02/13/18 Constrained optimization. Convexity, Lagrangean, duality.

Def A set S is convex if
$x, y \in S \implies \theta x + (1-\theta) y \in S$ for $\theta \in [0, 1]$.

Def $f: \mathbb{R}^n \to \mathbb{R}$ is convex if
$f(\theta x + (1-\theta) y) \leq \theta f(x) + (1-\theta) f(y)$
for $x, y \in \mathbb{R}^n$, $\theta \in [0, 1]$.

Prop. A differentiable $f: \mathbb{R}^n \to \mathbb{R}$ is convex iff
$f(y) \geq f(x) + \langle \nabla f(x), y-x \rangle$ for x, y.

$
\Rightarrow$ tangent line is a global underestimator.

Prop. x is a minimizer of a differentiable, convex f iff $\nabla f(x) = 0$. (= global minimizer)
Constrained optimization

\[\text{min } \mathbf{w}^{\top} \mathbf{A} \mathbf{x} \quad \text{s.t. } \mathbf{A} \mathbf{x} = \mathbf{b} \]

\[\Rightarrow \text{min } f_{0}(\mathbf{x}) \quad \text{s.t. } h_{i}(\mathbf{x}) = 0 \quad \text{ex. } h_{i}(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{x} - \mathbf{b}^{\top} \mathbf{x} \]

Assume \(f_{0}, h_{i} \in C^{1} \)

\[\mathbf{x}_{\text{opt}} \quad h_{i}(\mathbf{x}) = 0 \quad (\mathbf{x}_{\text{feasible}}) \]

\[f_{0}(\mathbf{x}) = \text{constant.} \]

At \(\mathbf{x} = \mathbf{x}_{\text{opt}} \), normal to \(f_{0}(\mathbf{x}) = f_{0}(\mathbf{x}_{\text{opt}}) \)

is also normal to all \(h_{i}(\mathbf{x}) = 0 \)

\[\nabla f_{0} + \sum_{i} \nabla h_{i} = 0 \]

\(h_{i} = 0 \)

(1)

(2)

\[\mathbf{L}(\mathbf{x}, \mathbf{\lambda}) = f_{0}(\mathbf{x}) + \sum_{i} \lambda_{i} h_{i}(\mathbf{x}) \]

\[\nabla_{\mathbf{x}} \mathbf{L} = 0 \quad \Leftrightarrow \quad (1) \]

\[\frac{\partial \mathbf{L}}{\partial \mathbf{\lambda}_{i}} = 0 \quad \Leftrightarrow \quad (2). \]

(1) may determine \(\mathbf{\lambda} \) as well.

It is a linear system for them (scratch for singular matrix).
\(\lambda \) is the Lagrange multiplier
\(\nu \) are Lagrange multipliers
(1), (2) are the Karush-Kuhn-Tucker (KKT) conditions, a.k.a. first-order optimality conditions

Example ULS: \(d(x, y) = \frac{1}{2} \| x \|_2^2 - \nu^T (Ax - b) \)

\[
\begin{align*}
\nabla_x d &= x^T - \nu^T A = 0 \\
\nabla_{\nu} d &= Ax - b = 0
\end{align*}
\]

then \(AA^T \nu = b \), \(\nu = (AA^T)^{-1} b \)
\(\lambda = \frac{1}{2} \frac{1}{(AA^T)^{-1} b} \)

The KKT conditions are necessary
(\(x^* \) minimizer \(\Rightarrow (1), (2) \)
argue by contradiction)

but they are not in general sufficient
((1), (2) \(\Rightarrow x^* \) minimizer).

Ex. 1. (level sets of \(f \) non-convex)

- minimum \(f = c_2 \) local
- maximum \(f = c_3 \) local

\(c_1 < c_2 < c_3 \)
Q. When is KKT sufficient?

Would like to recognize (1) of KKT as a condition of minimization of f over x.

Def. \(g(v) = \min_{x} d(x, v) \)

Note \(g(v) \leq d(x, v) \) & pick feasible: \(h_i(x) = 0 \)

true for all feasible \(x \)

\(\Rightarrow g(v) \leq f_0(x_{opt}) \)

true for all \(v \)

\[\max g(v) = \frac{f_0(x_{opt})}{g(v_{opt}) \leq f_0(x_{opt})} \]

so \(g(v_{opt}) \) provides a floor on the optimal value of the objective \(f_0(x) \).

\[\max_{v} g(v) \] is the dual problem
\(v \)
\(v \) dual variables, \(v_{opt} \) dual optimal
\(g(v) \) is the Lagrangian dual function
\[\min_{x} f_0(x) = h_i(x) = 0 \] in the primal problem
\(x \) primal variables, \(x_{opt} \) primal optimal
\[f_0(x^{opt}) - g(y^{opt}) = \text{duality gap} \]
\[f_0(x^{opt}) \geq g(y^{opt}) = \text{weak duality} \]
\[f_0(x^{opt}) = g(y^{opt}) = \text{strong duality} \]
(holds / obtained)

Theorem. Assume \(f_0(x) \) is differentiable, convex
\(h_i(x) = a_i^T x - b_i \) in affine
Then KKT are sufficient
\((x, y) \) obey (1), (2) \(\Rightarrow \) they are optimal
and strong duality holds.

Proof. Let \((x, y) \) obey (1), (2)

(2) \(\Rightarrow \) \(x \) is feasible
Consider \(L(x, y) = f_0(x) + \sum_i y_i h_i(x) \)
It is also a convex & differentiable function
(1) means \(\nabla_x L(x, y) = 0 \) when \(x = \bar{x} \)
\(\Rightarrow \bar{x} \) is a minimizer of \(L(x, y) \).

\[g(\bar{y}) = \min_x L(x, \bar{y}) \]
\[= \bar{y}^T \bar{L}(\bar{x}, \bar{y}) \] because \(\bar{x} \) is a minimizer
\[= f_0(\bar{x}) \] because \(\bar{x} \) is feasible
\(\Rightarrow \) zero dual gap
Lower bound is attained for \(f_0 \)
\(\Rightarrow \bar{x} \) is primal optimal
Upper bound is attained for \(g \)
\(\Rightarrow \bar{y} \) is dual optimal.

Remark: We say \(g(\bar{y}) = f_0(\bar{x}) \) is a certificate of optimality of \(\bar{x} \) and \(\bar{y} \).
Remark: \(g(\bar{y}) \) is the min of affine functions
\(\Rightarrow \) it is concave