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The N-Body Problem

Problem Statement

The motion of more than two orbiting bodies is a challenging problem that had eluded mathematicians
since Newton's time. In honour of his 60th birthday on January 21, 1889, Oscar II, King of Sweden and
Norway, established a prize for anyone who could �nd the solution to the problem. The prize was awarded to
Poincaré, even though he did not solve the original problem. Only a century later in 1990 was an analytical
solution to the n-body problem �nally found, in the form of a converging power series 1.

Fortunately, it is signi�cantly easier to approximate the solution to this famous problem using low-rank
numerical techniques. Newtonian gravitation is fully described by Poisson's equation:

∆φ(x) = −4πGρ(x),

where G is the universal Gravitational constant, and ρ is the volumetric mass density, comprising of n points
(i.e stars), with each point j weighted by its own mass Mj :

ρ(x) =

N∑
j=1

Mjδ(x− xj).

Once the gravitational potential φ is computed, the force �eld due to gravity g is readily obtained as the
gradient of φ:

g = −∇φ.

Therefore, the trajectory xj(t) of every particle j = 1 . . . N with respect to time is simply the solution to
the following ordinary di�erential equation:

Mj
d2

dt2
xj = g(xj).

This deceptively simple ODE is greatly complicated by two considerations. Firstly, g is a�ected by the
presence of all particles within the system, and computing the forces upon N particles due their interaction
with N particles by direct summation is an O(N2) operation. Secondly, the particles are mobile, and the
forces upon the N particles must be repeatedly computed at each new time-step. Considering that galaxies
are comprised of billions of stars, the complexity of computations quickly become prohibitive.

Fortunately, gravitation is a low-rank interaction, and fast algorithms have found great success in the
simulation of the n-body problem. Recent simulations of galactic motion, such as the millenium simulation
project by the Max Planck Institute for Astrophysics, have included over 300 billion particles simulated over
the equivalent span of more than 13 billion years! In this problem set, we will study the low-rank nature of
an interaction like gravity, and the numerical techniques used to cast the interactions to canonical form.

1The paper is available at: http://adsabs.harvard.edu/abs/1991CeMDA..50...73W
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Question 1 - Low-Rank Interactions

Before investigating methods used to resolve low-rank interactions, let us �rst investigate what exactly
constitutes a �low-rank� interaction. In the following question, let us simplify all mass particles to point
charges of unit mass. Label by xm: m = 1 . . . N , N target points randomly located within a speci�ed target
square, and by yn, n = 1 . . . N , N source point charges located randomly within the unit square [0, 1]2.

1. Consider the Newtonial gravitational potential function φ as follows:

φ(x) =
1

|x|
.

The dense coe�cient matrix G associated with the potential interaction between xm and yn under
Newtonian gravity contains an element on the j-th row and k-th column equal to:

Gm,n =
1

‖xm − yn‖
.

Compute the relative rank of this matrix, by performing a singular value decomposition G ≈ UΣV T ,
so that the relative spectral error of the reconstruction ‖G − UΣV T ‖2/‖G‖2 ≤ ε, where ε = 10−5.
The relative rank of the matrix is equal to the number of non-zero singular values with spectral norms
≥ ε‖G‖2.

(a) Use 20 source points in the unit square with lower left corner at the origin, and 20 test points in
a target unit square. Produce a plot of the rank of the associated G matrix, as a function of the
target square position. In particular, place the target square's bottom left corner at [2, p] and the
top right corner at [3, p+ 1]. Vary p from 0 to 5 in steps of 0.5.

(b) With the bottom left corner of the target square placed at [2, 4] and the top right corner placed
at [3, 5]. Vary the number of interacting points N from 20 to 200 in steps of 20. Does increasing
the number of interactions and the size of the matrix G signi�cantly a�ect its rank?

2. Suppose that Newtonian gravity were instead governed by the Helmholtz Green's function as follows:

φ(x) =
eik|x|

|x|
.

The dense coe�cient matrix G associated with the interaction between xm and yn associated with
this new potential function contains an element on the m-th row and n-th column equal to:

Gm,n =
eik|xm−yn|

|xm − yn|
,

(a) Use 20 source points in the unit square with lower left corner at the origin, and 20 test points
in a target unit square. Let k = 10, produce a plot of the rank of the associated G matrix, as a
function of the target square position. In particular, place the target square's bottom left corner
at [2, p] and the top right corner at [3, p+ 1]. Vary p from 0 to 5 in steps of 0.5.

(b) Use 20 source points and 20 test points, and set the bottom left corner of the target square placed
to [2, 4] and the top right corner to [3, 5]. Produce a plot of the rank of the interaction as a
function of k, varying from 1 to 100. What are the di�culties presented by having a high value
of k?

Question 2 - Projection and Interpolation

All low-rank algorithms are fundamentally based on the concept of representing arbitrary interactions using
a canonical representation. The process for embedding arbitrary interactions into a canonical representation
is known as a projection operation, or a source-to-multipole (S2M) operation in multipole nomenclature.
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Conversely, the process to translate a canonical representation of an interaction to the interaction itself is
known as interpolation, or a local-to-target (L2T) operation.

In the following question, label by xj , j = 1, 2, 3, 4, the four corners of the square [−1, 1]2, and by
yk, k = 1, 2, 3, 4, the four corners of the square [−5, 5]2. You may take the ordering to be the top-left,
top-right, bottom-left, and bottom-right corners respectively, although any other choice is acceptable. Let
us simplify the gravitational potential function φ to:

φ(x) =
1

|x|
.

1. Consider a unit charge at x0, generating a potential u(x) = φ(x−x0). We say that canonical charges qj
placed at xj , j = 1, 2, 3, 4 are the projections by collocation of the unit charge at x0 if the combination∑4

j=1 qjφ(x− xj) matches φ(x− x0) at the four points x = yk, k = 1, 2, 3, 4.

(a) Find those four canonical charges qj , j = 1, 2, 3, 4, in the case when x0 = (0.1, 0.2).

2. (Interpolation via projection) We now reverse the roles of x0 and y1. Consider a unit charge at the point
y1, generating a potential v(x) = φ(x−y1). Assume that you have at your disposal the evaluations of
this potential at each of the four points x = xj , j = 1, 2, 3, 4.

(a) How can you use the knowledge of these four evaluations, and of the four canonical charges qj of
question 2.1, to perform interpolation to �nd an approximation of the value of the potential v(x)
at x = x0?

(b) Find this numerical value in the case when x0 = (0.1, 0.2), and compare it to the true value v(x0).
Justify your �nding.

3. Consider again the function v(x) = φ(x−y1). We say that weights wj placed at nodes xj , j = 1, 2, 3, 4,

de�ne an interpolation scheme for v(x) if the combination
∑4

j=1 wjv(xj) is a good approximation of
v(x) for x in a neighborhood of the xj .

(a) Find those four weights wj in the case of bilinear interpolation at x = x0 = (0.1, 0.2).

(b) Find the numerical value of the bilinear interpolant of v(x) at x = x0, and compare it to the true
value v(x0).

4. (Projection via interpolation) We now revert the roles of x0 and y1 to what they were in question 2.1.
Consider a unit charge at x0 generating a potential u(x) = φ(x− x0).

(a) How can you use the knowledge of the bilinear interpolation weights wj of question 2.3, to �nd
the projections of the unit charge at x0 as canonical charges q̃j at each of the four points x = xj ,
j = 1, 2, 3, 4?

(b) Find the numerical values of these canonical charges when x0 = (0.1, 0.2), and check their accuracy

by comparing the true potential u(x) to its approximation ũ(x) =
∑4

j=1 q̃jφ(x−xj), when x = y1.
Argue the expected accuracy of this projection scheme.

The projection / interpolation operations are building blocks to fast algorithms for low-rank interactions.
Once projected onto a canonical representation, the potentials can be quickly evaluated by computing the
cyclic convolution using the FFT. Alternatively, a hierarchy of canonical representations can be constructed,
and the projection / interpolation process can be recursively performed and evaluated.
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