
18.336 Homework 3 hints :: Spring 2010

• Question 2. Getting the desired outcome for this system of equations can be tricky. In my implementa-
tion, I needed N (the number of points per dimension) to be at least 100 to get the correct behavior for
the solution. But above N = 200 or 300 the solver gets really slow. In your convergence experiment, it
is fine if you consider values of N in that neighborhood. They can be closer to each other than powers
of 2.

For me the steady state was reached at time T ' 100, so be prepared to run long simulations. As
usual, make sure that the numerical method reaches exactly T , so make sure ∆t divides T , otherwise
you may be comparing solutions at different times.

I recommend starting implementing the (faster) FD code with N = 128 so you kow what behavior to
expect. Visualize the solution with imagesc, and do a plot every 10 frames or so. Remember that the
BC are periodic for the FD code as well.

For the spectral code I recommend first making sure that you get the Laplacian right by trying it out on
a very smooth function like a low-wavenumber sine wave, and comparing it with the 5-point Laplacian.
Be mindful what to multiply the Fourier transform with (−|k|2,−4π2|k|2?) as we are dealing with the
square [0, 1]2 in (x, y), not [0, 2π]2.

If you want to play a bit with the system of equations, random initial conditions can be fun to try: take
them small enough that the code does not blow up, and large enough that the solution does not tend
to a constant. You can play with the parameters as well. In particular, α just rescales the problem – it
is the characteristic length scale of the solution.

• Question 3. A “tensor” Chebyshev grid is the natural 2D version of the Chebyshev grid, see p.67 of
Trefethen’s book. For the Chebyshev differentiation matrices, you have the choice of either using the
explicit matrices in Chapter 6 of Trefethen, or the faster FFT method of Chapter 8. In both cases, code
is available to form these matrices (see cheb.m and chebfft.m), so you can use that. Some code is
also available for the wave equation (Programs 19 and 20) if you need inspiration.

Implementing Dirichlet BC with Chebyshev polynomials is easy – see Chapter 7 in Trefethen. Imple-
menting Neumann boundary conditions in a little more tricky, but the book has the solution. As in the
case of finite differences, at each time step the problem is to update the value of the unknown at the
boundary from the knowledge that the normal derivative is zero. This time, the normal derivative is
computed spectrally using Cheb poly again. See the lines that concern BC in Program 37. The line
that defines BC contains a small matrix inversion.

Program 37 also contains a nice trick for Chebyshev differentiation in 2D, using only the 1D differ-
entiation matrices. See how D2x multiples vv on the right, and D2y multiplies vv on the left in the
line vvnew = ... in Program 37. In your code you should never have to form N2-by-N2 differentiation
matrices.


