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Preface

In this text we use the symbol ($) to draw attention every time a physical
assumption or simplification is made.
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Chapter 1

Wave equations

1.1 Acoustic waves

Acoustic waves are propagating pressure disturbances in a gas or liquid. With
p(x, t) the pressure fluctuation (a time-dependent scalar field) and v(x, t) the
particle velocity (a time-dependent vector field), the acoustic wave equations
read

∂v

∂t
= − 1

ρ0

∇p, (1.1)

∂p

∂t
= −κ0∇ · v. (1.2)

The two quantities ρ0 and κ0 are the mass density and the bulk modulus,
respectively. They are linked to the wave speed c through κ0 = ρ0c

2. Initial
conditions on p and v must be supplied.

Let us now explain how these equations are obtained from a lineariza-
tion of Euler’s gas dynamics equations in a uniform background medium
($). Consider the mass density ρ as a scalar field. In the inviscid case ($),
conservation of momentum and mass respectively read

ρ(
∂v

∂t
+ v · ∇v) = −∇p, ∂ρ

∂t
+∇ · (ρv) = 0.

An additional equation, called constitutive relation, must be added to close
the system. It typically relates the pressure and the density in an algebraic
way, and encodes a thermodynamic assumption about compression and dila-
tion. For instance if the gas is assumed to be ideal, and if the compression-
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6 CHAPTER 1. WAVE EQUATIONS

dilation process occurring in the wave is adiabatic reversible (no heat trans-
fer), then p ∼ ργ, γ = 1.4, where ∼ indicates equality up to a dimensional
constant. More generally, assume for the moment that the constitutive rela-
tion takes the form

p = f(ρ)

for some scalar function f , which we assume differentiable and strictly in-
creasing (f ′(ρ) > 0 for all ρ > 0).

Consider small disturbances off of an equilibrium state:

p = p0 + p1, ρ = ρ0 + ρ1, v = v0 + v1.

In what follows, neglect quadratic quantities of p1, ρ1, v1. Consider a medium
at rest ($): p0, ρ0 independent of t, and v0 = 0. After some algebraic simpli-
fication the conservation of momentum becomes

ρ0
∂v1

∂t
= −∇p0 −∇p1.

To zero-th order (i.e., at equilibrium, p1 = ρ1 = v1 = 0,) we have

∇p0 = 0 ⇒ p0 constant in x.

To first order, we get

ρ0
∂v1

∂t
= −∇p1,

which is exactly (1.1) after renaming v1 → v, p1 → p. The constitutive
relation must hold at equilibrium, hence p0 constant in x implies that ρ0 is
also constant in x (uniform). Conservation of mass becomes

∂ρ1

∂t
+ ρ0∇ · v1 = 0.

Differentiate the constitutive relation to obtain p1 = f ′(ρ0)ρ1. Call f ′(ρ0) =
c2, a number that we assume positive. Then we can eliminate ρ1 to get

∂p1

∂t
+ ρ0c

2∇ · v1 = 0.

This is exactly (1.2) with κ0 = ρ0c
2.
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Conveniently, the equations for acoustic waves in a variable medium ρ0(x),
κ0(x) are obvious modifications of (1.1), (1.2):

∂v

∂t
= − 1

ρ0(x)
∇p, (1.3)

∂p

∂t
= −κ0(x)∇ · v. (1.4)

A different argument is needed to justify these equations, however. The
previous reasoning does not leave room for variable ρ0(x) or κ0(x). Instead,
it is necessary to introduce a more realistic constitutive relation

p = f(ρ, s),

where s is the entropy. An additional equation for conservation of entropy
needs to be considered. The new constitutive relation allows ρ0 and s0 to be
functions of x in tandem, although p0 is still (necessarily) uniform in x. The
reasoning leading to (1.3), (1.4) is the subject of an exercise in section 1.4.

Acoustic waves can take the form of a first-order system of equations, or
else a second-order scalar equation. Combining (1.3), (1.4), we get

∂2p

∂t2
= κ0(x)∇ · ( 1

ρ0(x)
∇p).

Initial conditions on both p and ∂p/∂t must be supplied. This equation may
come with a right-hand side f(x, t) that indicates forcing. When ρ0 and κ0

are constant, the scalar wave equation reduces to

∂2p

∂t2
= c20 ∆p.

Waves governed by (1.3), (1.4) belong in the category of hyperbolic waves
because they obey conservation of energy. Define

w =

(
v
p

)
, L =

(
0 − 1

ρ0
∇

−κ0∇· 0

)
.

Then the acoustic system simply reads

∂w

∂t
= Lw.

L is called the generator of the evolution.
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Definition 1. The system ∂w
∂t

= Lw is said to be hyperbolic if L is a matrix
of first-order differential operators, and there exists an inner product 〈w,w′〉
with respect to which L∗ = −L, i.e., L is anti-self-adjoint.

An adjoint operator such as L∗ is defined through the equation1

〈Lw,w′〉 = 〈w,L∗w′〉, for all w,w′.

For instance, in the case of the acoustic system, the proper notion of inner
product is (the factor 1/2 is optional)

〈w,w′〉 =
1

2

∫
(ρ0v · v′ +

1

κ0

pp′) dx.

It is an exercise in section 1.4 to show that 〈Lw,w′〉 = 〈w,L∗w′〉 for that
inner product, for all w,w′.

Theorem 1. If ∂w
∂t

= Lw is a hyperbolic system, then E = 〈w,w〉 is con-
served in time.

Proof.

d

dt
〈w,w〉 = 〈∂w

∂t
, w〉+ 〈w, ∂w

∂t
〉

= 2 〈∂w
∂t
, w〉

= 2 〈Lw,w〉
= 2 〈w,L∗w〉
= 2 〈w, (−L)w〉
= −2 〈Lw,w〉.

A quantity is equal to minus itself if and only if it is zero.

In the case of acoustic waves,

E =
1

2

∫
(ρ0v

2 +
p2

κ
) dx,

1The existence of L∗ can be traced back to the Riesz representation theorem once
〈Lw,w′〉 is shown to be a continuous functional of w in some adequate Hilbert space
norm.
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which can be understood as kinetic plus potential energy. We now see that
the factor 1/2 was chosen to be consistent with the physicists’ convention for
energy.

For reference, common boundary conditions for acoustic waves include

• Sound soft boundary condition: Dirichlet for the pressure, p = 0.

• Sound-hard boundary condition: Neumann for the pressure, ∂p
∂n

= 0, or
equivalently v · n = 0.

Another important physical quantity is related to acoustic waves: the
acoustic impedance Z =

√
ρ0κ0. We will see later that impedance jumps

determine reflection and transmission coefficients at medium discontinuities.

1.2 Elastic waves

Elastic waves are propagating pressure disturbances in solids. The interesting
physical variables are

• The displacement u(x, t), a time-dependent vector field. In terms of u,
the particle velocity is v = ∂u

∂t
.

• The strain tensor

ε =
1

2
(∇u+ (∇u)T ),

a symmetric time-dependent tensor field.

• The stress tensor σ, also a symmetric time-dependent tensor field.

For elastic waves, the density ρ is very often assumed independent of t along
particle trajectories, namely ρ0(x, 0) = ρ0(x+ u(x, t), t).

The equation of elastic waves in an isotropic medium reads

ρ
∂2u

∂t2
= ∇(λ∇ · u) +∇ · (µ(∇u+ (∇u)T )). (1.5)

where ρ, λ, and µ may possibly depend on x.
To justify this equation, start by considering the equation of conservation

of momentum (“F = ma”),

ρ
∂v

∂t
= ∇ · σ,
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possibly with an additional term f(x, t) modeling external forces. The nota-

tion ∇· indicates tensor divergence, namely (∇ · σ)i =
∑

j
∂σij

∂xj
. Stress and

strain are linked by a constitutive relation called Hooke’s law,

σ = C : ε,

where C is the 4-index elastic tensor. In three spatial dimensions, C has
81 components. The colon indicates tensor contraction, so that (C : ε)ij =∑

k`Cijk`εk`.
These equations form a closed system when they are complemented by

∂ε

∂t
=

1

2
(∇v + (∇v)T ),

which holds by definition of ε.
At this point we can check that the first-order system for v and ε defined

by the equations above is hyperbolic. Define

w =

(
v
ε

)
, L =

(
0 L2

L1 0

)
,

with

L1v =
1

2
(∇v + (∇v)T ), L2ε =

1

ρ0

∇ · (C : ε).

Then, as previously, ∂w
∂t

= Lw. An exercise in section 1.4 asks to show that
the matrix operator L is anti-selfadjoint with respect to the inner product

〈w,w′〉 =
1

2

∫
(ρv · v′ + ε : C : ε) dx.

The corresponding conserved elastic energy is E = 〈w,w〉.
Isotropic elasticity is obtained where C takes a special form with 2 degrees

of freedom rather than 81, namely

Cijk` = λδijδkl + µ(δi`δjk + δikδj`).

We are not delving into the justification of this equation. The two elastic
parameters λ and µ are also called Lamé parameters:

• λ corresponds to longitudinal waves, also known as compressional, pres-
sure waves (P).
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• µ corresponds to transverse waves, also known as shear waves (S).

Originally, the denominations P and S come from “primary” and “secondary”,
as P waves tend to propagate faster, hence arrive earlier, than S waves.

With this parametrization of C, it is easy to check that the elastic system
reduces to the single equation (1.5). In index notation, it reads

ρ
∂2ui
∂t2

= ∂i(λ∂juj) + ∂j(µ(∂iuj + ∂jui)).

For reference, the hyperbolic propagator L2 reduces to

L2ε =
1

ρ
(∇(λ tr ε) + 2∇ · (µε)), tr ε =

∑
i

εii,

and the energy inner product is

〈w,w〉 =
1

2

∫
(ρv · v′ + 2µtr(εT ε′) + λ(tr ε)(tr ε′)) dx.

The elastic wave equation looks like an acoustic wave equation with “2
terms, hence 2 waves”. To make this observation more precise, assume that
λ and µ are constant ($). Use some vector identities2 to reduce (1.5) to

ρ
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∆u,

= (λ+ 2µ)∇(∇ · u)− µ∇×∇× u.

Perform the Helmholtz (a.k.a. Hodge) decomposition of u in terms of poten-
tials φ and ψ:

u = ∇φ+∇× ψ,

where φ is a scalar field and ψ is a vector field3. These two potentials are
determined up to a gauge choice, namely

φ′ = φ+ C, ψ′ = ψ +∇f.
2In this section, we make use of ∇ × ∇ × u = ∇(∇ · u) − ∆u, ∇ · ∇ × ψ = 0, and

∇×∇ψ = 0.
3Normally the Helmholtz decomposition comes with a third term h which obeys ∆h =

0, i.e., h is harmonic, but under suitable assumptions of decay at infinity the only solution
to ∆h = 0 is h = 0.
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Choose f such that ψ′ has zero divergence:

∇ · ψ′ = 0 ⇒ ∆f = −∇ · ψ.

This is a well-posed Poisson equation for f . With this choice of ψ′, it holds
that

∇ · u = ∆φ, ∇× u = ∇×∇× u = −∆ψ.

The elastic wave equation can then be rewritten in terms of φ, ψ as

∇
[
ρ
∂2φ

∂t2
− (λ+ 2µ)∆φ

]
+∇×

[
ρ
∂2ψ

∂t2
− µ∆ψ

]
= 0.

Take the gradient of this equation to conclude that (with a suitable decay
condition at infinity)

ρ
∂2φ

∂t2
− (λ+ 2µ)∆φ = harmonic = 0.

Now that the first term is zero, we get (with a suitable decay condition at
infinity)

ρ
∂2ψ

∂t2
− µ∆ψ = ∇(something) = 0.

Hence each potential φ and ψ solve their own scalar wave equation: one for
the longitudinal waves (φ) and one for the transverse waves (φ). They obey
a superposition principle. The two corresponding wave speeds are

cP =

√
λ+ 2µ

ρ0

, cS =

√
µ

ρ0

.

In the limit µ → 0, we see that only the longitudinal wave remains, and
λ reduces to the bulk modulus. In all cases, since λ ≥ 0 we always have
cP ≥

√
2cS: the P waves are indeed always faster (by a factor at least

√
2)

than the S waves.

The assumption that λ and µ are constant is a very strong one: there is
a lot of physics in the coupling of φ and ψ that the reasoning above does not
capture. Most important is mode conversion as a result of wave reflection at
discontinuity interfaces of λ(x) and/or µ(x).
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1.3 Electromagnetic waves

1.4 Exercises

1. Continue the reasoning in section 1.1 with the entropy to justify the
equations of variable-density acoustics. Conservation of entropy reads
∂s
∂t

+ v · ∇s = 0.

2. First show that
∫
∇f ·g =

∫
f∇·g, when f and g are smooth and decay

fast at infinity, by invoking the divergence theorem. Second, use this
result to show that 〈Lw,w′〉 = 〈w,L∗w′〉 for variable-density acoustics
(section 1.1).

3. Show that 〈Lw,w′〉 = 〈w,L∗w′〉 for elastic waves.
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Chapter 2

Scattering series
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Chapter 3

Adjoint-state methods
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Chapter 4

Synthetic-aperture radar
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Chapter 5

Computerized tomography
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Chapter 6

Seismic imaging
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Chapter 7

Optimization
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