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Chapter 1

Model problems

1.1 The Laplace, Poisson, and Helmholtz equa-

tions

1.2 Volume integral equations

1.3 Boundary integral equations

The idea of boundary integral equations is to reduce a PDE in some domain
to an integral eqation on the surface of the domain, by means of the free-space
Green’s function. Let us first consider the Laplace equation in d dimensions
(x = (x1, . . . , xd)). Let Ω be a bounded domain in Rd. Four problems are of
interest:

• Interior problems.
∆u(x) = 0, x ∈ Ω,

with either Dirichlet boundary conditions (u = f on ∂Ω) or Neumann
boundary conditions (∂u/∂n = g on ∂Ω).

• Exterior problems.
∆u(x) = 0, x ∈ Ωc,

with either Dirichlet boundary conditions (u = f on ∂Ω) or Neumann
boundary conditions (∂u/∂n = g on ∂Ω), and a decay conditions at
infinity, namely

|u(x)| = O(|x|2−d).
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6 CHAPTER 1. MODEL PROBLEMS

The interior Neumann problem is only solvable when g obeys the zero-
mean admissibility condition (the topic of an exercise in section 1.4)∫

∂Ω

g(x)dSx = 0.

Let us focus on the special case of the exterior Dirichlet problem. If Ω is a
sphere of radius R in R3, and f = 1, then a multiple of the Green’s function
provides the solution everywhere outside Ω:

u(x) = q
1

4π|x|
.

Matching with u(x) = 1 when |x| = 1 yields q = 4πR. The field u(x) solves
the Laplace equation by construction, since the Green’s function is evaluated
away from its singularity (here, the origin.) More generally, we can also
build solutions to the exterior Laplace problem as a superposition of charges
qj located at points yj inside Ω, as

u(x) =
∑
j

G(x,yj)qj.

With enough judiciously chosen points yj, the boundary condition u(x) =
g(x) on ∂Ω can often be matched to good accuracy. The fit of the qj can be
done by solving u(xi) =

∑
j G(xi,yj)qj for an adequate collection of xi on

∂Ω. Conversely, if the solution is sought inside Ω, then the charges can be
located at yj outside Ω.

This type of representation is called a desingularized method, because
the charges do not lie on the surface ∂Ω. Very little is known about its
convergence properties.

A more robust and well-understood way to realize an exterior solution of
the Laplace equation is to write it in terms of a monopole density φ on the
surface ∂Ω:

u(x) =

∫
G(x,y)φ(y)dSy, x ∈ Ωc, (1.1)

called a single-layer potential, and then match the Dirichlet boundary con-
dition by taking the limit of x approaching ∂Ω. The density φ(y) can be
solved from

f(x) =

∫
G(x,y)φ(y)dSy, x ∈ ∂Ω. (1.2)
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This latter equation is known as a first-kind Fredholm integral equation.
Once φ is known, (1.1) can be used to predict the potential everywhere in
the exterior of Ω.

Notice that G(x,y) = log(|x − y|) is integrable regardless of the dimen-
sion. The kernel G(x,y) = 1/|x−y| in 3D is also integrable when integrated
on a smooth 2D surface passing through the point y, since in local polar
coordinates the Jacobian factor r cancels the 1/r from the integrand. As
long as φ itself is bounded, there is no problem in defining the single-layer
potential as a Lebesgue integral. The same is true for the high-frequency
counterparts of the Poisson kernels. All these kernels belong in the class of
weakly singular kernels.

Definition 1. A kernel G(x,y) is called weakly singular in dimension n (the
dimension of the surface over which the integral is taken, not the ambient
space) if it can be written in the form

G(x,y) = A(x,y)|x− y|−α,

for some 0 ≤ α < n, and A bounded.

The fact that G is weakly singular in many situations of interest has two
important consequences:

• First, when the density φ is bounded, it can be shown that u(x) defined
by (1.1) is continuous for all x ∈ Ω. This fact is needed to justify the
limit x→ ∂Ω to obtain the boundary integral equation (1.2).

• Second, the operator TG mapping φ to f = TGφ in (1.2) is bounded on
all Lp spaces for 1 ≤ p ≤ ∞, and is moreover compact (i.e., it is the
norm limit of finite rank operators).

Compactness, in particular, imposes a strong condition on the spectrum
of TG. The eigenvalues must cluster at the origin, and nowhere else. This
behavior is problematic since it gives rise to ill-conditioning of discretizations
of TG, hence ill-posedness of the problem of solving for φ from f . This ill-
conditioning is a generic, unfortunate feature of first-kind boundary integral
equations.

An interesting alternative is to write the potential in Ωc from a dipole
representation on ∂Ω, as

u(x) =

∫
∂G

∂ny

(x,y)ψ(y)dSy, x ∈ Ωc, (1.3)
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called a double-layer potential. The function ψ(x) can now be thought of
as a dipole density, since ∂G

∂ny
is the potential resulting from a normalized

difference of infinitesimally close point charges. Again, we wish to match the
Dirichlet data f(x) by letting x → ∂Ω from the exterior, but this time the
limit is trickier. Because of the extra ∂/∂ny derivative, the kernel ∂G

∂ny
(x,y)

is singular rather than weakly singular, and the double layer (1.3) is not
continuous as x crosses the boundary ∂Ω (though it is everywhere else.)

For instance, in two and three space dimensions (hence n = 1, 2 for line
and surface integrals respectively), we compute

G(x,y) = log(|x− y|) ⇒ ∂G

∂ny

= −(x− y) · ny

|x− y|2
,

and

G(x,y) =
1

|x− y|
⇒ ∂G

∂ny

= −(x− y) · ny

|x− y|3
.

In order to precisely describe the discontinuity of (1.3) in x, let

K(x,y) =
∂G

∂ny

(x,y), x,y ∈ ∂Ω.

Note that we reserve the notation K(x,y) only for x ∈ ∂Ω. Treating the
case x ∈ ∂Ω on its own is important, because gains extra regularity in that
case. Consider the numerator (x− y) · ny in either expression above: when
x ∈ ∂Ω, we have orthogonality of the two vectors in the limit x→ y, yielding

|(x− y) · ny| ≤ c|x− y|2,

where the constant c depends on curvature. This implies that K(x,y) for x ∈
∂Ω is less singular by a whole power of |x−y| than ∂G

∂ny
(x,y) would otherwise

be outside of ∂Ω. From the expressions above, we now see that K(x,y) is
bounded in two dimensions, and weakly singular in three dimensions. As a
consequence, the operator TK defined by

(TKψ)(x) =

∫
K(x,y)ψ(y)dSy, x ∈ ∂Ω, (1.4)

is compact like TG was.
The jump conditions for the double-layer potential (1.3) can now be for-

mulated. For x ∈ ∂Ω, let u−(x) be the limit of u(x) for x approaching ∂Ω
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form the inside, and let u+(x) be the limit of u(x) for x approaching ∂Ω form
the outside. It is possible to show that

u−(x) =
1

2
ψ(x) + (TKψ)(x),

and

u+(x) = −1

2
ψ(x) + (TKψ)(x).

The total jump across the interface is u+(x)− u−(x) = ψ(x).
The boundary match is now clear for the double-layer potential in the

Dirichlet case. The boundary integral is either f(x) = 1
2
ψ(x) + (TKψ)(x) in

the interior case, and f(x) = −1
2
ψ(x) + (TKψ)(x) in the exterior case. Both

equations are called second-kind Fredholm integral equation.
Since TK is compact, neither −I/2 + TK nor I/2 + TK can be (because

the identity isn’t compact). The respective accumulations points for the
eigenvalues are at −1/2 and 1/2. This situation is much more favorable
from a numerical point of view: second-kind integrals are in general well
conditioned, and Krylov subspace methods need relatively few iterations to
converge. The number of eigenvalues close to zero stays small, and the con-
dition number does not grow as the discretization gets refined. For the two
Dirichlet problems, the second kind formulation is therefore much preferred.

Both the single-layer potential and the double-layer potential formula-
tions are available for the Neumann problems as well. Matching the normal
derivative is trickier. For all x /∈ ∂Ω, we have

∂u

∂nx

(x) =

∫
∂G

∂nx

(x,y)ψ(y)dSy. (1.5)

The kernel ∂G
∂nx

(x,y) is the adjoint of the double layer potential’s ∂G
∂ny

(x,y).

For x ∈ ∂Ω, equation (1.5) becomes the application of the adjoint of TK ,
namely

(T ∗Kψ)(x) =

∫
K(y, x)ψ(y)dSy, x ∈ ∂Ω.

The (1.5) is discontinous as x crosses ∂Ω, and inherits its jump conditions
from those of (1.3). Notice that the signs are reversed:

∂u

∂n−
(x) = −1

2
ψ(x) + (T ∗Kψ)(x),
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and
∂u

∂n+

(x) =
1

2
ψ(x) + (T ∗Kψ)(x).

The single-layer potential therefore gives rise to a favorable second-kind in-
tegral equation in the Neumann case – it is the method of choice. In the
Neumann case the double-layer potential gives rise to an unwieldy hypersin-
gular kernel that we will not deal with in these notes1.

There exist three prevalent discretization methods for boundary integral
equations of the form u(x) =

∫
K(x,y)φ(y)dSy.

1. Nyström methods. Direct, though perhaps sophisticated quadrature of
the kernel, and pointwise evaluation as

u(xi) '
∑
j 6=i

K(xi,yj)φ(yj)ωj,

for some weights ωj. Then solve for φ(yj).

2. Collocation methods. Expand φ(y) =
∑

j φjvj(y) in some basis set
vj(y), and evaluate pointwise to get

u(xi) '
∑
j

φj

∫
K(xi,y)vj(y)dSy.

Then solve for φj.

3. Galerkin methods. Pick a basis set vj(x), expand φ(y) =
∑

j φjvj(y),
u(x) =

∑
j ujvj(x), and test against vi(x) to get

∑
j

ui〈vi, vj〉 =
∑
j

φj〈vi, TKvj〉.

Then solve for φj.

1Hypersingular kernels grow faster than 1/|x|n in n dimensions, but are well-defined in
the sense of distributions thanks to cancellation conditions. They are sometimes handled
numerically by the so-called Maue identities.
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1.4 Exercises

1. Show that the right-hand side g for the interior Neumann Laplace equa-
tion must obey ∫

∂Ω

g(x)dSx = 0.

[Hint: use a Green’s identity.]
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Chapter 2

Fourier-based methods

2.1 PDE and discrete sine/cosine transforms

(...)

Throughout these notes we use the convention

Fjk = e−2πijk/N , (F−1)jk =
1

N
e2πijk/N ,

with 0 ≤ j, k ≤ N − 1. Notice that F−1 = 1
N
F ∗.

2.2 Integral equations, convolutions

We consider the problem of computing potentials from charges. After dis-
cretization, we have

uj =
∑

Gjkqk,

where G is a Green’s function such as 1
2π

log(|x− y|) in 2D, or 1
4π|x−y| in 3D,

or even a Helmholtz Green’s function. The numerical values Gjk either follow
from a Galerkin formulation (finite elements), or a quadrature of the integral
(Nyström). The simplest Galerkin discretization of G consists in clustering
charges inside panels.

Direct summation takes O(N2) operations. In this section we present
O(N logN) FFT-based algorithms for the summation u = Gq.

13
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• Periodic ring of charges. By translation-invariance, periodicity, and
symmetry, we get

u0

u1
...

uN−1

 =


g0 g1 . . . gN−1

g1 g0 . . . gN−2
...

...
. . .

...
gN−1 gN−2 . . . g0




q0

q1
...

qN−1

 (2.1)

with gj = gN−j. In other words, Gjk = gj−k. The resulting matrix is
both Toeplitz (constant along diagonals) and circulant (generated by
cyclic shifts of the first column). It is the circulation property which
enables a fast Fourier-based algorithm. The expression of u can also
be written as a cyclic convolution:

uj = (g ? q)j =
N−1∑
k=0

g(j−k) modN qk,

where mod is the remainder of the integer division by N .

The discrete Fourier transform diagonalizes cyclic convolutions: it is a
good exercise to show that

(F (g ? q))k = (Fg)k(Fq)k,

or, in matrix form,

g ? q = F−1ΛFq, Λ = diag(F (g)).

The fast algorithm is clear: 1) Fourier-transform q, 2) multiply compo-
nentwise by the Fourier transform of g, and 3) inverse Fourier-transform
the result. Notice that we also get fast inversion, since q = F−1Λ−1Fu.

• Straight rod of charges. The formulation is the same as previously,
namely (2.1) or Gjk = gj−k, but without the circulant property gN−j =
gj. We are now in presence of a Toeplitz matrix that realizes an “ordi-
nary” convolution, without the mod operation:

uj =
N−1∑
k=0

gj−kqk,
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with 0 ≤ j ≤ N − 1, hence −(N − 1) ≤ j − k ≤ N − 1, and the
convention that g−j = gj. The key to a fast algorithm is to view the
result of this convolution as a piece of an almost-twice-bigger cyclic
convolution via



u0
u1
...

uN−1

×
...
×


=



g0 g1 . . . gN−1 gN−2 gN−3 . . . g1
g1 g0 . . . gN−2 gN−1 gN−2 . . . g2
...

...
. . .

...
...

...
. . .

...
gN−1 gN−2 . . . g0 g1 g2 . . . gN−2

gN−2 gN−1 . . . g1 g0 g1 . . . gN−3

gN−3 gN−2 . . . g2 g1 g0 . . . gN−4

..

.
...

. . .
...

...
...

. . .
...

g1 g2 . . . gN−2 gN−3 gN−4 . . . g0





q0
q1
...

qN−1

0
...
0


(2.2)

Note that q is zeropadded, while the G matrix is grown from a size N
by N to a size 2N − 2 by 2N − 2. We can understand the extended
matrix as generated by cyclic shifts of its first column g̃, which is in
turn obtained by mirror extension of the first column g of the original
G matrix. Note that the components N through 2N − 3 of the output
are unneeded.

The fast algorithm is: 1) zeropad q with N − 2 zeros to get q̃ of length
2N − 2; 2) mirror-extend g (without repetition of the endpoints) to
get g̃ of length 2N − 2; 3) perform the cyclic convolution of q̃ with g̃,
namely,

uj =
2N−3∑
k=0

g̃(j−k) mod (2N−2) q̃k,

via FFT as we saw before; and 4) restrict the result to the first N
components 0 ≤ j ≤ N − 1. This strategy only allow to multiply fast
with G, not to invert it (because we do not have access to the unknown
components labeled × above.)

• Square plate of charges. We are still in presence of translation-invariant
interactions in two spatial dimensions, namely

Gj1,j2,k1,k2 = gj1−k1,j2−k2 ,

which makes G into a “block Toeplitz matrix with Toeplitz blocks”
when ordering its elements in lexicographical (comic book) order. To
handle the negative indices, we still impose symmetry with g−j1,j2 =
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gj1,−j2 = g−j1,−j2 = gj1,j2 . We now have a convolution of arrays rather
than a convolution of vectors:

uj1,j2 =
N−1∑

k1,k2=0

gj1−k1,j2−k2qk1,k2 ,

with 0 ≤ j1, j2 ≤ N − 1, hence −(N − 1) ≤ j1− k1, j2− k2 ≤ N − 1. It
can be turned into a cyclic convolution with a similar trick as before:
1) zeropad q into a 2N − 2 by 2N − 2 array q̃, 2) mirror-extend g into
a 2N − 2 by 2N − 2 array g̃ via

g̃ =



g0,0 g0,1 . . . g0,N−1 g0,N−2 g0,N−3 . . . g0,1
g1,0 g1,1 . . . g1,N−1 g1,N−2 g1,N−3 . . . g1,1

...
...

. . .
...

...
...

. . .
...

gN−1,0 gN−1,1 . . . gN−1,N−1 gN−1,N−2 gN−1,N−3 . . . gN−1,1

gN−2,0 gN−2,1 . . . gN−2,N−1 gN−2,N−2 gN−2,N−3 . . . gN−2,1

gN−3,0 gN−3,1 . . . gN−3,N−1 gN−3,N−2 gN−3,N−3 . . . gN−3,1

...
...

. . .
...

...
...

. . .
...

g1,0 g1,1 . . . g1,N−1 g1,N−2 g1,N−3 . . . g1,1



then 3) do the cyclic convolution of the extended arrays, namely

uj1,j2 =
2N−3∑
k1,k2=0

g̃(j1−k1) mod (2N−2),(j2−k2) mod (2N−2) q̃k1,k2 ,

via 2D FFT, and finally 4) restrict the indices of the result as 0 ≤
j1, j2 ≤ N − 1. Note that this operation of mirror extension of the
array g into g̃ has nothing to do with the operation of creating the
circulant matrix from the Toeplitz matrix that we saw in the straight
rod case – it is not the same operation at all.

Forming the large matrix G is never needed – only g enters the compu-
tation. The resulting fast matrix-vector multiplication has complexity
O(N2 logN).
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2.3 Krylov subspace methods

2.4 Ewald summation

2.5 Nonuniform Fourier methods

2.6 Exercises

1. Show the discrete convolution theorem, namely (F (g ? q))k = (Fg)k(Fq)k,
where F is the discrete Fourier transform and ? is cyclic convolution.
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Chapter 3

Fast multipole methods

In this chapter, we consider the problem of computing integrals of the form

u(x) =

∫
G(x, y)q(y) dy,

or its discrete counterpart, the N -body interaction problem

ui =
N∑
j=1

G(xi, yj)qj, i = 1, . . . , N. (3.1)

3.1 Projection and interpolation

Consider a source box B, with NB charge qj at points yj ∈ B. Consider an
evaluation box A, disjoint and well-separated from B, with NA evaluation
points xi ∈ A. We first address the simplification of (3.1) where sources are
restricted to B, and evaluation points restricted to A:

ui =
∑
yj∈B

G(xi, yj)qj, xi ∈ A.

Direct sum evaluation costs NANB operations. In this section we explain how
to lower this count toO(NA+NB) operations with projection or interpolation,
or both. In the next section, we lift the requirement of separation of the two
boxes and return to the full problem (3.1).

Given a source box B and an evaluation box A, a projection rule is a way
to replace the NB charges qj at yj ∈ B by a smaller number of equivalent, or

19
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canonical charges qBm at points yBm, such that the potential is reproduced to
good accuracy in A:∑

yj∈B

G(x, yj)qj '
∑
m

G(x, yBm)qBm, x ∈ A. (3.2)

We also require that the dependence from qj to qBm is linear, hence we write

qBm =
∑
yj∈B

QB
m(yj)qj. (3.3)

The simplest projection rule consists in placing the total charge qB =
∑

j qj at

the center yB of the box B. Upon evaluation at theNA points xi, the resulting
approximation G(xi, y

B)qB of the potential is obtained by the two-step al-
gorithm: 1) sum the charges, in NB operations, and 2) evaluate G(xi, y

B)qB

for each xi, in O(NA) operations, for a total of O(NA + NB) operations.
More generally if there are r canonical charges, then the complexity becomes
O(r(NA +NB)).

Given a source box B and an evaluation box A, an interpolation rule is
a way to replace the NA potentials u(xi) at xi ∈ A, generated by sources in
B, by a smaller number of equivalent, or canonical potentials uAn = u(xAn ) at
points xAn , such that the potential is reproduced to good accuracy in A. We
also require that the map from uAn to u(xi) is linear, hence we write

u(xi) '
∑
n

PA
n (xi)u

A
n . (3.4)

For a single source at y ∈ B, this becomes

G(xi, y) '
∑
n

PA
n (xi)G(xAn , y), y ∈ B. (3.5)

The simplest interpolation rule consists in assigning the same potentialG(xA, y),
where xA is the center of box A, to every point x ∈ A. Upon summation over
NB charges qj, the resulting approximation

∑
j G(xA, yj)qj of the potential is

obtained by the two-step algorithm: 1) evaluate G(xA, yj)qj for each yj ∈ B,
then sum over j, in O(NB) operations, 2) assign the result to every xi ∈ A, in
NA operations, for a total of O(NA+NB) operations. More generally if there
are r canonical potentials, then the complexity becomes O(r(NA +NB)).
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Projection and interpolation are in a sense dual of one another. Any
projection rule Q can serve as an interpolation rule P with inherited accuracy
properties, and vice-versa, as we now argue.

• From interpolation to projection. Start from
∑

yj∈B G(x, yj)qj, and in-
terpolate G in the y variable rather than the x variable – which is fine
since G is symmetric1. We get∑

yj∈B

G(x, yj)qj '
∑
yj∈B

∑
m

G(x, yBm)PB
m (yj)qj

=
∑
m

G(x, yBm)

∑
yj∈B

∑
m

PB
m (yj)qj

 .

In view of (3.2), we recognize equivalent charges

qBm =
∑
yj∈B

∑
m

PB
m (yj)qj,

where P plays the role of Q.

• From projection to interpolation. Start from G(xi, y), and understand
this expression as the potential at y generated by a unit point charge
at xi. Perform a projection in the x variable – which is fine since G is
symmetric. We get

G(xi, y) '
∑
n

G(xAn , y)qAn , with qAn = QA
n (xi).

=
∑
n

QA
n (xi)G(xAn , y).

In view of (3.5), we recognize an interpolation scheme with Q in place
of P .

An inspection of equations (3.3) and (3.4) reveals that interpolation is
the transpose of projection. To see this, pick P = Q, m = n, and i = j. Then
equation (3.3) can be seen as a matrix-vector product involving the short-and-
wide matrix PA

n (xi) with row index n and column index i. On the other hand,

1An exercise at the end of the chapter concerns the proof of the symmetry of G when
it arises as a Green’s function for a symmetric elliptic problem.



22 CHAPTER 3. FAST MULTIPOLE METHODS

equation (3.4) can be seen as a matrix-vector product involving the tall-and-
thin matrix PA

n (xi) with row index i and column index n. Hence the matrices
that take part in (3.3) vs. (3.4) are effectively transposes of one another. In
this context, Brandt once referred to projection as “anterpolation”, though
the name doesn’t seem to have caught on [?].

It is important to point out that the matrices P and Q are constrained
by the properties of interpolation and projection. Because uAn = u(xAn ) by
definition of interpolation, we can place an evaluation point xi at each xAn′
and obtain u(xAn′) =

∑
n Pn(xAn′)u(xAn ). When enough degrees of freedom

specify the potential2, this relation is only possible when

Pn(xAn′) = δn,n′ .

Projection matrices should obey an analogous relationship. It makes sense to
require a single charge q at yBm′ to be projected onto a collection of canonical
charges qBm at yBm which are all zero except when m = m′, where the canonical
charge qBm = q. In view of (3.3), this is only possible when

QB
m(yBm′) = δm,m′ .

As a corollary, if Q maps charges at yj to canonical charges at yBm, then
performing the same projection a second time no longer affects the charge
distribution: that’s the “ Q2 = Q ” criterion according to which a linear
operator is called a projection in linear algebra.

Here are the most important examples of projection / interpolation.

3.1.1 Polynomial interpolation

A familiar example is to let
∑

n P
A
n (x)f(xAn ) be a multivariable polynomial

interpolant of f(x) through the points (xAn , f(xAn )). We call PA
n (x) the ele-

mentary Lagrange polynomials. In the sequel we illustrate constructions in
2D, though the extension to 3D is straightforward.

The simplest example was mentioned earlier: order-zero interpolation
with the constant equal to the function evaluation at the center of the box,
x = xA. In that case PA

n (x) ranges over a single index n and takes on the
value 1 regardless of x. The next simplest example is bilinear interpolation
from the knowledge of the function at the four corners of the box A, say

2It is enough that G(xAn , yj), as a matrix with indices n and j, is full row rank.



3.1. PROJECTION AND INTERPOLATION 23

(0, 0), (0, 1), (1, 0), (1, 1). The idea is to interpolate linearly in the first di-
mension, then again in the other dimension. The result is not linear but
quadratic in x = (x1, x2), and can be written as

f(x) 'f(0, 0) (1− x2)(1− x1) + f(0, 1) (1− x2)x1

+f(1, 0)x2(1− x1) + f(1, 1)x2x1.

Higher-order polynomial interpolation is advantageously done on a tensor
Chebyshev grid. (Polynomial interpolation on Cartesian grids suffers from
the Runge phenomenon.)

The transpose of polynomial interpolation gives simple, explicit projec-
tion rules of the form qAn =

∑
j P

A
n (xj)qj. Order-zero projection was already

mentioned earlier, and it is now clear that it is simply the rule that arises
by taking the same PA

n (x) = 1 as order-zero interpolation, hence results in
summing the charges. The bilinear projection rule that corresponds to bilin-
ear interpolation is also clear: there are four canonical charges placed at the
four corners of the square and given by

q(0,0) =
∑
j

(1− x2,j)(1− x1,j)qj, q(0,1) =
∑
j

(1− x2,j)x1,jqj,

q(1,0) =
∑
j

x2,j(1− x1,j)qj, q(1,1) =
∑
j

x2,jx1,jqj.

3.1.2 Collocation

Collocation is the projection rule where the canonical charges are determined
by matching, at locations x̌i called check points, the potential generated by
arbitrary charges qj at yj. These points x̌i are chosen so that∑

m

G(x̌i, y
B
m)qBm '

∑
yj∈B

G(x̌i, yj)qj

is not only a well-posed system for qBm, but also results in an approximation∑
mG(x, yBm)qBm accurate for x in a large region. A good choice is to pick

x̌i on a “check curve” (or check surface) enclosing B, in an equispaced or
near-equispaced manner, and with a number of x̌i greater than the number
of yBm. The projection matrix is then given by

QB
m(yj) =

∑
i

[G(x̌i, y
B
m) ]+m,iG(x̌i, yj). (3.6)
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This strategy provably gives a good approximation of the potential in the
exterior of the check surface, because of the following two facts: 1) the po-
tential is smooth, hence well interpolated everywhere on the check surface
from the x̌i; and 2) because G typically obeys an elliptic equation with decay
conditions at infinity, the error on the potential obeys a maximum principle,
hence must decay in the exterior region.

Conversely, we may define interpolation via collocation as follows. The
interpolation function PA

n (xi) is determined by requiring that the potential
generated by unit charges at check points y̌j is reproduced by interpolation
from samples at xAn . This leads to

G(xi, y̌j) =
∑
n

PA
n (xi)G(xAn , y̌j),

For each xi the above should be a well-posed system for PA
n (xi) (indexed

by n,) and the resulting interpolation rule
∑

n P
A
n (xi)G(xAn , y) should be

accurate for y in a large region. A good choice is to pick y̌j on a check curve
(or check surface) enclosing A, in an equispaced or near-equispaced manner,
and with a number of y̌j greater than the number of xAn . The interpolation
matrix is then given by

PA
n (xi) =

∑
j

[G(xAn , y̌j) ]+j,nG(xi, y̌j). (3.7)

The accuracy is inherited from that of the corresponding projection rule (3.6),
as we have seen, hence will be good as soon as y is located outside the check
surface. By reciprocity of G, we see that (3.7) is the same as (3.6) under the
relabeling B → A, yj → xi, y̌j → x̌i, and yBm → xAn .

3.2 Multipole expansions

Linear algebra invites us to think of G(x, y) as a (possibly continuous) matrix
with row index x and column index y. Recall that x ∈ A and y ∈ B,
so we are in effect considering a block of G. Expressions like (3.5), or its
counterpart in the y variable, are ways of separating this block of G into
low-rank factors. Multipole expansions offer an alternative construction of
these factors, though not immediately in projection/interpolation form. We
return to the topic of low-rank expansions in section 4.1.
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In this section, we consider x, y ∈ R2, and

G(x, y) = log(|x− y|).

As previsouly, consider x ∈ A and y ∈ B, two well-separated boxes. Let r
be the radius of (the circumscribed circle of) B, and d > 2r be the distance
from the center of B to the box A. For convenience, but without loss of
generality, the box B is centered at the origin.

Theorem 1. Consider A and B as described above. For all p > 0, there
exist functions fk(x), gk(y) for 1 ≤ k ≤ 2p+ 1, and a constant Cp > 0, such
that

max
(x,y)∈A×B

| log(|x− y|)−
2p+1∑
k=1

fk(x)gk(y)| ≤ Cp

(r
d

)p
.

The construction of fk and gk is made explicit as part of the proof – which
the reader will need to consult to follow the rest of this section.

Proof. Pass to complex variables zx = x1 + ix2 = ρxe
iθx and zy = y1 + iy2 =

ρye
iθy . The reader can check that

log(|x− y|) = Re log(zx − zy),

so the kernel is harmonic in zx, as well as in zy, as long as zx 6= zy. Perform
a complex-variable Taylor expansion in zy, centered at 0, and valid for |zx| >
|zy|:

log(zx − zy) = log(zx)−
∞∑
k=1

1

k

(
zy
zx

)k
(3.8)

Upon taking the real part, a short calculation shows that

Re

(
zy
zx

)k
=

cos(kθx)

|x|k
cos(kθy)|y|k +

sin(kθx)

|x|k
sin(kθy)|y|k, (3.9)

hence each term in the sum has rank 2. Truncate the series at k = p, and
use |zy| = |y| ≤ r, |zx| = |x| ≥ d to conclude

| log(zx − zy)− log(zx) +

p∑
k=1

1

k

(
zy
zx

)k
| ≤ |

∞∑
k=p+1

1

k

(
zy
zx

)k
| ≤ 1

p+ 1

(r/d)p

1− r/d
.

The same bound holds for the real part of log. Since d > 2r, the denominator
of the right-hand side is absorbed in the constant. The resulting approxima-
tion has 2p+ 1 separated terms.
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Equation (3.8) can either be seen as a Taylor-harmonic expansion in the
zy = y1 + iy2 variable (because the resulting polynomial is harmonic, as a
function of the two variables y1 and y2), or a so-called multipole expansion
in the zx = x1 + ix2 variable. Indeed, we see from equation (3.9) that the
term involving 1/zx decomposes into a sum of two functions of x = (x1, x2):

cos(θx)

|x|
=

x1

x2
1 + x2

2

=
∂

∂x1

log |x|,

and
sin(θx)

|x|
=

x2

x2
1 + x2

2

=
∂

∂x2

log |x|.

These are the expressions of two dipoles, oriented respectively horizontally
and vertically. All the other orientations are obtained from their linear com-
binations. At higher order, there are again two multipoles cos(kθx)

|x|k and sin(kθx)
|x|k ,

corresponding to the non-mixed higher partials of log.
The multipole expansion can be used to compute interactions from charges

in box B to potentials in box A in an efficient way. Use (3.8) to write the
potential u(xi) =

∑
j log(|xi − yj|)qj as

u(xi) = Re log(zxi)
∑
j

qj − Re
∑
k

1

zkxi

(∑
j

1

k
zkyjqj

)
. (3.10)

We call µ0 =
∑

j qj and µk =
∑

j
1
k
zkyjqj the moments associated with the

charges qj at yj. The fast algorithm for computing u(xi) is as follows: 1)
compute r moments µk in complexity O(rNB), and 2) assign the moments to
multipole components log(zxi) and 1/zkxi evaluated at the xi, in complexity
O(rNA). Finish by taking a real part. (The corresponding expressions that
involve only real multipoles instead of their convenient complex counterpart
can be obtained by using (3.9).)

Multipole expansions not only provide an explicit construction of a low-
rank decomposition on well-separated boxes, but they themselves fit in the
previous section’s framework of projection and interpolation. In order to
justify this, continue with the complex formalism and let G(x, y) = log(zx −
zy).

• Let us first argue why equation (3.8), seen as a Taylor-harmonic series
in zy, yields a projection rule. The multipole 1/zkx is interpreted, like
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in the proof of theorem 1, as a partial derivative of the kernel in zy, via

1

zkx
= − 1

(k − 1)!

(
∂

∂zy

)k
log(zx − zy)|zy=0, k ≥ 1.

We can approximate the partial derivative, to arbitrary accuracy, by a
finite difference formula at points yBm close to the origin, and obtain(

∂

∂zy

)k
log(zx − zy)|zy=0 '

∑
m

TmkG(x, yBm), k ≥ 1. (3.11)

Substituting in (3.10), we recognize a projection rule

u(xi) = ReG(xi, 0)
∑
j

Q0,jqj + Re
∑
m

G(xi, y
B
m)
∑
j

QB
m(yj)qj,

with projection functions

Q0,j = 1, QB
m(yj) = −

∑
k

Tmk
k!

zkyj . (3.12)

• The corresponding (transpose) interpolation rule is tied to the Taylor-
harmonic series expansion in zx rather than zy. For a single charge at
y, let the center of the evaluation box be xA, so we perform a Taylor
expansion in zx about zxA . This gives

G(xi, y) = G(xA, y) +
∑
k≥1

zkxi−xA
1

k!

(
∂

∂zx

)k
G(x, y)|x=xA . (3.13)

Unlike in the previous bullet point (but along the lines of the inter-
pretation of multipoles discussed above equation (3.10)), we are now
in presence of partials with respect to zx, not zy. Approximate the
derivative by a finite difference formula over points xAn clustered about
xA, as (

∂

∂zx

)k
log(zx − zy)|zx=z

xA
' −

∑
n

TnkG(xAn , y)

The minus sign is necessary to identify the Tnk above with the Tmk in
equation (3.11), again because the derivative is in zx rather than in zy.
Substituting in (3.13), we recognize an interpolation rule

G(xi, y) ' P0,iG(xA, y) +
∑
n

PA
n (xi)G(xAn , y),
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with interpolation functions

P0,i = 1, PA
n (xi) = −

∑ Tnk
k!
zkxi−xA .

These expressions are the same as in equation (3.12), after relabeling
P → Q, xi → yj, x

A → 0.

It should be empashized that the multipole expansion in the x variable,
defined in (3.10), can also give rise to an interpolation scheme, but that this
scheme is not dual to the projection scheme that (3.10) defines when seen
as a Taylor expansion in the y variable. Instead, a “multipole” interpolation
rule could be obtained by viewing (3.10) as a Laurent expansion in zx, and
discretize the contour integral for its coefficients with a quadrature. We leave
the details to the reader.

There exists a 3D version of the multipole expansion that uses spherical
harmonics. We also leave this topic out.

3.3 The fast multipole method

In this section we present the interpolative fast multipole method (FMM),
where the kernel is assumed to have similar smoothness properties as 1/|x−y|
or log(|x− y|). We continue to assume that G is symmetric, and we assume
two spatial dimensions for the remainder of this section.

3.3.1 Setup

Consider a dyadic tree partitioning of the domain [0, 1]2, say, into target
boxes A and sources boxes B, of sidelength 2−` with ` = 0, 1, . . . , L. This
collection of boxes comes with a quadtree structure: call Ap the parent of a
box A, and call Bc the four children of a box B. The highest level of the tree
(` = 0) is called root, while the lowest-level boxes are called leaves. The root
is usually visualized at the top. The tree may not be “perfect”, in the sense
that not all leaf boxes occur at the same level. We also allow for the situation
where the tree is cut before reaching the unique root, allowing instead for
several root boxes (a case in which we should strictly speaking no longer be
referring to the structure as a tree, though we will continue with the abuse
of vocabulary.)
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Two boxes at the same scale are said to be well-separated if they are not
adjacent to one another, i.e., if B is neither A nor any of its eight nearest
neighbors. In that case we say that the boxes are in the far-field of one
another: B ∈ far(A), or equivalently A ∈ far(B).

In general, what “sufficiently far” means is kernel-dependent, and is first
and foremost a linear-algebraic notion rather than a geometrical one: A and
B are well-separated when the restriction of G(x, y) to x ∈ A and y ∈ B has
a low numerical rank. In the Laplace of low-frequency Hemholtz case, this
is precisely the case when A is not adjacent to B (as we proved for the log
kernel in the previous section.)

Next, we define the interaction list of a box A to be the set of boxes B,
at the same scale as A, in the far-field of A, and such that Bp is not in the
far field of Ap. In other words, the interaction list is the set of boxes which
are “far but not too far”. We denote it as IL(A). In 2D, the interaction list
has 27 boxes when the far field is defined as earlier. (This number becomes
189 in 3D.) Correspondingly, we denote by NL(A) the neighbor list of A,
consisting of A and its 8 nearest neighbors at the same scale.

We will consider the potentials resulting from separated interactions. For
each source box B, we let the partial potential from B be

uB(x) =

∫
B

G(x, y)q(y)dy, x ∈ far(B). (3.14)

For each evaluation box A, we let the partial potential to A be

ufar(A)(x) =

∫
far(A)

G(x, y)q(y)dy, x ∈ A. (3.15)

Finally, we need a projection rule

G(x, y) =
∑
m

G(x, yBm)PB
m (y), x ∈ far(B), y ∈ B, (3.16)

and an interpolation rule

G(x, y) =
∑
n

PA
n (x)G(xAn , y), x ∈ A, y ∈ far(A). (3.17)

In the sequel we do not keep track of the various truncation errors.
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3.3.2 Basic architecture

The three main steps of the fast multipole method (FMM) are that 1) the
projection rule is successively applied from finer to coarser scales to create
canonical charges in sources boxes at all the levels of the tree; 2) the kernel
G is used to compute potentials, at selected locations, from these canonical
charges; and 3) the interpolation rule is successively applied from coarser to
finer scales to compute canonical potentials in evaluation boxes at all levels
of the tree.

More precisely,

• Consider canonical charges qBm at nodes yBm, expected to obey

uB(x) =
∑
m

G(x, yBm)qBm, x ∈ far(B). (3.18)

The projection rule (3.16) gives a relation between the charges in B
and the canonical charges qBm: combine (3.14), (3.16), and compare to
(3.18) to get

qBm =

∫
B

PB
m (y)q(y)dy. (3.19)

Apply this rule in the case when q(y) are canonical charges in the
children boxes:

qBm =
∑
c

∑
m′

PB
m (yBc

m′ )q
Bc

m′ . (3.20)

Because (3.18) is sometimes called a multipole expansion (even when
the projection rule is not generated by multipoles), the relationship
(3.20) is called a multipole-to multipole (M2M) operation, or M2M
translation. The first step of the FMM is the cascade of M2M transla-
tions in an upward pass of the quadtree.

• At every scale, for every box A, and every box B in the interaction
list of A, the canonical charges are converted into potentials via the
so-called multipole-to-local (M2L) conversion rule

uA,M2L
n =

∑
B∈IL(A)

∑
m

G(xAn , y
B
m)qBm. (3.21)
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• Consider canonical potentials uAn at the nodes xAn , expected to obey

uAn =

∫
far(A)

G(xAn , y)q(y)dy. (3.22)

The interpolation rule (3.17) gives a relation between the potentials in
A and the canonical potentials uAn : combine (3.15), (3.17), and compare
to (3.22) to get

ufar(A)(x) =
∑
n

PA
n (x)uAn , x ∈ A. (3.23)

Apply this rule in the case when the canonical potentials are those of
the parent box Ap:

uA,L2L
n =

∑
n′

P
Ap

n′ (xAn )u
Ap

n′ . (3.24)

Because (3.23) is sometimes called a local expansion, the relationship
(3.24) is called a local-to-local (L2L) operation, or L2L translation.

• Since
far(A) = far(Ap) ∪ IL(A),

it remains to add the M2L and L2L potentials to obtain the canonical
potentials for box A:

uAn = uA,M2L
n + uA,L2L

n .

The last step of the FMM is the cascade of L2L translations, added to
the M2L conversions, in a downward pass of the quadtree.

3.3.3 Algorithm and complexity

Let N be the maximum of the number of charges and number of evaluation
points. We build the quadtree adaptively so that the leaf boxes contain no
more than s charges and evaluation points, with s to be determined later.
Assume that the projection and interpolation rule both involve (no more
than) p canonical charges and canonical potentials per box, i.e., both m and
n run from 1 to p.

The FMM algorithm is as follows. Assume that the projection/interpolation
rules, and the interaction lists, are precomputed (they don’t depend on the
particular charge distribution.)
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1. Initialization

Bin the yj in boxes B at all scales, and the xi in boxes A at all scales.

Let L be the level of the finest leaf box.

For B leaf boxes

Source-to-multipole: qBm =
∑

yj∈B P
B
m (yj)qj.

End

For A root box(es)

uAN = 0

End

2. Upward pass

For ` = L− 1, . . . , 1

For B in tree at level `

M2M operation from Bc to B:

qBm =
∑

c

∑
m′ P

B
m (yBc

m′ )q
Bc

m′ .

End

End

3. Downward pass

For ` = 2, . . . , L

For A in tree at level `

L2L operation from Ap to A, and M2L conversion:

uAn =
∑

n′ P
Ap

n′ (xAn )u
Ap

n′ +
∑

B∈IL(A)

∑
mG(xAn , y

B
m)qBm

End

End

4. Termination

For A leaf boxes

Local-to-evaluation and diagonal interactions:

ui =
∑

n P
A
n (xi)u

A
n +

∑
B∈NL(A)

∑
yj∈B G(xi, yj)qj.

End
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Let us now analyze the complexity of the algorithm.

Claim 1. If we take s = p, the complexity of the 2D FMM is O(pN).

Proof. From our definition of s, we see that the number of leaf boxes is
O(N/s). The total number of boxes is at most twice the number of leaf
boxes, regardless of the tree, hence it is also a O(N/s). The complexity of
one M2M, or one M2L, or one L2L operation is a small p-by-p mat-vec, hence
p2 operations.

For the initialization step, there exists an efficient way of binning that
takes O(N) operations3. The source-to-multipole step involves mapping ev-
ery one of the N charge to p canonical charges, hence has complexity O(pN).

In the upward pass, every one of the O(N/s) source boxes is visited
once, with an M2M that costs p2 operations, for a total of O(p2N/s). In
the downward pass, every one of the O(N/s) evaluation boxes is visited
once, with an M2L and an L2L that both cost p2 operations, for a total of
O(p2N/s) as well. Notice that the constant in this latter O is at least 27,
the size of the interaction list.

For the termination, the local-to-evaluation step involves mapping p canon-
ical potentials to every one of the N evaluation points, hence has complexity
O(pN). The diagonal term is a sum over O(s) sources for each of the N
evaluation points, hence has complexity O(sN).

The overall operation count is O(pN + p2N/s + sN), and is minimized
provided we take s on the order of p. This shows that the complexity is
O(pN) in 2D.

Though we do not prove this here, the level of accuracy is inherited from
the truncation error of the multipole expansion. We saw in the previous
section that we can expect the error to decay geometrically, as O((r/d)p)
where r and d are the separation parameters of any two boxes in the far
field. Another way of linking accuracy to the overall complexity count is
to let ε be a bound on the error, of the form (r/d)p, and write the total
complexity as O(log(1/ε)N). This leads to a very favorable dependence of
the complexity on the desired accuracy level: by doubling the number of
operations, the number of correct digits essentially doubles as well.

3It is not trivial to show that the complexity of binning is O(N) rather than O(N logN)
regardless of the tree. We will not prove this result here.
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3.4 Exercises

1. In this question, label by xj, j = 1, 2, 3, 4, the four corners of the square
[−1, 1]2, and by yk, k = 1, 2, 3, 4, the four corners of the square [−5, 5]2.
You may take the ordering to be the top-left, top-right, bottom-left,
and bottom-right corners respectively, although any other choice is ac-
ceptable. Let φ(x) = 1

|x| .

(a) Consider a unit charge at x0, generating a potential u(x) = φ(x−
x0). We say that canonical charges qj placed at xj, j = 1, 2, 3, 4
are the projections by collocation of the unit charge at x0 if the
combination

∑4
j=1 qjφ(x−xj) matches φ(x−x0) at the four points

x = yk, k = 1, 2, 3, 4.

i. Find those four canonical charges qj, j = 1, 2, 3, 4, in the case
when x0 = (0.1, 0.2).

(b) (Interpolation via projection) We now reverse the roles of x0 and
y1. Consider a unit charge at the point y1, generating a potential
v(x) = φ(x − y1). Assume that you have at your disposal the
evaluations of this potential at each of the four points x = xj, j =
1, 2, 3, 4.

i. How can you use the knowledge of these four evaluations, and
of the four canonical charges qj of question 2.1, to perform
interpolation to find an approximation of the value of the
potential v(x) at x = x0?

ii. Find this numerical value in the case when x0 = (0.1, 0.2),
and compare it to the true value v(x0). Justify your finding.

(c) Consider again the function v(x) = φ(x−y1). We say that weights
wj placed at nodes xj, j = 1, 2, 3, 4, define an interpolation scheme
for v(x) if the combination

∑4
j=1wjv(xj) is a good approximation

of v(x) for x in a neighborhood of the xj.

i. Find those four weights wj in the case of bilinear interpolation
at x = x0 = (0.1, 0.2).

ii. Find the numerical value of the bilinear interpolant of v(x) at
x = x0, and compare it to the true value v(x0).
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(d) (Projection via interpolation) We now revert the roles of x0 and
y1 to what they were in question 2.1. Consider a unit charge at
x0 generating a potential u(x) = φ(x− x0).

i. How can you use the knowledge of the bilinear interpolation
weights wj of question 2.3, to find the projections of the unit
charge at x0 as canonical charges q̃j at each of the four points
x = xj, j = 1, 2, 3, 4?

ii. Find the numerical values of these canonical charges when
x0 = (0.1, 0.2), and check their accuracy by comparing the
true potential u(x) to its approximation ũ(x) =

∑4
j=1 q̃jφ(x−

xj), when x = y1. Argue the expected accuracy of this pro-
jection scheme.

2. Consider N source points yj drawn uniformly at random in the unit
square [0, 1]2, and N target points xi drawn uniformly at random in
some square to be specified. Consider the kernelG(x,y) = log(‖x−y‖).
Compute the ε-rank of the interactions4, with ε = 10−5, and for the
following scenarios:

(a) N = 100 and the target square is [2, 3]× [0, 1].

(b) N = 1000 and the target square is [2, 3] × [0, 1]. How does your
answer compare to that obtained in point (a), and why?

(c) N = 100 and the target square is [1.25, 1.5]× [0, 0.25]. How does
your answer compare to that obtained in point (a), and why?

(d) Again, N = 100 and the target square is [2, 3] × [0, 1], but use
the explicit 2D multipole expansion formula seen earlier in this
section. Find p such that the resulting error ‖G−UV T‖2/‖G‖2 ≤
ε. How does your answer compare to that obtained in point (a),
and why?

4I.e., the minimum rank r of a decomposition G ' UV T , so that ‖G−UV T ‖2/‖G‖2 ≤ ε.
It is obtained as the smallest number r such that σr+1/σ1 ≤ ε, where σj are the singular
values of G.
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Chapter 4

Hierarchical matrices

This chapter details the linear algebraic point of view behind partitioned
low-rank matrices, the fast multipole method, and the calculus of hierarchial
matrices.

4.1 Low-rank decompositions

In this section we discuss the linear algebraic context of the projection and
interpolation operations, and their generalizations.

Let us return to the case of x ∈ A and y ∈ B, with A and B well-
separated, so we are in effect considering an off-diagonal block of G (but still
continue to write it G ouf of convenience). The variable x is viewed as a
(possibly continuous) row index, while y is a (possibly continuous) column
index. A low-rank expansion of G is any expression where x vs. y appear in
separated factors, of the form

G(x, y) =
∑
m,n

Un(x)SnmVm(y), G = USV T

It is often useful to limit the ranges of m and n to 1 ≤ m,n ≤ p, which
results in a numerical error ε:

‖G(x, y)−
P∑

m,n=1

Un(x)SnmVm(y)‖ ≤ ε. (4.1)

The ε-rank of G is the smallest p for which (4.1) holds with the spectral
(induced `2) norm. The optimal factors U, S, and V , for which the separation
error is smallest, are given by the singular value decomposition.
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There are, however, other ways to perform low-rank decompositions that
have different redeeming features. Consider the single-charge projection re-
lation (3.2), namely

G(x, yj) '
∑
m

G(x, yBm)QB
m(yj), x ∈ A, yj ∈ B,

In the case when the yBm are taken as a subset of the original points yj, the
relation can be read as a low-rank decomposition

G ' GcQ
T ,

where Gc is a tall-and-thin column restriction of G, and Q is the matrix
generated by the projection rule.

Conversely, when xAn form a subset of the xi, the single-charge interpola-
tion condition (3.5) can be read as the low-rank decomposition

G ' PGr,

where Gr is now a short-and-wide row restriction of G, and P is the matrix
generated by the interpolation rule. Recall that (i) G is symmetic, (ii) we
may take P = Q, and (iii) the same subset of points can be used to generate
the rows of Gr and the columns of Gc, hence the projection and interpolation
decompositions are truly transposes of one another.

The low-rank decompositions generated from projection and interpolation
are simply called interpolative decompositions. They interesting in their own
right, for two reasons: 1) the factors Gc and Gr only require evaluations of
the kernel: if an explicit formula or an on-demand evaluation function is
available for that kernel, the storage requirement for P and/or Q is much
lighter than that of the three factors U , S, and V T ; and 2) the matrix P
is independent of the box B that defines the column-restriction of G, and
similarly QT is independent of the box A that defines the row restriction
of G, hence such interpolative decompositions can often be re-used across
boxes.

We have already seen examples of Q that can be used in a projection
decomposition G ' GcQ

T . The linear algebra point of view invites to choose
Q as the solution of an overdetermined least-squares problem of the form

QT = G+
c G,
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but only after the Gc and G matrices are properly restricted in x, their row
index. One could for instance let x run over the sequence xi: this results in a
projection rule that is often at best valid near the convex hull of the points xi.
In particular, the projection rule would need to change if the evaluation box
A is changed. A much better choice is the collocation rule seen previously,
which uses check points x̌i on a check surface surrounding B: the resulting
projection rule is now independent of the evaluation box and will work as
soon as the evaluation point is outside the check surface. But notice that we
had to lift the restriction x ∈ A in the collocation scheme, hence we had to
look outside of the linear algebra framework to find the better solution!

As for the column restriction that takes G to Gc, many choices are pos-
sible. Linear algebra offers an interesting solution: the columns (at yBm) that
take part in Gc can be picked from the columns (at yj) of G by a rank-
revealing QR decomposition1. Cheaper methods exist for selecting these
columns, such as random sampling, or adaptive cross-approximation (ACA).
We also saw in the previous section that we can pick the yBm as the nodes of
a polynomial interpolation scheme, though this results in points that may be
outside of the original collection yj – a solution which again operates outside
a strict linear algebra framework.

Another useful low-rank decomposition of G is the so-called CUR form,
or skeleton form, written as

G ' GcZGr,

where the middle matrix Z is chosen for the approximation to be good. The
best choice in the least-squares (Frobenius) sense is Z = G+

c GG
+
r , which

again requires collocation to properly row-restrict G and Gc; and column-
restrict G and Gr. A convenient but suboptimal choice is Z = G+

cr where
Gcr is the row and column restriction of G corresponding to the same index
sets that define Gc and Gr. We can compare the different factorizations of G
to conclude that we may define “skeleton” projection and interpolation rules
via

QT = ZGr, P = GcZ.

1The letter Q is already taken, so write G = UR for the thin QR decomposition.
Because of pivoting, R is not necessarily lower triangular. Now extract from G the exact
same columns that were orthogonalized in the process of forming U , and call the result
Gc. Write Gc = URc with Rc a square, invertible matrix. Then G = GcR

−1
c R = GcQ

with Q = R−1
c R.
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The most useful aspect of the low rank point of view is that it is universal,
i.e., it informs the feasibility of projection and interpolation regardless of the
particular method used.

1. If there exists a rank-r factorization of G into UV T , then there must
exist a factorization G = GcQ

T using r columns of G. In particular,
a projection rule incurs no penalty2 if the yBm are chosen among the
yj points (the interpolative case) rather than outside of this collection
(the extrapolative case).

2. The availabilty of efficient projection and interpolation rules crucially
hinges on the separability of the kernel G restricted to source and eval-
uation boxes. If the ε-rank of a block of G is greater than r, then
there does not exist a projection rule with r canonical charges, or an
interpolation rule with r canonical potentials, that could ever reach an
error smaller than ε (in an `2 sense).

We already saw a justification of the separability of the A×B block of G
in the multipole section. Let us now argue, from an algebraic argument
in 1D, that we can expect low rank for off-diagonal blocks of inverse of
banded matrices. Consider a finite difference discretization of a boundary-
value ODE, leading to

T =


α1 β1

γ1 α2
. . .

. . . . . . βn−1

γn−1 αn


Let G = T−1, i.e., G is the so-called Green’s matrix corresponding to a
3-point finite difference stencil.

Theorem 2. Assume T is tridiagonal and invertible. Then G = T−1 has
rank-1 off-diagonal blocks.

2There is truly no penalty if the rank is exactly r, and in exact arithmetic. There is
a minor factor

√
rn in loss of accuracy for truncation to r separated components by a

QR decomposition, or in our notations GcQ
T , over an SVD if the rank is not exactly r,

however.
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Proof. Fix j, and consider that

T = U + βjeje
T
j ,

where U is T with its βj element put to zero, and ej is the j-th canonical
basis vector in Rn. Notice that U is upper block-triangular with a block of
zeros in positions [1 : j]× [(j+ 1) : n]. Since the inverse of a block-triangular
matrix is also block-triangular, U−1 also has a block of zeros in positions
[1 : j] × [(j + 1) : n]. To obtain T−1, apply the Woodbury formula, which
shows that T−1 differs from U−1 by a rank-1 matrix:

T−1 = U−1 −
(U−1ej)(e

T
j+1U

−1)

1 + βjeTj+1U
−1ej

.

(The scalar denominator is nonzero because T−1 is invertible.) Hence the
block [1 : j]× [(j + 1) : n] of T−1 has rank 1. An analogous argument shows
that the block [(j + 1) : n]× [1 : j] also has rank 1.

More generally, if T has band width 2p+ 1, i.e., p upper diagonals and p
lower diagonals, then the rank of the off-diagonal blocks of T−1 is p.

A matrix whose off-diagonal blocks have rank p is called p-semiseparable.
For each p, tshe set of invertible p-semiseparable matrices is closed under
inversion (unlike the set of tridiagonal matrices, for instance).

[Extension to blocks]

4.2 Calculus of hierarchical matrices

4.3 Hierarchical matrices meet the FMM
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Chapter 5

Butterfly algorithms

Butterfly algorithms are helpful for computing oscillatory sums arising in
the high-frequency wave propagation context. We now consider a large wave
number k, and kernels such as the fundamental solution of the Helmholtz
equation in 3D,

G(x, y) =
eik|x−y|

4π|x− y|
,

or its counterpart in 2D, G(x, y) = i
4
H

(1)
0 (k|x − y|). The wave number is

related to the angular frequency ω and the wave speed c via the dispersion
relation ω = kc.

5.1 Separation in the high-frequency regime

For high-frequency scattering and other oscillatory kernels, we have good
separation if the boxes A and B

diam(A)× diam(B) . d(A,B)× λ,

where d(A,B) is the distance between box centers, and λ = 2π/k is the
wavelength.

5.2 Architecture of the butterfly algorithm

The separation condition is much more restrictive in the high-frequency case,
prompting the introduction of a different “butterfly” algorithm:
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• The check potentials are split into different contributions coming from
different sources boxes, and denoted uABn ; and

• The equivalent densities are split into different contributions generating
potentials in different target boxes, and denoted qABm .

The interpolation rules are now valid only for x ∈ A and y ∈ B. The
interpolation basis functions depend both on A and on B, and are denoted
PAB
n (x).

• An interpolation rule in the x variable,

G(x, y) =
∑
n

PAB
n (x)G(xAn , y), x ∈ A, y ∈ B, (5.1)

generates a notion of local expansion. Consider check potentials uABn
at the nodes xAn ,

uABn =

∫
B

G(xAn , y)q(y)dy. (5.2)

The interpolation rule in x allows to switch from potentials at xAn to
potentials everywhere in A: combine (3.14), (5.1), (5.2) to get

uB(x) =
∑
n

PAB
n (x)uABn , x ∈ A. (5.3)

• An interpolation rule in the y variable,

G(x, y) =
∑
m

G(x, yBm)PAB
m (y), x ∈ A, y ∈ B, (5.4)

generates a notion of multipole (interpolative) expansion. Consider
equivalent densities qABm at the nodes yBm, so that

uB(x) =
∑
m

G(x, yBm)qABm , x ∈ A. (5.5)

The interpolation rule in y allows to switch from densities in B to
equivalent densities qBm: combine (3.14), (5.4), (5.5) to get

qABm =

∫
B

PAB
m (y)q(y)dy. (5.6)
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We say that a couple (A,B) is admissible when the boxes are well-
separated in the sense explained in the previous section.

The condition on the admissibility of couples of boxes determines the
form of an L2L operation:

uABn +=
∑
c

∑
n′

P
ApBc

n′ (xAn )u
ApBc

n′ .

An M2M operation is

qABm =
∑
c

∑
m′

PAB
m (yBc

m′ )q
ApBc

m′ .

An M2L conversion is

uAB
↑

n +=
∑
m

G(xAn , y
B
m)qA

↑B
m ,

where B is in the interaction list of A. There is no sum to perform over the
interaction list. The notation A↑ refers to some ancestor of A; this precaution
arises from the fact that we want A and B on the same level for the M2L
translation, but the uABn and qABm are usually available only for boxes at
different levels (B at a higher level than A for u and B at a lower level than
A for q).

The choice of interpolation scheme may be dictated by the particular
kernel. An all-purpose choice is to use translated copies of the kernel itself:

PAB
n (x) =

∑
m

G(x, yBm)dABmn .

A substitution in (5.1) reveals that the d coefficients are obtained as the
middle factor of a skeleton decomposition of the (A,B) block of G,

G(x, y) =
∑
m,n

G(x, yBm)dABmnG(xAn , y).
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Appendix A

The Fast Fourier transform
(FFT)

47
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Appendix B

Linear and cyclic convolutions

In this section we expand on the link between the different kinds of convo-
lution, and how they can all be computed using the FFT. The convolution
of two vectors u and v is always a vector of the form wj =

∑
k uj−kvk, but

the bound on k, and the way j − k is understood, differ from one kind of
convolution to the next.

B.1 Cyclic convolution

The most algorithmically favorable situation is that of the cyclic (or periodic,
or circular) convolution


w0

w1

w2

...
wN−1

 =


u0 uN−1 uN−2 · · · u1
u1 u0 uN−1 · · · u2
u2 u1 u0 · · · u3
...

...
...

. . .
...

uN−1 uN−2 uN−3 · · · u0




v0
v1
v2
...

vN−1


All three vectors u, v, and w have indices ranging from 0 to N − 1. The
convolution is called cyclic, or circular, or periodic, because we use uN−1 in
place of u−1 when the logical progression of terms calls for negative indices.
The matrix of u is called circulant: its columns are cyclic shifts of one another.

Mathematically, the “wrap-around” can also be realized with the modulo
operation, which computes the remainder of the integer division by N . For
instance,

−1 modN = N − 1,
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0 modN = 0

(N − 1) modN = N − 1,

N modN = 0,

(N + 1) modN = 1,

etc. The cyclic convolution is then written compactly as

wj =
N−1∑
k=0

u(j−k) modN vk.

As explained in the main text, the cyclic convolution can be computed fast
by multiplication in the discrete Fourier domain.

B.2 Linear convolution

Linear convolutions are more often encountered in practice and do not involve
wraparound:



w0

w1

w2

...
wN−1

...
w2N−4

w2N−3

w2N−2


=



u0
u1 u0
u2 u1 u0
...

...
. . .

. . .

uN−1 uN−2 · · · u1 u0
. . .

. . .
...

...
uN−1 uN−2 uN−3

uN−1 uN−2

uN−1




v0
v1
v2
...

vN−1



More concisely,

wj =
N−1∑
k=0

uj−kvk,

with 0 ≤ j ≤ 2N − 2, and the convention that negative indices give rise to
zero terms. Note that the output has size 2N − 1 rather than N .

The matrix involved has Toeplitz structure (constant along diagonals),
and is still circulant (the columns are cyclic shifts of one another), but it
is rectangular hence not diagonalizable by the Fourier transform. It can
be turned into a square, circulant matrix by the following extension trick:
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1) zeropad v with N − 1 zeros, and 2) extend the matrix by considering
the complete set of cyclic shifts of its first column, to obtain the equivalent
expression



w0

w1

w2

...
wN−1

...
w2N−4

w2N−3

w2N−2


=



u0 uN−1 uN−2 · · · u1
u1 u0 uN−1 · · · u2

u2 u1 u0
. . .

...
...

...
. . .

. . . uN−1

uN−1 uN−2 · · · u1 u0
. . .

. . .
...

... u0

uN−1 uN−2 uN−3

... u0

uN−1 uN−2 uN−3

...
. . .

uN−1 uN−2 uN−3 · · · u0





v0
v1
v2
...

vN−1

0
0
...
0



This expression can now be computed fast with the FFT. The extended
matrix implementing the cyclic convolution has size 2N − 1 by 2N − 1.

B.3 Partial linear convolution

Convolutions arising from integral equations often involve Toeplitz non-circulant
matrices of the form


w0

w1

w2

.

..
wN−1

 =


u0 u−1 u−2 · · · u−N+1

u1 u0 u−1 · · · u−N+2

u2 u1 u0 · · · u−N+3

...
...

...
. . .

...
uN−1 uN−2 uN−3 · · · u0




v0
v1
v2
...

vN−1



The columns are no longer cyclic shifts of one another. We still recognize a
restriction of a linear convolution; namely we can write
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×
×
.
..
×
w0

w1

...
wN−2

wN−1

×
...
×
×


=



u−N+1

u−N+2 u−N+1

...
...

. . .

u−1 u−2 · · · u−N+1

u0 u−1 · · · u−N+2 u−N+1

u1 u0 · · · u−N+3 u−N+2

...
...

. . .
...

...
uN−2 uN−3 · · · u0 u−1

uN−1 uN−2 · · · u1 u0
uN−1 · · · u2 u1

. . .
...

...
uN−1 uN−2

uN−1




v0
v1
v2
...

vN−1



The crosses indicate “spurious” components whose value is often not of in-
terest. The extended matrix implementing the linear convolution has size
3N − 2 by N . The same trick as earlier can be used to embed this linear
convolution into a cyclic convolution of size 3N−2, resulting in a reasonably
fast algorithm.

However, because the specific value of × are unimportant, we can wrap
the rows around to eliminate the zeros, and write the shorter linear convolu-
tion 

w0

w1

...
wN−2

wN−1

×
×
...
×


=



u0 u−1 · · · u−N+2 u−N+1

u1 u0 · · · u−N+3 u−N+2

...
...

. . .
...

...
uN−2 uN−3 · · · u0 u−1

uN−1 uN−2 · · · u1 u0
u−N+1 uN−1 · · · u2 u1
u−N+2 u−N+1 · · · u3 u2

...
...

. . .
...

...
u−1 u−2 · · · u−N+1 uN−1




v0
v1
v2
...

vN−1



where the elements labeled × are now different. The matrix is now 2N − 1
by N . The convolution can be made cyclic by considering the complete set
of cyclic shifts of the first column, resuting in an extended, 2N−1 by 2N−1
circulant matrix:

w0

w1

...
wN−2

wN−1

×
×
..
.
×


=



u0 u−1 · · · u−N+2 u−N+1 uN−1 · · · u1
u1 u0 · · · u−N+3 u−N+2 u−N+1 · · · u2
...

...
. . .

...
...

...
. . .

...
uN−2 uN−3 · · · u0 u−1 u−2 · · · uN−1

uN−1 uN−2 · · · u1 u0 u−1 · · · u−N+1

u−N+1 uN−1 · · · u2 u1 u0 · · · u−N+2

u−N+2 u−N+1 · · · u3 u2 u1 · · · u−N+3

..

.
..
.

. . .
...

...
..
.

. . .
...

u−1 u−2 · · · u−N+1 uN−1 uN−2 · · · u0





v0
v1
v2
...

vN−1

0
...
0


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The prescription for a fast algorithm is therefore to consider the first column,

(u0, u1, . . . , uN−1, u−N+1, . . . , u−1)T ,

and perform its cyclic convolution with the zeropadded vector v. This variant
is more efficient by roughly 50% than the 3N − 2 by 3N − 2 formulation
described earlier.

B.4 Partial, symmetric linear convolution

There is a bit more to be gained in the case when the convolution reads
w0

w1

w2

...
wN−1

 =


u0 u1 u2 · · · uN−1

u1 u0 u1 · · · uN−2

u2 u1 u0 · · · uN−3

...
...

...
. . .

...
uN−1 uN−2 uN−3 · · · u0




v0
v1
v2
...

vN−1

 ,

namely when u−j = uj. The matrix is now symmetric, Toeplitz, but not cir-
culant. The algorithm in the previous section considered the mirror extension
of the first column

(u0, u1, . . . , uN−2, uN−1)T

into the (2N − 1)-vector

(u0, u1, . . . , uN−2, uN−1, uN−1, uN−2, . . . , u1)T .

However, we recognize that uN−1 is needlessly duplicated. This leads to
considering a mirror extension of length 2N − 2:

(u0, u1, . . . , uN−2, uN−1, uN−2, . . . , u1)T .

This results in a 2N − 2 by 2N − 2 circulant matrix

w0

w1

...
wN−2

wN−1

×
×
..
.
×


=



u0 u1 · · · uN−2 uN−1 uN−2 · · · u1
u1 u0 · · · uN−3 uN−2 uN−1 · · · u2
...

...
. . .

...
...

...
. . .

...
uN−2 uN−3 · · · u0 u1 u2 · · · uN−1

uN−1 uN−2 · · · u1 u0 u1 · · · uN−2

uN−2 uN−1 · · · u2 u1 u0 · · · uN−3

uN−3 uN−2 · · · u3 u2 u1 · · · uN−4

..

.
..
.

. . .
...

...
..
.

. . .
...

u1 u2 · · · uN−1 uN−2 uN−3 · · · u0





v0
v1
v2
...

vN−1

0
...
0


.



54 APPENDIX B. LINEAR AND CYCLIC CONVOLUTIONS

Whether the FFT-based algorithm for matrix-vector multiplication is now
faster than the variant seen in the previous section depends on whether 2N−2
is “more composite” than 2N − 1 (which it stands a better chance of being,
by virtue of being even). With additional zeropadding, it is simple to imagine
variants with 2N by 2N or larger matrices.


