivalence between Ωdiag∗X ' Ωdiag∗{[p] 7→ Yp} and diag∗{[p] 7→ ΩXp} = diag∗{[p] 7→
S∗(S

1, Yp)}.
{theo:A1BFSS}

Theorem 1.5.0.6 [[13]] Let X be a pointed simplicial space satisfying the π∗-Kan condi-
tion. Then there is a first quadrant convergent spectral sequence

E2
pq = πp([n] 7→ πq(Xn))⇒ πp+q(diag

∗X)

As an application we prove two corollaries

Corollary 1.5.0.7 Let G be a simplicial group, and let BG be the diagonal of [n] 7→ BGn.
Then

πqBG ∼= πq−1G

Proof: Note that BGn is connected for each n, and so BG satisfies the π∗-Kan condition.
Now

E2
pq = πp([n] 7→ πq(BGn)) =

{
0 if q 6= 1

πpG if q = 1

and the result follows.

Corollary 1.5.0.8 Let X be a simplicial space. Then there is a convergent spectral se-
quence

E2
pq = Hp([n] 7→ Hq(Xn))⇒ Hp+q(diag

∗X)

Proof: Apply the spectral sequence of the theorem to the bisimplicial abelian group ZX.
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1.5.0.9 Linear simplicial spaces

Definition 1.5.0.10 A simplicial object X in a model category is linear if the natural{linear simplicial object}
maps

Xp → X1 ×X0 X1 ×X0 · · · ×X0 X1

are weak equivalences, where the i’th component is induced from [1] ∼= {i− 1, i} ⊆ [p] for
0 < i ≤ p.

This is inspired by categories where a space X is a nerve of a category exactly if the said
map is an isomorphism. A slicker way of formulating this is to say that X is linear if it
takes the pushouts of monomorphisms that exist in ∆ to homotopy pullbacks.

Note that if X0 = ∗, this gives a “weak multiplication” on X1:

X1 ×X1
(d0 ,d2)
←−−−−
∼

X2
d1−−−→ X1.

Saying that this weak multiplication has a homotopy inverse is the same as saying that all
the diagrams

Xp −−−→ X1

dp

y
y

Xp−1 −−−→ ∗

are homotopy cartesian, where the top map is induced by [1] ∼= {0, p} ⊆ [p] (this formu-
lation essentially claims that you must have inverses in a monoid to be able to uniquely
produce g and h such that gh = m, if the only thing you know is g and m).

The following proposition is proved in [109, page 296] and is used several times in the
text. The natural map in question is gotten as follows: you always have a map of simplicial
spaces ∆[1] × X1 → X, but if X0 = ∗ you may collaps the endpoints and get a pointed
map S1∧X1 → X. Take the diagonal, and consider the adjoint map X1 → S∗(S

1, diag∗X),
which we map map further to ΩX = S∗(S

1, sin |X|).
{A1Segal15}

Proposition 1.5.0.11 Let X be a linear simplicial space with X0 = ∗. Then the natural
map

X1 → ΩX

is a weak equivalence if and only if the induced weak multiplication on X1 has a homotopy
inverse.

Proof: Since X is linear, we have that for each q the square

X1 −−−→ PqXy
y

X0 = ∗ −−−→ Xq

is homotopy cartesian. That X1 has a homotopy inverse implies that X and PX satisfy
the π∗-Kan condition, and that {[q] 7→ π0(PqX)} → {[q] 7→ π0(Xq)} is isomorphic to the
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classifying fibration E(π0X1) = B(π0X1, π0X1, ∗) � B(π0X1) (which is a fibration since
π0X1 is a group). Hence theorem 1.5.0.4 gives that

X1 −−−→ diag∗PXy
y

∗ −−−→ diag∗X

is homotopy cartesian, and the result follows by the contractibility of PX.
Applying this proposition to the bar construction of a group-like simplicial monoid, we get:

{cor:A1loops of gplike}
Corollary 1.5.0.12 Let M be a group-like simplicial monoid. Then the natural map M →
ΩBM is a weak equivalence.

1.6 The plus construction
{sec:A1plus}

1.6.1 Acyclic maps

Recall from I.1.6.2 that a map of pointed connected spaces is called acyclic if the integral
homology of the homotopy fiber vanishes. We need some facts about acyclic maps.

If Y is a connected space, we may form it’s universal cover Ỹ as follows. From sin |Y |,
form the space B by identifying two simplices u, v ∈ sin |Y |q whenever, considered as maps
∆[q]→ sin |Y |, they agree on the one-skeleton of ∆[q]. Then sin |Y |� B is a fibration of
fibrant spaces [82, 8.2], and Ỹ is defined by the pullback diagram

Ỹ −−−→ B∆[1]

y
y

Y −−−→ B

and we note that Ỹ → Y is a fibration with fiber equivalent to the discrete set π1Y .

Lemma 1.6.1.1 Let f : X → Y be a map of connected spaces, and Ỹ the universal cover
of Y . Then f is acyclic if and only if

H∗(X ×Y Ỹ )→ H∗(Ỹ )

is an isomorphism.

Proof: We may assume that X → Y is a fibration with fiber F . Then X ×Y Ỹ → Ỹ also
is a fibration with fiber F , and the Serre spectral sequence

Hp(Ỹ ;Hq(F ))⇒ Hp+q(X ×Y Ỹ )

gives that if H̃∗(F ) = 0, then the edge homomorphism (which is induced by X×Y Ỹ → Ỹ )
is an isomorphism as claimed.



1.6. THE PLUS CONSTRUCTION 253

Conversely, if H∗(X ×Y Ỹ ) → H∗(Ỹ ) is an isomorphism. Then it is easy to check
directly that H̃q(F ) = 0 for q ≤ 1. Assume we have shown that H̃q(F ) = 0 for q < k for a
k ≥ 2. Then the spectral sequence gives an exact sequence

Hk+1(X ×Y Ỹ )
'
−−−→ Hk+1(Ỹ ) −−−→ Hk(F ) −−−→ Hk(X ×Y Ỹ )

'
−−−→ Hk(Ỹ ) −−−→ 0

which implies that Hk(F ) = 0 as well.
The lemma can be reformulated using homology with local coefficients: H∗(Ỹ ) =

H∗(Y ;Z[π1Y ]) and H∗(X ×Y Ỹ ) ∼= H∗(Z[X̃ ] ⊗Z[π1X] Z[π1Y ]) = H∗(X; f ∗Z[π1Y ]), so f
is acyclic if and only if it induces an isomorphism

H∗(X; f ∗Z[π1Y ]) ∼= H∗(Y ;Z[π1Y ])

This can be stated in more general coefficients:
{cor:acylocal}

Corollary 1.6.1.2 A map f : X → Y of connected spaces is acyclic if and only if it for
any local coefficient system G on Y , f induces an isomorphism

H∗(X; f ∗G) ∼= H∗(Y ;G)

Proof: By the lemma we only need to verify one implication. If i : F → Y is the fiber of
f , the Serre spectral sequence give

Hp(Y ;Hq(F ; i∗f ∗G))⇒ Hp+q(X; f ∗G)

However, i∗f ∗G is a trivial coefficient system, so if H̃∗(F ) = 0, the edge homomorphism
must be an isomorphism.

This reformulation of acyclicity is useful, for instance when proving the following lemma.
{lem:pushacy}

Lemma 1.6.1.3 Let
X

f
−−−→ Y

g

y g′

y

Z
f ′

−−−→ S
be a pushout cube of connected spaces with f acyclic, and either f or g a cofibration. Then
f ′ is acyclic.

Proof: Let G be a local coefficient system in S. Using the characterization of acyclic maps
as maps inducing isomorphism in homology with arbitrary coefficients, we get by excision
that

H∗(S, Z;G) ∼= H∗(Y,X; (g′)∗G) = 0

implying that f ′ is acyclic.
{lem:weacy}

Lemma 1.6.1.4 Let f : X → Y be a map of connected spaces. Then f is a weak equiva-
lence if and only if it is acyclic and induces an isomorphism of the fundamental groups.

Proof: Let F be the homotopy fiber of f . If f induces an isomorphism π1X ∼= π1Y on
fundamental groups, then π1F is abelian. If f is acyclic, then π1F is perfect. Only the
trivial group is both abelian and perfect, so π1F = 0. As H̃∗F = 0 the Whitehead theorem
tells us that |F | is contractible.
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1.6.2 The construction

We now give a functorial construction of the plus construction, following the approach of
[14, p. 218].

If X is any set, we may consider the free abelian group generated by X, and call it
Z[X]. If X is pointed we let Z̃[X] = Z[X]/Z[∗]. This defines a functor Ens∗ → Ab
which is adjoint to the forgetful functor U : Ab → Ens∗, and extends degreewise to all
spaces. The transformation given by the inclusion of the generators X → Z̃[X] (where
we symptomatically have forgotten to write the forgetful functor) induces the Hurewicz
homomorphism π∗(X)→ π∗(Z̃[X]) = H̃∗(X).

As Z̃ is a left adjoint functor, as explained in section 0.3 it gives rise to a cosimplicial
space Z

˜
via

Z
˜
[X] = {[n] 7→ Z̃n+1[X]}

where the superscript n + 1 means that we have used the functor Z̃ n + 1 times. The
total (see section 1.8) of this cosimplicial space is called the integral completion of X and
is denoted Z∞X.

If Y is a pointed set, consider the category U/Y of functions A → Y from abelian
groups to Y . The forgetful functor U/Y → Ens∗/Y , has a left adjoint Ż given by sending
f : X → Y to Ż[X]→ Y where

Ż[X] = {
∑

1≤i≤n

nixi ∈ Z̃[X]|f(x1) = · · · = f(xn)}

and where we map
∑
nixi to the common f(xi). Again we extend to simplicial sets. So,

if X → Y is any map of spaces, there is a cosimplicial subspace of Z
˜
[X], whose total is

called the fiberwise integral completion of X. The construction is natural in f .
If X is a space, there is a natural fibration sin |X| → sin |X|/P given by “killing, in each

component, πi(X) for i > 1 and the maximal perfect subgroup Pπ1(X) ⊆ π1(X)”. More
precisely, let sin |X|/P be the space obtained from sin |X| by identifying two simplices
u, v ∈ sin |X|q whenever, for every injective map φ ∈ ∆([1], [q]), we have diφ

∗u = diφ
∗v for

i = 0, 1, and
[φ∗u]−1 ∗ [φ∗v] = 0 ∈ π1(X, d0φ

∗u)/Pπ1(X, d0φ
∗u)

The projection sin |Y | → sin |X|/P is a fibration.

Definition 1.6.2.1 The plus construction X 7→ X+ is the functor given by the fiberwise
integral completion of sin |X| → sin |X|/P , and qX : X → X+ is the natural transformation
coming from the inclusion X ⊆ Ż[sin |X|].

That this is the desired definition follows from [14, p. 219], where they use the alter-
native description of corollary 1.6.1.2 for an acyclic map:

Proposition 1.6.2.2 If X is a pointed connected space, then

qX : X → X+
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is an acyclic map killing the maximal perfect subgroup of the fundamental group.

We note that qX is always a cofibration (=inclusion).

1.6.3 Uniqueness of the plus construction

Now, Quillen provides the theorem we need: X+ is characterized up to homotopy under
X by this property

{theo:A1plusunique}
Theorem 1.6.3.1 Consider the (solid) diagram of connected spaces

X
f //

qX
��

Y

X+

h
=={

{
{

{

If Y is fibrant and Pπ1X ⊆ ker{π1X → π1Y } then there exists a dotted map h making the
resulting diagram commutative. Furthermore, the map is unique up to homotopy, and is a
weak equivalence if f is acyclic.

Proof: Let S = X+
∐

X Y and consider the solid diagram

X
f //

��

qX
��

Y

g

��

Y

����
X+

f ′ // S

H
??~

~
~

~
// ∗

By lemma 1.6.1.3, we know that g is acyclic. The van Kampen theorem tells us that π1S
is the “free product” π1X

+ ∗π1X π1Y , and the hypothesis imply that π1Y → π1S must be
an isomorphism.

By lemma 1.6.1.4, this means that g is a weak equivalence. Furthermore, as qX is a
cofibration, so is g. Thus, as Y is fibrant, there exist a dotted H making the diagram
commutative, and we may choose h = Hf ′. By the universal property of S, any h must
factor through f ′, and the uniqueness follows by the uniqueness of H.

If f is acyclic, then both f = hqX and qX are acyclic, and so h must be acyclic. Further-
more, as f is acyclic ker{π1X → π1Y } must be perfect, but as Pπ1X ⊆ ker{π1X → π1Y }
we must have Pπ1X = ker{π1X → π1Y }. So, h is acyclic and induces an isomorphism on
the fundamental group, and by 1.6.1.4 h is an equivalence.

Recall that a space X is 0-connected if π0X is a point, and if it is connected it is
k-connected for a k > 0 if for all vertices x ∈ X0 we have that πq(X, x) = 0 for 0 ≤ q ≤ k.
A space is −1-connected by definition if it is nonempty. A map X → Y is k-connected if
its homotopy fiber is (k − 1)-connected.

{lemma:A1plusconn}
Lemma 1.6.3.2 Let X → Y be a k-connected map of connected spaces. Then X+ → Y +

is also k-connected
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Proof: Either one uses the characterization of acyclic maps by homology with local
coefficients, and check by hand that the lemma is right in low dimensions, or one can use
our choice of construction and refer it away: [14, p. 113 and p. 42].

1.6.4 Spaces under BA5
{A1underBA5}

Let An be the alternating group on n letters. For n ≥ 5 this is a perfect group with no
nontrivial subgroups. We give a description of Quillen’s plus for BA5 by adding cells. Since
A5 is perfect, it is enough to display a map BA5 → Y inducing an isomorphism in integral
homology, where Y is simply connected.

Let α 6= I ∈ A5. This can be thought of as a map S1 = ∆[1]/∂∆[1] → BA5 (consider
α as an element in B1A5, since B0A5 = ∗ this is a loop). Form the pushout

|S1| −−−→ D2

|α|

y
y

|BA5| −−−→ X1

Since A5 has no nontrivial normal subgroups, the van Kampen theorem tells us that X1 is
simply connected. The homology sequence of the pushout splits up into

0→ H2(A5)→ H2(X1)→ H1(S
1)→ 0, and Hq(A5) ∼= Hq(X1), for q 6= 1

Since H1(S
1) ∼= Z, we may choose a splitting Z→ H2(X1) ∼= π2(X1), and we let β : |S2| →

X1 represent the image of a generator of Z. Form the pushout

|S2| −−−→ D3

β

y
y

X1 −−−→ X2

We get isomorphisms Hq(X1) ∼= Hq(X2) for q 6= 2, 3, and an exact diagram

H2(A5)

��
0 // H3(X1) // H3(X2) // H2(S

2) // H2(X1)

��

// H2(X2) // 0

H1(S
1)

But by the definition of β, the composite H2(S
2)→ H2(X1)→ H1(S

1) is an isomorphism.
Hence H3(X1) ∼= H3(X2) and H2(A5) ∼= H2(X2). Collecting what we have gotten, we get
that the map |BA5| → X2 is an isomorphism in homology and π1X2 = 0, and BA5 →
“BA+

5 ” = sinX2 is a model for the plus construction.
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Proposition 1.6.4.1 Let C be the category of spaces under BA5 with the property that if
BA5 → Y ∈ obC then the image of A5 normally generates Pπ1Y . Then the bottom arrow
in the pushout diagram

BA5 −−−→ “BA+
5 ”y

y
Y −−−→ “Y +”

is a functorial model for the plus construction in C.

Proof: As it is clearly functorial, we only have to check the homotopy properties of
Y → “Y +”. By lemma 1.6.1.3, it is acyclic, and by van Kampen π1(“Y

+”) = π1Y ∗A5 {1}.
Using that the image of A5 normally generate Pπ1Y we get that π1(“Y

+”) = π1Y/Pπ1Y ,
and we are done.

Example 1.6.4.2 If R is some ring, we get a map

A5 ⊆ Σ5 ⊆ Σ∞ ⊆ GL(Z)→ GL(R)

We will show that E(R) is normally generated by

α =
[

0 1 0
0 0 1
1 0 0

]
∈ A3 ⊆ A5

In view of the proof in lemma IIINBNBref (I.1.6.2) that e1
41 normally generate E(R), this

follows from the identity

e141 = [[α, e−1
43 ], e−1

21 ]

Hence, all spaces under BA5, where the map on fundamental groups is the above map
A5 → GL(R) lie in C. In particular in the language of chapter II ĜL(A) is in this class for
any S-algebra A.

1.7 Simplicial abelian groups and chain complexes

1.7.0.3 Simplicial abelian groups, chain complexes and loop groups

The correspondence between chain complexes and simplicial abelian groups is well known,
but we need some details pertaining to the various models for loops not usually described
in the standard texts.

1.7.0.4 Chain complexes in general

As usual, a chain complex is a sequence

C∗ = {· · · ← Cq−1 ← Cq ← Cq+1 ← . . . }
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such that any composite is zero, and a map of chain complexes f∗ : C∗ → D∗ is a collection
of maps fq : Cq → Dq such that the diagrams

Cq
fq
−−−→ Dqy

y

Cq
fq−1
−−−→ Dq

commute. We let Ch be the category of chain complexes, and Ch≥0 be the full subcategory
of chain complexes C∗ such that Cq = 0 if q < 0.

If C∗ is a chain complex, we let ZqC = ker{Cq → Cq−1} (cycles), BqC = im{Cq+1 → Cq}
(boundaries) and HqC∗ = ZqC/BqC (homology).

1.7.0.5 Truncations and shifts

Let C∗ be a chain complex and k an integer. Then C∗[k] is the shifted chain complex, i.e.
Cq[k] = Cq+k and the maps are moved accordingly. There are two functors Ch → Ch≥0.
The first simply truncates: if C∗ is a chain complex, then t+(C∗) is the chain complex you
get by setting the groups in negative dimension to zero

t+(C∗) = {· · · = 0 = 0← C0 ← C1 ← C2 ← . . . }

Then we get that

Hq(t+(C∗)) =





Hq(C∗) if q > 0

C0/B0 if q = 0

0 if q < 0

To remove the noise in dimension zero we have the gentler truncation C∗[0,∞) given by

C∗[0,∞) = {· · · = 0 = 0← Z0 ← C1 ← C2 ← . . . }

so that

Hq(C∗[0,∞)) =

{
Hq(C∗) if q ≥ 0

0 if q < 0

Note that C∗[0,∞) ⊆ C∗ � t+(C∗).

1.7.0.6 The algebraic mapping cone and homotopy pullback

Let f : A∗ → C∗ be a map of chain complexes. Then the mapping cone C(f)∗ is the chain
complex with C(f)q = Aq ⊕ Cq+1 and boundary map Aq ⊕ Cq+1 → Aq−1 ⊕ Cq given by
sending (a, c) to (da+ (−1)qfc, dc). This gives a short exact sequence

0→ C∗[1]→ C(f)∗ → A∗ → 0
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and the boundary map Hq(A∗)→ Hq−1(C∗[1]) ∼= Hq(C∗) is f .

Note that C(idA)∗ is contractible, and that C(f)∗ can be described as the pushout of
chain complexes

A∗[1] −−−→ C(idA)∗

f [1]

y
y

C∗[1]
i

−−−→ C(f)∗

More generally, given a diagram B∗@ > f >> A∗@ < g << C∗ we give a model for the
homotopy pullback: C(f, g)∗ is the chain complex with

C(f, g)q = Bq ⊕ Aq+1 ⊕ Cq

and boundary map Bq ⊕ Aq+1 ⊕ Cq → Bq+1 ⊕ Aq ⊕ Cq+1 given by sending (b, a, c) to
(db, (−1)qfb+ da+ (−1)qgc, gc). Then we have a short exact sequence

0→ A∗[1]→ C(f, g)∗ → B∗ ⊕ C∗ → 0

1.7.0.7 The normalized chain complex
{normalized chains}

The isomorphism between simplicial abelian groups and chain complexes concentrated in
non-negative degrees is given by the normalized chain complex: If M is a simplicial abelian
group, then Cnorm

∗ (M) (which is usually called N∗M , an option unpalatable to us since this
notation is already occupied by the nerve) is the chain complex given by

Cnorm
q (M) =

q−1⋂

i=0

ker{di : Mq →Mq−1}

and boundary map Cnorm
q M → Cnorm

q−1 M given by the remaining face map dq. As commented
earlier, this defines an isomorphism of categories.

1.7.0.8 The Moore complex

Associated to a simplicial abelian group M there is another chain complex, the Moore
complex C∗M defined by CqM = Mq with boundary map given by the alternating sum
δ =

∑q
j=0(−1)jdj : Mq → Mq−1. The inclusion of the normalized complex into the Moore

complex Cnorm
∗ (M) ⊆ C∗(M) is a homotopy equivalence (see e.g., [?, 22.1]).

It should also be mentioned that the Moore complex is the direct sum of the normalized
complex and the subcomplex generated by the images of the degeneracy maps. hence you
will often see the normalized complex defined as the quotient of the Moore complex by the
degenerate chains.
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1.7.0.9 Various loop constructions

There are three natural loop constructions we need to consider, and we need to study their
relations.

If M is a simplicial abelian group we may consider the simplicial abelian group

S∗(S
1,M) ∼= sAb(Z̃[S1],M)

This fits into the short exact sequence

0→ S∗(S
1,M)→ S∗(∆[1],M)→M → 0

and the middle group is contractible. We describe this group in a slightly different fashion
using

Lemma 1.7.0.10 There is a natural isomorphism of functors ∆o × ∆ → Ens between
∆([p], [1])∧∆([p], [q])+ and ∆([p], [0] t [q]).

Proof: The isomorphism is gotten by sending (ψ1 : [p] → [1], ψ2 : [p] → [q]) to ψ1(ψ2 +
1): [p]→ [q+1]. The inverse is gotten by sending φ : [p]→ [q+1] to (φ1 : [p]→ [1], φ2 : [p]→
[q]) where

φ1(j) =

{
0, if ψ(j) = 0

1, if ψ(j) 6= 0
and φ2(j) =

{
0, if ψ(j) = 0

φ(j)− 1, if ψ(j) 6= 0

This is natural in [p] and [q] as one may check.
If X is a simplicial object, we let PX be the simplicial object gotten by precomposition

with

[0] t − : ∆o → ∆o

(so that (PX)q = Xq+1 and the face and degeneracy maps are shifted), and consider the
map PX → X induced from the obvious inclusion d0 : [q] → [0] t [q]. If X is pointed we
define LX as the pullback

LX −−−→ PXy
y

−−−→ X

Note that PX contains X0 as a retract, and the nontrivial composition is homotopic to
the identity. In our case this can be viewed as a corollary to the lemma above:

Corollary 1.7.0.11 Let M be a simplicial abelian group, then the projection ∆[q+1]+ →
∆[q + 1] induces a (split) short exact sequence

0→ S∗(∆[1],M)→ PM →M0 → 0
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If M is a simplicial abelian group, then

0→ LM → PM →M → 0

is a short exact sequence, and so we obtain yet a new short exact sequence

0→ S∗(S
1,M)→ LM →M0 → 0

On the level of homotopy groups, the first exact sequences gives rise to the isomorphisms
πqLM ∼= πq+1M for q > 0 and the exact sequence 0→ π1M → π0LM →M0 → π0M → 0.

Lemma 1.7.0.12 Let M be a simplicial abelian group. There are natural isomorphisms

Cnorm
∗ (LM) ∼= t+((Cnorm

∗ M)[1])

and
Cnorm
∗ (S∗(S

1,M)) ∼= ((Cnorm
∗ M)[1])[0,∞).

Proof: the first isomorphism follows from the definitions, and the second by the relationship
between the loop spaces.

Notice that these isomorphisms extend to maps of Moore complexes

C∗S∗(S
1,M)

∼
−−−→ (C∗(M)[1])[0,∞)

⊆

y ⊆

y
C∗LM −−−→ t+(C∗(M)[1])

and the upper map is an equivalence.

1.8 Cosimplicial spaces.
{A17}

Recall that a cosimplicial space is a functor

X : ∆→ S

The category of cosimplicial spaces is a simplical category: if Z is a space and X is a
cosimplicial space, then Z ×X is the cosimplicial space whose value on [q] ∈ ∆ is Z ×X q.
The function space

cS(X, Y ) ∈ S

of maps from the cosimplicial space X to the cosimplicial space Y has q-simplices the set
of maps (natural transformation of functors ∆o ×∆→ S)

∆[q]×X → Y

The total space of a cosimplicial space X is the space

TotX = cS(∆[−], X)
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(where ∆[−] is the cosimplicial space whose value on [q] ∈ ∆ is ∆[q] = ∆(−, [q])). The
q-simplices are cosimplicial maps ∆[q]×∆[−]→ X.

It helps me to keep my tongue straight in my mouth (but may simply confuse almost
everybody else, so disregard this if it is not in your taste) that if X, Y : I o× I → Ens, then
the “function space” is the functor Io → Ens sending α ∈ Io to

∫

i,j∈I

Ens(I(i, α)×X(i, j), Y (i, j))

and the “total space” is the functor Io → Ens sending α ∈ Io to
∫

i,j∈I

Ens(I(i, α)× I(i, j), Y (i, j))

1.8.1 The pointed case

In the pointed case we make the usual modifications: A pointed cosimplicial space is
a functor X : ∆ → S∗, the function space cS∗(X, Y ) has q-simplices the set of maps
∆[q]+∧X → Y , and the total space TotX = cS∗(∆[−]+, X) is isomorphic (a an unbased
space) to what you get if you forget the basepoint before taking Tot.

1.9 Homotopy limits and colimits.
{A18}

Let I be a small category, and [I,S∗] the category of functors from I to S∗. This is a
simplicial category in the sense that we have function spaces and “tensors” with pointed
simplicial sets satisfying the usual properties. If F,G ∈ [I,S∗] we define the function space
to be the simplicial set IS∗(F,G) whose q simplices are

IS∗(F,G)q = [I,S∗](F∧∆[q]+, G)

i.e. the set of all pointed natural transformations F (i)∧∆[q]+ → G(i), and whose simplicial
structure comes from regarding [q] 7→ ∆[q] as a cosimplicial object. If F ∈ [I o,S∗] and
G ∈ [I,S∗] we define

F∧G ∈ S∗

to be the colimit of ∨

γ : i→j∈I

F (j)∧G(i) ⇒
∨

i∈I

F (i)∧G(i)

where the upper map sends the γ summand to the j summand via 1∧Gγ, and the lower
map sends the γ summand to the i summand via Fγ∧1 (in other words: it is the coend∫ I
F∧G).
If F ∈ [Io,S∗], G ∈ [I,S∗] and X ∈ S∗, we get that

S∗(F∧G,X) ∼= IoS∗(F,S∗(G,X)) ∼= IS∗(G,S∗(F,X))

Recall the nerve and over construction. Let N(I/−)+ ∈ [I,S∗], be the functor which
sends i ∈ obI to N(I/i)+.
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Definition 1.9.0.1 If F ∈ [I,S∗], then the homotopy limit is defined by

holim
←−
I

F = IS∗(N(I/−)+, sin |F |)

and the homotopy colimit is defined by

holim
−→
I

F = N(Io/−)+∧F

Note that according to the definitions, we get that

S∗(N(Io/−)+∧F,X) ∼= IoS∗(N(Io/−)+,S∗(F,X))

so many statements dualize. Most authors do not include the “sin | − |” construction
into their definition of the homotopy limit. This certainly has categorical advantages
(i.e., the above duality becomes an on the nose duality between homotopy limits and
colimits: S∗(holim−→

I
F,X) ∼= holim←−

Io S∗(F,X)), but has the disadvantage that whenever
they encounter a problem in homotopy theory they have to assume that their functor has
“fibrant values”.

1.9.1 Connection to categorical notions

We can express the categorical notions in the same language using the constant functor
∗ : I → S∗ with value the one-point space:

lim
←−
I

F = IS∗(∗+, F )

and
lim
−→
I

F = ∗+∧F

The canonical maps N(I/−) → ∗ and N(Io/−) → ∗ give natural maps (use in addition
F → sin |F | in the first map)

lim
←−
I

F → holim
←−
I

F, and holim
−→
I

F → lim
−→
I

F

1.9.2 Functoriality

Let

I
f

−−−→ J
F
−−−→ S∗

be functors between small categories. Then there are natural maps

f ∗ : holim
←−
J

F → holim
←−
I

Ff

and
f∗ : holim

−→
I

Ff → holim
−→
J

F

Under certain conditions these maps are equivalences.
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{A1lemma:cofinal}
Lemma 1.9.2.1 (Cofinality lemma, cf. [14, XI.9.2]) Let I and J be small categories
and let

I
f

−−−→ J
F
−−−→ S∗

be functors. Then

holim
−→
I

Ff
f∗
−−−→ holim

−→
J

F

is an equivalence if the under categories j/f are contractible for all j ∈ obJ (f is “right
cofinal”); and dually

holim
←−
J

F
f∗

−−−→ holim
←−
I

Ff

is an equivalence if the over categories f/j are contractible for all j ∈ obJ (f is “left
cofinal”).

For a sketch of the proof, see the simplicial version.
The corresponding categorical statement to the cofinality lemma only uses the path

components of I, and we list it here for comparison:

Lemma 1.9.2.2 (Categorical cofinality lemma, cf. [79, p. 217]) Let I and J be small
categories and let

I
f

−−−→ J
F
−−−→ S∗

be functors. Then

lim
−→
I

Ff
f∗
−−−→ lim

−→
J

F

is an isomorphism if and only if the under categories j/f are connected for all j ∈ obJ ;
and dually

lim
←−
J

F
f∗
−−−→ lim

←−
I

Ff

is an isomorphism if and only if the over categories f/j are connected for all j ∈ obJ .

Homotopy colimits are functors of “natural modules” (really of S∗-natural modules,
see enriched section), that is the category of pairs (I, F ) where I is a small category and
F : I → S∗ is a functor. A morphism (I, F )→ (J,G) is a functor f : I → J together with
a natural transformation F → f ∗G = G ◦ f and induces the map

holim
−→
I

F → holim
−→
I

f ∗G→ holim
−→
J

G

Homotopy limits should be thought of as a kind of cohomology. It is a functor of “natural
comodules” (I, F ) (really S∗-natural comodules), that is, the category of pairs as above,
but where a map (I, F )→ (J,G) now is a functor f : J → I and a natural transformation
f ∗F → G. Such a morphism induces the map

holim
←−
I

F → holim
←−
J

f ∗F → holim
←−
J

G
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Lemma 1.9.2.3 (Homotopy lemma, cf. [14, XI.5.6 and XII.4.2]) Let η : F → G ∈
[I,S∗] be an equivalence (i.e. ηi : F (i)→ G(i) is a weak equivalence for all i ∈ obI). Then

holim
←−
I

F
∼
→ holim

←−
I

G

and
holim
−→
I

F
∼
→ holim

−→
I

G

are equivalences.

Proof: The first statement follows from the fact that N(I/−) is cofibrant and sin |F | and
sin |G| are fibrant in the closed simplicial model category of [I,S∗] of 1.3.4, and the second
statement follows from duality.

Lastly we have the following very useful observation. We do not know of any reference,
but the first part is fairly obvious, and the second part follows by some work from the
definition (remember that we take a functorial fibrant replacement when applying the
homotopy limit):

{lemma:holim and inclusions of categories}
Lemma 1.9.2.4 Let f : I ⊆ J be an inclusion of small categories and F : J → S∗. Then
the natural map

f∗ : holim
−→
I

Ff → holim
−→
J

F

is an cofibration (i.e., an injection) and

f ∗ : holim
←−
J

F → holim
←−
I

Ff

is a fibration.

1.9.3 (Co)simplicial replacements
{subsec:A1simprepl}

There is another way of writing out the definition of the homotopy (co)limit of a functor
F : I → S∗. Note that

IS∗(Nq(I/−), F ) =
∏

i0←···←iq∈Nq(I)

F (i0)

Using the simplicial structure of Nq(I/−) this defines a cosimplicial space. This gives a
functor

[I,S∗]
Q
∗

−−−→ [∆,S∗],

the so-called cosimplicial replacement, and the homotopy limit is exactly the composite

[I,S∗]
sin | |
−−−−→ [I,S∗]

Q
∗

−−−→ [∆,S∗]
Tot
−−−→ S∗.
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Likewise, we note that

Nq(I
o/−)+∧F =

∨

i0←···←iq∈Nq(I)

F (iq)

defining a functor
∨
∗ : [I,S∗] → [∆o,S∗], the so-called simplicial replacement, and the

homotopy colimit is the composite

[I,S∗]
W
∗

−−−→ [∆o,S∗]
diag
−−−→ S∗.

There is a strengthening of the homotopy lemma for colimits which does not dualize:
{A1lemma:hocolimconn}

Lemma 1.9.3.1 Let η : F → G ∈ [I,S∗] be a natural transformation such that

ηi : F (i)→ G(i)

is n-connected for all i ∈ obI. Then

holim
−→
I

F → holim
−→
I

G

is n-connected.

Proof: Notice that, by the description above, the map Nq(I
o/−)+∧F → Nq(I

o/−)+∧G is
n-connected for each q. The result then follows upon taking the diagonal.

{lemma:A1toweroffib}
Lemma 1.9.3.2 Let . . . � Xn � Xn−1 � . . . � X0 � ∗ be a tower of fibrations. Then
the canonical map

lim
←−n
Xn → holim

←−n
Xn

is an equivalence.

1.9.4 Homotopy (co)limits in other categories

Note that, when defining the homotopy (co)limit we only used the simplicial structure of
[I,S∗], plus the possibility of functorially replacing any object by an equivalent (co)fibrant
object. If C is any category with all (co)products (at least all those indexed by the various
Nq(I/i)s etc.), we can define the (co)simplicial replacement functors for any F ∈ [I, C]:

∏
∗F = {[q] 7→

∏

i0←···←iq∈Nq(I)

F (i0)}

and ∐
∗F = {[q] 7→

∐

i0←···←iq∈Nq(I)

F (iq)}

In the special case of a closed simplicial model category, we can always precompose
∏
∗

(resp.
∐
∗) with a functor assuring that F (i) is (co)fibrant to get the right homotopy

properties.
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As an easy example, we could consider unbased spaces. For F ∈ [I,S] we let holim←−
I
F =

Tot(
∏
∗ sin |F |) and holim−→

I
F = diag∗

∐
∗F . Recall the adjoint functor pair

S
X 7→X+

�
U
S∗

We get that if F ∈ [I,S] and G ∈ [I,S∗], then
∏
∗UG = U

∏
∗G, and (

∐
∗F )+ =

∨
∗(F+),

so

U holim
←−
I

G ∼= holim
←−
I

UG, and (holim
−→
I

F )+
∼= holim

−→
I

(F+)

More generally, the (co)simplicial replacement will respect left (right) adjoint functors.

1.9.5 Simplicial abelian groups
{subsec:A1holim in sab}

In abelian groups, the product is the product of the underlying sets, whereas the coproduct
is the direct sum. All simplicial abelian groups are fibrant, and we choose a functorial

factorization 0 � C(M)
∼
� M , for instance the one coming from the free/forgetful adjoint

functor pair to sets. Note that the diagonal (total) of a (co)simplicial simplicial abelian
group is a simplicial abelian group, and we define

holim
←−
I

F = Tot
∏

∗F

and

holim
−→
I

F = diag∗
∐

∗F

Note that this last definition is “wrong” in that we have not replaced F (i) by a cofibrant
object. But this does not matter since it is an easy excercise to show that

holim−→
I
F

'
←−−− holim−→

I
CF

(forget down to simplicial spaces, use that homotopy groups commute with filtered colimits
1.1.7.3 and finite products, and use that a degreewise equivalence of bisimplicial sets induces
an equivalence on the diagonal1.5.0.2 ).

If F is a functor to abelian groups, the (co)homotopy groups of the (co)simplicial
replacement functors above are known to algebraists as the derived functors of the (co)limit,
i.e.

lim
←−
I

(s)F = Hs(I, F ) = πs
∏

∗F , and lim
−→
I

(s)F = Hs(I, F ) = πs
∐

∗F

This is used by the following statements for the general case. We say that a category
J has finite cohomological dimension if there is some n such that lim←−

J
(s)F = 0 for all F

and s > n. For instance, N has finite cohomological dimension (n = 1).
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{theo:lim1lim}
Theorem 1.9.5.1 Let X : J → S∗ be a functor. If πqX take values in abelian groups for
all q ≥ 0, then there is a spectral sequence with E2 term

E2
s,t = lim

←−
J

(−s)πtX, 0 ≤ −s ≤ t

which under favourable conditions converges to πs+t holim←−
J
X. Especially, if J has finite

cohomological dimension, the spectral sequence converges. If J = N it collapses to the
exact sequence

0→ lim
←−
N

(1)πt+1X → πt holim
←−
N

X → lim
←−
N

πtX → 0

If h is some connected reduced homology theory satisfying the wedge axiom then there is a
convergent spectral sequence

E2
s,t = lim

−→
J

(s)htX → hs+t holim
−→
J

X

The homotopy limits in abelian groups coincide with what we get if we forget down to
S∗, but generally the homotopy colimit will differ. However, if F : I → A, and U : Ab →
Ens∗ is the forgetful functor, there is a natural map

holim
−→
I

UF −−−→ Uholim
−→
I

F = Udiag∗{[q] 7→
⊕

i0←i1←···←iq

X(iq)}

given by sending wedges to sums. We leave the proof of the following lemma as an excercise
(use that homotopy groups commute with filtered direct limit, and the Blakers–Massey
theorem 1.10.0.8)

{lemma:A1hocolim ab vs ss}
Lemma 1.9.5.2 Let F : I → A be a functor such that F (i) is n-connected for all i ∈ obI.
Then

holim
−→
I

UF → U holim
−→
I

F

is (2n+ 1)-connected.

1.9.6 Spectra

The category of spectra has two useful notions of fibrations and weak equivalences, the
stable and the pointwise. For the pointwise case there is no difference from the space
case, and so we concentrate on the stable structure. Any spectrum is pointwise equivalent
to a cofibrant spectrum (i.e., on for which all the structure maps S1∧Xk → Xk+1 are
cofibrations, see 1.2.0.3), so it is no surprise that the pointwise homotopy colimit has good
properties also with respect to the stable structure. For homotopy limits we need as usual
a bit of preparations. We choose a fibrant replacement functor X 7→ QX as in 1.2. Let
X : J → Spt be a functor from a small category to spectra. Then

holim
−→
J

X = {k 7→ diag∗
∐

∗X
k}
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which is just holim−→ J applied pointwise, and

holim
←−
J

X = {k 7→ Tot∗
∏

∗QkX}

which is equivalent to k 7→ holim←−
J
QkX (we just have skipped the extra application of

sin | − |).

Lemma 1.9.6.1 Pointwise homotopy limits and colimits preserve stable equivalences of
spectra.

Proof: For the homotopy limit this is immediate from the construction since all stable
equivalences are transformed into pointwise equivalences of pointwise fibrant spectra by Q.
For the homotopy colimit, notice that we just have to prove that for a diagram of specta X,
the canonical mapX → QX induces an stable equivalence of homotopy colimits. By lemma
1.2.0.3 we may assume that all spectra in X are −n connected, and then Freudenthal’s
suspension theorem 1.10.0.9 gives that the maps in Xk → QkX are 2k − n connected.
Since homotopy colimits preserve connectivity (lemma 1.9.3.1) this means that the map of
pointwise homotopy colimits is a weak equivalence.

1.9.7 Enriched categories

(This presupposes MA2) Let V = (V,⊗, e) be a symmetric monoidal closed category with
all coproducts. The most important examples beside the case (Ens,×, ∗) treated above, is
the case (S∗,∧, S

0), i.e. the case of (pointed) simplicial categories.
We model the simplicial and cosimplicial replacement functors as follows. Let I be a

small V -category, and i−1 ∈ obI. The nerve of I/i−1 can in this setting be reinterpreted as
a simplicial V -object with q-simplices

NV
q (I/i−1) =

∐

i0,...,iq

⊗

0≤k≤q

I(ik, ik−1) ∈ obV

Let C be a (co)tensored V -category. Let X : I → C be a V -functor, then we define

holim
←−
I

VX = {[q] 7→

∫

I

V (NV
q (I/−), X) ∼=

∏

i0,...,iq

V (
⊗

1≤k≤q

I(ik, ik−1), X(i0))}

and

holim
−→
I

VX = {[q] 7→

∫ I

NV
q (Io/−)⊗X ∼=

∐

i0,...,iq

⊗

1≤k≤q

I(ik, ik−1)⊗X(iq)}

The homotopy V -limit is a cosimplicial C-object, and the homotopy V -colimit is a simplicial
C-object.

We see that the homotopy limit is a functor of V -natural comodules, and homotopy
colimits are functors of V -natural modules (ref MA2).
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1.9.8 Example

Let I be an S∗-category, and let X : I → S∗ be a S∗-functor. Then the homotopy (co)limit
of X is defined by

holim
←−
I

X = Tot holim
←−
I

S∗ sin |X| = Tot{[q] 7→
∏

i0,...,iq

S∗(
∧

1≤k≤q

I(ik, ik−1), sin |X(i0)|)}

and the homotopy colimit as

holim
−→
I

X = diag∗ holim
−→
I

S∗X = diag∗{[q] 7→
∨

i0,...,iq

∧

1≤k≤q

I(ik, ik−1)∧X(iq)}

If I is a constant simplicial category (i.e. an ordinary category), then this definition agrees
with the usual one (of course you have to adjoin basepoints to all morphism sets).

As a particularly important example, let G be a simplicial monoid, and X a G-space
(i.e. an S∗-functor X : G+ → S∗), then the homotopy fixed point and orbit spaces are just
holim←−

G
X and holim−→

G
X. See appendix C for further details.

All the usual results for homotopy (co)limits generalize, for instance

Lemma 1.9.8.1 (Homotopy lemma) Let X, Y : I → S∗ be S∗-functor, and let η : X →
Y be a S∗-natural equivalence. Then η induces a weak equivalence on holim←−

I
and holim−→

I
.

Proof: [Note on proof]The homotopy colimit statement is clear since a map of simplicial
spaces which induce an equivalence in each degree induce an equivalence on the diagonal.
For the homotopy limit case, the proof proceeds just as the one sketched in [14, page 303]:
first one shows that

{[q] 7→
∏

i0,...,iq

S∗(
∧

1≤k≤q

I(ik, ik−1), sin |X(i0)|)}

is a fibrant cosimplicial space (this uses the “matching spaces” of [14, page 274], essentially
you fix an i0 and use that the degeneracy map

∑

j

sj :
∨

0≤j≤q

∨

i1,...,iq−1

∧

1≤k≤q−1

I(ik, ik−1)→
∨

i1,...,iq

∧

1≤k≤q

I(ik, ik−1)

is an inclusion). Then one uses that a map of fibrant cosimplicial spaces that is a pointwise
equivalence, induces an equivalence on Tot.

Do we actually need the following?

Lemma 1.9.8.2 (Cofinality lemma) Let f : I → J be S∗-functors. Then

holim
←−
J

F
f∗

−−−→ holim←−
I
Ff
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is an equivalence for all simplicial F : J → S∗ if and only if f is “left cofinal” in the sense
that for all j ∈ obJ

S0 ' N(f/j) = {[q] 7→
∨

i0,...,iq

J(f(i0), j)
∧

1≤k≤q

I(ik, ik−1)}

with the obvious face and degeneracy maps .

Proof: Assume S0 ' N(f/j), and let X = sin |F |. Consider the bicosimplicial space C
which in bidegree p, q is given by

Cpq =
∏

i0, . . . ip ∈ I
j0, . . . jq ∈ J

S∗(J(f(i0), jq)∧
∧

1≤k≤p

I(ik, ik−1)∧
∧

1≤l≤q

J(jl, jl−1), X(j0))

Fixing q, we get a cosimplicial space
∏

j0,...jq∈J

S∗(
∧

1≤l≤q

J(jl, jl−1),S∗(N(f/jq), X(j0)))

which by hypothesis is equivalent to
∏

j0,...jq∈J

S∗(
∧

1≤l≤q

J(jl, jl−1), X(j0))

which, when varying q, is holim←−
J
X. Fixing p we get a cosimplicial space

[q] 7→
∏

i0,...ip∈I

S∗(
∧

1≤k≤p

I(ik, ik−1),
∏

j0,...jq∈J

S∗(J(f(i0), jq)∧
∧

1≤l≤q

J(jl, jl−1), X(j0)))

Note that X(f(i0)) → {[q] 7→
∏

j0,...jq∈J
S∗(J(f(i0), jq)∧

∧
1≤l≤q J(jl, jl−1), X(j0))} is an

equivalence (it has an extra codegeneracy), and so, when varying p again, we get holim←−
I
Ff .

One also has to show compatibility with the map in the statement.
In the opposite direction, let F (j) = S∗(J(j, j ′), Z) for some j ′ ∈ obJ and fibrant space

Z. Writing out the cosimplicial replacements for holim←−
J
F and holim←−

J
Ff we get that

the first is contractible, whereas the latter is S∗(N(f/j ′), Z), and so N(f/j ′) must be
contractible.

Note that in the proof, for a given F : J → S∗, the crucial point was that for all
j, j ′ ∈ obJ S∗(N(f/j ′), X(j)) ' X(j). This gives the corollary

Corollary 1.9.8.3 Given simplicial functors

I
f

−−−→ J
F
−−−→ S∗,

then
holim←−

J
F

f∗

−−−→ holim←−
I
Ff

is an equivalence if for all j, j ′ ∈ obJ Map∗(N(f/j ′), F (j)) ' F (j).
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This corollary is often very useful, for instance in the form

Corollary 1.9.8.4 Given simplicial functors

I
f

−−−→ J
F
−−−→ S∗

such that F has p-complete values and such that (N(f/j )̂p ' S0 (resp. such that N(j/f )̂p '
S0) for every j ∈ obJ , then

holim←−
J
F

f∗

−−−→ holim←−
I
Ff

is an equivalence.

Proof: We have to show that for all j, j ′ ∈ obJ Map∗(N(f/j ′), F (j)) ' F (j)). If we can
show that for any spaces Y and Z such that Y p̂ ' S0 and Z ' Z p̂, then Z 'Map∗(Y, Z),
we are done. This follows from the string of isomorphisms [Sn,Map∗(Y, Z)] ∼= [Sn∧Y, Z] ∼=
[Sn∧Y, Z p̂] ∼= [(Sn∧Y )̂p, Z p̂] ∼= [((Sn)̂p∧Y p̂)̂p ∼= [(Sn)̂p, Z p̂] ∼= [Sn, Z]. The third and the
last isomorphism comes from the fact that if Z ' Z p̂, then [V p̂, Z] ∼= [V, Z]. This follows
by examining the diagram

[V, Z]

∼=
�� %%K

KKKKKKKK
[V p̂, Z]oo

∼=
��

[V, Z p̂] [V p̂, Z p̂]oo

{ex:A1homotopy S1-fixed points at a prime}

Example 1.9.8.5 The inclusion Cp∞ = limr→∞Cpr ⊆ S1 induces an equivalence BCp∞ p̂ →
BS1

p̂ (the S1s should be sin |S1|s, but we allow ourself this lapse of consistency for once).
Thus we get that for any p-complete space X with S1 action, the map

XhS1

→ XhCp∞

is an equivalence. (Proof that BCp∞ p̂
∼
→ BS1

p̂: We have a short exact sequence Cp∞ ⊆
S1 → lim−→ pS

1, and so it is enough to show that B(lim−→p S
1)̂p ' ∗. But this is clear, since

the homotopy groups of B(lim−→p S
1) ∼= H(Z[1/p], 2) are uniquely p-divisible.)

1.10 Cubical diagrams
{A1Cubical}

(rel to simp/cosimp. and B-M results.)
Introduce the categories P and Pn,

Definition 1.10.0.6 An n-cube is a functor X from the category Pn of subsets of {1, . . . , n}
to any of the categories where we have defined homotopy (co)limits (ref). We say that X is
k-cartesian if X∅ → holim←−−

S 6=∅
XS is k-connected, and k-cocartesian if holim−−−−−−−−→

S 6={1,...,n}
XS →

X{1,...,n} is k-connected. It is homotopy cartesian if it is k-cartesian for all k, and homotopy
cocartesian if it is k-cocartesian for all k.
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When there is no possibility of confusing with the categorical notions, we write just carte-
sian and cocartesian. Homotopy (co)cartesian cubes are also called homotopy pullback
cubes (resp. homotopy pushout cubes), and the initial (resp. final) vertex is then called
the homotopy pullback (resp. homotopy pushout) of the rest of the diagram.

As a convention we shall say that a 0 cube is k-cartesian (resp. k-cocartesian) if X∅ is
(k − 1)-connected (resp. k-connected).

So, a 0 cube is an object X∅, a 1 cube is a map X∅ → X{1}, and a 1 cube is k-(co)cartesian
if it is k-connected as a map. A 2 cube is a square

X∅ −−−→ X{1}y
y

X{2} −−−→ X{1,2}

and so on. We will regard a natural transformation of n cubes X → Y as an n + 1 cube.
In particular, if F → G is some natural transformation of functors of simplicial sets, and
X is an n cube of simplicial sets, then we get an n + 1 cube FX → GX .

The equivalence P − ∅@ >∼>> ∆....
This means that for any functor from a small category J : X → S∗

holim
←−
J

X ' holim
←−−−−−
S∈P−∅

∏
j0←···←j|S|∈N|S|J

X(j0)

and
holim
−→

JX ' holim
−−−−−−→
S∈Po−∅

∨
j0←···←j|S|

X(j|S|).

This is especially interesting if J is finite (which is equivalent to saying that N(J) is a
finite space), for then the homotopy limit is a homotopy pullback of a (finite) cube, and the
homotopy colimit is the homotopy pushout of a (finite) cube. Explicitly, ifN(J) = skkN(J)
(that is, as a functor from ∆o, it factors through the homotopy equivalent subcategory ∆k

of objects [q] for q ≤ k), then holim←−
J
X is equivalent to the homotopy pullback of the

punctured k-cube which sends S ∈ Pk − ∅ to
∏

j0←···←j|S|∈N|S|J
X(j0), and dually for the

homotopy colimit.
This means that statements for homotopy pullbacks and pushouts are especially worth

while listening to. The Blakers–Massey theorem is an instance of such a statement. It
relates homotopy limits and homotopy colimits in a certain range. The ultimate Blakers–
Massey theorem is the following.

Theorem 1.10.0.7 Let S be a finite set with |S| = n ≥ 1, and let k : PS → Z be a
monotone function. Set M(k) to be the minimum of

∑
α k(Tα) over all partitions {Tα} of

S by nonempty sets. Let X be an S cube.

1. If X |T is k(T )-cocartesian for each nonempty T ⊆ S, then X is 1 − n + M(k)
cartesian.

2. If X (−∪(S−T ))|T is k(T ) cartesian for each nonempty T ⊆ S, then X is n−1+M(k)
cocartesian.
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See [40, 2.5 and 2.6] for a proof.
The usual Blakers–Massey theorem is a direct corollary of this. We say that a cube is

strongly (co)cartesian if all subcubes of dimension strictly greater than one are homotopy
(co)cartesian (demanding this also for dimension one would be the same as demanding
that all maps were equivalences, and would lead to a rather uninteresting theory!).

{Blakers–Massey}
Corollary 1.10.0.8 (Blakers–Massey) Let X be a strongly cocartesian n cube, and sup-
pose that X∅ → X{s} is ks-connected for all 1 ≤ s ≤ n. Then X is 1−n+

∑
s ks cartesian.

Dually, if X is strongly cartesian, and X{1,...,n}−{s} → X{1,...,n} is ks connected for 1 ≤ s ≤ n,
then X is n− 1 +

∑
s ks cocartesian.

By applying the Blakers-Massey theorem to the cocartesian square

X −−−→ ∆[1]∧Xy
y

∗ −−−→ S1∧X

you get
{Freudenthal}

Corollary 1.10.0.9 (Freudenthal) If X is (n−1)-connected, then the natural map X →
Ω1(S1∧X) is (2n− 1)-connected.

For reference we list the following useful corollary which is the unstable forerunner of
the fact that stably products are sums.

{cor:A1 stably sum is prod}
Corollary 1.10.0.10 Let X and Y be pointed spaces and X be m-connected and Y be
n-connected. Then X ∨ Y → X × Y is m+ n-connected.

Proof: This is much easier by using the Whitehead and Künneth theorems, but here goes.
Assume for simplicity that m ≥ n Consider the cocartesian square

X ∨ Y −−−→ X × Yy
y

∗ −−−→ X∧Y

.

Now, X∧Y is m+n+1-connected (by e.g., considering the spectral sequence 1.5.0.6 of the
associated bisimplicial set), the left vertical map is n+ 1-connected and the top horizontal
map is – for trivial reasons – n-connected. Hence the diagram 2n-cartesian and so the top
horizontal map must be at least 2n-connected (since m + n ≥ 2n). With this improved
connectivity, we can use Blakers-Massey again. Repeating this procedure until we get
cartesianness that exceeds m+n we get that the top map is m+n-connected (and finally,
the diagram is m + 2n-cartesian).

The Blakers–Massey theorem has the usual consequence for spectra:
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Corollary 1.10.0.11 Let X be an n-cube of bounded below spectra. Then X is homotopy
cartesian if and only if it is homotopy cocartesian.

Lemma 1.10.0.12 Let X : I×J → Spt be a functor where I is finite. Then the canonical
maps

holim
−→
I

holim
←−
J

X → holim
←−
J

holim
−→
I

X

and
holim
−→
J

holim
←−
I

X → holim
←−
I

holim
−→
J

X

are equivalences.

Proof: The homotopy colimit of X over I is equivalent to the homotopy pushout of a
punctured cube with finite wedges of copies of X(i)’s on each vertex. But in spectra finite
wedges are equivalent to products, and homotopy pushout cubes are homotopy pullback
cubes, and homotopy pullbacs commute with homotopy limits. This proves the first equiv-
alence, the other is dual.

Corollary 1.10.0.13 Let X. : ∆o× J → Spt be a functor regarded as a functor from J to
simplicial spectra. Assume J has finite cohomological dimension and diag∗X is bounded
below. Then

diag∗ holim
←−
J

X.→ holim
←−
J

diag∗X.

is an equivalence.

Proof: Assume lim←−
J

(s) ≡ 0 for s > n, and πsdiag
∗X. = 0 for s < m. Let

skkX. = holim
−−−−→
[q]∈∆k

Xq

This maps by a k − m-connected map to diag∗X., and let F be the homotopy fiber of
this map. Then E2

s,t = lim←−
J

(−s)πtF = 0 if s < −n or t < k −m, so πq holim←−
J
F = 0 for

q < k −m− n. All in all, this means that the last map in

skkholim
←−
J

X. = holim
−−−−→
[q]∈∆k

holim
←−
J

Xq
∼
−−−→ holim

←−
J

holim
−−−−→
[q]∈∆k

Xq = holim
←−
J

skkX → holim
←−
J

diag∗X.

is k − n−m-connected. Letting k go to infinity we have the desired result.
Even in the nonstable case there is a shadow of these nice properties.

Definition 1.10.0.14 If f is some integral function, we say that an S cube X is f cartesian
if each d subcube (face) of X is f(d) cartesian. Likewise for f cocartesian.

Corollary 1.10.0.15 Let k > 0. An S cube of spaces is id+ k cartesian if and only if it
is 2 · id+ k − 1 cocartesian. The implication cartesian to cocartesian holds even if k = 0.
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Proof: Note that it is trivially true if |S| ≤ 1. Assume it is proven for all d cubes with
d < n.

To prove one implication, let X be an id+k cartesian n = |S| cube. All strict subcubes
are also id + k cartesian, and so 2 · id + k − 1 cocartesian, and the only thing we need to
show is that X itself is 2n+ k− 1 cocartesian. This follows from 2.2.2: X is K cocartesian
where

K = n− 1 + min(
∑

α

(|Tα|+ k))

where the minimum is taken over all partitions {Tα} of S by nonempty sets. But this
minimum is clearly attained by the trivial partition, for if we subdivide T into T1 and T2

then |T |+k = |T1|+ |T2|+k ≤ |T1|+k+ |T2|+k, and so K = (n−1)+(n+k) = 2n+k−1.
In the opposite direction, let X be a 2 · id+ k− 1 cocartesian n = |S| cube. This time,

all strict subcubes are by assumption id+k cartesian, and so we are left with showing that
X is n + k cartesian. Again this follows from 2.2.1: X is K cartesian where

K = (1− n) + min(
∑

α

(2|Tα|+ k − 1))

where the minimum is taken over all partitions {Tα} of S by nonempty sets. But this
minimum is clearly attained by the trivial partition, for if we subdivide T into T1 and
T2 then 2|T | + k − 1 = 2|T1| + 2|T2| + k − 1 ≤ 2|T1| + k − 1 + 2|T2| + k − 1, and so
K = (1− n) + (2n+ k − 1) = n+ k.

Homology takes cofiber sequences to long exact sequences. This is a reflection of the
well-known statement

Lemma 1.10.0.16 If X is a cocartesian cube, then Z̃X is cartesian.

Proof: This follows by induction on the dimension of X . If dimX = 1 it is true by definition,
and if X has dimension d > 1 split X into two d− 1 dimensional cubes X i → X f and take
the cofiber X i → X f → X c. As X was cocartesian, so is X c, and by assumption Z̃X c is
cartesian, and Z̃X i → Z̃X f → Z̃X c is a fiber sequence, and so Z̃X must be cartesian.

We will need a generalization of the Hurewicz theorem. Recall that the Hurewicz
theorem states that if X is k − 1 > 0 connected, then πkX → Hk(X) is an isomorphism
and πk+1X → Hk+1X is a surjection, or in other words that

X
hX−−−→ Z̃X

is k + 1-connected.
Using the transformation h : 1→ Z̃ on hX : X → Z̃X we get a square

X
hX−−−→ Z̃X

hX

y h
Z̃X

y

Z̃X
Z̃hX−−−→ Z̃Z̃X



1.11. COMPLETIONS AND LOCALIZATIONS 277

One may check by brute force that this square is k+2 cartesian if X is k−1 > 0 connected.
We may continue this process to obtain arbitrarily high dimensional cubes by repeatedly
applying h and the generalized Hurewicz theorem states that the result gets linearily closer
to being cartesian with the dimension.

{theo:Hurewicz}
Theorem 1.10.0.17 [The Hurewicz theorem (generalized form)] Let k > 1. If X is an
id+ k cartesian cube of simplicial sets, then so is X → Z̃X .

Proof: To fix notation, let X be an n = |S| cube with iterated fiber F and iterated cofiber
C. Let C be the S cube which sends S to C, and all strict subsets to ∗. Then the |S|+ 1
cube X → C is cocartesian.

As X is id+k cartesian, it is 2 · id+k− 1 cocartesian, and in particular C is 2n+k− 1
connected. Furthermore, if X |T is some d subcube of X where {S} /∈ T , then X |T is
2d+ k− 1 cocartesian, and so X |T → C|T = ∗ is 2d+ k cocartesian. Also, if X |T is some
strict subcube with {S} ∈ T , then X |T → C|T is still 2d + k cocartesian because C is
2n+k−1 connected, and d < n. Thus X → C is 2 · id+k−2 cocartesian, and cocartesian.
Using 2.2.1 again, we see that X → C is 1− n + 2(n + 1 + k − 2) = n + 2k − 1 cartesian
as the minimal partition is obtained by partitioning S ∪ {n+ 1} in two.

This implies that the map of iterated fibers F → ΩnC is n + 2k − 1 connected. We
note that n+ 2k − 1 ≥ n+ k + 1 as k > 1.

Furthermore, as C is 2n+ k − 1 connected, ΩnC → ΩnZ̃C is n+ k + 1 connected.
But lemma 2.5 implies that

Z̃X → Z̃C

is cartesian. Hence the iterated fiber of Z̃X is ΩnZ̃C, and we have shown that the map
from the iterated fiber of X is n + 1 + k connected. Doing this also on all subcubes gives
the result.

In particular

Corollary 1.10.0.18 Let X be a k − 1 > 0-connected space. Then the cube you get by
applying h n times to X is id+ k-cartesian.

1.11 Completions and localizations

Let R be either, Fp for a prime p or a subring of Q. The free/forgetful adjoint pair

sR−mod
R̃

� S∗

give rise to a cosimplicial functor on spaces wich in dimension q takes X ∈ S∗ to the
simplicial R-module R̃q+1(X) considered as a space. In favourable circumstances the total,
or homotopy limit R∞X, of this cosimplicial space has the right properties of an “R-
completion”. More precisely, we say that X is good (with respect to R) if X → R∞X
induces an isomorphism in R-homology, and R∞X → R∞R∞X is an equivalence.
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Especially, simply connected spaces and loop spaces are good, and so R-completion of
spectra is well behaved (this is a homotopy limit construction, so we should be prepared
to make our spectra Ω-spectra before applying R∞ to each space).

Explictly, for a spectrum X, let J be a set of primes, I the set of primes not in J and
p any prime, we let

X(J) = {k 7→ Xk
(J) = (Z[I−1])∞X

k}

and

X p̂ = {k 7→ QkX p̂ = (Z/pZ)∞(QkX)}

We write XQ or X(0) for the rationalization X∅, and we say that X is rational if X → XQ

is an equivalence, which is equivalent to asserting that π∗X is a rational vector space.
Generally, X(J) is a localization, in the sense that X → X(J) induces an equivalence in
spectrum homology with coefficients in Z[I−1], and π∗X(J)

∼= π∗X ⊗ Z[I−1].
Also, X p̂ is a p-completion in the sense that X → X p̂ induces an equivalence in spec-

trum homology with coefficients in Z/pZ, and there is a natural short exact (nonnaturally
splittable) sequence

0→ Ext1(Cp∞, π∗X)→ π∗X p̂ → Hom(Cp∞, π∗−1X)→ 0

where Cp∞ = Z[1/p]/Z. One says that an abelian group M is “Ext−p-complete” if M →
Ext(Cp∞,M) is an isomorphism and Hom(Cp∞,M) = 0. A spectrum X is p-complete (i.e.
X → X p̂ is an equivalence) if and only if π∗X is Ext−p-complete.

Lemma 1.11.0.19 Any simplicial space satisfying the π∗-Kan condition and which is
“good” in every degree (and in particular, any simplicial spectrum) may be p-completed
or localized degreewise

Proof: We prove the less obvious completion part. Let Y be the simplicial space {q 7→
(Xq )̂p}. We must show that the map diag∗X → diag∗Y is a p-completion. Use the spectral
sequence for the simplicial space Y , and that Ext−p completeness is closed under extension
to see that diag∗(Y ) is p-complete. Then use the spectral sequence for the simplicial space
FpY to see that H∗(diag

∗X,Fp)→ H∗(diag
∗Y,Fp) is an isomorphism.

Theorem 1.11.0.20 [12] Let X be any spectrum, then

X −−−→ XQy
y

∏
p primeX p̂ −−−→ (

∏
p primeX p̂)Q

is homotopy cartesian.

Also from the description of Bousfield we get that p-completion commutes with arbi-
trary homotopy limits and J-localization with arbitrary homotopy colimits.
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1.11.1 Completions and localizations of simplicial abelian groups

If M is a simplicial abelian group, then we can complete or localize the Eilenberg-MacLane
spectrum HM . The point here is that this gives new Eilenberg-MacLane spectra which
can be described explicitly. The proofs of the statements below follow from the fact that
Eilenberg-MacLane spectra and completion and localization are determined by their ho-
motopy groups.

Let M ∈ obA = sAb be a simplicial abelian group. Then H(M⊗ZQ) is clearly a model
for HM(0). The map HM → HM(0) is given by M@ > m 7→ m⊗ 1 >> M ⊗Z Q.

Choose a free resolution R
∼
� Z[1/p]/Z. Then we may define the p-completion as

M p̂ = A(R, Z̃[S1]⊗Z M)

(internal function object in A, see ?) which is a simplicial abelian group whose Eilenberg-
MacLane spectrum H(M p̂) is equivalent to (HM )̂p (note the similarity with the up to
homotopy definition commonly used for spectra). The homotopy groups are given by
considering the second quadrant spectral sequence (ref?)

E2
s,t = Ext−sZ (Z[1/p]/Z, πt−1M)⇒ πs+tM p̂

whose only nonvanishing colums are in degree 0 and −1. The map M → M p̂ is given as
follows. Let Q = R

∏
Z[1/p]/Z Z[1/p], and consider the short exact sequence

0→ Z→ Q→ R→ 0

giving rise to the exact sequence

0→ A(R, Z̃[S1]⊗Z M)→ A(Q, Z̃[S1]⊗Z M)→ Z̃[S1]⊗Z M → 0

which gives the desired map M →M p̂.
If M is a cyclic abelian group then, M →M ⊗Z Q and M →M p̂ are cyclic maps.
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Chapter B

Some language

{A2}

B.1 A quick review on enriched categories

To remind the reader, and set notation, we give a short presentation of enriched categories
(see e.g., [23], [64] or [?]), together with some relevant examples. Our guiding example will
be Ab-categories, also known as linear categories. These are categories where the morphism
sets are actually Abelian groups, and composition is bilinear. That is: in the definition
of “category”, sets are replaced by Abelian groups, Cartesian product by tensor product
and the one point set by the group of integers. Besides Ab-categories, the most important
example will be the ΓS∗-categories, which are used frequently from chapter II on, and we
go out of our way to point out some relevant details for this case. Note however, that scary
things like limits and ends are after all not that scary since limits (and colimits for that
matter) are calculated pointwise.

B.1.1 Closed categories

Recall the definition of a symmetric monoidal closed category (V,�, e), see e.g., [79]. For
convenience we repeat the definition below, but the important thing to remember is that
it behaves as (Ab,⊗Z,Z).

{Def:A21.1.1}

Definition B.1.1.1 A monoidal category is a tuple (C,�, e, α, λ, ρ) where C is a category,
� is a functor C × C → C, and α, λ and γ are natural isomorphisms

αa,b,c : a�(b�c)
'
−−−→ (a�b)�c, λa : e�a

'
−−−→ a, and ρa : a�e

'
−−−→ a

with λe = ρe : e�e→ e, satisfying the coherence laws given by requiring that the following
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diagrams commute:

a(�b�(c�d))

1�α
��

α // (a�b)�(c�d)

α

��
a�((b�c)�d)

α

((QQQQQQQQQQQQQ
((a�b)�c)�d

(a�(b�c))�d

α�1
66mmmmmmmmmmmmm

, a�(e�c)

α

��

q�λ

%%K
KKKKKKKK

a�c

(a�e)�c

ρ�1
99ttttttttt

A monoidal category is symmetric when it is equipped with a natural isomorphism

γa,b : a�b
'
−−−→ b�a

such that the following diagrams commute

a�b +3

γ

##G
GGGGGGG a�b

b�a

γ
;;wwwwwwww

a�e
ρ //

γ

##G
GG

GG
GG

GG
a

e�a

λ

=={{{{{{{{

a�(b�c)
α //

1�γ
��

(a�b)�c

γ

��
a�(c�b)

α

&&MMMMMMMMMMM
(c�a)�b

(a�c)�b)

γ�1
88qqqqqqqqqqq

A symmetric monoidal closed category (often just called a closed category) is a symmetric
monoidal category such that

−�b : C → C

has a right adjoint C(b,−) : C → C (which is considered to be part of the data).

If C is a closed category, we will refer to C(b, c) as the internal morphism objects.

B.1.2 Enriched categories

Let (V,�, e) be any closed symmetric monoidal category.

Definition B.1.2.1 A V -category C is a class of objects, obC, and for objects c0, c1, c2 ∈
obC objects in V , C(ci, cj), and a “composition”

C(c1, c0)�C(c2, c1)→ C(c2, c0)
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and a “unit”
e→ C(c, c)

in V subject to the usual unit and associativity axioms: given objects a, b, c, d ∈ obC then
the following diagrams in V commute

C(c, d)�(C(b, c)�C(a, b))
∼= //

��

(C(c, d)�C(b, c))�C(a, b)

��
C(c, d)�C(a, c)

))SSSSSSSSSSSSSSS
C(b, d)�C(a, b)

uukkkkkkkkkkkkkkk

C(a, d)

C(a, b)�e
∼=
−−−→ C(a, b)

∼=
←−−− e�C(a, b)y =

y
y

C(a, b)�C(a, a) −−−→ C(a, b) ←−−− C(b, b)�C(a, b)

.

We see that C is an ordinary category (an “Ens-category”) too, which we will call
C too, or U0C if we need to be precise, with the same objects and with morphism sets
U0C(c, d) = V (e, C(c, d)).

We see that C can be viewed as a functor UCo×UC → V : if f ∈ C(c′, c) = V (e, C(c′, c))
and g ∈ C(d, d′) = V (e, C(d, d′)) then f ∗g∗ = g∗f

∗ = C(f, g) : C(c, d) → C(c′, d′) ∈ V is
defined as the composite

C(c, d) ∼= e�C(c, d)�e
g�id�f
−−−−→ C(d, d′)�C(c, d)�C(c, c′)→ C(c′, d′).

B.1.2.2 Some further definitions

If C and D are two V -categories, we define their tensor product (or whatever the oper-
ator in V is called) C�D to be the V -category given by ob(C�D) = obC × obD, and
C�D((c, d), (c′, d′)) = C(c, c′)�D(d, d′).

Let C be a V -category where V has finite products. If UC is a category with sum (i.e.
it has an initial object ∗, and categorical coproducts), then we say that C is a V -category
with sum if the canonical map C(c ∨ c′, d)→ C(c, d)× C(c′, d) is an isomorphism.

A V -functor F from C to D is an assignment obC → obD together with maps C(c, c′)→
D(F (c), F (c′)) preserving unit and composition. A V -functor F : C → D is V -full (resp.
V -faithful) if C(c, d) → D(F (c), F (d)) is epic (resp. monic). A V -natural transformation
between two V -functors F,G : C → D is a map ηc : F (c) → G(c) ∈ UD for every c ∈ obC
such that all the diagrams

C(c, c′) −−−→ D(F (c), F (c′))y
y(ηc′ )∗

D(G(c), G(c′))
(ηc)∗

−−−→ D(F (c), G(c′))
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commute.

If

D
F

�
U
C

is a pair of V -functors, we say that F is V -left adjoint to U (and U is V -right adjoint to

F ) if there are V -natural transformations FU
ε //1C (the counit) and UF 1D

ηoo (the

unit) such that the following diagrams commute:

U
ηU //

=

""F
FF

FF
FF

FF
UFU

Uε
��
U

F
Fη //

=

""F
FF

FF
FF

FF
FUF

εF
��
U

B.1.2.3 Examples of enriched categories

1. Any symmetric monoidal closed category (V,�, e) is enriched in itself due to the
internal morphism objects.

2. A linear category is nothing but an Ab-category, that is a category enriched in
(Ab,⊗,Z). Note that an additive category is something else (it is a linear cate-
gory with a zero object and all finite sums). “Linear functor” is another name for
Ab-functor.

3. Just as a ring is an Ab-category with one object, or a k-algebra is a (k − mod)-
category with only one object, an S-algebra is a ΓS∗-category with only one object.
This is equivalent to saying that it is a monoid in (ΓS∗,∧,S), which is another way
of saying that an S-algebra is something which satisfies all the axioms of a ring, if
you replace every of Ab, ⊗ or Z by ΓS∗, ∧ or S (in that order).

4. Let C be a category with sum (and so is “tensored over Γ0” by the formula c�k+ =∨
k c). This defines a (discrete) ΓS∗-category C∨ by setting C∨(c, c′)(X) = C(c, c′�X)

for X ∈ obΓo and c, c′ ∈ obC, and with composition given by

C∨(c, d)(X)∧C∨(b, c)(Y ) C(c, d�X)∧C(b, c�Y )
(−�Y )∧id
−−−−−−→ C(c�Y, (d�X)�Y )∧C(b, c�Y )

−−−−−−→ C(b, (d�X)�Y )

∼= C(b, d�(X�Y )) C∨(b, d)(X∧Y )

.

Slightly more general, we could have allowed C to be an S∗-category with sum.
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B.1.3 Monoidal V -categories

There is nothing hindering us from adding a second layer of complexity to this. Given
a closed category (V,�, ε), a (symmetric) monoidal (closed) V -category is a (symmetric)
monoidal (closed) category (C,�, e) in the sense that you use definition B.1.1.1, but do it
in the V -enriched world (i.e., C is a V -category, � : C � C → C a V -functor, the required
natural transformations are V -natural (and C(b,−) is V -right adjoint to −�b)).

B.1.3.1 Important convention

All categories are considered to be enriched over (S∗,∧, S
0) without further mention. In

particular, (V,�, e) is a closed S∗-category, and any V -category C is also an S∗-category
which is sometimes also called C, but when accuracy is important UC, with morphism
spaces C(b, c) = V (e, C(b, c)) ∈ obS∗. This fits with the convention of not underlining
function spaces. Of course, it also defines a set-based category U0C too by considering
zero-simplices only.

B.1.4 Modules

A left C-module P is an assignment obC → obV , and a morphism P (c)�C(c, b)→ P (b) in
V such that the obvious diagrams commute; or in other words, a C-module is a V -functor
P : C → V . Right modules and bimodules are defined similarly as V -functors Co → V and
Co�C → V . If V has finite products and C is a V -category with sum, a Co-module M is
said to be additive if the canonical map M(c∨ c′)→M(c)×M(c′) is an isomorphism, and
a bimodule is additive if P (c ∨ c′, d)→ P (c, d)× P (c′, d) is an isomorphism.

Example B.1.4.1 If a ring A is considered to be an Ab-category with just one object,
one sees that a left A-module M in the ordinary sense is nothing but a left A-module in
the sense above: consider the functor A→ Ab with M as value, and sending the morphism

a ∈ A to multiplication on M
m7→am //M . Likewise for right modules and bimodules.

Likewise, if A is an S-algebra, then an A-module is a ΓS∗ functor A → ΓS∗. Again,
this another way of saying that an A-module is an “−∧A”-algebra, which is to say that it
satisfies all the usual axioms for a module, mutatis mutandem.

B.1.4.2 V -natural modules

A V -natural bimodule is a pair (C, P ) where C is a V -category and P is a C-bimodule. A {Def:natural bimodule}
map of V -natural bimodules (C, P ) → (D, Q) is a V -functor F : C → D and a V -natural
transformation P → F ∗Q where F ∗Q is the C-bimodule given by the composite

Co�C
F×F
−−−→ Do�D

Q
−−−→ V .

Similarly one defines V -natural modules as pairs (C, P ) where C is a V -category and P a
C-module. A map of V -natural modules (C, P )→ (D, Q) is a V -functor F : C → D and a
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V -natural transformation P → F ∗Q where F ∗Q is the C-bimodule given by the composite

C
F
−−−→ D

Q
−−−→ V .

The V -natural (bi)modules form a 2-category: the maps of V -natural (bi)modules are
themselves objects of a category. The morphisms in this category are (naturally) called
natural transformations; a natural transformation η : F → G where F,G are two maps
of V -natural bimodules (C, P ) → (D, Q) is a V -natural transformation η : F → G of
V -functors C → D such that the diagram

P (c, c′) −−−→ Q(F (c), F (c′))y
y(ηc′ )∗

Q(G(c), G(c′))
(ηc)∗

−−−→ Q(F (c), G(c′))

commutes. A natural isomorphism is a natural transformation such that all the ηc are
isomorphisms. Likewise one defines the notion of a natural transformation/isomorphism
for maps of V -natural modules.

For cohomology considerations, the dual notion of V -natural co(bi)modules is useful.
The objects are the same as above, but a morphism f : (C, P ) → (D, Q) is a functor
f : D → C together with a natural transformation f ∗P → Q, and so on.

Example B.1.4.3 Let C be a category with sum, and let P be an additive C-bimodule

(i.e., P (c ∨ c′, d)
∼= //P (c, d)× P (c′, d) ). Recall the definition of C∨. We define a C∨-

bimodule P ∨ by the formula P ∨(c, d)(X) = P (c, d�X). Note that since P is additive we
have a canonical map P (c, d) → P (c�X, d�X), and the right module action uses this.
Then (C∨, P∨) is a natural module, and (C∨, P∨)→ ((−�X)∗C∨, (−�X)∗P∨) is a map of
natural modules.

B.1.5 Ends and coends

Ends and coends are universal concepts as good as limits and colimits, but in the set-
based world you can always express them in terms of limits and colimits, and hence are
less often used. The important thing to note is that this is the way we construct natural
transformations: given two (set-based) functors F,G : C → D, a natural transformation
η from F to G is a collection of maps ηc : F (c) → G(c) satisfying the usual condition.
Another way to say the same thing is that the set of natural transformations is a set
DC(F,G) together with a family of functions

DC(F,G)
η 7→pc(η)=ηc
−−−−−−−→ D(F (c), G(c))

such that for every f : c1 → c0

DC(F,G)
pc1−−−→ D(F (c1), G(c1))

pc0

y G(f)∗

y

D(F (c0), G(c0))
F (f)∗

−−−→ D(F (c1), G(c0))
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Furthermore, DC(F,G) is universal among sets with this property: It is “the end of the
functor D(F (−), G(−)) : Co × C → D”. This example is the only important thing to
remember about ends. What follows is just for reference.

Definition B.1.5.1 Let C and D be V -categories and T : Co�C → D a V -functor. A
V -natural family is an object d ∈ obD, and for every object c ∈ obC a map fc : d→ T (c, c)
such that the following diagram commute

C(c1, c0)
T (c1,−)
−−−−→ D(T (c1, c1), T (c1, c0))

T (−,c0)

y f∗c1

y

D(T (c0, c0), T (c1, c0))
f∗c0−−−→ D(d, T (c1, c0))

Definition B.1.5.2 Let C be a V -category. The end of a bimodule T : Co�C → V is a
V -natural family ∫

c
T (c, c)

px
−−−→ T (x, x)

such that for any other V -natural family fx : v → T (x, x), there exists a unique morphism
v →

∫
c
T (c, c) making the following diagram commute:

v //

fx

""D
DD

DD
DD

DD
D

∫
c
T (c, c)

pxyyrrrrrrrrrr

T (x, x)

Definition B.1.5.3 Let T : Co�C → D be a V -functor. The end of T is a V -natural
family ∫

c
T (c, c)

px
−−−→ T (x, x)

such that for every d ∈ obD

D(d,
∫
c
T (c, c))

px∗−−−→ D(d, T (x, x))

is the end of

Co�C
D(d,T (−,−))
−−−−−−−→ V

With mild assumptions, this can be expressed as a limit in D (see [?, page 39]). The
dual of the end is the coend. The most basic is the tensor product: considering a ring A as
an Ab-category with one object (called A), a left module M : A→ Ab and a right module

N : Ao → Ab, the tensor product N ⊗AM is nothing but the coend
∫ A

N ⊗M .

B.1.6 Functor categories

Assume that V has all limits. If I is a small category, we define the V -category
∫
I
C of

“functors from I to C” as follows. The objects are just the functors from I to UC, but the
morphisms

∫
I
C(F,G) is set to be the end

∫
I
C(F,G) =

∫
i∈I
C(F (i), G(i)) of

Io × I
(F,G)
−−−→ UCo × UC

C
−−−→ V .
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We check that this defines a functor [I, UC]o × [I, UC] → V . The composition is defined
by the map

(∫

I

C(G,H)

)
�

(∫

I

C(F,G)

)
→

∫

I

∫

I

C(G,H)�C(F,G)
diag∗

−→

∫

I

C(G,H)�C(F,G)

→

∫

I

C(F,H)

Note that I is here an ordinary category, and the end here is an end of set-based categories.

In the case where the forgetful map V
N 7→V (e,N) //Ens has a left adjoint, say X 7→ e�X,

then there is a left adjoint functor from categories to V -categories, sending a category I to
a “free” V -category e�I, and the functor category we have defined is the usual V -category
of V -functors from e�I to C (see [23], [?] or [?]).

Also, a C-bimodule P gives rise to a
∫
I
C-bimodule

∫
I
P with

∫
I
P (F,G) defined as the

end. The bimodule structure is defined as
∫

I

C�

∫

I

P�

∫

I

C →

∫

I×3

C�P�C →

∫

I

C�P�C →

∫

I

P.

As an example, one has the fact that if C is any category and D is an Ab-category, the
free functor from sets to abelian groups Z : Ens∗ → Ab induces an equivalence between the
Ab-category of Ab-functors ZC → D and the Ab-category of functors C → D. See [?] for a
discussion on the effect of change of base-category.

Example B.1.6.1 (Modules over an S-algebra) Let A be an S-algebra. The category
MA of A-modules is again a ΓS∗-category . Explicitly, if M and N are A-modules, then

MA(M,N) =

∫

A

ΓS∗(M,N) ∼= lim
←−
{ΓS∗(M,N) ⇒ ΓS∗(A∧M,N)}

with the obvious maps.
We refer to [107] for a more thorough discussion of S-algebras and A-modules and their

homotopy properties. See also chapter II.



Chapter C

Group actions

{A3}
In this appendix we will collect some useful facts needed in chapter VI. We will not strive
for the maximal generality, and there is nothing here which can not be found elsewhere in
some form.

C.1 G-spaces
{sec:A3Gspaces}

Let G be a simplicial monoid. A G-space X is a space X together with a pointed G action {Def:A3Gspace}
µ : G+∧X → X such that the expected diagrams commute. Or said otherwise: it is a
simplicial functor

G
X
−−−→ S∗

with G considered as a simplicial category with one object. We let X denote both the
functor and the image of the object in G. That the functor is simplicial assures that
the resulting map G → S∗(X,X) is simplicial, and by adjointness it gives rise to µ (the
“plus” in G+∧X → X comes from the fact that G→ S∗(X,X) is not basepoint preserving
as it must send the identity to the identity). Then the functoriality encodes the desired
commuting diagrams.

According to our general convention of writing CS∗ for the category of functors from a
category C to S∗ (blatantly violated in our notation ΓS∗ for functors from Γo to spaces), we
write GS∗ for the category of G-spaces. This is a pointed simplicial category with function
spaces

GS∗(X, Y ) = {[q] 7→ GS∗(X∧∆[q]+, Y )}

If X is a G-space and Y is a Go-space (a right G-space), we let their smash product be
the space

Y ∧GX = Y ∧X/(yg∧x ∼ y∧gx)

The forgetful map GS∗ → S∗ has a left adjoint, namely X 7→ G+∧X, the free G-space
on the space X.

Generally we say that a G-space X is free if for all non-base points x ∈ X the isotropy
groups Ix = {g ∈ G|gx = x} are trivial, whereas Ibase point = G (“free away from the

289



290 CHAPTER C. GROUP ACTIONS

basepoint”). A finite free G-space a G-space Y with only finitely many non-degenerate
G-cells. (you adjoin a “G-cell” of dimension n to Yj by taking a pushout of maps of G
spaces

∂∆(n)∧G+
incl.∧id
−−−−→ ∆(n)∧G+y

y
Yj −−−→ Yj+1

where G acts trivially on ∂∆(n) and ∆(n).)

C.1.1 The orbit and fixed point spaces

Let f : M → G be a map of monoids. Precomposition with f gives a functor f ∗ : [G, Ens∗]→
[M, Ens∗] and since all (co)limits exists this functor has both a right and a left adjoint. If
f is surjective and G a group, let H ⊂ M be the submonoid of elements mapping to the
identity. Then the right adjoint of f ∗ is

X 7→ XH = lim
←−
H

X = {x ∈ X|h · x = x for all h ∈ H}

the set of fixed points, and the left adjoint is

X 7→ XH = lim
−→
H

X = X/(h · x ∼ x)

the set of orbits. The same considerations and definitions holds in the simplicial case, and
we even get simplicial adjoints:

MS∗X 7→XH//

X 7→XH
//

GS∗
f∗oo

GS∗(XH , Y ) ∼= MS∗(X, f
∗Y ), and GS∗(Y,X

H) ∼= MS∗(f
∗Y,X)

If G is a simplicial group, the homomorphism G→ Go×G sending g to (g−1, g) makes
it possible to describe −∧G− and GS∗(−,−) in terms of orbit and fixed point spaces. If
X, Y ∈ obGS∗ and Z ∈ obGoS∗ then Z∧X and S∗(X, Y ) are naturally Go ×G-spaces, and
since G is a group also G-spaces, and we get that

Z∧GX ∼= (Z∧X)G, and GS∗(X, Y ) ∼= S∗(X, Y )G.

C.1.2 The homotopy orbit and homotopy fixed point spaces

Let G be a simplicial monoid. When regarded as a simplicial category, with only one object
∗, we can form the over (resp. under) categories, and the nerve N(G/∗)+ (resp. N(∗/G)+)
is a contractible free G-space (resp. contractible free Go-space), and the G orbit space
is BG = NG. For G a group, N(G/∗) ∼= B(G,G, ∗) (resp. N(∗/G) ∼= B(∗, G,G)) the
one sided bar construction, and we note that in this case the left and right distinction is
inessential. We write EG+ for any contractible free G-space.
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Definition C.1.2.1 Let G be a simplicial monoid and X a G-space. Then the homotopy
fixed point space is

XhG = holim
←−
G

X = GS∗(N(G/∗)+, sin |X|)

and the homotopy orbit space is

XhG = holim
−→
G

X = N(∗/G)+∧GX.

A nice thing about homotopy fixed point and orbit spaces is that they preserve weak
equivalences (since homotopy (co)limits do). We have maps XG → XhG and XhG → XG,
and a central problem in homotopy theory is to know when they are equivalences.

Note that if G is a group, then

XhG 'Map∗(EG+, X)G, and XhG ' (EG+∧X)G

Any free G-space EG+ whose underlying space is contractible will do in the sense that
they all give equivalent answers.

{lemma:A3free vs. fixed points}
Lemma C.1.2.2 Let U be a free G-space, and X any fibrant G-space (i.e., a G space
which is fibrant as a space). Then

GS∗(U,X)
∼
−−−→ GS∗(U∧EG+, X),

and so if G is a group S∗(U,X)G ' S∗(U,X)hG. Furthermore, if U is d-dimensional, then
GS∗(U,−) sends n-connected maps of fibrant spaces to (n− d)-connected maps.

Proof: By induction on the G-cells, it is enough to prove it for U = Sk∧G+. But then
the map is the composite from top left to top right in

GS∗(S
k∧G+, X) −−−→ GS∗(S

k∧G+∧EG+, X)
i∗
−−−→
∼=

GS∗(S
k∧G+∧EG+, X)

∼=

y ∼=

y
S∗(S

k, X)
∼
−−−→ S∗(S

k∧EG+, X)

where i∗ is the G-isomorphism from Sk∧G+∧EG+ (no action on EG+) to Sk∧G+∧EG+

(diagonal action) given by the shear map (s, g, e) 7→ (s, g, ge). The last statement follows {shear map}
from induction on the skeleta, and the fact that GS∗(S

k∧G+,−) ∼= S∗(S
k,−) sends n-

connected maps of fibrant spaces to (n− k)-connected maps.

C.2 (Naïve) G-spectra

Let G be a simplicial monoid. The category of G-spectra, GSpt is the category of simplicial
functors from G to the category of spectra. A map of G-spectra is called a pointwise (resp.
stable) equivalence if the underlying map of spectra is.
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This notion of G-spectra is much less rigid than what most people call G-spectra (see
e.g., [71]), and they would prefer to call these spectra something like “naïve pre-G-spectra”.
To make it quite clear: our G-spectra are just sequences ofG-spaces together with structure
maps S1∧Xn → Xn+1 that are G-maps. A map of G-spectra X → Y is simply a collection
of G-maps Xn → Y n commuting with the structure maps.

Again, G-spectra form a simplicial category, with function objects

GSpt0(X, Y ) = {[q] 7→ GSpt(X∧∆[q]+, Y )}

Even better, it has function spectra

GSpt(X, Y ) = {k 7→ GSpt0(X, Y k+?)}

If X is a G-spectrum we could define the homotopy orbit and fixed point spectra
pointwise, i.e.

XhG = {k 7→ (Xk)hG)}

and
“XhG = {k 7→ (Xk)hG}”

These construction obviously preserve pointwise equivalences, but just as the homotopy
limit naïvely defined (without the sin | − |, see appendix A.1.9) may not preserve weak
equivalences, some care is needed in the stable case.

Pointwise homotopy orbits always preserve stable equivalences, but pointwise homotopy
fixed points may not. (it is the old story: since all spectra are pointwise equivalent to
cofibrant ones in the stable model category of spectra, pointwise homotopy colimits are
well behaved with respect to stable equivalences, but homotopy limits are only well behaved
on the fibrant spectra). However, if the spectrum X is an Ω-spectrum, stable and pointwise
equivalences coincide, and this may always be assured by applying the construction QX =
{k 7→ QkX = lim−→n ΩnXk+n} of appendix A.1.2. This is encoded in the real definition.

Definition C.2.0.3 Let G be a simplicial monoid and X a G-spectrum. Then the homo-
topy orbit spectrum is given by

XhG = {k 7→ (Xk)hG)}

whereas the homotopy fixed point spectrum is given by

XhG = {k 7→ (QkX)hG}

Lemma C.2.0.4 Let G be a simplicial monoid and f : X → Y a map of G-spectra. If f
is a stable equivalence of spectra, then fhG : XhG → YhG and fhG : XhG → Y hG are stable
equivalences.

For G-spectra X there are spectral sequences

E2
p,q = Hp(BG; πqX)⇒ πp+q(XhG)

and
E2
p,q = H−p(BG; πqX)⇒ πp+q(X

hG)

which can be obtained by filtering EG.
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C.2.1 The norm map for finite groups

Except for an occasional S1-homotopy fixed point, we will mostly concern ourselves with
finite groups. In these cases the theory simplifies considerably, so although some of the
considerations to follow have more general analogs (see e.g., [71] or [44]) we shall restrict
our statements to this context. We have to define the norm map XhG → XhG, and we use
ideas close to [134].

Consider the weak equivalence

Q0(S∧G+)→ Q0(
∏

G S) ∼=
∏

GQ
0S

(we should really have written S∗(G+, Q
0S) instead of

∏
GQ

0S since that makes some of
the manipulations below easier to guess, but we chose to stay with the less abstract notion
for now). Regard this as a G × G map under the multiplication (a, b)g = bga−1, and we
have an equivalence

S∗(E(G×G)+, Q
0(S∧G+))G×G

∼
−−−→ S∗(E(G×G)+,

∏
GQ

0(S)G×G

We have a preferred point in the latter space, namely the one defined by the diagonal

∆ ∈ (
∏

G

S0)G×G ⊆
∏

G

Q0S)G×G ⊆ S∗(E(G×G)+,
∏

G

Q0S)G×G.

Note that the homotopy class of ∆ represents the “norm” of the finite group G in the usual
sense:

[∆] =
∑

g∈G

g ∈ Z[G] = π0Ω
l
∏

G

Sl.

Now, pick the point f in S∗(E(G×G)+, Q
0(S∧G+))G×G in the component of

[∆] ∈ π0S∗(E(G×G)+, Q
0(S∧G+))G×G

of your choice (we believe in the right to choose freely, the so called axiom of choice, but
now that you’ve chosen we ask you kindly to stick to your choice).

So we have a preferred G×G-map

E(G×G)+
f

−−−→ Q0(S∧G+)

such that the composite with

Q0(S∧G+)→ Q0(
∏

G

S)

is homotopic (by a homotopy we may fix once and for all) to the projection onto S0 followed
by the diagonal. Otherwise said, if f ′ : EG+ → S∗(EG+, Q

0(G+∧S)) is the adjoint of f ,
then

S0 ∼
−−−→ EG+

f ′

−−−→ S∗(EG+, Q
0(G+∧S)) −−−→ Q0(G+∧S)
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maps the nonbasepoint of S0 into the component
∑

g∈G g ∈ π0(G+∧S). Using this map,
we define

τ : X → QX

to be the composite X = S0∧X → Q(G+∧S)∧X → Q(G+∧X) → QX. On homotopy
groups it is simply the endomorphism of π∗X given by multiplication with

∑
g∈G g ∈

π0(G+∧S).
{prop:A1norm for finite groups}

Proposition C.2.1.1 Let G be a finite group and X a G-spectrum. Then there is a natural
map, called the norm map

N : XhG → XhG

such that the composite X // //XhG
N //XhG � � //QX equals τ . If X = G+∧Y with

trivial G action on Y , then the norm map is an equivalence.

Proof: For each k ∈ N let ν be the name of the composite

EG+∧X
k f ′∧1
−−→ S∗(EG+, Q

0(G+∧S))∧Xk

y

S∗(EG+, Q
0(G+∧S∧X

k))
µ
−→ S∗(EG+, Q

0(S∧Xk))
λ
−→ S∗(EG+, Q

kX)

where µ is induced by the G action of X and λ by the structure map

Q0(S∧Xk) = lim
−→n

Ωn(Sn∧Xk)→ lim
−→n

Ωn(Xn+k) = QkX.

From the G×G-structure on f , we get that ν actually factors through the orbits and fixed
points:

νG : EG+∧GX
k → S∗(EG+, Q

kX)G

Varying k, this gives the norm map.
From the commutativity of the diagram

Xk //

��

Q0(G+∧S)∧Xk // Q0(G+∧S∧X
k) // QkX

EG+∧X
k f ′∧1 //

��

S∗(EG+, Q
0(G+∧S))∧Xk //

OO

S∗(EG+, Q
0(G+∧S∧X

k)) //

OO

S∗(EG+, Q
kX)

OO

(XhG)k
N // (XhG)k

OO

where the top row is τ , the second claim follows.
The last statement may be proven as follows. If X = G+∧Y then consider the commu-

tative diagram

π∗(G+∧Y ) −−−→ π∗(G+∧Y )hG −−−→ π∗(G+∧Y )hG −−−→ π∗(G+∧Y )

∼=

y ∼=

y ∼=

y ∼=

y
⊕

G π∗Y
∇
−−−→ π∗Y π∗Y

∆
−−−→

⊕
G π∗Y
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where ∇(g 7→ yg) =
∑

g yg, and ∆(y) = {g 7→ y}. The “missing” arrow can of course be
filled in as the vertical maps are isomorphisms, but there is only one map π∗Y → π∗Y
making the bottom composite the norm, namely the identity.

{cor:A3 norm is eq for free}
Corollary C.2.1.2 Let U be a finite free G-space and Y a G-spectrum. Then the norm
maps

(U∧Y )hG → (U∧Y )hG

and
S∗(U, Y )hG → S∗(U, Y )hG

are both equivalences.

Proof: By induction on G-cells in U , reduce to the case U = Sn∧G+. Use a shear map as
in the proof C.1.2 to remove action from Sn∧Y and S∗(S

n, Y ) in the resulting expressions.
Note the stable product to sum shift in the last case. Use the proposition C.2.1.1.

We have one very important application of this corollary:

{cor:A3 norm is eq for free2}
Corollary C.2.1.3 Let U be a finite free G-space, and X any G-space. Then there is a
chain of natural equivalences

lim
−→
k

Ωk(Map∗(U, S
k∧X)hG) 'Map∗(U, lim−→

k

Ωk(Sk∧X))hG.

If U is d-dimensional and X n-connected, then

Map∗(U,X)G →Map∗(U, lim−→
k

Ωk(Sk∧X))hG

is 2n− d+ 1 connected.

Proof: Recall that Map∗(−,−) = S∗(−, sin | − |). Corollary C.2.1.2 tells us that the norm
map

lim
−→
k

Ωk(Map∗(U, S
k∧X)hG)

∼
−−−→ lim

−→
k

Ωk(lim
−→
l

ΩlMap∗(U, S
l∧Sk∧X))hG

is an equivalence, and the latter space is equivalent to Map∗(U, lim−→k ΩkSk∧X)hG by lemma
A.1.1.7.1 since U and EG+ (and G) are finite. The last statement is just a reformulation
of lemma C.1.2.2 since X → lim−→

k
Ωk(Sk∧X) is 2n + 1 connected by the Freudenthal

suspension theorem A.1.10.0.9.

C.3 Circle actions and cyclic homology

The theory for finite groups has a nice continuation to a theory for compact Lie groups.
We will only need one case: G = S1 = sin |S1|, and in an effort to be concrete, we cover
that case in some detail. For the more general theory, please consult other and better
sources.
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If X is an S1-spectrum, we can also consider the homotopy fixed points under the finite
subgroups C ⊂ S1. As Map∗(ES1

+, X) → Map+(EC+, X) is a C-equivariant homotopy
we can calculate XhC equally well as Map∗(ES1

+, X)C . Thus, if C ′ ⊆ C is a subgroup,
we can think of XhC → XhC′ most conveniently as the inclusion Map∗(ES1

+, X)C ⊆
Map∗(ES1

+, X)C
′
.

Lemma C.3.0.4 If X is an S1-spectrum and p some prime, then the natural map

XhS1

→ holim
←−r

XhCpr

is an equivalence after p-completion.

Proof: This is just a reformulation of A.1.9.8.5

{lemma:A3S1plus smash vs map from S1plus}

Lemma C.3.0.5 Let Y be a spectrum, and let the functorial (in Y ) S1-map of spectra

f ′ : S1
+∧Y

∼
−−−→ Map∗(S

1
+,S

1∧Y )

be the adjoint of the composite

S1
+∧S

1
+

+
−−−→ S1

+
pr
−−−→ S1

smashed with Y . Then f ′ is an equivalence of spectra.

Proof: The diagram

Y l −−−→ S1
+∧Y

l pr
−−−→ S1∧Y l

y
y

y'

Map∗(S
1,S1∧Y l)

pr∗

−−−→ Map∗(S
1
+,S

1∧Y l) −−−→ sin |S1∧Y l|

commutes, and both horizontal sequences are (stable) fiber sequences of spectra (when
varying l). The outer vertical maps are both stable equivalences, and the so the middle
map (which is the map in question) must also be a stable equivalence.

Corollary C.3.0.6 If Y is a spectrum, then there is a natural chain of stable equivalences
(Y ∧S1

+)hS
1
' S1∧Y .

Proof: The lemma gives us that

(S1
+∧Y )hS

1 ∼
→Map∗(S

1
+,S

1∧Y )hS
1

'Map∗(ES1
+∧S

1
+, Q(S1∧Y ))S

1

∼=Map∗(ES1
+, Q(S1∧Y )) ' Q(S1∧Y ) ' S1∧Y
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C.3.1 The norm for S1-spectra

Nothing of what follows are new ideas, but since we have stubbornly insisted on giving
explicit models for everything we do, we offer the following brief explanation of the S1-
norm. See [44] for a fuller description of a theory containing the discussion below as a
particular example.

First use the stable equivalence (and S1×S1-map) from lemma C.3.0.5 with Y = S−1:

S1
+∧S

−1 → S∗(S
1
+,S),

inducing an equivalence

S∗(E(S1 × S1)+, Q
0(S1∧S−1))S

1×S1 ∼
−−−→ S∗(E(S1 × S1)+, Q

0(S∗(S
1,S)))S

1×S1

.

The latter space has a preferred element, given by ()+ of the unbased S1×S1-map S1 → ∗,
under the map

S∗(S
1
+, S

0)S
1×S1

→ Q0S∗(S
1
+,S)S

1×S1

→ S∗(E(S1 × S1)+, Q
0(S∗(S

1,S)))S
1×S1

,

and we choose an element in S∗(E(S1 × S1)+, Q
0(S1∧S−1))S

1×S1

which is sent to this
homotopy class.

Let X be an S1-spectrum and consider the following composite of S1 × S1-maps

E(S1 × S1)+∧Xk+1
f∧1
−−−→ Q0(S1

+∧S
−1)∧Xk+1

Q0(S1
+∧S

−1∧Xk+1)
µ

−−−→ Q0(S−1∧Xk+1) −−−→ QkX
.

The adjoint of this composite

ES1
+∧Xk+1 → S∗(ES1

+, Q
kX)

factors through orbits and fixed points

(ES1
+∧Xk+1)S1 → S∗(ES1

+, Q
kX)S

1

to define the norm map S1∧XhS1 → XhS1

. The norm map is obviously functorial in the
S1-spectrum X.

C.3.2 Cyclic spaces
{Cyclic spaces}

Recall the relevant notions: Let Λ be the category with the same objects as ∆, but with
morphism sets given by

Λ([p], [q]) = ∆([p], [q])× Cp+1

with composition subject to the extra relations (where tn is the generator of Cn+1)

tnd
i = di−1tn−1 1 ≤ i ≤ n

tnd
0 = dn

tns
i = si−1tn+1 1 ≤ i ≤ n

tns
0 = snt2n+1
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A cyclic object in some category C is a functor Λo → C and a cyclic map is a natural
transformation between cyclic objects. Due to the inclusion j : ∆ ⊂ Λ, any cyclic object
X gives rise to a simplicial object j∗X.

As noted by Connes [19], this is intimately related to objects with a circle action (see
also [59], [28] and [6]). In analogy with the standard n-simplices ∆[n] = {[q] 7→ ∆([q], [n]),
we define the cyclic sets Λ[n] = Λ(−, [n]) : Λo → Ens.

Lemma C.3.2.1 ([28]) For all n, |j∗Λ[n]| is an T-space, naturally (in [n] ∈ obΛo) home-
omorphic to T× |∆[n]|.

Proof: ([28]). Consider the the “twisted product” ∆[1] ×t ∆[n] whose q-simplicies are
(q + 1)-tuples of pairs of integers

(0, i0) . . . (0, ia), (1, ia+1), . . . (1, iq)

where 0 ≤ ia+1 ≤ · · · ≤ iq ≤ i0 ≤ · · · ≤ ia ≤ n and 0 ≤ a ≤ q and the obvious face
and degeneracy maps . Note that j∗Λ[n] is the quotient of ∆[1] ×t ∆[n] by identifying
((0, i0), . . . , (0, iq)) and ((1, i0), . . . , (1, iq)). Furthermore, write out......NBNB

There are lots of adjoint functors that are nice to have: if C is a category with finite
sums we get an adjoint pair

CΛo Ncy

�
j∗
C∆o

where the cyclic nerve N cy is the left adjoint given in degree q by N cyX([q]) =
∨
Cq+1

Xq

and with a twist in the simplicial structure, just as in the proof of the lemma above (in
fact, Λ[n] ∼= N cy∆[n], see e.g., [74, 7.1.5] for more details where N cy is called F ).

More concretely, we also have an adjoint pair

T− Top∗
|−|Λ
�
sinΛ

EnsΛo

∗

given by

|X|Λ =

∫ [q]∈Λo

|Λ[q]|Λ +∧Xq =
∐

[q]∈Λo

|Λ[q]|Λ +∧Xq/ ∼

where X is a cyclic set and |Λ[q]|Λ is |j∗Λ[q]| ∼= T× |∆[n]| considered as a T-space, and

sinΛ Z = {[q] 7→ T− Top(|Λ[q]|Λ, Z)}

for Z a T-space. Note that since |Λ[q]|Λ ∼= T× |∆[n]| we have a natural isomorphism

j∗ sinΛ Z ∼= sin(UZ)

where U denotes the forgetful functor from T-spaces to (topological pointed) spaces (right
adjoint to T+∧−). Furthermore, by formal nonsense, if X is a cyclic set and Y is a space
(pointed simplicial set!) then we have natural homeomorphisms

U |X|Λ ∼= |j
∗X| and |N cyY |Λ ∼= T+∧|Y |
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where U denotes the forgetful functor from T-spaces to (topological pointed) spaces (right
adjoint to T+∧−). Occasionally it is more convenient to consider the adjoint pair

T− Top∗
|−|Λ
�
sinΛ

S∗
Λo

given by

|X|Λ =

∫ [q]∈Λo

|Λ[q]|Λ +∧|Xq| =
∐

[q]∈Λo,[p]∈∆o

|Λ[q]|Λ +∧|∆[p]|+∧Xq/ ∼

where X is a cyclic space, and

sinΛ Z = {[q], [p] 7→ T− Top(|Λ[q]|Λ × |∆[p]|, Z)}

for Z a T-space. We record the relations in this case in the

Lemma C.3.2.2 There are natural isomorphisms

j∗ sinΛ Z ∼= sin(UZ), U |X|Λ ∼= |j
∗X| and |N cyY |Λ ∼= T+∧|Y |

where X is a cyclic space, Y a simplicial space and Z a T-space.

This makes it possible to write out the T action quite explicit: Let X be a cyclic space,
then the T-action on |X| is given by

T+∧|X| ∼= |N
cyX| → |X|

where the last map is induced by the unit of adjunction N cyX → X (we have suppressed
some forgetful functors).

C.3.2.3 Connes’ B-operator and the cyclic action

Let M be a cyclic abelian group and G a simplicial abelian group. Then the free cyclic
functor takes the form N cyG = {[q] 7→ Z[Cq] ⊗ G} (with the twist as before). Analogous
to the stable equivalence T+∧X ' S1∧X ∨ X for spectra, we get a natural equivalence
N cyG ' (Z̃[S1]⊗G)⊕G, and so a weak map Z̃[S1]⊗M → Z̃[S1]⊗M)⊕M ' N cyM →M ,
which on homotopy groups takes the form π∗−1M → π∗M . This is the same map as was
described for the associated Eilenberg-MacLane specrum in lemma 3.1.1.

Connes’ defines the B-operator to be the map

Mq
N=

P
(−1)qj tj

−−−−−−−−→ Mq
(−1)qsq
−−−−→ Mq+1

(1+(−1)q t)
−−−−−−→ Mq+1.

One checks that B satisfies the relations B◦B = 0 and B◦b+b◦B = 0 where b =
∑

(−1)jdj.
This latter relation implies that B defines a complex

. . .
B
−−−→ πnM

B
−−−→ πn+1M

B
−−−→ . . . .
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