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Preface

In this text we use the symbol ($) to draw attention every time a physical
assumption or simplification is made.
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Chapter 1

Wave equations

1.1 Physical models

1.1.1 Acoustic waves

Acoustic waves are propagating pressure disturbances in a gas or liquid. With
p(x, t) the pressure fluctuation (a time-dependent scalar field) and v(x, t) the
particle velocity (a time-dependent vector field), the acoustic wave equations
read

∂v

∂t
= − 1

ρ0

∇p, (1.1)

∂p

∂t
= −κ0∇ · v. (1.2)

The two quantities ρ0 and κ0 are the mass density and the bulk modulus,
respectively. They are linked to the wave speed c through κ0 = ρ0c

2. Initial
conditions on p and v must be supplied. A forcing term may be added to
the dynamic balance equation (1.1) when external forces (rather than initial
conditions) create the waves.

Let us now explain how these equations are obtained from a lineariza-
tion of Euler’s gas dynamics equations in a uniform background medium
($). Consider the mass density ρ as a scalar field. In the inviscid case ($),
conservation of momentum and mass respectively read

ρ(
∂v

∂t
+ v · ∇v) = −∇p, ∂ρ

∂t
+∇ · (ρv) = 0.
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An additional equation, called constitutive relation, must be added to close
the system. It typically relates the pressure and the density in an algebraic
way, and encodes a thermodynamic assumption about compression and dila-
tion. For instance if the gas is assumed to be ideal, and if the compression-
dilation process occurring in the wave is adiabatic reversible (no heat trans-
fer), then p ∼ ργ, γ = 1.4, where ∼ indicates equality up to a dimensional
constant. More generally, assume for the moment that the constitutive rela-
tion takes the form

p = f(ρ)

for some scalar function f , which we assume differentiable and strictly in-
creasing (f ′(ρ) > 0 for all ρ > 0).

Consider small disturbances off of an equilibrium state:

p = p0 + p1, ρ = ρ0 + ρ1, v = v0 + v1.

In what follows, neglect quadratic quantities of p1, ρ1, v1. Consider a medium
at rest ($): p0, ρ0 independent of t, and v0 = 0. After some algebraic simpli-
fication the conservation of momentum becomes

ρ0
∂v1

∂t
= −∇p0 −∇p1.

To zero-th order (i.e., at equilibrium, p1 = ρ1 = v1 = 0,) we have

∇p0 = 0 ⇒ p0 constant in x.

To first order, we get

ρ0
∂v1

∂t
= −∇p1,

which is exactly (1.1) after renaming v1 → v, p1 → p. The constitutive
relation must hold at equilibrium, hence p0 constant in x implies that ρ0 is
also constant in x (uniform). Conservation of mass becomes

∂ρ1

∂t
+ ρ0∇ · v1 = 0.

Differentiate the constitutive relation to obtain p1 = f ′(ρ0)ρ1. Call f ′(ρ0) =
c2, a number that we assume positive. Then we can eliminate ρ1 to get

∂p1

∂t
+ ρ0c

2∇ · v1 = 0.
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This is exactly (1.2) with κ0 = ρ0c
2.

Conveniently, the equations for acoustic waves in a variable medium ρ0(x),
κ0(x) are obvious modifications of (1.1), (1.2):

∂v

∂t
= − 1

ρ0(x)
∇p, (1.3)

∂p

∂t
= −κ0(x)∇ · v. (1.4)

A different argument is needed to justify these equations, however. The
previous reasoning does not leave room for variable ρ0(x) or κ0(x). Instead,
it is necessary to introduce a more realistic constitutive relation

p = f(ρ, s),

where s is the entropy. An additional equation for conservation of entropy
needs to be considered. The new constitutive relation allows ρ0 and s0 to be
functions of x in tandem, although p0 is still (necessarily) uniform in x. The
reasoning leading to (1.3), (1.4) is the subject of an exercise in section 1.3.

Acoustic waves can take the form of a first-order system of equations, or
else a second-order scalar equation. Combining (1.3), (1.4), we get

∂2p

∂t2
= κ0(x)∇ · ( 1

ρ0(x)
∇p).

Initial conditions on both p and ∂p/∂t must be supplied. This equation may
come with a right-hand side f(x, t) that indicates forcing. When ρ0 and κ0

are constant, the scalar wave equation reduces to

∂2p

∂t2
= c20 ∆p.

Waves governed by (1.3), (1.4) belong in the category of hyperbolic waves
because they obey conservation of energy. Define

w =

(
v
p

)
, L =

(
0 − 1

ρ0
∇

−κ0∇· 0

)
.

Then the acoustic system simply reads

∂w

∂t
= Lw.

L is called the generator of the evolution.
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Definition 1. The system ∂w
∂t

= Lw is said to be hyperbolic if L is a matrix
of first-order differential operators, and there exists an inner product 〈w,w′〉
with respect to which L∗ = −L, i.e., L is anti-self-adjoint.

An adjoint operator such as L∗ is defined through the equation1

〈Lw,w′〉 = 〈w,L∗w′〉, for all w,w′.

For instance, in the case of the acoustic system, the proper notion of inner
product is (the factor 1/2 is optional)

〈w,w′〉 =
1

2

∫
(ρ0v · v′ +

1

κ0

pp′) dx.

It is an exercise in section 1.3 to show that 〈Lw,w′〉 = 〈w,L∗w′〉 for that
inner product, for all w,w′.

Theorem 1. If ∂w
∂t

= Lw is a hyperbolic system, then E = 〈w,w〉 is con-
served in time.

Proof.

d

dt
〈w,w〉 = 〈∂w

∂t
, w〉+ 〈w, ∂w

∂t
〉

= 2 〈∂w
∂t
, w〉

= 2 〈Lw,w〉
= 2 〈w,L∗w〉
= 2 〈w, (−L)w〉
= −2 〈Lw,w〉.

A quantity is equal to minus itself if and only if it is zero.

In the case of acoustic waves,

E =
1

2

∫
(ρ0v

2 +
p2

κ
) dx,

1The existence of L∗ can be traced back to the Riesz representation theorem once
〈Lw,w′〉 is shown to be a continuous functional of w in some adequate Hilbert space
norm.



1.1. PHYSICAL MODELS 9

which can be understood as kinetic plus potential energy. We now see that
the factor 1/2 was chosen to be consistent with the physicists’ convention for
energy.

In the presence of external forcings the hyperbolic system reads ∂w/∂t =
Lw + f : in that case the rate of change of energy is determined by f .

For reference, common boundary conditions for acoustic waves include

• Sound soft boundary condition: Dirichlet for the pressure, p = 0.

• Sound-hard boundary condition: Neumann for the pressure, ∂p
∂n

= 0, or
equivalently v · n = 0.

Another important physical quantity is related to acoustic waves: the
acoustic impedance Z =

√
ρ0κ0. We will see later that impedance jumps

determine reflection and transmission coefficients at medium discontinuities.

1.1.2 Elastic waves

Elastic waves are propagating pressure disturbances in solids. The interesting
physical variables are

• The displacement u(x, t), a time-dependent vector field. In terms of u,
the particle velocity is v = ∂u

∂t
.

• The strain tensor

ε =
1

2
(∇u+ (∇u)T ),

a symmetric time-dependent tensor field.

• The stress tensor σ, also a symmetric time-dependent tensor field.

For elastic waves, the density ρ is very often assumed independent of t along
particle trajectories, namely ρ0(x, 0) = ρ0(x+ u(x, t), t).

The equation of elastic waves in an isotropic medium (where all the waves
travel at the same speed regardless of the direction in which they propagate)
($) reads

ρ
∂2u

∂t2
= ∇(λ∇ · u) +∇ · (µ(∇u+ (∇u)T )). (1.5)

where ρ, λ, and µ may possibly depend on x. As for acoustic waves, a forcing
term is added to this equation when waves are generated from external forces.
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To justify this equation, start by considering the equation of conservation
of momentum (“F = ma”),

ρ
∂v

∂t
= ∇ · σ,

possibly with an additional term f(x, t) modeling external forces. The nota-

tion ∇· indicates tensor divergence, namely (∇ · σ)i =
∑

j
∂σij
∂xj

. Stress and

strain are linked by a constitutive relation called Hooke’s law,

σ = C : ε,

where C is the 4-index elastic tensor. In three spatial dimensions, C has
81 components. The colon indicates tensor contraction, so that (C : ε)ij =∑

k`Cijk`εk`.
These equations form a closed system when they are complemented by

∂ε

∂t
=

1

2
(∇v + (∇v)T ),

which holds by definition of ε.
At this point we can check that the first-order system for v and ε defined

by the equations above is hyperbolic. Define

w =

(
v
ε

)
, L =

(
0 L2

L1 0

)
,

with

L1v =
1

2
(∇v + (∇v)T ), L2ε =

1

ρ0

∇ · (C : ε).

Then, as previously, ∂w
∂t

= Lw. An exercise in section 1.3 asks to show that
the matrix operator L is anti-selfadjoint with respect to the inner product

〈w,w′〉 =
1

2

∫
(ρv · v′ + ε : C : ε) dx.

The corresponding conserved elastic energy is E = 〈w,w〉.
Isotropic elasticity is obtained where C takes a special form with 2 degrees

of freedom rather than 81, namely

Cijk` = λδijδkl + µ(δi`δjk + δikδj`).

We are not delving into the justification of this equation. The two elastic
parameters λ and µ are also called Lamé parameters:
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• λ corresponds to longitudinal waves, also known as compressional, pres-
sure waves (P).

• µ corresponds to transverse waves, also known as shear waves (S).

Originally, the denominations P and S come from “primary” and “secondary”,
as P waves tend to propagate faster, hence arrive earlier, than S waves.

With this parametrization of C, it is easy to check that the elastic system
reduces to the single equation (1.5). In index notation, it reads

ρ
∂2ui
∂t2

= ∂i(λ∂juj) + ∂j(µ(∂iuj + ∂jui)).

For reference, the hyperbolic propagator L2 reduces to

L2ε =
1

ρ
(∇(λ tr ε) + 2∇ · (µε)), tr ε =

∑
i

εii,

and the energy inner product is

〈w,w′〉 =
1

2

∫
(ρv · v′ + 2µtr(εT ε′) + λ(tr ε)(tr ε′)) dx.

The elastic wave equation looks like an acoustic wave equation with “2
terms, hence 2 waves”. To make this observation more precise, assume that
λ and µ are constant ($). Use some vector identities2 to reduce (1.5) to

ρ
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∆u,

= (λ+ 2µ)∇(∇ · u)− µ∇×∇× u.

Perform the Helmholtz (a.k.a. Hodge) decomposition of u in terms of poten-
tials φ and ψ:

u = ∇φ+∇× ψ,
where φ is a scalar field and ψ is a vector field3. These two potentials are
determined up to a gauge choice, namely

φ′ = φ+ C, ψ′ = ψ +∇f.
2In this section, we make use of ∇ × ∇ × u = ∇(∇ · u) − ∆u, ∇ · ∇ × ψ = 0, and

∇×∇ψ = 0.
3Normally the Helmholtz decomposition comes with a third term h which obeys ∆h =

0, i.e., h is harmonic, but under suitable assumptions of decay at infinity the only solution
to ∆h = 0 is h = 0.
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Choose f such that ψ′ has zero divergence:

∇ · ψ′ = 0 ⇒ ∆f = −∇ · ψ.

This is a well-posed Poisson equation for f . With this choice of ψ′, it holds
that

∇ · u = ∆φ, ∇× u = ∇×∇× u = −∆ψ.

The elastic wave equation can then be rewritten in terms of φ, ψ as

∇
[
ρ
∂2φ

∂t2
− (λ+ 2µ)∆φ

]
+∇×

[
ρ
∂2ψ

∂t2
− µ∆ψ

]
= 0.

Take the gradient of this equation to conclude that (with a suitable decay
condition at infinity)

ρ
∂2φ

∂t2
− (λ+ 2µ)∆φ = harmonic = 0.

Now that the first term is zero, we get (with a suitable decay condition at
infinity)

ρ
∂2ψ

∂t2
− µ∆ψ = ∇(something) = 0.

Hence each potential φ and ψ solve their own scalar wave equation: one for
the longitudinal waves (φ) and one for the transverse waves (φ). They obey
a superposition principle. The two corresponding wave speeds are

cP =

√
λ+ 2µ

ρ0

, cS =

√
µ

ρ0

.

In the limit µ → 0, we see that only the longitudinal wave remains, and
λ reduces to the bulk modulus. In all cases, since λ ≥ 0 we always have
cP ≥

√
2cS: the P waves are indeed always faster (by a factor at least

√
2)

than the S waves.

The assumption that λ and µ are constant is a very strong one: there is
a lot of physics in the coupling of φ and ψ that the reasoning above does not
capture. Most important is mode conversion as a result of wave reflection at
discontinuity interfaces of λ(x) and/or µ(x).
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1.1.3 Electromagnetic waves

The quantities of interest for electromagnetic waves are:

• Physical fields: the electric field E, and the magnetic field H,

• Medium parameters: the electric permittivity ε and the magnetic per-
meability µ,

• Forcings: electric currents j and electric charges ρ.

The electric displacement field D and the magnetic induction field B are
also considered. In the linearized regime ($), they are assumed to be linked
to the usual fields E and H by the constitutive relations

D = εE, B = µH.

Maxwell’s equations in a medium with possible space-varying parameters
ε and µ read

∇× E = −∂B
∂t

(Faraday’s law) (1.6)

∇×H =
∂D

∂t
+ j (Ampère’s law with Maxwell’s correction) (1.7)

∇ ·D = ρ (Gauss’s law for the electric field) (1.8)

∇ ·B = 0 (Gauss’s law for the magnetic field) (1.9)

The integral forms of these equations are obtained by a volume integral,
followed by a reduction to surface equations by Stokes’s theorem for (1.6),
(1.7) and the divergence (Gauss’s) theorem for (1.8), (1.9). The integral
equations are valid when ε and µ are discontinuous, whereas the differential
equations strictly speaking are not.

The total charge in a volume V is
∫
V
ρdV , while the total current through

a surface S is
∫
S
j·dS. Conservation of charge follows by taking the divergence

of (1.7) and using (1.8):
∂ρ

∂t
+∇ · j = 0.

In vacuum, or dry air, the parameters are constant and denoted ε = ε0,
µ = µ0. They have specific numerical values in adequate units.

We now take the viewpoint that (1.6) and (1.7) are evolution equations for
E and H (or D and B) that fully determine the fields when they are solved
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forward (or backward) in time. In that setting, the other two equations (1.8)
and (1.9) are simply constraints on the initial (or final) condition at t = 0. As
previously, we may write Maxwell’s equations in the more concise hyperbolic
form

∂w

∂t
= Lw +

(
−j/ε

0

)
, with w =

(
E
H

)
,

provided

L =

(
0 1

ε
∇×

− 1
µ
∇× 0

)
.

The “physical” inner product that makes L∗ = −L is

〈w,w′〉 =
1

2

∫
(εEE ′ + µHH ′) dx.

The electromagnetic energy E = 〈w,w〉 is conserved when j = 0.
It is the balanced coupling of E and H through (1.6) and (1.7) that creates

wave-like solutions to Maxwell’s equations (and prompts calling the physical
phenomenon electromagnetism rather than just electricity and magnetism.)
Combining both equations, we obtain

∂2E

∂t2
= −1

ε
∇× (

1

µ
∇× E),

∂2H

∂t2
= − 1

µ
∇× (

1

ε
∇×H).

These wave equations may be stand-alone but E and H are still subject to
essential couplings.

A bit of algebra4 reveals the more familiar form

∆E − εµ∂
2E

∂t2
+
∇µ
µ
× (∇× E) +∇(E · ∇ε

ε
) = 0.

We now see that in a uniform medium, ε and µ are constant and the last two
terms drop, revealing a wave equation with speed

c =
1
√
εµ
.

4Using the relations ∇ × ∇ × F = ∇(∇ · F ) − ∆F again, as well as ∇ · (F × G) =
G · (∇× F )− F · (∇×G).
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The speed of light is c0 = 1/
√
ε0µ0. Even when ε and µ vary in x, the last two

terms are kinematically much less important than the first two because they
involve lower-order derivatives of E. They would not, for instance, change
the path of the “light rays”, a concept that we’ll make clear later.

For reference, we now list the jump conditions that the electric and mag-
netic fields obey at a dielectric interface. These relations can be obtained
from the integral form of Maxwell’s equations, posed over a thin volume
straddling the interface. Let n be the vector normal to a dielectric interface.

n× E1 = n× E2 (continuous tangential components)

n×H1 = n×H2 + jS

n ·D1 = n ·D2 + ρS

n ·H1 = n ·H2 (continuous normal component)

We have used jS and ρS for surface currents and surface charges respectively.
If the two dielectrics correspond to finite parameters ε1, ε2 and µ1, µ2, then
these currents are zero. If material 2 is a perfect electric conductor however,
then these currents are not zero, but the fields E2, H2, D2 and H2 are zero.
This results in the conditions n × E = 0 (E perpendicular to the interface)
and n × H = 0 (H parallel to the interface) in the vicinity of a perfect
conductor.

Materials conducting current are best described by a complex electric
permittivity ε = ε′ + iσ/ω, where σ is called the conductivity. All these
quantities could be frequency-dependent. It is the ratio σ/ε′ that tends to
infinity when the conductor is “perfect”. Materials for which ε is real are
called “perfect dielectrics”: no conduction occurs and the material behaves
like a capacitor. We will only consider perfect dielectrics in this class. When
conduction is present, loss is also present, and electromagnetic waves tend
to be inhibited. Notice that the imaginary part of the permittivity is σ/ω,
and not just σ, because we want Ampère’s law to reduce to j = σE (the
differential version of Ohm’s law) in the time-harmonic case and when B = 0.

1.2 Special solutions

1.2.1 Plane waves, dispersion relations

In this section we study special solutions of wave equations that depend on x
like eikx. These solutions are obtained if we assume that the time dependence
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is harmonic, namely if the unknown is w(x, t), then we assume ($)

w(x, t) = e−iωtfω(x), ω ∈ R.

The number ω is called angular frequency, or simply frequency. Choosing
e+iωt instead makes no difference down the road. Under the time-harmonic
assumption, the evolution problem ∂w

∂t
= Lw becomes an eigenvalue problem:

−iωfω = Lfω.

Not all solutions are time-harmonic, but all solutions are superpositions of
harmonic waves at different frequencies ω. Indeed, if w(x, t) is a solution,
consider it as the inverse Fourier transform of some ŵ(x, ω):

w(x, t) =
1

2π

∫
e−iωtŵ(x, ω)dω.

Then each ŵ(x, ω) is what we called fω(x) above. Hence there is no loss of
generality in considering time-harmonic solutions.

Consider the following examples.

• The one-way, one-dimensional wave equation

∂u

∂t
+ c

∂u

∂x
= 0, x ∈ R.

Time harmonic solutions u(x, t) = e−iωtfω(x) obey

i
ω

c
fω = f ′ω, x ∈ R.

The solution to this equation is

fω(x) = eikx, k =
ω

c
∈ R.

Evanescent waves corresponding to decaying exponentials in x and t
are also solutions over a half-line, say, but they are ruled out by our
assumption ($) that ω ∈ R.

While ω is the angular frequency (equal to 2π/T where T is the period),
k is called the wave number (equal to 2π/λ where λ is the wavelength.)
It is like a ”spatial frequency”, though it is prudent to reserve the word



1.2. SPECIAL SOLUTIONS 17

frequency for the variable dual to time. The quantity measured in
Hertz [1/s] and also called frequency is ν = ω/(2π).

The full solution then takes the form

u(x, t) = ei(kx−ωt) = eik(x−ct),

manifestly a right-going wave at speed c. If the equation had been
∂u
∂t
− c∂u

∂x
= 0 instead, the wave would have been left-going: u(x, t) =

eik(x+ct).

• The n-dimensional wave equation in a uniform medium,

∂2u

∂t2
= c2∆u, x ∈ Rn.

When u(x, t) = e−iωtfω(x), the eigenvalue problem is called the (homo-
geneous) Helmholtz equation. It is

−ω2fω(x) = ∆fω(x), x ∈ Rn. (1.10)

Again, plane waves are solutions to this equation:

fω(x) = eik·x,

provided ω2 = |k|2c2, i.e., ω = ±|k|c. Hence fω is a function that
oscillates in the direction parallel to k. The full solution is

u(x, t) = ei(k·x−ωt),

which are plane waves traveling with speed c, along the direction k.
We call k the wave vector and |k| the wave number. The wavelength
is still 2π/|k|. The relation ω2 = |k|2c2 linking ω and k, and encoding
the fact that the waves travel with velocity c, is called the dispersion
relation of the wave equation.

Note that eik·x are not the only (non-growing) solutions of the Helmholtz
equation in free space; so is any linear combination of eik·x that share
the same wave vector |k|. This superposition can be a discrete sum or
a continuous integral. An exercise in section 1.3 deals with the con-
tinuous superposition with constant weight of all the plane waves with
same wave vector |k|.
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Consider now the general case of a hyperbolic system ∂w
∂t

= Lw, with
L∗ = −L. The eigenvalue problem is −iωfω = Lfω. It is fine to assume ω
real: since L is antiselfadjoint, iL is selfadjoint (Hermitian), hence all the
eigenvalues of L are purely imaginary. This is sometimes how hyperbolic
systems are defined — by assuming that the eigenvalues of the generator L
are purely imaginary.

We still look for eigenfunctions with a eik·x dependence, but since w and
fω may now be vectors with m components, we should make sure to consider

fω(x) = eik·xr, r ∈ Rm.

However, such fω cannot in general expected to be eigenvectors of L. It
is only when the equation is translation-invariant that they will be. This
means that the generator L is a matrix of differential operators with constant
coefficients – no variability as a function of x is allowed. In this translation-
invariant setting, and only in this setting, L is written as a multiplication
by some matrix P (k) in the Fourier domain. Say that f has m components
(f1, . . . fm); then

Lf(x) =
1

(2π)n

∫
eik·xP (k)f̂(k)dk,

where P (k) is anm-by-mmatrix for each k. Here P (k) is called the dispersion
matrix. We operators such as L diagonal in the Fourier domain, with respect
to the k variable, because they act like a “diagonal matrix” on vectors of the
continuous index k — although for each k the small matrix P (k) is not in
general diagonal5. In pure math, P (k) is called the multiplier, and L is said
to be a multiplication operator in the Fourier domain.

For illustration, let us specialize our equations to the 2D acoustic system
with ρ0 = κ0 = c = 1, where

w =

(
v
p

)
, L =


0 0 − ∂

∂x1

0 0 − ∂
∂x2

− ∂
∂x1

− ∂
∂x2

0

 .

5Non-diagonal, translation-variant operators would require yet another integral over a
k′ variable, and would read Lf(x) = 1

(2π)n

∫ ∫
eik·xQ(k, k′)f̂(k′)dk′, for some more com-

plicated object Q(k, k′) ∈ Rm×m. The name “diagonal” comes from the fact that Q(k, k′)
simplifies as P (k)δ(k−k′) in the translation-invariant case. You can think of P (k)δ(k−k′)
as the continuous analogue of diδij : it is a “diagonal continuous matrix” as a function of
k (continuous row index) and k′ (continuous column index).
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It can be readily checked that

P (k) =


0 0 −ik1

0 0 −ik2

−ik1 −ik2 0

 ,

from which it is apparent that P (k) is a skew-Hermitian matrix: P ∗(k) =
−P (k).

We can now study the conditions under which −iωfω = Lfω: we compute
(recall that r is a fixed vector)

L(eik·xr) =
1

(2π)n

∫
eik
′·xP (k′)[̂eik·xr](k′)dk′,

=
1

(2π)n

∫
eik
′·xP (k′)(2π)nδ(k − k′)rdk′, = eik·xP (k)r.

In order for this quantity to equal −iωeik·xr for all x, we require (at x = 0)

P (k) r = −iω r.

This is just the condition that −iω is an eigenvalue of P (k), with eigenvector
r. We should expect both ω and r to depend on k. For instance, in the 2D
acoustic case, the eigen-decomposition of P (k) is

λ0(k) = −iω0(k) = 0, r0(k) =

 k2

−k1

0


and

λ±(k) = −iω±(k) = −i|k|, r±(k) =

±k1/|k|
±k2/|k|
|k|

 .

Only the last two eigenvalues correspond to physical waves: they lead to the
usual dispersion relations ω(k) = ±|k| in the case c = 1. Recall that the
first two components of r are particle velocity components: the form of the
eigenvector indicates that those components are aligned with the direction k
of the wave, i.e., acoustic waves can only be longitudinal.

The general definition of dispersion relation follows this line of reason-
ing: there exists one dispersion relation for each eigenvalue λj of P (k), and
−iωj(k) = λj(k); for short

det [iωI + P (k)] = 0.
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1.2.2 Traveling waves, characteristic equations

We now consider a few examples that build up to the notion of characteristic
curve/surface.

• Let us give a complete solution to the one-way wave equation of one
space variable in a uniform medium:

∂u

∂t
+ c

∂u

∂x
= 0, u(x, 0) = u0(x). (1.11)

The study of plane wave solutions in the previous section suggests that
the variable x − ct may play a role. Let us perform the change of
variables

ξ = x− ct, η = x+ ct.

It inverts as

x =
ξ + η

2
, t =

η − ξ
2c

.

By the chain rule, e.g.,

∂

∂ξ
=
∂x

∂ξ

∂

∂x
+
∂t

∂ξ

∂

∂t
,

we get

−2c
∂

∂ξ
=

∂

∂t
− c ∂

∂x
, 2c

∂

∂η
=

∂

∂t
+ c

∂

∂x
.

With U(ξ, η) = u(x, t), the wave equation simply becomes

∂U

∂η
= 0,

whose general solution is U(ξ, η) = F (ξ) for some differentiable function
F . Hence u(x, t) = F (x− ct). In view of the initial condition, this is

u(x, t) = u0(x− ct).

The solutions to (1.11) are all the right-going waves with speed c, and
nothing else.

The wave propagate along the lines ξ(x, t) = x−ct =const. in the (x, t)
plane. For this reason, we call ξ the characteristic coordinate, and we
call the lines ξ(x, t) = const. characteristic curves.
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Notice that imposing a boundary condition u(0, t) = v0(t) rather than
an initial condition is also fine, and would result in a solution u(x, t) =
v0(t − x/c). Other choices are possible; they are called Cauchy data.
However, a problem occurs if we try to specify Cauchy data along a
characteristic curve ξ = constant, as v0(η):

1. this choice is not in general compatible with the property that the
solution should be constant along the characteristic curves; and
furthermore

2. it fails to determine the solution away from the characteristic
curve.

In other words, there is a problem with both existence and unique-
ness when we try to prescribe Cauchy data on a characteristic curve.
This fact will be used in the sequel to define these curves when their
geometric intuition becomes less clear.

• Using similar ideas, let us describe the full solution of the (two-way)
wave equation in one space dimension,

∂2u

∂t2
− c2∂

2u

∂x2
= 0, u(x, 0) = u0(x),

∂u

∂t
(x, 0) = u1(x).

The same change of variables leads to the equation

∂U

∂ξ∂η
= 0,

which is solved via

∂U

∂η
(ξ, η) = f(ξ), U(ξ, η) =

∫ ξ

f(ξ′)dξ′ +G(η) = F (ξ) +G(η).

The resulting general solution is a superposition of a left-going wave
and a right-going wave:

u(x, t) = F (x− ct) +G(x+ ct).

Matching the initial conditions yields d’Alembert’s formula (1746):

u(x, t) =
1

2
(u0(x− ct) + u0(x+ ct)) +

1

2c

∫ x+ct

x−ct
u1(y)dy.
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It is the complete solution to the 1D wave equation in a uniform wave
speed c. Notice that we now have two families of criss-crossing charac-
eristic curves, given by ξ(x, t) = const. and η(x, t) = const. Cauchy
data cannot be prescribed on either type of characteristics.

• Consider now the wave equation in a variable medium c(x) (technically,
acoustic waves on an infinite string with variable bulk modulus):

∂2u

∂t2
− c2(x)

∂2u

∂x2
= 0, u(x, 0) = u0(x),

∂u

∂t
(x, 0) = u1(x).

We will no longer be able to give an explicit solution to this problem,
but the notion of characteristic curve remains very relevant. Consider
an as-yet-undetermined change of coordinates (x, t) 7→ (ξ, η), which
generically changes the wave equation into

α(x)
∂2U

∂ξ2
+

∂2U

∂ξ∂η
+ β(x)

∂2U

∂η2
+

[
p(x)

∂U

∂ξ
+ q(x)

∂U

∂η
+ r(x)U

]
= 0,

with

α(x) =

(
∂ξ

∂t

)2

− c2(x)

(
∂ξ

∂x

)2

,

β(x) =

(
∂η

∂t

)2

− c2(x)

(
∂η

∂x

)2

.

The lower-order terms in the square brackets are kinematically less
important than the first three terms6. We wish to define characteristic
coordinates as those along which

U(ξ, η) ' F (ξ) +G(η),

i.e., “directions in which the waves travel” in space-time. It is in general
impossible to turn this approximate equality into an actual equality
(because of the terms in the square brackets), but it is certainly possible
to choose the characteristic coordinates so that the ∂2U

∂ξ2
and ∂2U

∂η2 vanish.

Choosing α(x) = β(x) = 0 yields the same equation for both ξ and η,
here expressed in terms of ξ:(

∂ξ

∂t

)2

− c2(x)

(
∂ξ

∂x

)2

= 0. (1.12)

6In a sense that we are not yet ready to make precise. Qualitatively, they affect the
shape of the wave, but not the character that the waves travel with local speed c(x).
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This relation is called the characteristic equation. Notice that ξ = x−ct
and η = x + ct are both solutions to this equation in the case when
c(x) = c is a constant. But it can be checked that ξ = x ± c(x)t is
otherwise not a solution of (1.12). Instead, refer to the exercise section
for a class of solutions to (1.12).

• Consider now the n dimensional wave equation

∂2u

∂t2
− c2(x)∆u = 0, u(x, 0) = u0(x),

∂u

∂t
(x, 0) = u1(x).

A change of variables would now read (x1, . . . , xn, t) 7→ (ξ, η1, . . . , ηn).
The variable ξ is called characteristic when the coefficient of the lead-
ing term ∂2U

∂ξ2
vanishes in the expression of the equation in the new

coordinates. This condition leads to the n-dimensional version of the
characteristic equation(

∂ξ

∂t

)2

− c2(x)|∇xξ|2 = 0. (1.13)

The same relations should hold for the other coordinates η1, . . . , ηn
if they are to be characteristic as well. Equation (1.13) is called a
Hamilton-Jacobi equation. We now speak of characteristic surfaces
ξ(x, t) = const., rather than curves.

The set of solutions to (1.13) is very large. In the case of constant c,
we can check that possible solutions are

ξ(x, t) = x · k ± ωt, ω = |k|c,

corresponding to more general plane waves u(x, t) = F (x · k ± ωt)
(which the reader can check are indeed solutions of the n-dimensional
wave equation for smooth F ), and

ξ(x, t) = ‖x− y‖ ± ct, for some fixed y, and x 6= y,

corresponding to concentric spherical waves originating from y. We
describe spherical waves in more details in the next section. Notice
that both formulas for ξ reduce in some sense to x ± ct in the one-
dimensional case.
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The choice of characteristic coordinates led to the reduced equation

∂2U

∂ξ∂η
+ lower order terms = 0,

sometimes called “first fundamental form” of the wave equation, on the in-
tuitive basis that solutions (approximately) of the form F (ξ) + G(η) should
travel along the curves ξ = const. and η = const. Let us now motivate this
choice of the reduced equation in more precise terms, by linking it to the
idea that Cauchy data cannot be prescribed on a characteristic curve.

Consider utt = c2uxx. Prescribing initial conditions u(x, 0) = u0, ut(x, 0) =
u1 is perfectly acceptable, as this completely and uniquely determines all the
partial derivatives of u at t = 0. Indeed, u is specified through u0, and all its
x-partials ux, uxx, uxxx, . . . are obtained from the x-partials of u0. The first
time derivative ut at t = 0 is obtained from u1, and so are utx, utxx, . . . by
further x-differentiation. As for the second derivative utt at t = 0, we obtain
it from the wave equation as c2uxx = c2(u0)xx. Again, this also determines
uttx, uttxx, . . . The third derivative uttt is simply c2utxx = c2(u1)xx. For the
fourth derivative utttt, apply the wave equation twice and get it as c4(u0)xxxx.
And so on. Once the partial derivatives are known, so is u itself in a neigh-
borhood of t = 0 by a Taylor expansion — this is the original argument
behind the Cauchy-Kowalevsky theorem.

The same argument fails in characteristic coordinates. Indeed, assume
that the equation is uξη + puξ + quη + ru = 0, and that the Cauchy data
is u(ξ, 0) = v0(ξ), uη(ξ, 0) = v1(η). Are the partial derivatives of u all
determined in a unique manner at η = 0? We get u from v0, as well as
uξ, uξξ, uξξξ, . . . by further ξ differentiation. We get uη from v1, as well as
uηξ, uηξξ, . . . by further ξ differentiation. To make progress, we now need to
consider the equation uξη + (l.o.t.) = 0, but two problems arise:

• First, all the derivatives appearing in the equation have already been
determined in terms of v0 and v1, and there is no reason to believe that
this choice is compatible with the equation. In general, it isn’t. There
is a problem of existence.

• Second, there is no way to determine uηη from the equation, as this term
does not appear. Hence additional data would be needed to determine
this partial derivative. There is a problem of uniqueness.



1.2. SPECIAL SOLUTIONS 25

The only way to redeem this existence-uniqueness argument is by making
sure that the equation contains a uηη term, i.e., by making sure that η is
non-characteristic.

Please refer to the exercise section for a link between characteristic equa-
tions, and the notions of traveltime and (light, sound) ray. We will return to
such topics in the scope of geometrical optics, in chapter 6.

1.2.3 Spherical waves, Green’s functions

Consider x ∈ R3 and c constant. We will only be dealing with solutions in
3 spatial dimensions for now. We seek radially symmetric solutions of the
wave equation. In spherical coordinate (r, θ, φ), the Laplacian reads

∆u =
1

r

∂2

∂r2
(ru) + angular terms.

For radially symmetric solutions of the wave equation, therefore,

∂2

∂t2
(ru) =

∂2

∂r2
(ru).

This is a one-dimensional wave equation in the r variable, whose solution we
derived earlier:

ru(r, t) = F (r− ct) +G(r + ct) ⇒ u(r, t) =
F (r − ct)

r
+
G(r + ct)

r
.

Spherical waves corresponding to the F term are called outgoing, while waves
corresponding to the G term are called incoming. More generally, spherical
waves can be outgoing/incoming with respect to any point y ∈ R3, for in-
stance

u(x, t) =
F (‖x− y‖ − ct)
‖x− y‖

.

Notice that we had already seen that ‖x− y‖± ct is a characteristic variable
for the wave equation, in the previous section. The surfaces ‖x − y‖ = ct+
const. are often called light cones in the setting of electromagnetic waves.

In what follows we will be interested in the special case F (r) = δ(r), the
Dirac delta, for which the wave equation is only satisfied in a distributional
sense. Superpositions of such spherical waves are still solutions of the wave
equation.
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It turns out that any solution of the wave equation in R3, with constant
c, can be written as a superposition of such spherical waves. Let us consider
a quantity which is not quite the most general yet:

u(x, t) =

∫
R3

δ(‖x− y‖ − ct)
‖x− y‖

ψ(y)dy. (1.14)

Since ‖x−y‖ = ct on the support of the delta function, the denominator can
be written ct. Denoting by Bx(ct) the ball centered at x and with radius ct,
we can rewrite

u(x, t) =
1

ct

∫
∂Bx(ct)

ψ(y)dy.

hence the name spherical means (note that the argument of δ has derivative
1 in the radial variable — no Jacobian is needed.) The interesting question is
that of matching u(x, t) given by such a formula, with the initial conditions.
By the mean value theorem,

u(x, t) ∼ 4πctψ(x), t→ 0,

which tends to zero as t → 0. On the other hand, an application of the
Reynolds transport theorem (or a non-rigorous yet correct derivative in time
of the equation above) yields

lim
t→0

∂u

∂t
(x, t) = 4πcψ(x).

We are therefore in presence of initial conditions u0 = 0, and arbitrary u1 =
4πcψ(x) arbitrary. In that case, the solution of the constant-c wave equation
in R3 is

u(x, t) =

∫
G(x, y; t)u1(y) dy,

with the so-called Green’s function

G(x, y; t) =
δ(‖x− y‖ − ct)

4πc2t
, t > 0, (1.15)

and zero when t ≤ 0.
Let us now describe the general solution for the other situation when

u1 = 0, but u0 6= 0. The trick is to define v(x, t) by the same formula (1.14),
and consider u(x, t) = ∂v

∂t
, which also solves the wave equation:[

∂2

∂t2
− c2∆

]
∂v

∂t
=

∂

∂t

[
∂2

∂t2
− c2∆

]
v = 0.
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The limits are now

lim
t→0

u(x, t) = 4πcψ(x),

and
∂u

∂t
=
∂2v

∂t2
= c2∆v, lim

t→0
c2∆v(x, t) = c2∆ lim

t→0
v(x, t) = 0

(limit and derivative are interchangeable when the function is smooth enough.)
The time derivative trick is all that is needed to generate the solution in the
case u1 = 0:

u(x, t) =

∫
∂G

∂t
(x, y; t)u0(y) dy.

The general solution is obtained by superposition of these two special
cases:

u(x, t) =

∫ [
∂G

∂t
(x, y; t)u0(y) +G(x, y; t)u1(y)

]
dy. (1.16)

The concept of Green’ function G is much more general than suggested
by the derivation above. Equation (1.16), for instance, holds in arbitrary
dimension and for variable media, albeit with a different Green’s function
— a claim that we do not prove here. In two dimensions and constant c for
instance, it can be shown7 that

G(x, y; t) =
1

2πc
√
c2t2 − ‖x− y‖2

, when t > 0,

and zero otherwise. In variable media, explicit formulas are usually not
available.

In the wider context of linear PDE, Green’s functions are more often
introduced as linking a right-hand-side forcing f to the solution u upon inte-
gration. For a linear PDE Lu = f , Green’s functions are to the differential
operator L what the inverse matrix A−1 is to a matrix A. Accordingly, the
Green’s function describes the solution of the wave equation with a right-hand
side forcing — a setting more often encountered in imaging than initial-value
problems. The premise of the proposition below is that G is defined8 through
(1.16), even as x ∈ Rn and c is a function of x.

7By the so called “method of descent”. See the book Introduction to PDE by Gerald
Folland for a wonderful explanation of wave equations in constant media.

8The tables could be turned, and G could instead be defined by (1.17). In that case
(1.16) would be a proposition.
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Proposition 2. (Duhamel principle) For x ∈ Rn, and t > 0, the solution of
the inhomogeneous problem[

∂2

∂t2
− c2(x)∆

]
u(x, t) = f(x, t), u(x, 0) =

∂u

∂t
(x, 0) = 0.

is

u(x, t) =

∫ t

0

∫
G(x, y; t− s)f(y, s) dyds. (1.17)

Proof. Let us check that the wave equation holds.
For each s > 0, consider the auxiliary problem[
∂2

∂t2
− c2(x)∆

]
vs(x, t) = f(x, t), vs(x, 0) = 0,

∂vs
∂t

(x, 0) = f(x, s).

Then

vs(x, t) =

∫
G(x, y; t)f(y, s) dy.

The candidate formula for u is

u(x, t) =

∫ t

0

vs(x, t− s) ds.

Let us now check that this u solves the wave equation. For one, u(x, 0) = 0
because the integral is over an interval of length zero. We compute

∂u

∂t
(x, t) = vs(x, t− s)|s=t +

∫ t

0

∂vs
∂t

(x, t− s) ds =

∫ t

0

∂vs
∂t

(x, t− s) ds.

For the same reason as previously, ∂u
∂t

(x, 0) = 0. Next,

∂2u

∂t2
(x, t) =

∂vs
∂t

(x, t− s)|s=t +

∫ t

0

∂2vs
∂t2

(x, t− s) ds

= f(x, t) +

∫ t

0

c2(x)∆vs(x, t− s) ds

= f(x, t) + c2(x)∆

∫ t

0

vs(x, t− s) ds

= f(x, t) + c2(x)∆u(x, t).

Since the solution of the wave equation is unique, the formula is general.
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Because the Green’s function plays such a special role in the description
of the solutions of the wave equation, it also goes by fundamental solution.
We may specialize (1.17) to the case f(x, t) = δ(x − y)δ(t) to obtain the
equation that the Green’s function itself satsfies,[

∂2

∂t2
− c2(x)∆x

]
G(x, y; t) = δ(x− y)δ(t).

In the spatial-translation-invariant case, G is a function of x − y, and we
may write G(x, y; t) = g(x − y, t). In that case, the general solution of the
wave equation with a right-hand side f(x, t) is the space-time convolution of
f with g.

A spatial dependence in the right-hand-side such as δ(x − y) may be a
mathematical idealization, but the idea of a point disturbance is nevertheless
a very handy one. In radar imaging for instance, antennas are commonly
assumed to be point-like, whether on arrays or mounted on a plane/satellite.
In exploration seismology, sources are often modeled as point disturbances
as well (shots), both on land and for marine surveys.

The physical interpretation of the concentration of the Green’s function
along the cone ‖x−y‖ = ct is called the Huygens principle. Starting from an
initial condition at t = 0 supported along (say) a curve Γ, this principle says
that the solution of the wave equation is mostly supported on the envelope
of the circles of radii ct centered at all the points on Γ.

1.2.4 The Helmholtz equation

It is often convenient to use a formulation of the wave equation in the fre-
quency domain. If

û(x, ω) =

∫
eiωtu(x, t) dt,

and if
[
∂2

∂t2
− c2(x)∆x

]
u = f , then it is immediate to check that the (inho-

mogeneous) Helmholtz equation holds:

−
[
ω2 + c2(x)∆

]
û(x, ω) = f̂(x, ω).

The notion of Green’s function is also very useful for the Helmholtz equation:
it is the function Ĝ(x, y;ω) such that

û(x, ω) =

∫
Ĝ(x, y;ω)f̂(y, ω) dy.
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It is a good exercise to check that Ĝ(x, y;ω) is indeed the Fourier transform
of G(x, y; t) in t, by Fourier-transforming (1.17) and applying the convolu-
tion theorem. By specializing the Helmholtz equation to the right-hand side
f̂(x, ω) = δ(x), we see that the Green’s function itself obeys

−
[
ω2 + c2(x)∆

]
Ĝ(x, y;ω) = δ(x). (1.18)

In particular, for x ∈ R3 and constant c, we get (x 6= y)

Ĝ(x, y;ω) =

∫ ∞
0

eiωt
δ(‖x− y‖ − ct)

4πc2t
dt

=

∫ ∞
0

eiωt
δ(‖x− y‖ − ct)

4πc‖x− y‖
dt

=

∫ ∞
0

ei
ω
c
t′ δ(‖x− y‖ − t′)

4π‖x− y‖
dt′

=
eik‖x−y‖

4π‖x− y‖
, k = ω/c.

We will often use this form of the Green’s function in the sequel. It is an
outgoing spherical wave generated by a “point source” at x = y.

Note that ω → −ω corresponds to time reversal: e−ik‖x−y‖

4π‖x−y‖ is also a solution
of the Helmholtz equation for x 6= y, but it is an incoming rather than
outgoing wave. The sign in the exponent depends on the choice of convention
for the Fourier transform9

Some mathematical care should be exercised when posing the Helmholtz
equation in free space. Uniqueness, in particular, is not as easy to guarantee
as for the time-dependent wave equation. “Sufficient decay as ‖x‖ → ∞” is
not a good criterion for uniqueness, since we’ve just seen an example of two
waves e±iω‖x−y‖/c

4π‖x−y‖ which have the same modulus and obey the same equation

(1.18). Instead, it is customary to require the wave to be outgoing in order
to have a well-posed problem in constant c. We say that û(x, ω) obeys the
Sommerfeld radiation condition in R3 if (r = ‖x‖)(

∂

∂r
− ik

)
û(x, ω) = o(

1

|x|
),

9We choose eiωt for the direct transform, and e−iωt for the inverse transform, in ac-
cordance with practice in signal processing, radar imaging, and seismic imaging. For the
spatial Fourier transforms, however, we adopt the opposite convention e−ik·x for the direct
transform, and eik·x for the inverse transform.
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i.e., lim|x|→∞ |x|
(
∂
∂r
− ik

)
û(x, ω) = 0. It is a good exercise to check that

Ĝ(x, y;ω) obeys this radiation conditions, while Ĝ(x, y;−ω) does not.

1.2.5 Reflected waves

Spatial variability in the physical parameters (ρ, κ; ε, µ;λ, µ, etc.) entering
the wave equation generate wave scattering, i.e., changes of the direction of
propagation of the waves. Of particular interest are discontinuities, or other
non-C∞ singularities, which generate reflected waves alongside transmitted
waves.

Let us study reflection and transmission in the 1D, variable-density acous-
tics equation

∂2u

∂t2
= κ(x)

∂

∂x

(
1

ρ(x)

∂u

∂x

)
.

Consider a step discontinuity at x = 0, with ρ(x) = ρ1 and κ(x) = κ1 in
x < 0, and ρ(x) = ρ2 and κ(x) = κ2 in x > 0. Assume an incident plane
wave ui(x, t) = ei(k1x−ωt) in x < 0; we are interested in finding the reflection
coefficient R and the transmission coefficient T so the solution reads

ui(x, t) + ur(x, t) = ei(k1x−ωt) +Rei(k1x+ωt), x < 0.

ut(x, t) = Tei(k2x−ωt), x > 0.

The connection conditions are the continuity of u and 1
ρ
∂u
∂x

. To justify this,
remember that u is in fact a pressure disturbance in the acoustic case, while
1
ρ
∂u
∂x

is minus the time derivative of particle velocity, and these two quantities
are continuous on physical grounds. There is also a mathematical justification

for the continuity of 1
ρ
∂u
∂x

: if it weren’t, then ∂
∂x

(
1

ρ(x)
∂u
∂x

)
would have a point

mass (Dirac atom) at x = 0, which would pose a problem both for the
multiplication by a discontinuous κ(x), and because ∂2u

∂t2
is supposed to be a

finite function, not a distribution.

At x = 0, the connection conditions give

1 +R = T,

1

ρ1

(−ik1 − ik1R) =
1

ρ2

(ik2T ).
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Eliminate k1 and k2 by expressing them as a function of ρ1, ρ2 only; for
instance

k1

ρ1

=
ω

ρ1c1
=

ω
√
ρ1κ1

,

and similarly for k2
ρ2

. Note that ω is fixed throughout and does not depend
on x. The quantity in the denominator is physically very important: it is
Z = ρc =

√
κρ, the acoustic impedance. The R and T coefficients can then

be solved for as

R =
Z2 − Z1

Z2 + Z1

, T =
2Z2

Z2 + Z1

.

It is the impedance jump Z2 − Z1 which mostly determines the magnitude
of the reflected wave.R = 0 corresponds to an impedance match, even in the
case when the wave speeds differ in medium 1 and in medium 2.

The same analysis could have been carried out for a more general incoming
wave f(x− c1t), would have given rise to the same R and T coefficients, and
to the complete solution

u(x, t) = f(x− c1t) +Rf(−x− c1t), x < 0, (1.19)

u(x, t) = Tf(
c1
c2

(x− c2t)), x > 0. (1.20)

The reader can check the relation

1 = R2 +
Z1

Z2

T 2,

which corresponds to conservation of energy. An exercise in section 1.3 aims
to establish this link. Note that R = R2 and T = Z1

Z2
T 2 are sometimes

referred to as reflection and transmission coefficients, though they measure
intensities rather than amplitudes. The intensity coefficients are even de-
noted as R and T in place of R and T in some texts.

Physically, the acoustic impedance Z is the proportionality constant be-
tween the pressure amplitude and the velocity amplitude of an acoustic wave.
We do not have direct access to Z in the acoustic equations however, as
p(x, t) 6= Zv(x, t) pointwise – only combinations of partial derivatives match.
So Z is in some sense an “averaged quantity” over at least a wavelength.
On can derive the expression of Z from the time-harmonic regime. The first
equation (1.1) in the acoustic system reads, in the (k, ω) domain (in one
spatial dimension),

iωv̂(k, ω) = − 1

ρ0

ikp̂(k, ω),
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or, if we simplify further,

|p̂| = Z|v̂|, Z = ρ0c =
√
ρ0κ0.

The same relation would have been obtained from (1.2). The larger Z, the
more difficult to move particle from a pressure disturbance, i.e., the smaller
the corresponding particle velocity.

The definition of acoustic impedance is intuitively in line with the tradi-
tional notion of electrical impedance for electrical circuits. To describe the
latter, consider Ampère’s law in the absence of a magnetic field:

∂D

∂t
= −j ⇒ ε

∂E

∂t
= −j.

In the time-harmonic setting (AC current), iωεÊ = −ĵ. Consider a conduct-
ing material, for which the permittivity reduces to the conductivity:

ε = i
σ

ω

It results that Ê = Zĵ with the resistivity Z = 1/σ. This is the differential
version of Ohm’s law. The (differential) impedance is exactly the resistivity
in the real case, and can accommodate capacitors and inductions in the
complex case. Notice that the roles of E (or V 0 and j (or I) in an electrical
circuit are quite analogous to p and v in the acoustic case.

There are no waves in the conductive regime we just described, so it is
out of the question to seek to write R and T coefficients, but reflections
and transmissions of waves do occur at the interface between two dielectric
materials. Such is the case of light propagating in a medium with variable
index of reflection. To obtain the R and T coefficients in the optical case,
the procedure is as follows:

• Consider Amp‘ere’s law again, but this time with a magnetic field H
(because it is needed to describe waves) but no current (because we are
dealing with dielectrics):

∂D

∂t
= ∇×H.

Use D = εE.
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• Assume plane waves with complex exponentials, or in the form E(k ·
x− ωt) and H(k · x− ωt).

• Use continuity of n×E and n×H at the interface (tangential compo-
nents).

• Assume no magnetism: µ = const.

The quantity of interest is not the impedance, but the index of refraction
n = 1

c
=
√
εµ. Further assuming that the waves are normally incident to the

interface, we have

R =
n2 − n1

n2 + n1

, T =
2n2

n2 + n1

.

These relations become more complicated when the angle of incidence is not
zero. In that case R and T also depend on the polarization of the light. The
corresponding equations for R and T are then called Fresnel’s equations.
Their expression and derivation can be found in “Principles of optics” by
Born and Wolf.

1.3 Exercises

1. Continue the reasoning in section 1.1.1 with the entropy to justify the
equations of variable-density acoustics. [Hints: conservation of entropy
reads ∂s

∂t
+ v ·∇s = 0. Continue assuming that the background velocity

field is v0 = 0. Assume a fixed, variable background density ρ0(x).
The new constitutive relation is p = f(ρ, s). Consider defining c2(x) =
∂f
∂ρ

(ρ0(x), s0(x)).]

2. First, show the multivariable rule of integration by parts
∫
∇f · g =

−
∫
f ∇ · g, when f and g are smooth and decay fast at infinity, by

invoking the divergence theorem. Second, use this result to show that
L∗ = −L for variable-density acoustics (section 1.1.1), i.e., show that
〈Lw,w′〉 = −〈w,Lw′〉 for all reasonable functions w and w′, and where
〈·, ·〉 is the adequate notion of inner product seen in section 1.1.1.

3. Show that 〈Lw,w′〉 = −〈w,Lw′〉 for general elastic waves.
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4. In R2, consider

fω(x) =

∫ 2π

0

eikθ·xdθ, kθ = |k|
(

cos θ
sin θ

)
,

with |k| = ω/c. Show that fω is a solution of the homogeneous
Helmholtz equation (1.10) with constant c, and simplify the expres-
sion of fω by means of a Bessel function. [Hint: show first that fω is
radially symmetric.]

5. Find all the functions τ(x) for which

ξ(x, t) = τ(x)− t

is a solution of (1.12) in the case x ∈ R.

The function τ(x) has the interpretation of a traveltime.

6. Consider a characteristic curve as the level set ξ(x, t) =const., where ξ
is a characteristic coordinate obeying (1.12). Express this curve para-
metrically as (X(t), t), and find a differential equation for X(t) of the
form Ẋ(t) = . . . How do you relate this X(t) to the traveltime function
τ(x) of the previous exercise? Justify your answer.

Such functions X(t) are exactly the rays — light rays or sound rays.
They encode the idea that waves propagate with local speed c(x).

7. Give a complete solution to the wave equation in Rn,

∂2u

∂t2
= c2∆u, u(x, 0) = u0(x),

∂u

∂t
(x, 0) = u1(x),

by Fourier-transforming u(x, t) in the x-variable, solving the resulting
ODE to obtain the e±i|k|/ct time dependencies, matching the initial con-
ditions, and finishing with an inverse Fourier transform. The resulting
formula is a generalization of d’Alembert’s formula.

8. We have seen the expression of the wave equation’s Green function in
the (x, t) and (x, ω) domains. Find the expression of the wave equa-
tion’s Green function in the (ξ, t) and (ξ, ω) domains, where ξ is dual
to x and ω is dual to t. [Hint: it helps to consider the expressions of
the wave equation in the respective domains, and solve these equations,
rather than take a Fourier transform.]
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9. Check that the relation 1 = R2 + Z1

Z2
T 2 for the reflection and transmis-

sion coefficiets follows from conservation of energy for acoustic waves.
[Hint: use the definition of energy given in section 1.1.1, and the gen-
eral form (1.19, 1.20) of a wavefield scattering at a jump interface in
one spatial dimension.]

10. The wave equation (2.2) can be written as a first-order system

M
∂w

∂t
− Lw = f̃ ,

with

w =

(
∂u/∂t
∇u

)
, M =

(
m 0
0 1

)
, L =

(
0 ∇·
∇ 0

)
, f̃ =

(
f
0

)
.

First, check that L∗ = −L for the L2 inner product 〈w,w′〉 =
∫

(w1w
′
1 +

w2w
′
2) dx where w = (w1, w2)

T . Then, check that E = 〈w,Mw〉 is a
conserved quantity.

11. Another way to write the wave equation (2.2) as a first-order system is

M
∂w

∂t
− Lw = f̃ ,

with

w =

(
u
v

)
, M =

(
m 0
0 1

)
, L =

(
0 I
∆ 0

)
, f̃ =

(
f
0

)
.

First, check that L∗ = −L for the inner product 〈w,w′〉 =
∫

(∇u ·∇u′+
vv′) dx. Then, check that E = 〈w,Mw〉 is a conserved quantity.



Chapter 2

Scattering series

In this chapter we describe the nonlinearity of the map c 7→ u in terms of a
perturbation (Taylor) series. To first order, the linearization of this map is
called the Born approximation. Linearization and scattering series are the
basis of most inversion methods, both direct and iterative.

The idea of perturbation permeates imaging for physical reasons as well.
In radar imaging for instance, the background velocity is c0 = 1 (speed
of light), and the reflectivity of scatterers is viewed as a deviation in c(x).
The assumption that c(x) does not depend on t is a strong one in radar:
it means that the scatterers do not move. In seismology, it is common to
consider a smooth background velocity c0(x) (rarely well known), and explain
the scattered waves as reflections due to a “rough” (singular/oscillatory)
perturbations to this background. In both cases, we will write

1

c2(x)
= m(x),

1

c20(x)
= m0(x), m for “model”,

and, for some small number ε,

m(x) = m0(x) + εm1(x). (2.1)

Note that, when perturbing c(x) instead of m(x), an additional Taylor
approximation is necessary:

c(x) = c0(x) + εc1(x) ⇒ 1

c2(x)
' 1

c20(x)
− 2ε

c1(x)

c30(x)
.

While the above is common in seismology, we avoid making unnecessary
assumptions by choosing to perturb m(x) = 1/c2(x) instead.

37
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Perturbations are of course not limited to the wave equation with a single
parameter c. The developments in this chapter clearly extend to more general
wave equations.

2.1 Perturbations and Born series

Let

m(x)
∂2u

∂t2
−∆u = f(x, t), (2.2)

with zero initial conditions and x ∈ Rn. Perturb m(x) as in (2.1). The
wavefield u correspondingly splits into

u(x) = u0(x) + usc(x),

where u0 solves the wave equation in the undisturbed medium m0,

m0(x)
∂2u0

∂t2
−∆u0 = f(x, t). (2.3)

We say u is the total field, u0 is the incident field1, and usc is the scattered
field, i.e., anything but the incident field.

We get the equation for usc by subtracting (2.3) from (2.2), and using
(2.1):

m0(x)
∂2usc
∂t2

−∆usc = −εm1(x)
∂2u

∂t2
. (2.4)

This equation is implicit in the sense that the right-hand side still depends
on usc through u. We can nevertheless reformulate it as an implicit integral
relation by means of the Green’s function:

usc(x, t) = −ε
∫ t

0

∫
Rn
G(x, y; t− s)m1(y)

∂2u

∂t2
(y, s) dyds.

Abuse notations slightly, but improve conciseness greatly, by letting

• G for the operator of space-time integration against the Green’s func-
tion, and

1Here and in the sequel, u0 is not the initial condition. It is so prevalent to introduce
the source as a right-hand side f in imaging that it is advantageous to free the notation
u0 and reserve it for the incident wave.
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• m1 for the operator of multiplication by m1.

Then usc = −εGm1
∂2u
∂t2

. In terms of u, we have the implicit relation

u = u0 − εGm1
∂2u

∂t2
,

called a Lippmann-Schwinger equation. The field u can be formally2 ex-
pressed in terms of u0 by writing

u =

[
I + εGm1

∂2

∂t2

]−1

u0. (2.5)

While this equation is equivalent to the original PDE, it shines a different
light on the underlying physics. It makes explicit the link between u0 and u,
as if u0 “generated” u via scattering through the medium perturbation m1.

Writing [I +A]−1 for some operator A invites a solution in the form of a
Neumann series I − A+ A2 − A3 + . . ., provided ‖A‖ < 1 in some norm. In
our case, we write

u = u0 − ε
(
Gm1

∂2

∂t2

)
u0 + ε2

(
Gm1

∂2

∂t2

)(
Gm1

∂2

∂t2

)
u0 + . . .

This is called a Born series. The proof of convergence, based on the “weak
scattering” condition ε‖Gm1

∂2

∂t2
‖∗ < 1, in some norm to be determined, will

be covered in the next section. It retroactively justifies why one can write
(2.5) in the first place.

The Born series carries the physics of multiple scattering. Explicitly,

u = u0 (incident wave)

− ε
∫ t

0

∫
Rn
G(x, y; t− s)m1(y)

∂2u0

∂t2
(y, s) dyds

(single scattering)

+ ε2
∫ t

0

∫
Rn
G(x, y2; t− s2)m1(y2)

∂2

∂s2
2

[∫ s2

0

∫
Rn
G(y2, y1; s2 − s1)m1(y1)

∂2u0

∂t2
(y1, s1) dy1ds1

]
dy2ds2

(double scattering)

+ . . .

2For mathematicians, “formally” means that we are a step ahead of the rigorous ex-
position: we are only interested in inspecting the form of the result before we go about
proving it. That’s the intended meaning here. For non-mathematicians, “formally” often
means rigorous, i.e., the opposite of “informally”!



40 CHAPTER 2. SCATTERING SERIES

We will naturally summarize this expansion as

u = u0 + εu1 + ε2u2 + . . . (2.6)

where εu1 represent single scattering, ε2u2 double scattering, etc. For in-
stance, the expression of u1 can be physically read as “the incident wave
initiates from the source at time t = 0, propagates to y where it scatters due
to m(y) at time t = s, then further propagates to reach x at time t.” The
expression of u2 can be read as “the incident wave initiates from the source at
t = 0, propagates to y1 where it first scatters at time t = s1, them propagates
to y2 where it scatters a second time at time t = s2, then propagates to x at
time t, where it is observed.” Since scatterings are not a priori prescribed to
occur at fixed points in space and time, integrals must be taken to account
for all physically acceptable scattering scenarios.

The approximation
usc(x) ' εu1(x)

is called the Born approximation. From u1 = −Gm1
∂2u0

∂t2
, we can return to

the PDE and obtain the equation for the primary reflections:

m0(x)
∂2u1

∂t2
−∆u1 = −m1(x)

∂2u0

∂t2
. (2.7)

The only difference with (2.4) is the presence of u0 in place of u in the right-
hand side (and ε is gone, by choice of normalization of u1). Unlike (2.4),
equation (2.7) is explicit: it maps m1 to u1 in a linear way. The incident field
u0 is determined from m0 alone, hence “fixed” for the purpose of determining
the scattered fields.

The Born series can be seen as a Taylor series of the forward map

u = F [m],

in the sense of the calculus of variations. Denote by δF
δm

[m0] the “functional
gradient” of F with respect to m, evaluated at m0. It is an operator acting
from model space (m) to data space (u). Denote by δ2F

δm2 [m0] the “functional
Hessian” of F with respect to m, evaluated at m0. It is a bilinear form from
model space to data space. (See the appendix for background on functional
derivatives.) Then the functional version of the Taylor expansion enables to
express (2.6) in terms of the various derivatives of F as

u = u0 + ε
δF
δm

[m0]m1 +
ε2

2
〈δ

2F
δm2

[m0]m1,m1〉+ . . .
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It is convenient to denote the linearized forward map by (print) F :

F =
δF
δm

[m0],

or, for short, F = ∂u
∂m

. It is a linear operator. The point of F is that it makes
explicit the linear link between m1 and u1:

u1 = Fm1.

While F is supposed to completely model data (up to measurement errors),
F would properly explain data only in the regime of the Born approximation.

Let us show that the two concepts of linearized scattered field coincide,
namely

u1 =
δF
δm

[m0]m1 = Gm1
∂u0

∂t2
.

This will justify the first term in the Taylor expansion above. For this pur-
pose, take the δ

δm
derivative of (2.2), evaluate it at m0, and check that (2.7)

holds for the resulting field. As previously, write u = F(m) and F = δF
δm

[m].
We get the operator-value equation

∂2u

∂t2
I +m

∂2

∂t2
F −∆F = 0.

Evaluate the functional derivatives at the base point m0, so that u = u0.
Applying each term as an operator to the function m1, and defining u1 =
Fm1, we obtain

m1
∂2u0

∂t2
+
∂2u1

∂t2
u1 −∆u1 = 0,

which is exactly (2.7).

2.2 Convergence of the Born series (math)

We are faced with two very interrelated questions: justifying convergence of
the Born series, and showing that the Born approximation is accurate when
the Born series converges. The answers can either take the form of mathe-
matical theorems (this section), or physical explanations (next section). As
of 2012, the community’s mathematical understanding is not yet up to par
with the physical intuition!
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Let us describe what is known mathematically about convergence of Born
series in a simple setting. To keep the notations concise, it is more convenient
to treat the wave equation in first-order hyperbolic form

M
∂w

∂t
− Lw = f, L∗ = −L, (2.8)

for some inner product 〈w,w′〉. The conserved energy is then E = 〈w,Mw〉.
See one of the exercises at the end of chapter 1 to illustrate how the wave
equation can be put in precisely this form, with 〈w,w′〉 the usual L2 inner
product and M a positive diagonal matrix.

Consider a background medium M0, so that M = M0 + εM1. Let w =
w0 + εw1 + . . . Calculations very similar to those of the previous section (a
good exercise) show that

• The Lippmann-Schwinger equation is

w = w0 − εGM1
∂w

∂t
,

with the Green’s function G = (M0
∂
∂t
− L)−1.

• The Neumann series of interest is

w = w0 − εGM1
∂w0

∂t
+ ε2GM1

∂

∂t
GM1

∂w0

∂t
+ . . .

We identify w1 = −GM1
∂w0

∂t
.

• In differential form, the equations for the incident field w0 and the
primary scattered field w1 are

M0
∂w0

∂t
− Lw0 = f, M0

∂w1

∂t
− Lw1 = −M1

∂w0

∂t
, (2.9)

• Convergence of the Born series occurs when

ε‖GM1
∂

∂t
‖∗ < 1,

in some induced operator norm, i.e., when ε‖w1‖∗ < ‖w0‖∗ for arbitrary
w0, and w1 = −GM1

∂w0

∂t
, for some norm ‖ · ‖∗.
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Notice that the condition ε‖w1‖∗ < ‖w0‖∗ is precisely one of weak scat-
tering, i.e., that the primary reflected wave εw1 is weaker than the incident
wave w0.

While any induced norm over space and time in principle works for the
proof of convergence of the Neumann series, it is convenient to use

‖w‖∗ = max
0≤t≤T

√
〈w,M0w〉 = max

0≤t≤T
‖
√
M0w‖.

Note that it is a norm in space and time, unlike ‖w‖ =
√
〈w,w〉, which is

only a norm in space.

Theorem 3. (Convergence of the Born series) Assume that the fields w, w0,
w1 are bandlimited with bandlimit3 Ω. Consider these fields for t ∈ [0, T ].
Then the weak scattering condition ε‖w1‖∗ < ‖w0‖∗ is satisfied, hence the
Born series converges, as soon as

εΩT ‖M1

M0

‖∞ < 1.

Proof. We compute

d

dt
〈w1,M0w1〉 = 2〈w1,M0

∂w1

∂t
〉

= 2〈w1, Lw1 −M1
∂w0

∂t
〉

= −2〈w1,M1
∂w0

∂t
〉 because L∗ = −L

= −2〈
√
M0w1,

M1√
M0

∂w0

∂t
〉.

Square roots and fractions of positive diagonal matrices are legitimate oper-
ations. The left-hand-side is also d

dt
〈w1,M0w1〉 = 2‖

√
M0w1‖2 ddt‖

√
M0w1‖2.

By Cauchy-Schwarz, the right-hand-side is majorized by

2‖
√
M0w1‖2 ‖

M1√
M0

∂w0

∂t
‖2.

Hence
d

dt
‖
√
M0w1‖2 ≤ ‖

M1√
M0

∂w0

∂t
‖2.

3A function of time has bandlimit Ω when its Fourier transform, as a function of ω, is
supported in [−Ω,Ω].



44 CHAPTER 2. SCATTERING SERIES

‖
√
M0w1‖2 ≤

∫ t

0

‖ M1√
M0

∂w0

∂t
‖2(s) ds.

‖w1‖∗ = max
0≤t≤T

‖
√
M0w1‖2 ≤ T max

0≤t≤T
‖ M1√

M0

∂w0

∂t
‖2

≤ T‖M1

M0

‖∞ max
0≤t≤T

‖
√
M0

∂w0

∂t
‖2.

This last inequality is almost, but not quite, what we need. The right-
hand side involves ∂w0

∂t
instead of w0. Because time derivatives can grow

arbitrarily large in the high-frequency regime, this is where the bandlimited
assumption needs to be used. We can invoke a classical result known as Bern-
stein’s inequality4, which says that ‖f ′‖∞ ≤ Ω‖f‖∞ for all Ω-bandlimited f .
Then

‖w1‖∗ ≤ ΩT‖M1

M0

‖∞‖w0‖∗.

In view of our request that ε‖w1‖∗ < ‖w0‖∗, it suffices to require

εΩT ‖M1

M0

‖∞ < 1.

See the book Inverse Acoustic and Electromagnetic Scattering Theory by
Colton and Kress for a different analysis that takes into account the size of
the support of M1.

Note that the beginning of the argument, up to the Cauchy-Scwharz
inequality, is called an energy estimate in math. See an exercise at the end
of this chapter. It is a prevalent method to control the size of the solution of
many initial-value PDE, including nonlinear ones.

The weak scattering condition ε‖w1‖∗ < ‖w0‖∗ encodes the idea that the
primary reflected field εw1 is small compared to the incident field w0. It is
satisfied when ε is small, and when w1 is not so large that it would undo the
smallness of ε (via the factors ΩT , for instance). It turns out that

• the full scattered field wsc = w−w0 is also on the order of εΩT‖M1‖∞
— namely the high-order terms don’t compromise the weak scattering
situation; and

4The same inequality holds with the Lp norm for all 1 ≤ p ≤ ∞.
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• the remainder wsc−εw1 = w−w0−εw1 is on the order of ε2(ΩT‖M1‖∞)2.

Both claims are the subject of an exercise at the end of the chapter. The
second claim is the mathematical expression that the Born approximation
is accurate (small wsc − εw1 on the order of ε2) precisely when scattering is
weak (εw1 and wsc on the order of ε.)

2.3 Convergence of the Born series (physics)

2.4 Exercises

1. Repeat the development of section (2.1) in the frequency domain (ω)
rather than in time.

2. Derive Born series with a multiscale expansion: write m = m0 + εm1,
u = u0 + εu1 + ε2u2 + . . ., substitute in the wave equation, and equate
like powers of ε.

3. Write the Born series for the acoustic system, i.e., find the linearized
equations that the first few terms obey. [Hint: repeat the reasoning of
section 2.1 for the acoustic system, or equivalently expand on the first
few three bullet points in section 2.2.]

4. At the end of section 2.2 we found the equation that u1 obeys by
differentiating (2.2) with respect to m. Now, differentiate (2.2) twice
with respect to m to obtain the Hessian of u with respect to m. We
may call it δ2F/δm2. As a result, find an expression for u2 as the
solution of a new linearized wave equation with u1 in the right-hand
side. This expression of the Hessian is important later on as we describe
accelerated descent methods for the inversion problem.

5. Consider the setting of section 2.2 in the case M0 = I. Prove the
following energy estimate for the solution of (2.8):

E(t) ≤
(∫ t

0

‖f‖(s) ds
)2

, (2.10)

where E(t) = 〈w,Mw〉 and ‖f‖2 = 〈f, f〉. [Hint: repeat and adapt the
beginning of the proof of theorem 3.]
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6. Consider (2.8) and (2.9) in the special case when M0 = I. Let ‖w‖ =√
〈w,w〉 and ‖w‖∗ = max0≤t≤T ‖w‖. In this exercise we show that

w − w0 = O(ε), and that w − w0 − w1 = O(ε2).

(a) Find an equation for w − w0. Prove that

‖w − w0‖∗ ≤ ε ‖M1‖∞ΩT ‖w‖∗

[Hint: repeat and adapt the proof of theorem 3.]

(b) Find a similar inequality to control the time derivative of w−w0.

(c) Find an equation for w − w0 − w1. Prove that

‖w − w0 − w1‖∗ ≤ (ε ‖M1‖∞ΩT )2 ‖w‖∗
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Adjoint-state methods
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Appendix A

Calculus of variations,
functional derivatives

The calculus of variations is to multivariable calculus what functions are
to vectors. It answers the question of how to differentiate with respect to
functions, i.e., objects with an uncountable, infinite number of degrees of
freedom.

Let X be some function space, endowed with a norm (technically, a Ba-
nach space). A functional φ is a map from X to R. We denote its action on
a function f as φ(f). An operator F is a map from X to X. We denote its
action on a function f as Ff .

We say that a functional φ is Fréchet differentiable at f ∈ X when there
exists a linear functional A such that

lim
h→0

|φ(f + h)− φ(f)− A(h)|
‖h‖

= 0.

If this relation holds, we say that A is the functional derivative, or Fréchet
derivative, of φ at f , and we denote it as

A =
δφ

δf
[f ].

It is also called the first variation of φ. It is the equivalent of the gradient in
multivariable calculus. The fact that A is a map from X to R corresponds
to the idea that a gradient maps vectors to scalar when paired with the dot
product; e.g. if X = Rn and f = (f1, . . . , fn), we have

δφ

δf
[f ](h) = ∇φ(f) · h.
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For this reason, it is is also fine to write A(h) = 〈A, h〉.
The differential ratio formula for δφ

δf
is called Gâteaux derivative,

δφ

δf
[f ](h) = lim

t→0

φ(f + th)− φ(f)

t
, (A.1)

which corresponds to the idea of the directional derivative in Rn.
Examples of functional derivatives:

• φ(f) = 〈g, f〉,
δφ

δf
[f ] = g,

δφ

δf
[f ](h) = 〈g, h〉

Because φ is linear, δφ
δf

= φ. Proof: φ(f + th) − φ(f) = 〈g, f + th〉 −
〈g, f〉 = t〈g, h〉, then use (A.1).

• φ(f) = f(x0),

δφ

δf
[f ] = δ(x− x0), (Dirac delta).

This is the special case when g(x) = δ(x− x0). Again, δφ
δf

= φ.

• φ(f) = 〈g, f 2〉,
δφ

δf
[f ] = 2fg.

Proof: φ(f + th)− φ(f) = 〈g, (f + th)2〉 − 〈g, f〉 = t〈g, 2fh〉+O(t2) =
t〈2fg, h〉+O(t2), then use (A.1).

Nonlinear operators can also be differentiated with respect to their input
function. We say F : X → X is Fréchet differentiable when there exists a
linear operator F : X → X

lim
h→0

‖F(f + h)−F(f)− Fh‖
‖h‖

= 0.

F is the functional derivative of F , and we write

F =
δF
δf

[f ].
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We still have the difference formula

δF
δf

[f ]h = lim
t→0

F(f + th)−F(f)

t
.

Examples:

• F(f) = f . Then
δF
δf

[f ] = I,

the identity. Proof: F is linear hence equals its functional derivative.
Alternatively, apply the difference formula to get δF

δf
[f ]h = h.

• F(f) = f 2. Then
δF
δf

[f ] = 2f,

the operator of multiplication by 2f .

Under a suitable smoothness assumption, the Fréchet Hessian of an op-
erator F can also be defined: it takes two functions as input, and returns
a function in a linear manner (“bilinear operator”). It is defined through a
similar finite-difference formula

〈δ
2F
δf 2

[f ]h1, h2〉 = lim
t→0

F(f + t(h2 + h1))−F(f + th2)−F(f + th1) + F(f)

t2
.

The Hessian is also called second variation of F .
Functional derivatives obey all the properties of multivariable calculus,

such as chain rule and derivative of a product (when all the parties are
sufficiently differentiable). A handy way to deal with functional derivatives
in practice is to view them as gradients, and keep track of free vs. summation
variables.

Functional derivatives are used to formulate linearized forward models for
imaging, as well as higher-order terms in Born series. They are also useful
for finding stationary-point conditions of Lagrangians, and gradient descent
directions in optimization.


