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Preface

In this text we use the symbol ($) to draw attention every time a physical
assumption or simplification is made.






Chapter 1

Wave equations

1.1 Acoustic waves

Acoustic waves are propagating pressure disturbances in a gas or liquid. With
p(z,t) the pressure fluctuation (a time-dependent scalar field) and v(z,t) the
particle velocity (a time-dependent vector field), the acoustic wave equations

read
ov B i

— = 1.1
0
a—]t) = —/‘iov - V. (12)

The two quantities py and k¢ are the mass density and the bulk modulus,
respectively. They are linked to the wave speed ¢ through kg = poc?. Initial
conditions on p and v must be supplied.

Let us now explain how these equations are obtained from a lineariza-
tion of Euler’s gas dynamics equations in a uniform background medium
($). Consider the mass density p as a scalar field. In the inviscid case ($),
conservation of momentum and mass respectively read

v dp
— +v-Vv)=—-Vp, — + V- (pv) =0.
(5 ) p 5 (pv)
An additional equation, called constitutive relation, must be added to close
the system. It typically relates the pressure and the density in an algebraic
way, and encodes a thermodynamic assumption about compression and dila-
tion. For instance if the gas is assumed to be ideal, and if the compression-
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dilation process occurring in the wave is adiabatic reversible (no heat trans-
fer), then p ~ p7, v = 1.4, where ~ indicates equality up to a dimensional
constant. More generally, assume for the moment that the constitutive rela-
tion takes the form

p=f(p)

for some scalar function f, which we assume differentiable and strictly in-
creasing (f'(p) > 0 for all p > 0).
Consider small disturbances off of an equilibrium state:

P = po + p1, p = po+p1, v = vy + V1.

In what follows, neglect quadratic quantities of py, p1,v;. Consider a medium
at rest ($): po, po independent of ¢, and vy = 0. After some algebraic simpli-
fication the conservation of momentum becomes

81}1

pOE = —Vpy — Vp1.

To zero-th order (i.e., at equilibrium, p; = p; = v; = 0,) we have
Vpo =0 = po constant in x.

To first order, we get

which is exactly (1.1) after renaming v; — v, p; — p. The constitutive
relation must hold at equilibrium, hence py constant in x implies that pg is
also constant in = (uniform). Conservation of mass becomes

8p1
—— V-v =0.
BN +poV -1
Differentiate the constitutive relation to obtain p; = f'(po)p1. Call f'(po) =

c?, a number that we assume positive. Then we can eliminate p; to get

0
% + poc?V - v = 0.

This is exactly (1.2) with ko = poc?.
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Conveniently, the equations for acoustic waves in a variable medium po(x),
Ko(x) are obvious modifications of (1.1), (1.2):

v 1

5= —MVp, (1.3)
dp
5 = —Ko(z)V - 0. (1.4)

A different argument is needed to justify these equations, however. The
previous reasoning does not leave room for variable py(z) or ko(z). Instead,
it is necessary to introduce a more realistic constitutive relation

p= f(p7s)>

where s is the entropy. An additional equation for conservation of entropy
needs to be considered. The new constitutive relation allows py and sg to be
functions of z in tandem, although py is still (necessarily) uniform in x. The
reasoning leading to (1.3), (1.4) is the subject of an exercise in section 1.4.
Acoustic waves can take the form of a first-order system of equations, or
else a second-order scalar equation. Combining (1.3), (1.4), we get
2 1
OL @)V

Initial conditions on both p and dp/dt must be supplied. This equation may
come with a right-hand side f(z,¢) that indicates forcing. When py and kg
are constant, the scalar wave equation reduces to

o2
gr_ cg Ap.

Waves governed by (1.3), (1.4) belong in the category of hyperbolic waves
because they obey conservation of energy. Define

v 0 —1lvy
= = PO
=) (e )

Then the acoustic system simply reads
ow
ot

L is called the generator of the evolution.

= Lw.
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Definition 1. The system %—1: = Lw 1s said to be hyperbolic if L is a matriz
of first-order differential operators, and there exists an inner product {(w,w")
with respect to which L* = —L, i.e., L is anti-self-adjoint.

An adjoint operator such as L* is defined through the equation®
(Lw,w") = (w, L*w"), for all w, w’.

For instance, in the case of the acoustic system, the proper notion of inner
product is (the factor 1/2 is optional)

1 |
(w,w') = 5/(P0v '+ —pp') dr.
Ko

It is an exercise in section 1.4 to show that (Lw,w’) = (w, L*w') for that
inner product, for all w, w’.

Theorem 1. [ %—1;’ = Lw is a hyperbolic system, then E = (w,w) is con-
served in time.

Proof.
d ow ow
£<w>w> = <E>w> + <w’ E>
= 2% )
=2 (Lw,w)
=2 (w, L*w)
=2 (w, (—L)w)
—2 (Lw,w).

A quantity is equal to minus itself if and only if it is zero. O]

In the case of acoustic waves,

1 2
P [+ Py

!The existence of L* can be traced back to the Riesz representation theorem once
(Lw,w") is shown to be a continuous functional of w in some adequate Hilbert space
norm.
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which can be understood as kinetic plus potential energy. We now see that
the factor 1/2 was chosen to be consistent with the physicists’ convention for
energy.

For reference, common boundary conditions for acoustic waves include

e Sound soft boundary condition: Dirichlet for the pressure, p = 0.

Op

e Sound-hard boundary condition: Neumann for the pressure, 5= = 0, or

equivalently v - n = 0.

Another important physical quantity is related to acoustic waves: the
acoustic impedance Z = /porg. We will see later that impedance jumps
determine reflection and transmission coefficients at medium discontinuities.

1.2 Elastic waves

Elastic waves are propagating pressure disturbances in solids. The interesting
physical variables are

e The displacement u(x,t), a time-dependent vector field. In terms of w,
. . . 9
the particle velocity is v = 5.
e The strain tensor

1
€= i(Vu + (Vu)"),
a symmetric time-dependent tensor field.
e The stress tensor o, also a symmetric time-dependent tensor field.

For elastic waves, the density p is very often assumed independent of ¢ along
particle trajectories, namely po(x,0) = po(z + u(z,t),t).
The equation of elastic waves in an isotropic medium reads

0*u
P or
where p, A, and p may possibly depend on .

To justify this equation, start by considering the equation of conservation
of momentum (“F = ma"),

= VAV -u)+ V- (u(Vu+ (Vu)T)). (1.5)

ov

pazv'aa
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possibly with an additional term f(x,t) modeling external forces. The nota-
y %UTZ:' Stress and
strain are linked by a constitutive relation called Hooke’s law,

tion V- indicates tensor divergence, namely (V -o0); = >

o=0C":¢,

where C' is the 4-index elastic tensor. In three spatial dimensions, C' has
81 components. The colon indicates tensor contraction, so that (C : €);; =

ZM Cijkew-
These equations form a closed system when they are complemented by
Ode 1
—==(V O
= (Vo (Vo))

which holds by definition of e.
At this point we can check that the first-order system for v and e defined
by the equations above is hyperbolic. Define

(v . 0 L2
O ]

1 1
le = §(VU + (V'U)T), L2€ = p—V . (C . 6).
0

Then, as previously, %—;“ = Lw. An exercise in section 1.4 asks to show that
the matrix operator L is anti-selfadjoint with respect to the inner product

with

1
(w,w')zﬁ/(pv-v’~l—e:0:e) d.

The corresponding conserved elastic energy is E = (w, w).
[sotropic elasticity is obtained where C' takes a special form with 2 degrees
of freedom rather than 81, namely

Cijke = NijOn + 1(0iedk + Oirdje).

We are not delving into the justification of this equation. The two elastic
parameters A and p are also called Lamé parameters:

e )\ corresponds to longitudinal waves, also known as compressional, pres-
sure waves (P).
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e 1 corresponds to transverse waves, also known as shear waves (S).

Originally, the denominations P and S come from “primary” and “secondary”,
as P waves tend to propagate faster, hence arrive earlier, than S waves.

With this parametrization of C it is easy to check that the elastic system
reduces to the single equation (1.5). In index notation, it reads

(92@61'
P o2

= 0;(A9;u;) + 9;(u(Diu; + dju;)).
For reference, the hyperbolic propagator Ly reduces to

Loe = 1(V()\tre)—i—QV'(,ue)), trezzﬁm
p

i
and the energy inner product is

1
(w,w) = 3 /(pv v 2utr(eTe) + Atre)(tre)) da.
The elastic wave equation looks like an acoustic wave equation with “2
terms, hence 2 waves”. To make this observation more precise, assume that
A and p are constant ($). Use some vector identities? to reduce (1.5) to

2
D= A+ w)V(V ) + pAa,

P or
= (A +2u)V(V-u) —puV x V X u.

Perform the Helmholtz (a.k.a. Hodge) decomposition of u in terms of poten-
tials ¢ and :
u=Vo+V x1,

where ¢ is a scalar field and 9 is a vector field®. These two potentials are
determined up to a gauge choice, namely

¢=0+C, ' =0+Vf

2In this section, we make use of VX V x u = V(V -u) — Au, V-V x ¢ = 0, and
V x Vi = 0.

3Normally the Helmholtz decomposition comes with a third term A which obeys Ah =
0, i.e., h is harmonic, but under suitable assumptions of decay at infinity the only solution
to Ah=01is h =0.
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Choose f such that v’ has zero divergence:
V=0 = Af=-V-.

This is a well-posed Poisson equation for f. With this choice of ¢, it holds
that

V.-u=A0, Vxu=VxVxu=—-Ay.

The elastic wave equation can then be rewritten in terms of ¢, ¢ as

o
P o

2
\Y p%—(A—l—Qu)Aqﬁ} +V x [

— ,qu} =0.
Take the gradient of this equation to conclude that (with a suitable decay
condition at infinity)

0% .
P~ (A4 21)A¢p = harmonic = 0.
Now that the first term is zero, we get (with a suitable decay condition at
infinity)
2
P or
Hence each potential ¢ and 1 solve their own scalar wave equation: one for
the longitudinal waves (¢) and one for the transverse waves (¢). They obey
a superposition principle. The two corresponding wave speeds are

[A+ 20 [ 1
Cp = 5 Cg = —.
Po Po

In the limit © — 0, we see that only the longitudinal wave remains, and
A reduces to the bulk modulus. In all cases, since A > 0 we always have
cp > V/2cg: the P waves are indeed always faster (by a factor at least \/5)
than the S waves.

The assumption that A and p are constant is a very strong one: there is
a lot of physics in the coupling of ¢ and 1 that the reasoning above does not
capture. Most important is mode conversion as a result of wave reflection at
discontinuity interfaces of A\(x) and/or p(z).

— pA1) = V(something) = 0.
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1.3 Electromagnetic waves

1.4 Exercises

1. Continue the reasoning in section 1.1 with the entropy to justify the
equations of variable-density acoustics. Conservation of entropy reads
% +v-Vs=0.

2. First show that [V f-g = [ fV-g, when f and g are smooth and decay
fast at infinity, by invoking the divergence theorem. Second, use this
result to show that (Lw,w’) = (w, L*w’) for variable-density acoustics
(section 1.1).

3. Show that (Lw,w’) = (w, L*w') for elastic waves.
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Chapter 2

Scattering series
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CHAPTER 2. SCATTERING SERIES



Chapter 3

Adjoint-state methods
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CHAPTER 3. ADJOINT-STATE METHODS



Chapter 4

Synthetic-aperture radar
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CHAPTER 4. SYNTHETIC-APERTURE RADAR



Chapter 5

Computerized tomography
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CHAPTER 5. COMPUTERIZED TOMOGRAPHY



Chapter 6

Seismic imaging
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CHAPTER 6. SEISMIC IMAGING



Chapter 7

Optimization
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