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Fast Methods for Partial Differential and Integral Equations

Problem Set 3

Due April 17, 2014

High-Frequency Magnetic Resonance Imaging Continued

Problem Statement
Continuing our example from problem set 1, recall that with certain assumptions, the governing equations
for MRI scattering can be reduced to the Helmholtz equation in non-conductive media:

∆u(r) + k2(r) · u(r) = v(r) (1)

where u(r) is the electric field strength in volts per meter, v(r) is the electric excitation, k(r) is the wave
number, and r = (x, y, z) is the vector defining the location of the observation point. Note that k(r) has the
following relationship with the other constants of electromagnetics:

k2(r) = ω2µε(r)

where ω = 2πf is the angular frequency in radians per second, µ is the magnetic permeability in henries per
meter, and ε(r) is the electric permittivity in farads per meter, as a function of the location vector r.

Integral equations are ideal for MRI, because they can readily model the radiation boundary condition
without the need to artificially simulate it using a large but finite boundary. Additionally, only the regions
of interest need to be modeled, and the remaining regions can be implicitly considered using the appropriate
Green’s function.

In following section, we will introduce the preconditioned inhomogenous Helmholtz equation, known to
be particularly efficient when solved using an integral method. The formulation is realistic, and is commonly
used in medical imaging applications. Let k0 be the constant free-space wave number with k20 = ω2µ0ε0.
Adding and subtracting this factor from k2(r) yields:

∆u(r) +
[
k2(r)− k20 + k20

]
· u(r) = v(r). (2)

Let χ(r) be the contrast function:

χ(r) = (k2(r)− k20) = ω2µ0ε0[εr(r)− 1],

then with some simple rearranging we can separate (2) into two components: one due to the homogenous
form of the Helmholtz equation, and the other due to the heterogeneity introduced by the contrast function:[

∆u(r) + k20u(r)
]

+ χ(r)u(r) = v(r). (3)

Let the Green’s function G(r− r′) be the solution to the homogenous Helmholtz equation

∆G(r) + k20G(r) = δ(r− r′),
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Figure 1: A plot of the εr = ε/ε0 provided, generated using the MATLAB code provided. (left) Re{εr};
(right) Im{εr}.

with the Sommerfeld (outgoing) radiation boundary condition. In three dimensions, it has the form

G(r− r′) =
eik0‖r−r′‖

4π‖r− r′‖
.

A convolution with G inverts the homogenous component back to u(r):
ˆ [

∆u(r′) + k20u(r′)
]
G(r− r′) dr′ = u(r).

A volume integral equation is thus derived by taking the convolution of (3) with G:

u(r) +

ˆ
χ(r′)u(r′)G(r− r′) dr′ =

ˆ
v(r′)G(r− r′) dr′. (4)

Question 1 - An Integral Equation formulation
In this question, we will discretize (4) using a Galerkin formulation to form the following system:

Ax = b (5)

where x ∈ RN×1 is the vector of unknowns, b ∈ RN×1 is the vector of excitations, and A ∈ RN×N is the
dense coupling coefficient matrix for (4). To model the head, please reuse the MRI data for εr(r) = ε(r)/ε0
in the file MRI_DATA.mat. MATLAB code used to generate the reference x and y vectors and the plots shown
in Figure 1 are provided below for your reference.

load(’MRI_DATA’);
x = linspace(0,1,257); y = linspace(0,1,257);
subplot(121); imagesc(x,y,real(e_r)); axis image;
subplot(122); imagesc(x,y,imag(e_r)); axis image;

Consider the grid created by importing MRI_DATA.mat, which contains N = 2562 flat, square and
constant-value “pixels”, with each side having a length h = 1/256 meters. Each pixel can be used as the
basis and testing functions in a Galerkin discretization. Let ψj(r) denote the j-th basis function evaluated
at r; both u(r) and χ(r) can be represented as as a linear combination of the N basis functions:

u(r) =

N∑
j=1

ujψj(r), χ(r) =

N∑
j=1

χjψj(r).
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This expression for u substitutes into (4) to yield:

ujψj(r) + ujχj

ˆ
G(r− r′)ψj(r

′) dr′ =

ˆ
v(r′)G(r− r′) dr′.

Clearly, the solution function u(r) appears in the matrix equation (5) as the vector of unknowns x =[
u1 u2 · · · uN

]T
.

1. Let σi(r) denote the i-th testing function evaluated at r. Under a Galerkin discretization scheme, the
testing functions are the same as the basis functions, i.e., σi(r) ≡ ψi(r).

(a) Write down an integral that can be used to evaluate Aij , the element in the i-th row and j-th
column of the coefficient matrix A. (2 pts)

(b) What does Aij evaluate to in regions where χj = 0? (1 pt)

2. Let p(r) denote the excitation on the right-hand side of (4):

p(r) =

ˆ
v(r′)G(r− r′) dr′.

Let us set v(r) to an impulse located at x = 0.6 m and y = 0.7 m, as previously done in Problem Set
1.

(a) What is the analytical form of p(r)? Write down an integral that can be used to evaluate bi, the
element in the i-th row of the excitation matrix. (2 pts)

It is worth appreciating the ease with which integral equations can handle impulses and singularities.
Notice that the location where p(r) becomes singular is outside of our region of interest (i.e. the head).

3. We have provided two functions, DEMCEM_ST1 and nwspgr2. The first function calculates the following
integral:

DEMCEM_ST(k;h) =

ˆ h

0

ˆ h

0

ˆ h

0

ˆ h

0

G(k;
√

(x− x′)2 + (y − y′)2) dx′ dy′ dxdy

The second function generates multidimensional quadrature points via the sparse grid method. Some
demo code is shown below:

k0 = 2*pi*f/299792458; % wavenumber k0 = omega / c
st = DEMCEM_ST(k0,h); % h is the size of the discretization

% Quadrature for some 4-dimensional function "func"
[quad_nodes,quad_weights] = nwspgr(’KPU’, 4, 3); % 4-dimensional quad of order 3.
quad_ans = quad_weights’*func(quad_nodes(:,1),quad_nodes(:,2),...

quad_nodes(:,3),quad_nodes(:,4));

(a) Describe which matrix elements of A can be computed via DEMCEM_ST (1 pts)
(b) Using the coefficients generated by DEMCEM_ST and nwspgr, produce code that will compute any

element Aij in the coefficient matrix A for given i and j. Measure the time it takes to fill a single
column of the coefficient matrix A. Notice that A has a translation-invariant structure; estimate
the time it would take the fill the entire matrix A in case this structure goes unnoticed. (3 pts)

(c) Describe how the formation of the A matrix can be speeded up by using a low-rank approximation
(no need to code it up) (1 pt)

1Athanasios G. Polimeridis, Direct Evaluation Method in Computational ElectroMagnetics (DEMCEM),
http://web.mit.edu/thanos_p/www/DEMCEM.html.

2The function nwspgr implements sparse grid quadrature, and was authored by Florian Heiss, Viktor Winschel at
http://sparse-grids.de/. The sparse grid quadrature scheme makes it possible to perform numerical integration simultane-
ously over many dimensions, using a much lower number of quadrature nodes than required by integrating separately over each
dimension.
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Question 2 - A Fast Integral Equation Solver
Without leveraging the translation-invariant structure, forming the coefficient matrix along requires the
evaluation of N2 4-dimensional integrals using quadrature. Then, to invert the matrix directly with Gaussian
quadrature is of arithmetic complexity O(N3).

1. Fortunately, the coupling matrix A has a block-Toeplitz structure that can be exploited to rapidly
solve (4) for a given v(r) with O(N logN) complexity.

(a) Describe the steps required to implement the (non-cyclic) convolution implicit in A using the
FFT. Include the details of each operation in your description. (2 pts)

(b) Describe how the multiplier values in the cyclic convolution operation are computed, using the
Aij function implemented in Question 1.3b. (2 pts)

(c) Implement a fast matrix-vector product function that will quickly evaluate the product Ax for
a given x. Verify that your function is indeed a convolution, by applying it to a few columns of
the identity matrix, and demonstrating that the result is translation-invariant to within machine
precision. (2 pts)

2. Embed the forward matrix-vector product function from above into GMRES to allow us to quickly
solve the integral equation without explicitly forming the dense coupling matrix.

(a) Solve the scattering problem using GMRES for f = 21.3 MHz and f = 298.3 MHz, corresponding
to the older 0.5 T permanent magnet MRI and the modern 7 T superconductor magnet MRI
respectively. Produce iteration-residual plots at both frequencies, and the scattered image using
the code below. (6 pts)

sol = gmres(A,b,[],[],maxit); % solve matrix equation.
sol(real(e_r) <2)=0; % crop solution to the head.
new_x = linspace(0.35,0.65,100); new_y = linspace(0.4,0.8,100);
[gx,gy]=meshgrid(new_x,new_y); sol = interp2(x,y,sol,gx,gy,’cubic’);
figure; imagesc(new_x,new_y,abs(sol)); axis image;

(b) Why do the scattering images from this Problem Set differ to those obtained using finite differ-
ences? (1 pt)

(c) Why does this formulation require a relatively small number of GMRES iterations? (1 pt)
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