
18.327 Computational Inverse Problems – Spring 2018
Problem set 3 – Due 04/12/2018

Problems are labeled (?) for easy, (??) for medium, and (? ? ?) for hard. For homework 3, solve (at least)
five stars worth of questions. Recommended exercises: 1, 2, 5, 6.

1. (?) Let yi = x + ei for i = 1, . . . , n, with x ∈ R, and ei ∼ N(0, σ2) i.i.d. The MLE for x is the sample
mean (empirical average) x̂ = 1

n

∑
i yi. In the frequentist framework, x is fixed, and x̂ has a distribution

p(x̂|x). In the Bayesian framework with a uniform prior, x is random, and has a distribution p(x|y).
Even though p(x̂|x) and p(x|y) are philosophically different, show that their expressions coincide in
this particular example. Generalize your argument to a general linear model of the form yi = aTi x+ ei,
where x ∈ Rm.

2. (?) (Poisson noise) Suppose that a gamma-ray detector counts photons in n energy bins, yielding
integer measurements yi, with i = 1, . . . , n. The photon counts yi are independent and modeled by
Poisson distributions P (yi = x) =

λxi e
−λi

x! , but the intensities λi that give rise to those counts are
assumed to follow a power law λi = µεi, for some unknown µ, but known numbers εi in geometric
progression. Find the maximum likelihood estimator (MLE) of µ. [Hint: assume that λi = µεi goes in
the forward model, not in the prior.]

3. (??) In the setting of the previous question, find or characterize the maximum likelihood estimator of λi
and µ, when a relaxed form of λi = µεi is imposed via the prior p(λ1, . . . , λn, µ) ∼ exp [− 1

2δ2

∑
i(λi − µεi)2],

for some small δ > 0, rather than through the forward model.

4. (?) Jeffreys parameters, continued. In homework 1, we encountered positive parameters, whose
distance is better measured via | log σ1 − log σ2| than via |σ1 − σ2|. Consider a Bayesian prior p(σ)
which is objective for such (Jeffreys) parameters, in the sense that it is a (unnormalized) uniform
probability distribution for log σ.

(a) What prior distribution does this give rise to, for σ itself?
(b) What prior distribution does this give rise to, for σa with a > 0?

5. (?) Consider y = Ax0+e with ei ∼ N(0, σ2) i.i.d., and the Tykhonov-regularized least-squares problem

min ‖Ax− y‖22 + λ2‖x‖22.

In this exercise, suppose that σ and ‖x0‖ are known, and assume that A is square and a multiple of
an isometry i.e., ATA = AAT = a2I. Find λ for which the MSE E‖x− x0‖2 is minimum. (The solution
to this exercise illustrates the following useful heuristic: λ should be chosen so that the misfit and
regularization terms are of comparable size.)

6. (??) Regularization by terminating the iterations. Consider solving Ax = y with square A, by gradient
descent:

xn+1 = xn + αAT (y −Ax), x0 = 0,

for sufficiently small α > 0. Let A = UΣV T be the singular value decomposition of A; at convergence,

x∞ =
∑
i

viσ
−1
i uTi y.

(a) Find a function fn(σ) for which

xn =
∑
i

vifn(σi)σ
−1
i uTi y.

(b) In the limit of large n, show that xn is close to the solution of a Tykhonov-regularized least-
squares problem, i.e., find λ(n) for which xn is well-approximated by the solution of

min ‖Ax− y‖22 + λ(n)2‖x‖22.

(In practice, coupling the formula that you obtain for λ(n), with the conclusion of the previous exercise,
shows a useful way to choose n for inverse problems.)


