18.327 Computational Inverse Problems – Spring 2018 Problem set 3 – Due 04/12/2018

Problems are labeled (\star) for easy, $(\star\star)$ for medium, and $(\star\star\star)$ for hard. For homework 3, solve (at least) five stars worth of questions. Recommended exercises: 1, 2, 5, 6.

- 1. (*) Let $y_i = x + e_i$ for i = 1, ..., n, with $x \in \mathbb{R}$, and $e_i \sim N(0, \sigma^2)$ i.i.d. The MLE for x is the sample mean (empirical average) $\hat{x} = \frac{1}{n} \sum_i y_i$. In the frequentist framework, x is fixed, and \hat{x} has a distribution $p(\hat{x}|x)$. In the Bayesian framework with a uniform prior, x is random, and has a distribution p(x|y). Even though $p(\hat{x}|x)$ and p(x|y) are philosophically different, show that their expressions coincide in this particular example. Generalize your argument to a general linear model of the form $y_i = a_i^T x + e_i$, where $x \in \mathbb{R}^m$.
- 2. (*) (*Poisson noise*) Suppose that a gamma-ray detector counts photons in *n* energy bins, yielding integer measurements *y_i*, with *i* = 1,...,*n*. The photon counts *y_i* are independent and modeled by Poisson distributions *P*(*y_i* = *x*) = λ_i^xe^{-λ_i}/x!, but the intensities λ_i that give rise to those counts are assumed to follow a power law λ_i = με_i, for some unknown μ, but known numbers ε_i in geometric progression. Find the maximum likelihood estimator (MLE) of μ. [Hint: assume that λ_i = με_i goes in the forward model, not in the prior.]
- 3. (**) In the setting of the previous question, find or characterize the maximum likelihood estimator of λ_i and μ , when a relaxed form of $\lambda_i = \mu \epsilon_i$ is imposed via the prior $p(\lambda_1, \ldots, \lambda_n, \mu) \sim \exp\left[-\frac{1}{2\delta^2} \sum_i (\lambda_i - \mu \epsilon_i)^2\right]$, for some small $\delta > 0$, rather than through the forward model.
- 4. (*) *Jeffreys parameters, continued.* In homework 1, we encountered positive parameters, whose distance is better measured via $|\log \sigma_1 \log \sigma_2|$ than via $|\sigma_1 \sigma_2|$. Consider a Bayesian prior $p(\sigma)$ which is objective for such (Jeffreys) parameters, in the sense that it is a (unnormalized) uniform probability distribution for $\log \sigma$.
 - (a) What prior distribution does this give rise to, for σ itself?
 - (b) What prior distribution does this give rise to, for σ^a with a > 0?
- 5. (*) Consider $y = Ax_0 + e$ with $e_i \sim N(0, \sigma^2)$ i.i.d., and the Tykhonov-regularized least-squares problem

$$\min \|Ax - y\|_2^2 + \lambda^2 \|x\|_2^2$$

In this exercise, suppose that σ and $||x_0||$ are known, and assume that A is square and a multiple of an isometry i.e., $A^T A = AA^T = a^2I$. Find λ for which the MSE $\mathbb{E}||x - x_0||^2$ is minimum. (The solution to this exercise illustrates the following useful heuristic: λ should be chosen so that the misfit and regularization terms are of comparable size.)

6. (**) Regularization by terminating the iterations. Consider solving Ax = y with square A, by gradient descent:

$$x_{n+1} = x_n + \alpha A^T (y - Ax), \qquad x_0 = 0$$

for sufficiently small $\alpha > 0$. Let $A = U\Sigma V^T$ be the singular value decomposition of A; at convergence,

$$x_{\infty} = \sum_{i} v_i \sigma_i^{-1} u_i^T y.$$

(a) Find a function $f_n(\sigma)$ for which

$$x_n = \sum_i v_i f_n(\sigma_i) \sigma_i^{-1} u_i^T y.$$

(b) In the limit of large *n*, show that x_n is close to the solution of a Tykhonov-regularized least-squares problem, i.e., find $\lambda(n)$ for which x_n is well-approximated by the solution of

$$\min \|Ax - y\|_2^2 + \lambda(n)^2 \|x\|_2^2$$

(In practice, coupling the formula that you obtain for $\lambda(n)$, with the conclusion of the previous exercise, shows a useful way to choose n for inverse problems.)