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Preface

In this text we use the symbol ($) to draw attention every time a physical
assumption or simplification is made.
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Chapter 1

Wave equations

1.1 Acoustic waves

Acoustic waves are propagating pressure disturbances in a gas or liquid. With
p(x, t) the pressure fluctuation (a time-dependent scalar field) and v(x, t) the
particle velocity (a time-dependent vector field), the acoustic wave equations
read

∂v

∂t
= − 1

ρ0

∇p, (1.1)

∂p

∂t
= −κ0∇ · v. (1.2)

The two quantities ρ0 and κ0 are the mass density and the bulk modulus,
respectively. They are linked to the wave speed c through κ0 = ρ0c

2. Initial
conditions on p and v must be supplied. A forcing term may be added to
the dynamic balance equation (1.1) when external forces (rather than initial
conditions) create the waves.

Let us now explain how these equations are obtained from a lineariza-
tion of Euler’s gas dynamics equations in a uniform background medium
($). Consider the mass density ρ as a scalar field. In the inviscid case ($),
conservation of momentum and mass respectively read

ρ(
∂v

∂t
+ v · ∇v) = −∇p, ∂ρ

∂t
+∇ · (ρv) = 0.

An additional equation, called constitutive relation, must be added to close
the system. It typically relates the pressure and the density in an algebraic
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6 CHAPTER 1. WAVE EQUATIONS

way, and encodes a thermodynamic assumption about compression and dila-
tion. For instance if the gas is assumed to be ideal, and if the compression-
dilation process occurring in the wave is adiabatic reversible (no heat trans-
fer), then p ∼ ργ, γ = 1.4, where ∼ indicates equality up to a dimensional
constant. More generally, assume for the moment that the constitutive rela-
tion takes the form

p = f(ρ)

for some scalar function f , which we assume differentiable and strictly in-
creasing (f ′(ρ) > 0 for all ρ > 0).

Consider small disturbances off of an equilibrium state:

p = p0 + p1, ρ = ρ0 + ρ1, v = v0 + v1.

In what follows, neglect quadratic quantities of p1, ρ1, v1. Consider a medium
at rest ($): p0, ρ0 independent of t, and v0 = 0. After some algebraic simpli-
fication the conservation of momentum becomes

ρ0
∂v1

∂t
= −∇p0 −∇p1.

To zero-th order (i.e., at equilibrium, p1 = ρ1 = v1 = 0,) we have

∇p0 = 0 ⇒ p0 constant in x.

To first order, we get

ρ0
∂v1

∂t
= −∇p1,

which is exactly (1.1) after renaming v1 → v, p1 → p. The constitutive
relation must hold at equilibrium, hence p0 constant in x implies that ρ0 is
also constant in x (uniform). Conservation of mass becomes

∂ρ1

∂t
+ ρ0∇ · v1 = 0.

Differentiate the constitutive relation to obtain p1 = f ′(ρ0)ρ1. Call f ′(ρ0) =
c2, a number that we assume positive. Then we can eliminate ρ1 to get

∂p1

∂t
+ ρ0c

2∇ · v1 = 0.

This is exactly (1.2) with κ0 = ρ0c
2.
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Conveniently, the equations for acoustic waves in a variable medium ρ0(x),
κ0(x) are obvious modifications of (1.1), (1.2):

∂v

∂t
= − 1

ρ0(x)
∇p, (1.3)

∂p

∂t
= −κ0(x)∇ · v. (1.4)

A different argument is needed to justify these equations, however. The
previous reasoning does not leave room for variable ρ0(x) or κ0(x). Instead,
it is necessary to introduce a more realistic constitutive relation

p = f(ρ, s),

where s is the entropy. An additional equation for conservation of entropy
needs to be considered. The new constitutive relation allows ρ0 and s0 to be
functions of x in tandem, although p0 is still (necessarily) uniform in x. The
reasoning leading to (1.3), (1.4) is the subject of an exercise in section 1.5.

Acoustic waves can take the form of a first-order system of equations, or
else a second-order scalar equation. Combining (1.3), (1.4), we get

∂2p

∂t2
= κ0(x)∇ · ( 1

ρ0(x)
∇p).

Initial conditions on both p and ∂p/∂t must be supplied. This equation may
come with a right-hand side f(x, t) that indicates forcing. When ρ0 and κ0

are constant, the scalar wave equation reduces to

∂2p

∂t2
= c20 ∆p.

Waves governed by (1.3), (1.4) belong in the category of hyperbolic waves
because they obey conservation of energy. Define

w =

(
v
p

)
, L =

(
0 − 1

ρ0
∇

−κ0∇· 0

)
.

Then the acoustic system simply reads

∂w

∂t
= Lw.

L is called the generator of the evolution.
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Definition 1. The system ∂w
∂t

= Lw is said to be hyperbolic if L is a matrix
of first-order differential operators, and there exists an inner product 〈w,w′〉
with respect to which L∗ = −L, i.e., L is anti-self-adjoint.

An adjoint operator such as L∗ is defined through the equation1

〈Lw,w′〉 = 〈w,L∗w′〉, for all w,w′.

For instance, in the case of the acoustic system, the proper notion of inner
product is (the factor 1/2 is optional)

〈w,w′〉 =
1

2

∫
(ρ0v · v′ +

1

κ0

pp′) dx.

It is an exercise in section 1.5 to show that 〈Lw,w′〉 = 〈w,L∗w′〉 for that
inner product, for all w,w′.

Theorem 1. If ∂w
∂t

= Lw is a hyperbolic system, then E = 〈w,w〉 is con-
served in time.

Proof.

d

dt
〈w,w〉 = 〈∂w

∂t
, w〉+ 〈w, ∂w

∂t
〉

= 2 〈∂w
∂t
, w〉

= 2 〈Lw,w〉
= 2 〈w,L∗w〉
= 2 〈w, (−L)w〉
= −2 〈Lw,w〉.

A quantity is equal to minus itself if and only if it is zero.

In the case of acoustic waves,

E =
1

2

∫
(ρ0v

2 +
p2

κ
) dx,

1The existence of L∗ can be traced back to the Riesz representation theorem once
〈Lw,w′〉 is shown to be a continuous functional of w in some adequate Hilbert space
norm.



1.2. ELASTIC WAVES 9

which can be understood as kinetic plus potential energy. We now see that
the factor 1/2 was chosen to be consistent with the physicists’ convention for
energy.

In the presence of external forcings the hyperbolic system reads ∂w/∂t =
Lw + f : in that case the rate of change of energy is determined by f .

For reference, common boundary conditions for acoustic waves include

• Sound soft boundary condition: Dirichlet for the pressure, p = 0.

• Sound-hard boundary condition: Neumann for the pressure, ∂p
∂n

= 0, or
equivalently v · n = 0.

Another important physical quantity is related to acoustic waves: the
acoustic impedance Z =

√
ρ0κ0. We will see later that impedance jumps

determine reflection and transmission coefficients at medium discontinuities.

1.2 Elastic waves

Elastic waves are propagating pressure disturbances in solids. The interesting
physical variables are

• The displacement u(x, t), a time-dependent vector field. In terms of u,
the particle velocity is v = ∂u

∂t
.

• The strain tensor

ε =
1

2
(∇u+ (∇u)T ),

a symmetric time-dependent tensor field.

• The stress tensor σ, also a symmetric time-dependent tensor field.

For elastic waves, the density ρ is very often assumed independent of t along
particle trajectories, namely ρ0(x, 0) = ρ0(x+ u(x, t), t).

The equation of elastic waves in an isotropic medium (where all the waves
travel at the same speed regardless of the direction in which they propagate)
($) reads

ρ
∂2u

∂t2
= ∇(λ∇ · u) +∇ · (µ(∇u+ (∇u)T )). (1.5)

where ρ, λ, and µ may possibly depend on x. As for acoustic waves, a forcing
term is added to this equation when waves are generated from external forces.
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To justify this equation, start by considering the equation of conservation
of momentum (“F = ma”),

ρ
∂v

∂t
= ∇ · σ,

possibly with an additional term f(x, t) modeling external forces. The nota-

tion ∇· indicates tensor divergence, namely (∇ · σ)i =
∑

j
∂σij

∂xj
. Stress and

strain are linked by a constitutive relation called Hooke’s law,

σ = C : ε,

where C is the 4-index elastic tensor. In three spatial dimensions, C has
81 components. The colon indicates tensor contraction, so that (C : ε)ij =∑

k`Cijk`εk`.
These equations form a closed system when they are complemented by

∂ε

∂t
=

1

2
(∇v + (∇v)T ),

which holds by definition of ε.
At this point we can check that the first-order system for v and ε defined

by the equations above is hyperbolic. Define

w =

(
v
ε

)
, L =

(
0 L2

L1 0

)
,

with

L1v =
1

2
(∇v + (∇v)T ), L2ε =

1

ρ0

∇ · (C : ε).

Then, as previously, ∂w
∂t

= Lw. An exercise in section 1.5 asks to show that
the matrix operator L is anti-selfadjoint with respect to the inner product

〈w,w′〉 =
1

2

∫
(ρv · v′ + ε : C : ε) dx.

The corresponding conserved elastic energy is E = 〈w,w〉.
Isotropic elasticity is obtained where C takes a special form with 2 degrees

of freedom rather than 81, namely

Cijk` = λδijδkl + µ(δi`δjk + δikδj`).

We are not delving into the justification of this equation. The two elastic
parameters λ and µ are also called Lamé parameters:
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• λ corresponds to longitudinal waves, also known as compressional, pres-
sure waves (P).

• µ corresponds to transverse waves, also known as shear waves (S).

Originally, the denominations P and S come from “primary” and “secondary”,
as P waves tend to propagate faster, hence arrive earlier, than S waves.

With this parametrization of C, it is easy to check that the elastic system
reduces to the single equation (1.5). In index notation, it reads

ρ
∂2ui
∂t2

= ∂i(λ∂juj) + ∂j(µ(∂iuj + ∂jui)).

For reference, the hyperbolic propagator L2 reduces to

L2ε =
1

ρ
(∇(λ tr ε) + 2∇ · (µε)), tr ε =

∑
i

εii,

and the energy inner product is

〈w,w′〉 =
1

2

∫
(ρv · v′ + 2µtr(εT ε′) + λ(tr ε)(tr ε′)) dx.

The elastic wave equation looks like an acoustic wave equation with “2
terms, hence 2 waves”. To make this observation more precise, assume that
λ and µ are constant ($). Use some vector identities2 to reduce (1.5) to

ρ
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∆u,

= (λ+ 2µ)∇(∇ · u)− µ∇×∇× u.

Perform the Helmholtz (a.k.a. Hodge) decomposition of u in terms of poten-
tials φ and ψ:

u = ∇φ+∇× ψ,
where φ is a scalar field and ψ is a vector field3. These two potentials are
determined up to a gauge choice, namely

φ′ = φ+ C, ψ′ = ψ +∇f.
2In this section, we make use of ∇ × ∇ × u = ∇(∇ · u) − ∆u, ∇ · ∇ × ψ = 0, and

∇×∇ψ = 0.
3Normally the Helmholtz decomposition comes with a third term h which obeys ∆h =

0, i.e., h is harmonic, but under suitable assumptions of decay at infinity the only solution
to ∆h = 0 is h = 0.
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Choose f such that ψ′ has zero divergence:

∇ · ψ′ = 0 ⇒ ∆f = −∇ · ψ.

This is a well-posed Poisson equation for f . With this choice of ψ′, it holds
that

∇ · u = ∆φ, ∇× u = ∇×∇× u = −∆ψ.

The elastic wave equation can then be rewritten in terms of φ, ψ as

∇
[
ρ
∂2φ

∂t2
− (λ+ 2µ)∆φ

]
+∇×

[
ρ
∂2ψ

∂t2
− µ∆ψ

]
= 0.

Take the gradient of this equation to conclude that (with a suitable decay
condition at infinity)

ρ
∂2φ

∂t2
− (λ+ 2µ)∆φ = harmonic = 0.

Now that the first term is zero, we get (with a suitable decay condition at
infinity)

ρ
∂2ψ

∂t2
− µ∆ψ = ∇(something) = 0.

Hence each potential φ and ψ solve their own scalar wave equation: one for
the longitudinal waves (φ) and one for the transverse waves (φ). They obey
a superposition principle. The two corresponding wave speeds are

cP =

√
λ+ 2µ

ρ0

, cS =

√
µ

ρ0

.

In the limit µ → 0, we see that only the longitudinal wave remains, and
λ reduces to the bulk modulus. In all cases, since λ ≥ 0 we always have
cP ≥

√
2cS: the P waves are indeed always faster (by a factor at least

√
2)

than the S waves.

The assumption that λ and µ are constant is a very strong one: there is
a lot of physics in the coupling of φ and ψ that the reasoning above does not
capture. Most important is mode conversion as a result of wave reflection at
discontinuity interfaces of λ(x) and/or µ(x).
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1.3 Electromagnetic waves

The quantities of interest for electromagnetic waves are:

• Physical fields: the electric field E, and the magnetic field H,

• Medium parameters: the electric permittivity ε and the magnetic per-
meability µ,

• Forcings: electric currents j and electric charges ρ.

The electric displacement field D and the magnetic induction field B are
also considered. In the linearized regime ($), they are assumed to be linked
to the usual fields E and H by the constitutive relations

D = εE, B = µH.

Maxwell’s equations in a medium with possible space-varying parameters
ε and µ read

∇× E = −∂B
∂t

(Faraday’s law) (1.6)

∇×H =
∂D

∂t
+ j (Ampère’s law with Maxwell’s correction) (1.7)

∇ ·D = ρ (Gauss’s law for the electric field) (1.8)

∇ ·B = 0 (Gauss’s law for the magnetic field) (1.9)

The integral forms of these equations are obtained by a volume integral,
followed by a reduction to surface equations by Stokes’s theorem for (1.6),
(1.7) and the divergence (Gauss’s) theorem for (1.8), (1.9). The integral
equations are valid when ε and µ are discontinuous, whereas the differential
equations strictly speaking are not.

The total charge in a volume V is
∫
V
ρdV , while the total current through

a surface S is
∫
S
j·dS. Conservation of charge follows by taking the divergence

of (1.7) and using (1.8):
∂ρ

∂t
+∇ · j = 0.

In vacuum, or dry air, the parameters are constant and denoted ε = ε0,
µ = µ0. They have specific numerical values in adequate units.

We now take the viewpoint that (1.6) and (1.7) are evolution equations for
E and H (or D and B) that fully determine the fields when they are solved
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forward (or backward) in time. In that setting, the other two equations (1.8)
and (1.9) are simply constraints on the initial (or final) condition at t = 0. As
previously, we may write Maxwell’s equations in the more concise hyperbolic
form

∂w

∂t
= Lw +

(
−j/ε

0

)
, with w =

(
E
H

)
,

provided

L =

(
0 1

ε
∇×

− 1
µ
∇× 0

)
.

The “physical” inner product that makes L∗ = −L is

〈w,w′〉 =
1

2

∫
(εEE ′ + µHH ′) dx.

The electromagnetic energy E = 〈w,w〉 is conserved when j = 0.
It is the balanced coupling of E and H through (1.6) and (1.7) that creates

wave-like solutions to Maxwell’s equations (and prompts calling the physical
phenomenon electromagnetism rather than just electricity and magnetism.)
Combining both equations, we obtain

∂2E

∂t2
= −1

ε
∇× (

1

µ
∇× E),

∂2H

∂t2
= − 1

µ
∇× (

1

ε
∇×H).

These wave equations may be stand-alone but E and H are still subject to
essential couplings.

A bit of algebra4 reveals the more familiar form

∆E − εµ∂
2E

∂t2
+
∇µ
µ
× (∇× E) +∇(E · ∇ε

ε
) = 0.

We now see that in a uniform medium, ε and µ are constant and the last two
terms drop, revealing a wave equation with speed

c =
1
√
εµ
.

4Using the relations ∇ × ∇ × F = ∇(∇ · F ) − ∆F again, as well as ∇ · (F × G) =
G · (∇× F )− F · (∇×G).
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The speed of light is c0 = 1/
√
ε0µ0. Even when ε and µ vary in x, the last two

terms are kinematically much less important than the first two because they
involve lower-order derivatives of E. They would not, for instance, change
the path of the “light rays”, a concept that we’ll make clear later.

For reference, we now list the jump conditions that the electric and mag-
netic fields obey at a dielectric interface. These relations can be obtained
from the integral form of Maxwell’s equations, posed over a thin volume
straddling the interface. Let n be the vector normal to a dielectric interface.

n× E1 = n× E2 (continuous tangential components)

n×H1 = n×H2 + jS

n ·D1 = n ·D2 + ρS

n ·H1 = n ·H2 (continuous normal component)

We have used jS and ρS for surface currents and surface charges respectively.
If the two dielectrics correspond to finite parameters ε1, ε2 and µ1, µ2, then
these currents are zero. If material 2 is a perfect electric conductor however,
then these currents are not zero, but the fields E2, H2, D2 and H2 are zero.
This results in the conditions n × E = 0 (E perpendicular to the interface)
and n × H = 0 (H parallel to the interface) in the vicinity of a perfect
conductor.

Materials conducting current are best described by a complex electric
permittivity ε = ε′ + iσ/ω, where σ is called the conductivity. All these
quantities could be frequency-dependent. It is the ratio σ/ε′ that tends to
infinity when the conductor is “perfect”. Materials for which ε is real are
called “perfect dielectrics”: no conduction occurs and the material behaves
like a capacitor. We will only consider perfect dielectrics in this class. When
conduction is present, loss is also present, and electromagnetic waves tend
to be inhibited. Notice that the imaginary part of the permittivity is σ/ω,
and not just σ, because we want Ampère’s law to reduce to j = σE (the
differential version of Ohm’s law) in the time-harmonic case and when B = 0.

1.4 Special solutions

1.4.1 Plane waves, dispersion relations

In this section we study special solutions of wave equations that depend on x
like eikx. These solutions are obtained if we assume that the time dependence
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is harmonic, namely if the unknown is w(x, t), then we assume ($)

w(x, t) = e−iωtsfω(x), ω ∈ R.

Choosing e+iωt instead makes no difference down the road. Under the time-
harmonic assumption, the evolution problem ∂w

∂t
= Lw becomes an eigenvalue

problem:
−iωfω = Lfω.

Consider the following examples

• The one-way, one-dimensional wave equation

∂w

∂t
+ c

∂w

∂x
= 0, x ∈ R.

Time harmonic solutions obey

i
ω

c
fω = f ′ω, x ∈ R.

The solution to this equation is

fω(x) = eikx, k =
ω

c
∈ R.

Evanescent waves corresponding to decaying exponentials in x and t
are also solutions over a half-line, say, but they are ruled out by our
assumption ($) that ω ∈ R.

While ω is the angular frequency (equal to 2π/T where T is the period),
k is called the wave number (equal to 2π/λ where λ is the wavelength.)
It is like a ”spatial frequency”, though it is prudent to reserve the word
frequency for the variable dual to time. The quantity measured in
Hertz (1/s) and also called frequency is ν = ω/(2π).

The full solution then takes the form

w(x, t) = ei(kx−ωt) = eik(x−ct),

manifestly a right-going wave at speed c. If the equation had been
∂w
∂t
− c∂w

∂x
= 0 instead, the wave would have been left-going: w(x, t) =

eik(x+ct).

• The n-dimensional acoustic wave equation
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1.4.2 Traveling waves, characteristic equations

1D, one-way
1D, two-way
1D, two-way variable medium (homework)
nD, charact eq

1.4.3 Spherical waves, Green’s functions

1.4.4 Reflected waves

Impedance jump
nD version, angle of incidence

1.4.5 The Helmholtz equation

Green’s function for Helmholtz
Sommerfeld RBC

1.5 Exercises

1. Continue the reasoning in section 1.1 with the entropy to justify the
equations of variable-density acoustics. Conservation of entropy reads
∂s
∂t

+ v · ∇s = 0.

2. First show that
∫
∇f · g = −

∫
f∇ · g, when f and g are smooth and

decay fast at infinity, by invoking the divergence theorem. Second,
use this result to show that 〈Lw,w′〉 = 〈w,L∗w′〉 for variable-density
acoustics (section 1.1).

3. Show that 〈Lw,w′〉 = 〈w,L∗w′〉 for elastic waves.
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Chapter 2

Scattering series
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Chapter 3

Adjoint-state methods
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Chapter 4

Synthetic-aperture radar
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Chapter 5

Computerized tomography
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Chapter 6

Seismic imaging
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Chapter 7

Optimization
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