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Preface

In this text we use the symbol ($) to draw attention every time a physical
assumption or simplification is made.

Thanks are extended to the following people for discussions, sugges-
tions, and early drafts: Thibaut Lienart, Nicholas Maxwell, Pierre-David
Letourneau, Russell Hewett, and Vincent Jugnon.






Chapter 1

Wave equations

1.1 Physical models

1.1.1 Acoustic waves

Acoustic waves are propagating pressure disturbances in a gas or liquid. With
p(z,t) the pressure fluctuation (a time-dependent scalar field) and v(x,t) the
particle velocity (a time-dependent vector field), the acoustic wave equations
read

ov 1

= 1.1
0

a—ZZ = —KoV - . (1.2)

The two quantities py and kg are the mass density and the bulk modulus,
respectively. They are linked to the wave speed ¢ through kg = poc?®. Initial
conditions on p and v must be supplied. A forcing term may be added to
the dynamic balance equation (1.1) when external forces (rather than initial
conditions) create the waves.

Let us now explain how these equations are obtained from a lineariza-
tion of Euler’s gas dynamics equations in a uniform background medium
($). Consider the mass density p as a scalar field. In the inviscid case ($),
conservation of momentum and mass respectively read

ov dp
p(a—l-v-Vv)——Vp, a%—V-(pv)-O.
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An additional equation, called constitutive relation, must be added to close
the system. It typically relates the pressure and the density in an algebraic
way, and encodes a thermodynamic assumption about compression and dila-
tion. For instance if the gas is assumed to be ideal, and if the compression-
dilation process occurring in the wave is adiabatic reversible (no heat trans-
fer), then p ~ p?, v = 1.4, where ~ indicates equality up to a dimensional
constant. More generally, assume for the moment that the constitutive rela-
tion takes the form

p=f(p)

for some scalar function f, which we assume differentiable and strictly in-
creasing (f'(p) > 0 for all p > 0).
Consider small disturbances off of an equilibrium state:

P = po + p1, P = po+ pi1, v =1y + V1.

In what follows, neglect quadratic quantities of py, p1,v;. Consider a medium
at rest ($): po, po independent of ¢, and vy = 0. After some algebraic simpli-
fication the conservation of momentum becomes

81)1

Pogy = —Vpo — Vp;.

To zero-th order (i.e., at equilibrium, p; = p; = v; = 0,) we have
Vpo=0 = po constant in x.

To first order, we get

which is exactly (1.1) after renaming v; — v, p; — p. The constitutive
relation must hold at equilibrium, hence py constant in z implies that pg is
also constant in = (uniform). Conservation of mass becomes

Ip1

—— +poV v =0.

ot Po 1

Differentiate the constitutive relation to obtain p; = f'(po)p1. Call f'(po) =
c?, a number that we assume positive. Then we can eliminate p; to get

Ip1

E +p002V -vp = 0.
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This is exactly (1.2) with ko = poc?.
Conveniently, the equations for acoustic waves in a variable medium pg(x),
Ko(z) are obvious modifications of (1.1), (1.2):

ov 1

Ny 1.3
ot po() P (13)
0

8_]25) = —ko(x)V - v. (1.4)

A different argument is needed to justify these equations, however. The
previous reasoning does not leave room for variable py(z) or ko(z). Instead,
it is necessary to introduce a more realistic constitutive relation

b= f(p78>7

where s is the entropy. An additional equation for conservation of entropy
needs to be considered. The new constitutive relation allows py and sg to be
functions of z in tandem, although py is still (necessarily) uniform in z. The
reasoning leading to (1.3), (1.4) is the subject of an exercise in section 1.3.
Acoustic waves can take the form of a first-order system of equations, or
else a second-order scalar equation. Combining (1.3), (1.4), we get
o 1
8_25223 = "fo(x)v ’ (po(x)

Initial conditions on both p and dp/dt must be supplied. This equation may
come with a right-hand side f(z,t) that indicates forcing. When py and kg
are constant, the scalar wave equation reduces to

92
gp_ s Ap.

Vp).

Waves governed by (1.3), (1.4) belong in the category of hyperbolic waves
because they obey conservation of energy. Define

1
w= (" L= 0 _/’_Ov .
P ’ —Hov' 0
Then the acoustic system simply reads

ow
— = Lw.
ar "

L is called the generator of the evolution.
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Definition 1. The system %—1: = Lw 1s said to be hyperbolic if L is a matriz
of first-order differential operators, and there exists an inner product {(w,w")
with respect to which L* = —L, i.e., L is anti-self-adjoint.

An adjoint operator such as L* is defined through the equation®
(Lw,w") = (w, L*w"), for all w, w’.

For instance, in the case of the acoustic system, the proper notion of inner
product is (the factor 1/2 is optional)

1 |
(w,w') = 5/(P0v '+ —pp') dr.
Ko

It is an exercise in section 1.3 to show that (Lw,w’) = (w, L*w') for that
inner product, for all w, w’.

Theorem 1. [ %—1;’ = Lw is a hyperbolic system, then E = (w,w) is con-
served in time.

Proof.
d ow ow
£<w>w> = <E>w> + <w’ E>
= 2% )
=2 (Lw,w)
=2 (w, L*w)
=2 (w, (—L)w)
—2 (Lw,w).

A quantity is equal to minus itself if and only if it is zero. O]

In the case of acoustic waves,

1 2
P [+ Py

!The existence of L* can be traced back to the Riesz representation theorem once
(Lw,w") is shown to be a continuous functional of w in some adequate Hilbert space
norm.
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which can be understood as kinetic plus potential energy. We now see that
the factor 1/2 was chosen to be consistent with the physicists’ convention for
energy.

In the presence of external forcings the hyperbolic system reads dw/dt =
Lw + f: in that case the rate of change of energy is determined by f.

For reference, common boundary conditions for acoustic waves include

e Sound soft boundary condition: Dirichlet for the pressure, p = 0.

e Sound-hard boundary condition: Neumann for the pressure, g—fL =0, or

equivalently v - n = 0.

Another important physical quantity is related to acoustic waves: the
acoustic impedance Z = ,/pokg. We will see later that impedance jumps
determine reflection and transmission coefficients at medium discontinuities.

1.1.2 Elastic waves

Elastic waves are propagating pressure disturbances in solids. The interesting
physical variables are

e The displacement u(x,t), a time-dependent vector field. In terms of w,
the particle velocity is v = %.

e The strain tensor

1
€= §(Vu + (Vu)"),
a symmetric time-dependent tensor field.
e The stress tensor o, also a symmetric time-dependent tensor field.

For elastic waves, the density p is very often assumed independent of ¢ along
particle trajectories, namely po(x,0) = po(z + u(z,t),t).

The equation of elastic waves in an isotropic medium (where all the waves
travel at the same speed regardless of the direction in which they propagate)
($) reads

0%u

P o

where p, A, and g may possibly depend on z. As for acoustic waves, a forcing
term is added to this equation when waves are generated from external forces.

= VAV -u)+ V- (u(Vu+ (Vu)")). (1.5)
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To justify this equation, start by considering the equation of conservation
of momentum (“F = ma"),

ov
Por ~
possibly with an additional term f(x,t) modeling external forces. The nota-

tion V- indicates tensor divergence, namely (V- 0); = >_; %Z"?. Stress and
J

strain are linked by a constitutive relation called Hooke’s law,

o=C:¢e,

V.o,

where C' is the 4-index elastic tensor. In three spatial dimensions, C' has
81 components. The colon indicates tensor contraction, so that (C' : €);; =

> we Cijrere.
These equations form a closed system when they are complemented by
Ode 1
===V V)T,
= 5(Vot (Vo))

which holds by definition of e.
At this point we can check that the first-order system for v and e defined
by the equations above is hyperbolic. Define

(v . 0 L2
O )

1 1
Liv = = (Vo + (Vo)T), Lye = —V - (C :¢).
2 Po
Then, as previously, %—1;’ = Lw. An exercise in section 1.3 asks to show that
the matrix operator L is anti-selfadjoint with respect to the inner product

1

<w,w’):§/(pv-v’+e:C:e)da:.

with

The corresponding conserved elastic energy is £ = (w, w).
[sotropic elasticity is obtained where C' takes a special form with 2 degrees
of freedom rather than 81, namely

Cijre = NijOm + p1(8i00sn + Sirdje)-

We are not delving into the justification of this equation. The two elastic
parameters A and p are also called Lamé parameters:
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e )\ corresponds to longitudinal waves, also known as compressional, pres-
sure waves (P).

e 1 corresponds to transverse waves, also known as shear waves (S).

Originally, the denominations P and S come from “primary” and “secondary”,
as P waves tend to propagate faster, hence arrive earlier, than S waves.

With this parametrization of C, it is easy to check that the elastic system
reduces to the single equation (1.5). In index notation, it reads

02ui
P o

For reference, the hyperbolic propagator Ly reduces to

= 0;(A9;u;) + 9;(u(Diu; + 9ju;)).

1
Loe = ;(V()\tre)+2v-(,ue)), tre:zem

and the energy inner product is

(w,w'y = %/(pv 0 4+ 2 putr(eh€) + A(tre)(tre)) du.

The elastic wave equation looks like an acoustic wave equation with “2
terms, hence 2 waves”. To make this observation more precise, assume that
A and p are constant ($). Use some vector identities? to reduce (1.5) to

0%u
PoE = A+ wWV(V - u) + pAu,
=(A+20)V(V-u) —puV x V x u.

Perform the Helmholtz (a.k.a. Hodge) decomposition of u in terms of poten-
tials ¢ and :
u=Vo+V x,

where ¢ is a scalar field and 9 is a vector field®. These two potentials are
determined up to a gauge choice, namely

§=¢+C, ¢ =v+Vf

2In this section, we make use of VX V x u = V(V -u) — Au, V-V x ¢ = 0, and
V x Vi = 0.

3Normally the Helmholtz decomposition comes with a third term A which obeys Ah =
0, i.e., h is harmonic, but under suitable assumptions of decay at infinity the only solution
to Ah=01is h =0.
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Choose f such that v’ has zero divergence:
V=0 = Af=-V-.

This is a well-posed Poisson equation for f. With this choice of ¢, it holds
that

V.-u=A0, Vxu=VxVxu=—-Ay.

The elastic wave equation can then be rewritten in terms of ¢, ¢ as

o
P o

2
\Y p%—(A—l—Qu)Aqﬁ} +V x [

— ,qu} =0.
Take the gradient of this equation to conclude that (with a suitable decay
condition at infinity)

0% .
P~ (A4 21)A¢p = harmonic = 0.
Now that the first term is zero, we get (with a suitable decay condition at
infinity)
2
P or
Hence each potential ¢ and 1 solve their own scalar wave equation: one for
the longitudinal waves (¢) and one for the transverse waves (¢). They obey
a superposition principle. The two corresponding wave speeds are

[A+ 20 [ 1
Cp = 5 Cg = —.
Po Po

In the limit © — 0, we see that only the longitudinal wave remains, and
A reduces to the bulk modulus. In all cases, since A > 0 we always have
cp > V/2cg: the P waves are indeed always faster (by a factor at least \/5)
than the S waves.

The assumption that A and p are constant is a very strong one: there is
a lot of physics in the coupling of ¢ and 1 that the reasoning above does not
capture. Most important is mode conversion as a result of wave reflection at
discontinuity interfaces of A\(x) and/or p(z).

— pA1) = V(something) = 0.
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1.1.3 Electromagnetic waves

The quantities of interest for electromagnetic waves are:
e Physical fields: the electric field F, and the magnetic field H,

e Medium parameters: the electric permittivity € and the magnetic per-
meability pu,

e Forcings: electric currents j and electric charges p.

The electric displacement field D and the magnetic induction field B are
also considered. In the linearized regime ($), they are assumed to be linked
to the usual fields £ and H by the constitutive relations

D =¢€F, B = uH.

Maxwell’s equations in a medium with possible space-varying parameters
e and p read

VxE= —aa—f (Faraday’s law) (1.6)

V x H= 88—? +7 (Ampere’s law with Maxwell’s correction) — (1.7)
V-D=p (Gauss’s law for the electric field) (1.8)
V-B=0 (Gauss’s law for the magnetic field) (1.9)

The integral forms of these equations are obtained by a volume integral,
followed by a reduction to surface equations by Stokes’s theorem for (1.6),
(1.7) and the divergence (Gauss’s) theorem for (1.8), (1.9). The integral
equations are valid when € and p are discontinuous, whereas the differential
equations strictly speaking are not.

The total charge in a volume V is fv pdV , while the total current through
asurface S'is [ ¢ J-dS. Conservation of charge follows by taking the divergence
of (1.7) and using (1.8):

dp
ot

In vacuum, or dry air, the parameters are constant and denoted € = ¢,
it = po. They have specific numerical values in adequate units.

We now take the viewpoint that (1.6) and (1.7) are evolution equations for
E and H (or D and B) that fully determine the fields when they are solved

+V-j=0.
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forward (or backward) in time. In that setting, the other two equations (1.8)
and (1.9) are simply constraints on the initial (or final) condition at t = 0. As
previously, we may write Maxwell’s equations in the more concise hyperbolic

form 3 /
W —j/€ . _(E
E—Lw—l—( 0 ), Wlthw—(H),

0 1y«
LZ(—iVX 0 )

The “physical” inner product that makes L* = —L is

provided

1
(w,w') = 5/(EEE/ +puHH') dx.

The electromagnetic energy E = (w,w) is conserved when j = 0.

It is the balanced coupling of E' and H through (1.6) and (1.7) that creates
wave-like solutions to Maxwell’s equations (and prompts calling the physical
phenomenon electromagnetism rather than just electricity and magnetism.)
Combining both equations, we obtain

0*FE 1 1
= - E
5 ev X (NV x E),
0*H 1 1

S ~V x H).
52 MV X (GV x H)

These wave equations may be stand-alone but £ and H are still subject to
essential couplings.
A bit of algebra? reveals the more familiar form
PE  Vu Ve
AFE —ep— + — x (VX E)+ V(E-—) =0.
“om T, ( )+ V(E-—)

We now see that in a uniform medium, € and p are constant and the last two
terms drop, revealing a wave equation with speed

4Using the relations V x V x F = V(V - F) — AF again, as well as V- (F x G) =
G- (VxF)—F-(VxG).
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The speed of light is ¢y = 1//€ofto. Even when € and 4 vary in x, the last two
terms are kinematically much less important than the first two because they
involve lower-order derivatives of E. They would not, for instance, change
the path of the “light rays”, a concept that we’ll make clear later.

For reference, we now list the jump conditions that the electric and mag-
netic fields obey at a dielectric interface. These relations can be obtained
from the integral form of Maxwell’s equations, posed over a thin volume
straddling the interface. Let n be the vector normal to a dielectric interface.

n X FEp=nx Ey (continuous tangential components)
nx H =nx Hy+ jg
n-Dy=n-Dy+ pg
n-Hy=n-H (continuous normal component)

We have used jgs and pg for surface currents and surface charges respectively.
If the two dielectrics correspond to finite parameters €1, € and piq, po, then
these currents are zero. If material 2 is a perfect electric conductor however,
then these currents are not zero, but the fields F», Hy, Dy and H, are zero.
This results in the conditions n x E = 0 (E perpendicular to the interface)
and n x H = 0 (H parallel to the interface) in the vicinity of a perfect
conductor.

Materials conducting current are best described by a complex electric
permittivity € = € + io/w, where o is called the conductivity. All these
quantities could be frequency-dependent. It is the ratio o/€¢ that tends to
infinity when the conductor is “perfect”. Materials for which € is real are
called “perfect dielectrics”: no conduction occurs and the material behaves
like a capacitor. We will only consider perfect dielectrics in this class. When
conduction is present, loss is also present, and electromagnetic waves tend
to be inhibited. Notice that the imaginary part of the permittivity is o/w,
and not just o, because we want Ampere’s law to reduce to j = oF (the
differential version of Ohm’s law) in the time-harmonic case and when B = 0.

1.2 Special solutions

1.2.1 Plane waves, dispersion relations

In this section we study special solutions of wave equations that depend on x
like e**. These solutions are obtained if we assume that the time dependence
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is harmonic, namely if the unknown is w(z,t), then we assume ($)
w(w,t) = e ™ f(2), weR.

The number w is called angular frequency, or simply frequency. Choosing
et instead makes no difference down the road. Under the time-harmonic

assumption, the evolution problem %—’f = Lw becomes an eigenvalue problem:

_iwfw = wa

Not all solutions are time-harmonic, but all solutions are superpositions of
harmonic waves at different frequencies w. Indeed, if w(x,t) is a solution,
consider it as the inverse Fourier transform of some @w(z,w):

1 )
w(x,t) = %/e_mzﬁ(x,w)dw.

Then each w(z,w) is what we called f,(z) above. Hence there is no loss of
generality in considering time-harmonic solutions.
Consider the following examples.

e The one-way, one-dimensional wave equation

ou ou B

gu  ou_y R.
a o TE

Time harmonic solutions u(x,t) = e~ f,(x) obey

w

w
i—fo=f x €R.
c
The solution to this equation is

fol(z) = e, k=—¢eR.

w
c
Evanescent waves corresponding to decaying exponentials in x and ¢
are also solutions over a half-line, say, but they are ruled out by our
assumption (3) that w € R.

While w is the angular frequency (equal to 27 /T where T is the period),
k is called the wave number (equal to 27/ where A is the wavelength.)
It is like a "spatial frequency”, though it is prudent to reserve the word
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frequency for the variable dual to time. The quantity measured in
Hertz [1/s] and also called frequency is v = w/(27).

The full solution then takes the form

u(x,t) _ ei(kx—wt) _ eik(m—ct)7

manifestly a right-going wave at speed c. If the equation had been

9u 9 — () instead, the wave would have been left-going: u(z,t) =

t
eik(erct?x

e The n-dimensional wave equation in a uniform medium,

9%u

2 = A, x e R".

When u(x,t) = e"™!f,(x), the eigenvalue problem is called the (homo-
geneous) Helmholtz equation. It is

—w?fo(x) = Af,(z), r e R"™ (1.10)
Again, plane waves are solutions to this equation:

fw (SL’) — eik:-x7

provided w? = |k|?c?, ie., w = *lklc. Hence f, is a function that
oscillates in the direction parallel to k. The full solution is

U([L’,t) _ ei(km—wt)’

which are plane waves traveling with speed ¢, along the direction k.
We call k the wave vector and |k| the wave number. The wavelength
is still 2/|k|. The relation w? = |k|?c? linking w and k, and encoding
the fact that the waves travel with velocity c, is called the dispersion
relation of the wave equation.

Note that e?** are not the only (non-growing) solutions of the Helmholtz
equation in free space; so is any linear combination of e that share
the same wave number |k|. This superposition can be a discrete sum
or a continuous integral. An exercise in section 1.3 deals with the con-
tinuous superposition with constant weight of all the plane waves with
same wave number |k|.
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Consider now the general case of a hyperbolic system %—f = Lw, with
L* = —L. The eigenvalue problem is —iwf, = Lf,. It is fine to assume w

real: since L is antiselfadjoint, iL is selfadjoint (Hermitian), hence all the
eigenvalues of L are purely imaginary. This is sometimes how hyperbolic
systems are defined — by assuming that the eigenvalues of the generator L
are purely imaginary.

We still look for eigenfunctions with a e*** dependence, but since w and
fo may now be vectors with m components, we should make sure to consider

folz) = ™o, reR™.

However, such f,, cannot in general expected to be eigenvectors of L. It
is only when the equation is translation-invariant that they will be. This
means that the generator L is a matrix of differential operators with constant
coefficients — no variability as a function of x is allowed. In this translation-
invariant setting, and only in this setting, L is written as a multiplication
by some matrix P(k) in the Fourier domain. Say that f has m components

(f1,- - fm); then

Li@) = o [ PO T b

where P(k) is an m-by-m matrix for each k. Here P(k) is called the dispersion
matrix. We refer to operators such as L as diagonal in the Fourier domain,
with respect to the k variable, because they act like a “diagonal matrix” on
vectors of the continuous index k& — although for each £ the small matrix
P(k) is not in general diagonal®. In pure math, P(k) is called the multiplier,
and L is said to be a multiplication operator in the Fourier domain.

For illustration, let us specialize our equations to the 2D acoustic system

with pg = kg = ¢ = 1, where

0
0 0 %
w— <U> ’ I = 0 0 ~ Das
P 0 0
~9ei s U

5Non-diagonal, translation-variant operators would require yet another integral over a

o~

k' variable, and would read Lf(z) = ﬁ [ [e**Q(k, k") f(k')dk', for some more com-
plicated object Q(k, k') € R™*™. The name “diagonal” comes from the fact that Q(k, k')
simplifies as P(k)d(k—k’) in the translation-invariant case. You can think of P(k)d§(k—k’)
as the continuous analogue of d;d;;: it is a “diagonal continuous matrix” as a function of
k (continuous row index) and k' (continuous column index).
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It can be readily checked that

0 0 —ik
P(k‘) _ 0 0 —Zk‘g 7
—ik; —iky 0O

from which it is apparent that P(k) is a skew-Hermitian matrix: P*(k) =
—P(k).

We can now study the conditions under which —iw f, = Lf,: we compute
(recall that r is a fixed vector)

L) = s [ PR,

1
(2m)"

/ e TP (2m) 5 (k — K )rdk, = e*TP(k)r.

In order for this quantity to equal —iwe**r for all x, we require (at x = 0)

P(k)r =—iwr.
This is just the condition that —iw is an eigenvalue of P(k), with eigenvector

r. We should expect both w and r to depend on k. For instance, in the 2D
acoustic case, the eigen-decomposition of P(k) is

ks
)\0(’6) = —Zu}o<k) = 0, 7"0(]6) = —k’l
0
and
Lk /|k|
A (k) = —iwy (k) = —ilk], ry(k) = | £ko/|k|
K|

Only the last two eigenvalues correspond to physical waves: they lead to the
usual dispersion relations w(k) = %|k| in the case ¢ = 1. Recall that the
first two components of r are particle velocity components: the form of the
eigenvector indicates that those components are aligned with the direction £
of the wave, i.e., acoustic waves can only be longitudinal.

The general definition of dispersion relation follows this line of reason-
ing: there exists one dispersion relation for each eigenvalue A; of P(k), and
—iw; (k) = A;(k); for short

det [iwl + P(k)] = 0.
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1.2.2 Traveling waves, characteristic equations

We now consider a few examples that build up to the notion of characteristic
curve/surface.

e Let us give a complete solution to the one-way wave equation of one
space variable in a uniform medium:

0 0
a—;f + ca—z =0,  ulz,0) = up(x). (1.11)
The study of plane wave solutions in the previous section suggests that
the variable x — ¢t may play a role. Let us perform the change of
variables
E=z—ct, n =x+ct.

It inverts as
n—=¢

2c

2 )

By the chain rule, e.g.,
0 Ox 0  0Oto

06~ 0for  oEot

we get
—203—2—02 202—2—1-03
o ot oz’ on ot Ox
With U(&,n) = u(x,t), the wave equation simply becomes
ou
o

whose general solution is U (€, ) = F(€) for some differentiable function
F. Hence u(z,t) = F(x — ct). In view of the initial condition, this is

u(z,t) = uo(z — ct).
The solutions to (1.11) are all the right-going waves with speed ¢, and

nothing else.

The wave propagate along the lines &(x,t) = x —ct =const. in the (z,t)
plane. For this reason, we call £ the characteristic coordinate, and we
call the lines £(z,t) = const. characteristic curves.
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Notice that imposing a boundary condition u(0,t) = vg(t) rather than
an initial condition is also fine, and would result in a solution u(z,t) =
vo(t — x/c). Other choices are possible; they are called Cauchy data.
However, a problem occurs if we try to specify Cauchy data along a
characteristic curve £ = constant, as vy(n):

1. this choice is not in general compatible with the property that the
solution should be constant along the characteristic curves; and
furthermore

2. it fails to determine the solution away from the characteristic
curve.

In other words, there is a problem with both existence and unique-
ness when we try to prescribe Cauchy data on a characteristic curve.
This fact will be used in the sequel to define these curves when their
geometric intuition becomes less clear.

e Using similar ideas, let us describe the full solution of the (two-way)
wave equation in one space dimension,

Pu 0% ou

2 ¢ 2 0, u(z,0) = ug(z), E@’O) = uy(z).
The same change of variables leads to the equation
ou
—— =0,
0&0n

which is solved via

13
g—g@,m —£©). Ul = / F(E)dE + Cn) = F(€) + Gn).

The resulting general solution is a superposition of a left-going wave
and a right-going wave:

u(z,t) = F(x — ct) + G(z + ct).

Matching the initial conditions yields d’Alembert’s formula (1746):

x+ct

u(z,t) = %(uo(x —ct) +up(x + ct)) + % / uy (y)dy.

r—ct
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It is the complete solution to the 1D wave equation in a uniform wave
speed c. Notice that we now have two families of criss-crossing charac-
eristic curves, given by &(x,t) = const. and n(z,t) = const. Cauchy
data cannot be prescribed on either type of characteristics.

Consider now the wave equation in a variable medium ¢(x) (technically,
acoustic waves on an infinite string with variable bulk modulus):
2u 2u u

%—02@)% =0, u(z,0) = ug(x), %(
We will no longer be able to give an explicit solution to this problem,
but the notion of characteristic curve remains very relevant. Consider
an as-yet-undetermined change of coordinates (z,t) — (&,n), which
generically changes the wave equation into

PU U 0*U ou oU
O‘(x)a_§2+agan+ﬁ( )a?7 + { (x )ag q(x )6—77+7‘(x)U} =0,

with ) )
ar) = (%) — (z) (%) :

o= (2) - e (2)

The lower-order terms in the square brackets are kinematically less
important than the first three terms®. We wish to define characteristic
coordinates as those along which

U(&,m) ~ F(§) + G(n),

e., “directions in which the waves travel” in space-time. It is in general
impossible to turn this approximate equality into an actual equality
(because of the terms in the square brackets), but it is certainly possible
to choose the characteristic coordinates so that the 8 U and a T vanish.
Choosing a(z) = f(z) = 0 yields the same equatlon for both ¢ and 7,
here expressed in terms of &:

(ZD o >(§i> =0. (1.12)

x,0) = uy (z).

6Tn a sense that we are not yet ready to make precise. Qualitatively, they affect the

shape of the wave, but not the character that the waves travel with local speed ¢(x).
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This relation is called the characteristic equation. Notice that & = z—ct
and 7 = x + ct are both solutions to this equation in the case when
¢(x) = ¢ is a constant. But it can be checked that & = = & ¢(x)t is
otherwise not a solution of (1.12). Instead, refer to the exercise section
for a class of solutions to (1.12).

e Consider now the n dimensional wave equation

2
% — A (x)Au =0, u(z,0) = ug(x), %(w, 0) = uy(x).
A change of variables would now read (x1,...,2Z,,t) — (§, 71, .., 0n).
The variable ¢ is called characteristic when the coefficient of the lead-
02U

ing term e vanishes in the expression of the equation in the new
coordinates. This condition leads to the n-dimensional version of the
characteristic equation

(%) — @) VL8R =0, (113)

The same relations should hold for the other coordinates ny,...,n,
if they are to be characteristic as well. Equation (1.13) is called a
Hamilton-Jacobi equation. We now speak of characteristic surfaces
¢(x,t) = const., rather than curves.

The set of solutions to (1.13) is very large. In the case of constant c,
we can check that possible solutions are

E(x,t) =x -k +wt, w = |klc,

corresponding to more general plane waves u(x,t) = F(z - k + wt)
(which the reader can check are indeed solutions of the n-dimensional
wave equation for smooth F), and

E(x,t) = ||l — y|| £ ct, for some fixed y, and = # y,

corresponding to concentric spherical waves originating from y. We
describe spherical waves in more details in the next section. Notice
that both formulas for £ reduce in some sense to x + ¢t in the one-
dimensional case.
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The choice of characteristic coordinates led to the reduced equation

02U
0&on

+ lower order terms = 0,

sometimes called “first fundamental form” of the wave equation, on the in-
tuitive basis that solutions (approximately) of the form F(£) + G(n) should
travel along the curves £ = const. and n = const. Let us now motivate this
choice of the reduced equation in more precise terms, by linking it to the
idea that Cauchy data cannot be prescribed on a characteristic curve.

Consider uy = c®ug,. Prescribing initial conditions u(z, 0) = ug, u(x,0) =
uy is perfectly acceptable, as this completely and uniquely determines all the
partial derivatives of u at t = 0. Indeed, u is specified through ug, and all its
xr-partials u,, Uyzy, Upes, . . . are obtained from the z-partials of ug. The first
time derivative u; at t = 0 is obtained from wuq, and so are us, Uz, . .. Dy
further x-differentiation. As for the second derivative uy at ¢ = 0, we obtain
it from the wave equation as c*ug, = cQ(uo)m. Again, this also determines
Ugte, Uttze - - - The third derivative uyy is simply g, = c2(u1)z,. For the
fourth derivative uy;, apply the wave equation twice and get it as ¢*(uo)zzae-
And so on. Once the partial derivatives are known, so is u itself in a neigh-
borhood of ¢t = 0 by a Taylor expansion — this is the original argument
behind the Cauchy-Kowalevsky theorem.

The same argument fails in characteristic coordinates. Indeed, assume
that the equation is g, + pue + qu, + 7w = 0, and that the Cauchy data
is u(£,0) = vo(&), u,y(&,0) = wvi(n). Are the partial derivatives of u all
determined in a unique manner at n = 07 We get u from vy, as well as
Ug, Uge, Ugge, - . . by further ¢ differentiation. We get u, from vy, as well as
Une, Uneg, - - - by further £ differentiation. To make progress, we now need to
consider the equation ug, + (L.o.t.) = 0, but two problems arise:

e First, all the derivatives appearing in the equation have already been
determined in terms of vg and vy, and there is no reason to believe that
this choice is compatible with the equation. In general, it isn’t. There
is a problem of existence.

e Second, there is no way to determine u,,, from the equation, as this term
does not appear. Hence additional data would be needed to determine
this partial derivative. There is a problem of uniqueness.
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The only way to redeem this existence-uniqueness argument is by making
sure that the equation contains a u,, term, i.e., by making sure that n is
non-characteristic.

Please refer to the exercise section for a link between characteristic equa-
tions, and the notions of traveltime and (light, sound) ray. We will return to
such topics in the scope of geometrical optics, in chapter 6.

1.2.3 Spherical waves, Green’s functions

Consider z € R3 and ¢ constant. We will only be dealing with solutions in
3 spatial dimensions for now. We seek radially symmetric solutions of the
wave equation. In spherical coordinate (r, 0, ¢), the Laplacian reads
82
Au = ———=(ru) + angular terms.
r (97"2( ) &

For radially symmetric solutions of the wave equation, therefore,

0? o

@(ru) = w(ru)

This is a one-dimensional wave equation in the r variable, whose solution we
derived earlier:
F(r—ct) G(r+ct)

ru(r,t) = F(r —ct) + G(r + ct) = u(r,t) = " + —

Spherical waves corresponding to the F' term are called outgoing, while waves
corresponding to the G term are called incoming. More generally, spherical
waves can be outgoing/incoming with respect to any point y € R3, for in-
stance

F(llz —y| —ct
sinpy = Fllz =yl = et
I =yl
Notice that we had already seen that ||z — y|| &= ¢t is a characteristic variable
for the wave equation, in the previous section. The surfaces ||z — y|| = ct+

const. are often called light cones in the setting of electromagnetic waves.

In what follows we will be interested in the special case F'(r) = d(r), the
Dirac delta, for which the wave equation is only satisfied in a distributional
sense. Superpositions of such spherical waves are still solutions of the wave
equation.
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It turns out that any solution of the wave equation in R3, with constant
¢, can be written as a superposition of such spherical waves. Let us consider
a quantity which is not quite the most general yet:

||z —yl| — ct

arty = [ Iy, (114
ke e =yl

Since ||z —y|| = ¢t on the support of the delta function, the denominator can

be written ct. Denoting by B, (ct) the ball centered at z and with radius ct,

we can rewrite 1
uot) == [ iy
cl JoB,(ct)

hence the name spherical means (note that the argument of § has derivative
1 in the radial variable — no Jacobian is needed.) The interesting question is
that of matching u(x,t) given by such a formula, with the initial conditions.
By the mean value theorem,

u(x,t) ~ drcet(z), t—0,

which tends to zero as ¢ — 0. On the other hand, an application of the
Reynolds transport theorem (or a non-rigorous yet correct derivative in time
of the equation above) yields

ou
lim — =4 )
liy =2 (7, 1) = dmey(z)
We are therefore in presence of initial conditions ug = 0, and arbitrary u; =
Admep(x) arbitrary. In that case, the solution of the constant-c wave equation
in R? is
M%QZ/GQWWMQM%
with the so-called Green’s function

—y|| —ct
Cloyity vl =) s

At

and zero when t < 0.
Let us now describe the general solution for the other situation when
uy = 0, but ug # 0. The trick is to define v(z,t) by the same formula (1.14),

and consider u(zx,t) = %, which also solves the wave equation:

2 L, Jow 9
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The limits are now
Ilfil% u(z,t) = drep(x),

and 5 52

5~ 92 = C Av, ll_r%c Av(z,t) =c All_r%v(x,t) 0
(limit and derivative are interchangeable when the function is smooth enough.)
The time derivative trick is all that is needed to generate the solution in the

case u; = 0:
oG
o) = [ 5 @ty dy

The general solution is obtained by superposition of these two special
cases:

i) = | [%—f@,y;t)uo(y)+G<x,y;t>u1<y> . (L16)

The concept of Green’ function GG is much more general than suggested
by the derivation above. Equation (1.16), for instance, holds in arbitrary
dimension and for variable media, albeit with a different Green’s function
— a claim that we do not prove here. In two dimensions and constant ¢ for
instance, it can be shown’ that

1

G(x,y;t) = , when t > 0,
( ) 2mer/c2t2 — ||z — y?

and zero otherwise. In variable media, explicit formulas are usually not
available.

In the wider context of linear PDE, Green’s functions are more often
introduced as linking a right-hand-side forcing f to the solution v upon inte-
gration. For a linear PDE Lu = f, Green’s functions are to the differential
operator £ what the inverse matrix A~! is to a matrix A. Accordingly, the
Green’s function describes the solution of the wave equation with a right-hand
side forcing — a setting more often encountered in imaging than initial-value
problems. The premise of the proposition below is that G is defined® through
(1.16), even as z € R™ and ¢ is a function of x.

"By the so called “method of descent”. See the book Introduction to PDE by Gerald
Folland for a wonderful explanation of wave equations in constant media.

8The tables could be turned, and G could instead be defined by (1.17). In that case
(1.16) would be a proposition.
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Proposition 2. (Duhamel principle) For x € R", and t > 0, the solution of
the inhomogeneous problem

{% — c2(x)A} u(z, t) = f(x,t), u(z,0) = %(m,()) = 0.

u(z,t) = /Ot/G(:L’,y;t —5)f(y, s) dyds. (1.17)

Proof. Let us check that the wave equation holds.
For each s > 0, consider the auxiliary problem

82 2 _ _ 82}5 o
=@ = 0, w0 =0 R0 = )
Then

vs(2,1) = / Gl y: 1)1 (4, 5) dy.

The candidate formula for u is
t
u(z,t) = / vs(z,t — ) ds.
0

Let us now check that this u solves the wave equation. For one, u(z,0) =0
because the integral is over an interval of length zero. We compute

ou L v, t v,
E(x’t)_%(x’t_sﬂssz/o E(m,t—s)ds— i E(m,t—s)ds.

For the same reason as previously, %(m, 0) = 0. Next,

@( t)f%( t— 8)|oms + t%
R TR N e

o2 (x,t —s)ds
= f(z,t) + /t A (x)Avy(z,t — 5) ds
0

= f(z,t) + CQ(x)A/O vs(z,t — s)ds
= f(z,t) + A (x)Au(z, ).

Since the solution of the wave equation is unique, the formula is general. [
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Because the Green’s function plays such a special role in the description
of the solutions of the wave equation, it also goes by fundamental solution.
We may specialize (1.17) to the case f(z,t) = 0(z — y)d(t) to obtain the
equation that the Green’s function itself satsfies,

2
[% —c (x)Az} G(z,y;t) = d(z —y)o(t).
In the spatial-translation-invariant case, G is a function of = — y, and we
may write G(z,y;t) = g(x — y,t). In that case, the general solution of the
wave equation with a right-hand side f(z,t) is the space-time convolution of
f with g.

A spatial dependence in the right-hand-side such as §(z — y) may be a
mathematical idealization, but the idea of a point disturbance is nevertheless
a very handy one. In radar imaging for instance, antennas are commonly
assumed to be point-like, whether on arrays or mounted on a plane/satellite.
In exploration seismology, sources are often modeled as point disturbances
as well (shots), both on land and for marine surveys.

The physical interpretation of the concentration of the Green’s function
along the cone ||x —y|| = ct is called the Huygens principle. Starting from an
initial condition at ¢ = 0 supported along (say) a curve I', this principle says
that the solution of the wave equation is mostly supported on the envelope
of the circles of radii ¢t centered at all the points on I'.

1.2.4 The Helmholtz equation

It is often convenient to use a formulation of the wave equation in the fre-
quency domain. If

u(r,w) = /emu(x,t) dt,

and if [W — A(x )AI] u = f, then it is immediate to check that the (inho-

mogeneous) Helmholtz equation holds:
— [w* + P (2)A] U(z,w) = f(x,w).

The notion of Green’s function is also very useful for the Helmholtz equation:
it is the function G(z,y;w) such that

~

r,0) = [ Glagse o) dy
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It is a good exercise to check that G (x,y;w) is indeed the Fourier transform
of G(z,y;t) in t, by Fourier-transforming (1.17) and applying the convolu-
tion theorem. By specializing the Helmholtz equation to the right-hand side
f(z,w) = d(x), we see that the Green’s function itself obeys

— [w? + A(2)A] @(m,y;w) = 6(x). (1.18)

In particular, for z € R® and constant ¢, we get (x # y)

a($7y;w) — / eiwté(Hx - y” — Ct) gt
0

4t

Y LS
0

dref|z —y||

_[Ceretllelon,
0

drllz —yll

eikllz—yl
B M
We will often use this form of the Green’s function in the sequel. It is an
outgoing spherical wave generated by a “point source” at x = y.

Note that w — —w corresponds to time reversal: % is also a solution
of the Helmholtz equation for x # gy, but it is an incoming rather than
outgoing wave. The sign in the exponent depends on the choice of convention
for the Fourier transform’

Some mathematical care should be exercised when posing the Helmholtz
equation in free space. Uniqueness, in particular, is not as easy to guarantee
as for the time-dependent wave equation. “Sufficient decay as ||z|| — 00” is
not a good criterion for uniqueness, since we’ve just seen an example of two
waves % which have the same modulus and obey the same equation
(1.18). Instead, it is customary to require the wave to be outgoing in order
to have a well-posed problem in constant c¢. We say that u(x,w) obeys the
Sommerfeld radiation condition in R if (r = ||z||)

(% - zkz) (e, w) = 0(|%|),

9We choose e'! for the direct transform, and e~** for the inverse transform, in ac-
cordance with practice in signal processing, radar imaging, and seismic imaging. For the
spatial Fourier transforms, however, we adopt the opposite convention e~**'* for the direct
transform, and e**?® for the inverse transform.
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, limypg oo 2] (£ — k) U(z,w) = 0. It is a good exercise to check that
G(x, y;w) obeys this radiation conditions, while @(9&, y; —w) does not.

1.2.5 Reflected waves

Spatial variability in the physical parameters (p, k; €, u; A\, i, etc.) entering
the wave equation generate wave scattering, i.e., changes of the direction of
propagation of the waves. Of particular interest are discontinuities, or other
non-C'* singularities, which generate reflected waves alongside transmitted
waves.

Let us study reflection and transmission in the 1D, variable-density acous-

tics equation
O 0 (Lo
a2~ "oy p(z)ox )

Consider a step discontinuity at x = 0, with p(z) = p; and k(z) = k; in
x < 0, and p(x) = pg and k(z) = Ko in & > 0. Assume an incident plane
wave u;(z,t) = e!"17=“) in g < 0; we are interested in finding the reflection
coefficient R and the transmission coefficient T" so the solution reads

wi(z,t) + up(z, ) = e!Fre=et) L Reilhetwt) z < 0.

w(z,t) = Te'kzm=wt), x> 0.

The connection conditions are the continuity of v and ;E)u To justify this,
remember that u is in fact a pressure disturbance in the acoustic case, while

[l)g“ is minus the time derivative of particle velocity, and these two quantities

are continuous on physical grounds. There is also a mathematical justification
19

mass (Dirac atom) at x = 0, which would pose a problem both for the
multiplication by a discontinuous «(z), and because g“ is supposed to be a
finite function, not a distribution.

At x = 0, the connection conditions give

fl@u

for the continuity of < 5%: if it weren’t, then 2 pom ( ) would have a point

1+R=T,

1 1
—(—tky — k1 R) = — (ik,T).
/)1( ! 1) /)2( 2)
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Eliminate k; and ko by expressing them as a function of pi, py only; for

instance
k1 w w

P pa Pkt
ko

and similarly for P Note that w is fixed throughout and does not depend
on x. The quantity in the denominator is physically very important: it is
Z = pc = \/kp, the acoustic impedance. The R and T coefficients can then

be solved for as
A 27,

Zy+ 7y T_Z2+Z1'
It is the impedance jump Zs — Z, which mostly determines the magnitude
of the reflected wave.R = 0 corresponds to an impedance match, even in the
case when the wave speeds differ in medium 1 and in medium 2.

The same analysis could have been carried out for a more general incoming
wave f(z — cit), would have given rise to the same R and T coefficients, and
to the complete solution

R:

u(z,t) = f(x —at) + Rf(—z — a1f), xr <0, (1.19)
u(z,t) = Tf(z—l(x —ot), 10 (1.20)
2
The reader can check the relation
Z1
1= 2 _T2
R+ Z, 0

which corresponds to conservation of energy. An exercise in section 1.3 aims
to establish this link. Note that R = R? and 7 = %Tz are sometimes
referred to as reflection and transmission coefficients, though they measure
intensities rather than amplitudes. The intensity coefficients are even de-
noted as R and T in place of R and 7 in some texts.

Physically, the acoustic impedance Z is the proportionality constant be-
tween the pressure amplitude and the velocity amplitude of an acoustic wave.
We do not have direct access to Z in the acoustic equations however, as
p(z,t) # Zv(z,t) pointwise — only combinations of partial derivatives match.
So Z is in some sense an “averaged quantity” over at least a wavelength.
On can derive the expression of Z from the time-harmonic regime. The first
equation (1.1) in the acoustic system reads, in the (k,w) domain (in one
spatial dimension),

1
iwv(k,w) = ——ikp(k,w),
Po
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or, if we simplify further,

Ip| = Z|v], Z = poc = +/poko-

The same relation would have been obtained from (1.2). The larger Z, the
more difficult to move particle from a pressure disturbance, i.e., the smaller
the corresponding particle velocity.

The definition of acoustic impedance is intuitively in line with the tradi-
tional notion of electrical impedance for electrical circuits. To describe the
latter, consider Ampere’s law in the absence of a magnetic field:

oD _ N oF .
— = €e—— = —7J.
or or ~
In the time-harmonic setting (AC current), iwekE = —j. Consider a conduct-

ing material, for which the permittivity reduces to the conductivity:

It results that £ = ij with the resistivity Z = 1/0. This is the differential
version of Ohm’s law. The (differential) impedance is exactly the resistivity
in the real case, and can accommodate capacitors and inductions in the
complex case. Notice that the roles of £/ (or V0 and j (or /) in an electrical
circuit are quite analogous to p and v in the acoustic case.

There are no waves in the conductive regime we just described, so it is
out of the question to seek to write R and T coefficients, but reflections
and transmissions of waves do occur at the interface between two dielectric
materials. Such is the case of light propagating in a medium with variable
index of reflection. To obtain the R and T coefficients in the optical case,
the procedure is as follows:

e Consider Amp‘ere’s law again, but this time with a magnetic field H
(because it is needed to describe waves) but no current (because we are
dealing with dielectrics):

oD
=V xH.
5 V x

Use D = €¢F.
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e Assume plane waves with complex exponentials, or in the form E(k -
r —wt)and H(k -z — wt).

e Use continuity of n X E and n x H at the interface (tangential compo-
nents).

e Assume no magnetism: p = const.

The quantity of interest is not the impedance, but the index of refraction

n= % = /ep. Further assuming that the waves are normally incident to the

interface, we have

Ng — N 2712

, )
Ny + 1y Ng + Ny

These relations become more complicated when the angle of incidence is not
zero. In that case R and T also depend on the polarization of the light. The
corresponding equations for R and T are then called Fresnel’s equations.
Their expression and derivation can be found in “Principles of optics” by
Born and Wolf.

1.3 Exercises

1. Continue the reasoning in section 1.1.1 with the entropy to justify the
equations of variable-density acoustics. [Hints: conservation of entropy
reads % +v-Vs = 0. Continue assuming that the background velocity
field is vg = 0. Assume a fixed, variable background density po(x).
The new constitutive relation is p = f(p, s). Consider defining ¢?(z) =

g—i(Po(x), so(x)).]

2. First, show the multivariable rule of integration by parts [V f-g =
— [ fV g, when f and ¢ are smooth and decay fast at infinity, by
invoking the divergence theorem. Second, use this result to show that
L* = —L for variable-density acoustics (section 1.1.1), i.e., show that
(Lw,w") = —(w, Lw') for all reasonable functions w and w’, and where
(-,-) is the adequate notion of inner product seen in section 1.1.1.

3. Show that (Lw,w') = —(w, Lw') for general elastic waves.
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4. In R2, consider

o cos 6
fo(z) = / efodg, ko = |k| ( ) ,
0

sin @

with |k| = w/c. Show that f, is a solution of the homogeneous
Helmholtz equation (1.10) with constant ¢, and simplify the expres-
sion of f, by means of a Bessel function. [Hint: show first that f, is
radially symmetric.]

5. Find all the functions 7(z) for which

f(éﬂ,t) = 7'(.2?) =t
is a solution of (1.12) in the case xz € R.

The function 7(x) has the interpretation of a traveltime.

6. Consider a characteristic curve as the level set {(x,t) =const., where £
is a characteristic coordinate obeying (1.12). Express this curve para-
metrically as (X(¢),t), and find a differential equation for X (¢) of the
form X (t) = ... How do you relate this X (¢) to the traveltime function
7(z) of the previous exercise? Justify your answer.

Such functions X () are exactly the rays — light rays or sound rays.
They encode the idea that waves propagate with local speed ¢(z).

7. Give a complete solution to the wave equation in R",

Pu ou

— = c“Au, u(x,0) = ug(x), —(x,0) = uy(x),

by Fourier-transforming w(z,t) in the z-variable, solving the resulting
ODE to obtain the e**/°* time dependencies, matching the initial con-
ditions, and finishing with an inverse Fourier transform. The resulting

formula is a generalization of d’Alembert’s formula.

8. We have seen the expression of the wave equation’s Green function in
the (z,t) and (z,w) domains. Find the expression of the wave equa-
tion’s Green function in the (¢,¢) and (§,w) domains, where £ is dual
to x and w is dual to ¢. [Hint: it helps to consider the expressions of
the wave equation in the respective domains, and solve these equations,
rather than take a Fourier transform.]
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9.

10.

11.
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Check that the relation 1 = R? + %T 2 for the reflection and transmis-
sion coefficiets follows from conservation of energy for acoustic waves.
[Hint: use the definition of energy given in section 1.1.1, and the gen-
eral form (1.19, 1.20) of a wavefield scattering at a jump interface in
one spatial dimension.]

The wave equation (2.2) can be written as a first-order system

ow ~
ME—L’U]—_][.,

with

_ (Ou/ot _(m 0 (0 V- > (f
(W) (i) e h) 0
First, check that L* = —L for the L? inner product (w, w') = [(wjw]+

wy - wh) dr where w = (wy,ws)T. Then, check that £ = (w, Mw) is a
conserved quantity.

Another way to write the wave equation (2.2) as a first-order system is

ow ~
ME—L’IU—][,

with

SO IR O NS R}

First, check that L* = —L for the inner product (w, w') = [(Vu-Vu'+
vv') dz. Then, check that £ = (w, Mw) is a conserved quantity.



Chapter 2

Scattering series

In this chapter we describe the nonlinearity of the map ¢ — u in terms of a
perturbation (Taylor) series. To first order, the linearization of this map is
called the Born approximation. Linearization and scattering series are the
basis of most inversion methods, both direct and iterative.

The idea of perturbation permeates imaging for physical reasons as well.
In radar imaging for instance, the background velocity is ¢ = 1 (speed
of light), and the reflectivity of scatterers is viewed as a deviation in ¢(z).
The assumption that ¢(z) does not depend on t is a strong one in radar:
it means that the scatterers do not move. In seismology, it is common to
consider a smooth background velocity cy(x) (rarely well known), and explain
the scattered waves as reflections due to a “rough” (singular/oscillatory)
perturbations to this background. In both cases, we will write

1 1 13 b
=) =m(x), 20 = mo(z), m for “model”,
and, for some small number ¢,
m(x) = mo(z) + emy(z). (2.1)

Note that, when perturbing c(z) instead of m(x), an additional Taylor
approximation is necessary:
1 1 c1(x)
c(x) = co(x) + ecy(x) = ~ — 2¢ :
A(x)  cgx) @)
While the above is common in seismology, we avoid making unnecessary
assumptions by choosing to perturb m(x) = 1/c¢%(z) instead.

37
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Perturbations are of course not limited to the wave equation with a single
parameter c. The developments in this chapter clearly extend to more general
wave equations.

2.1 Perturbations and Born series

Let o
m(x)a—;‘ — Au = f(z,1), (2.2)

with zero initial conditions and x € R™. Perturb m(z) as in (2.1). The
wavefield u correspondingly splits into

u(z) = up(z) + use(x),
where ug solves the wave equation in the undisturbed medium my,

82UO
ot?

mo(x) — Aug = f(z,1). (2.3)
We say u is the total field, ug is the incident field!, and w,. is the scattered
field, i.e., anything but the incident field.
We get the equation for us. by subtracting (2.3) from (2.2), and using

(2.1):
0% g, 0%*u
012 — A’LLSC = —€ ml(.ﬂﬁ)w
This equation is implicit in the sense that the right-hand side still depends
on ug. through u. We can nevertheless reformulate it as an implicit integral
relation by means of the Green’s function:

mo(z) (2.4)

2

t 0“u
) == [ [ Gloyit = smilo) 53 (0. duds
O n

Abuse notations slightly, but improve conciseness greatly, by letting

e ( for the operator of space-time integration against the Green’s func-
tion, and

Here and in the sequel, ug is not the initial condition. It is so prevalent to introduce
the source as a right-hand side f in imaging that it is advantageous to free the notation
ug and reserve it for the incident wave.
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e m, for the operator of multiplication by m;.
Then uy,, = —eGmy 8t2 In terms of u, we have the implicit relation
0%u
ot2’

called a Lippmann-Schwinger equation. The field u can be formally? ex-
pressed in terms of uy by writing

u=1uy—ecGm; —

277"
{I—i— eGmy T 2} Ug- (2.5)

While this equation is equivalent to the original PDE, it shines a different
light on the underlying physics. It makes explicit the link between ug and w,
as if ug “generated” u via scattering through the medium perturbation m;.

Writing [T + A]~! for some operator A invites a solution in the form of a
Neumann series [ — A+ A% — A% + ..., provided ||A]| < 1 in some norm. In
our case, we write

0? 0? 0?
u:uo—e<Gm162)u0+62 <Gm18t > <Gm16t2>u0+...

This is called a Born series. The proof of convergence, based on the “weak
scattering” condition €||G my 38_:2”* < 1, in some norm to be determined, will
be covered in the next section. It retroactively justifies why one can write
(2.5) in the first place.

The Born series carries the physics of multiple scattering. Explicitly,

(incident wave)
0ug
_6/ ]Rnny’ ) ()atg(a)dyds
(single scattering)
t 82 S2 aQuo
+é // G(%yz;t—&)ml(yz)m {// G(y2ay1;32_Sl)ml(yl)_g(ylysl)dyldsl dyadsy

(double scattering)
+ ...

2For mathematicians, “formally” means that we are a step ahead of the rigorous ex-
position: we are only interested in inspecting the form of the result before we go about
proving it. That’s the intended meaning here. For non-mathematicians, “formally” often

77'

means rigorous, i.e., the opposite of “informally”!
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We will naturally summarize this expansion as
U:U0+6U1+€2UQ+... (26)

where eu; represent single scattering, e€u, double scattering, etc. For in-
stance, the expression of u; can be physically read as “the incident wave
initiates from the source at time ¢t = 0, propagates to y where it scatters due
to m(y) at time ¢t = s, then further propagates to reach x at time ¢t.” The
expression of u, can be read as “the incident wave initiates from the source at
t = 0, propagates to y; where it first scatters at time ¢t = s;, them propagates
to yo where it scatters a second time at time ¢ = s, then propagates to x at
time ¢, where it is observed.” Since scatterings are not a priori prescribed to
occur at fixed points in space and time, integrals must be taken to account
for all physically acceptable scattering scenarios.
The approximation
Use() >~ euq ()

is called the Born approzimation. From u; = —Gmy 8;;0, we can return to
the PDE and obtain the equation for the primary reflections:
0%uy *ug
mo(r)—= — Auy = —mq () ——. 2.7
(@) St = Ay = —m(2) 27)

The only difference with (2.4) is the presence of uy in place of u in the right-
hand side (and € is gone, by choice of normalization of u;). Unlike (2.4),
equation (2.7) is explicit: it maps my to u; in a linear way. The incident field
ug is determined from my alone, hence “fixed” for the purpose of determining
the scattered fields.

It is informative to make explicit the dependence of uq, us, ... on my. To
that end, the Born series can be seen as a Taylor series of the forward map
u = Flm],

in the sense of the calculus of variations. Denote by ngn[mO] the “functional
gradient” of F with respect to m, evaluated at mg. It is an operator acting
from model space (m) to data space (u). Denote by g%[mo] the “functional
Hessian” of F with respect to m, evaluated at mg. It is a bilinear form from
model space to data space. See the appendix for background on functional
derivatives. Then the functional version of the Taylor expansion enables to
express (2.6) in terms of the various derivatives of F as
B e 62 F
u=1up+e %[mo] my + E<W[mo] my,my) + ...
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It is convenient to denote the linearized forward map by (print) F:

0F
F=—m
5m[ 0]7
or, for short, F' = g—;;. It is a linear operator. The point of F' is that it makes
explicit the linear link between m; and wu;:

Uy = le.

While F is supposed to completely model data (up to measurement errors),
F would properly explain data only in the regime of the Born approximation.

Let us show that the two concepts of linearized scattered field coincide,
namely

Uy = %[mo] myp = — mlw.

This will justify the first term in the Taylor expansion above. For this pur-
pose, let us take the > derivative of (2.2). As previously, write u = F(m)
and F' = g—i[m]. We get the operator-valued equation

0%u 0?

8t2]+m8t2F AF = 0.
Evaluate the functional derivatives at the base point mg, so that u = wuy.
Applying each term as an operator to the function m;, and defining u; =
F'mq, we obtain

0%ug 0%uy
mlw + mow - Aul = O,
which is exactly (2.7). Applying G on both sides, we obtain the desired
conclusion that u; = —Gml%.

2.2 Convergence of the Born series (math)

We are faced with two very interrelated questions: justifying convergence of
the Born series, and showing that the Born approximation is accurate when
the Born series converges. The answers can either take the form of mathe-
matical theorems (this section), or physical explanations (next section). As
of 2012, the community’s mathematical understanding is not yet up to par
with the physical intuition!
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Let us describe what is known mathematically about convergence of Born
series in a simple setting. To keep the notations concise, it is more convenient
to treat the wave equation in first-order hyperbolic form

Ma—w — Lw = f, L*=-L, (2.8)
ot
for some inner product (w,w’). The conserved energy is then E = (w, Mw).
See one of the exercises at the end of chapter 1 to illustrate how the wave
equation can be put in precisely this form, with (w,w’) the usual L? inner
product and M a positive diagonal matrix.
Consider a background medium M, so that M = My + eM;. Let w =
wp + €w;y + ... Calculations very similar to those of the previous section (a
good exercise) show that

The Lippmann-Schwinger equation is

0
w = wy — eGMla—l:,

with the Green’s function G = (M2 — L)~

e The Neumann series of interest is

w = wy — GGMl% + E2GM1%GM1% + ...

We identify w; = —GMlaa%.

e In differential form, the equations for the incident field wy and the
primary scattered field w; are

ow ow ow
Moa—to — LUJO = f, Moa—tl - Lw1 = —Mla—to, (29)

e Convergence of the Born series occurs when

0
M2, <1,
el|G 161&” <

in some induced operator norm, i.e., when €||w ||, < ||wg||. for arbitrary
wp, and wy = —GMl%, for some norm || - ||..
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Notice that the condition €|[w; ||« < ||wpl|« is precisely one of weak scat-
tering, i.e., that the primary reflected wave ew; is weaker than the incident
wave wo.

While any induced norm over space and time in principle works for the
proof of convergence of the Neumann series, it is convenient to use

[wl]l. = max \/{w, Myw) = 0@%’%”\“‘40@””‘

0<t<T

Note that it is a norm in space and time, unlike ||w| = /{w,w), which is
only a norm in space.

Theorem 3. (Convergence of the Born series) Assume that the fields w, wy,
wy are bandlimited with bandlimit® Q. Consider these fields for t € [0,T].
Then the weak scattering condition €||wi||« < ||wol|« is satisfied, hence the
Born series converges, as soon as

eQT|| ||oo <1

Proof. We compute

d ow
7 —(wy, Mowy) = 2(w, My 8t1>

= 2<w1,Lw1 Ml%>

ot
0
—2(wy, M1%> because L* = —L

M, 0
= —2<\/ Mowh \/—WIO%>

Square roots and fractions of positive diagonal matrices are legitimate oper-
ations. The left-hand-side is also 4 (w;, Mow:) = 2[|v/Mow: |2 %||/Mow: 2.
By Cauchy-Schwarz, the right-hand-side is majorized by

M, Ow
2|/ M, w1||2||\/i atOH

d M, Ow
%HV Mow, ||z < ||\/L atOH2

3A function of time has bandlimit € when its Fourier transform, as a function of w, is
supported in [—£, Q).

Hence
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VTl < [ 15220 ) s

M1 (91110
= <
Jonll = e /Mol < 7 v |20
821)0
< T e o |50 e

This last inequality is almost, but not quite, what we need. The right-
hand side involves aa% instead of wy. Because time derivatives can grow
arbitrarily large in the high-frequency regime, this is where the bandlimited
assumption needs to be used. We can invoke a classical result known as Bern-
stein’s inequality?, which says that ||f'|lec < Q||f|loo for all Q-bandlimited f.

Then M
[Jwr [ < IIMOH [[wo|

In view of our request that €l|w:||. < [[wo|«, it suffices to require
eQT H Hoo < 1.

O

See the book Inverse Acoustic and Electromagnetic Scattering Theory by
Colton and Kress for a different analysis that takes into account the size of
the support of Mj.

Note that the beginning of the argument, up to the Cauchy-Scwharz
inequality, is called an energy estimate in math. See an exercise at the end
of this chapter. It is a prevalent method to control the size of the solution of
many initial-value PDE, including nonlinear ones.

The weak scattering condition €||w ]|« < ||wo||« encodes the idea that the
primary reflected field ew; is small compared to the incident field wy. It is
satisfied when ¢ is small, and when w; is not so large that it would undo the
smallness of € (via the factors Q7' for instance). It turns out that

e the full scattered field wy. = w — wy is also on the order of €QT'|| M|
— namely the high-order terms don’t compromise the weak scattering
situation; and

4The same inequality holds with the LP norm for all 1 < p < oc.
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e the remainder wy.—ew; = w—w—ew; is on the order of €2(QT || M || ).

Both claims are the subject of an exercise at the end of the chapter. The
second claim is the mathematical expression that the Born approximation
is accurate (small w,. — ew; on the order of €?) precisely when scattering is
weak (ew; and wg. on the order of ¢.)

2.3 Convergence of the Born series (physics)

Let us explain why the criterion eQ7 < 1 (assuming the normalization
| M1 /Myl = 1) is adequate in some cases, and why it is grossly pessimistic
in others.

e Instead of m or M, consider the wave speed ¢y = 1. Consider a constant
perturbation ¢; = 1, so that ¢ = ¢y + ec; = 1 4+ €. In one spatial
dimension, u(x,T) = f(x — ¢T'). As a Taylor series in €, this is

u(z,T) = flx—(1+)T) = f(:c—T)—eTf’(x—T)+§T2f”(x—T)+. .

We identify ug(z,T) = f(z —T) and uy(x,T) = =T f'(x — T). Assume
now that f is a waveform with bandlimit €2, i.e., wavelength 27 /). The
Born approximation

fla—Q+eT)— fla —T) = —Tf'(x—T)

is only good when the translation step €1’ between the two waveforms
on the left is a small fraction of a wavelength 27/, otherwise the
subtraction f(z— (1+¢€)T) — f(x —T) will be out of phase and will not
give rise to values on the order of e. The requirement is €' < 27/,
ie.,

QT < 2m,

which is exactly what theorem 3 is requiring. We could have reached
the same conclusion by requiring either the first or the second term
of the Taylor expansion to be o(1), after noticing that |f’| = O(f2) or
|f”] = O(9?). In the case of a constant perturbation ¢; = 1, the waves
undergo a shift which quickly becomes nonlinear in the perturbation.
This is the worst case: the requirement eQ27T" < 1 is sharp.
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e As a second example, consider ¢g = 1 and ¢;(z) = H(z). The profile
of reflected and transmitted waves was studied in equations (1.19) and
(1.20). The transmitted wave will undergo a shift as in the previous
example, so we expect €T < 1 to be sharp for it. The full reflected
wave, on the other hand, is

€

up(x,T) = Ref(—x —T), R. = e

Notice that € only appears in the reflection coefficient R., not in the
waveform itself. As € — 0, u, expands as

ur(x,T):gf(—x—T)——f(—x—T)—l—...

We recognize uy = 3 f(—x —T). The condition for weak scattering and
accuracy of the Born approximation is now simply ¢ < 1, which is in
general much weaker than eQ7T < 1.

e In the case when ¢y = 1 and ¢; is the indicator function of a thin slab
in one dimension, or a few isolated scatterers in several dimensions,
the Born approximation is often very good. That’s when the inter-
pretation of the Born series in terms of multiple scattering is the most
relevant. Such is the case of small isolated objects in synthetic aperture
radar: double scattering from one object to another is often completely
negligible.

The heuristic for validity of the Born approximation (even when eQ7T is
not small) is that

1. ¢¢ or mg should be smooth

2. c¢; or my should be localized, or better yet, localized and oscillatory
(zero mean).

We do not yet have a way to turn these empirical criteria and claims into
rigorous mathematical results. Seismologists typically try to operate in the
regime of this heuristic when performing imaging with migration (see next
chapter).

Conversely, there are a few settings in which the Born approximation is
clearly violated: (i) in radar, when waves bounce multiple times before being
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recorded (e.g. on the ground and on the face of a building, or in cavities
such as airplane engines), (ii) in seismology, when trying to optimize over
the low-frequency components of m(x) (model velocity estimation), or when
dealing with multiple scattering (internal multiples, multiples resulting from
acoustic wave-guide reflections in shallow waters, or ghosts due to reflections
at the ocean-air interface.)

Scattered waves that do not satisfy the Born approximation have long
been considered a nuisance in imaging, but have recently become the subject
of some research activity.

2.4 A first look at optimization
In the language of the previous sections, the forward map is denoted
d = F[m], d = data, m = model,
where d, s(t) = us(z,, t),
e 1, is the position of receiver r,
e s indexes the source,
e and t is time.

The inverse problem of imaging is that of solving for m in the system of
nonlinear equations d = F[m]. No single method will convincingly solve
such a system of nonlinear equations efficiently and in all regimes.

A basic, yet quite prolific idea is to view m as the solution of the mini-
mization problem

1
min J[m],  where  J[m] = Z||d = F[m]|,

where ||d|j3 = 3", , [ |dy5(t)]? is the L? norm squared in the space of vectors
indexed by 7, s (discrete) and ¢ (continuous, say). J is called the output
least-squares criterion, or objective, or cost.

The Landweber iteration is the gradient descent method applied to J:

m®) — a?—;’z[m(k)]. (2.10)

(kD)
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The choice of « is a balance between stability and speed of convergence (see
one exercise at the end of the chapter.) The usual rules of functional calculus
give the expression of %.

Proposition 4. Put F = 2£[m]. Then

S ] = F* (Fm] — )

Proof. Since Flm + h] = F[m] + Fh+ O(]|h]|?), we have
(Flm+h]—d, Flm+h]—d) = (Fm]—d, Flm]—d)+2{Fh, F[m]—d)+O(||h|]?).
Therefore

T+ ) — Jfm] = Z2(Fh, Flm] — d) + O(|h]]?)
= (h, F*(F[m] — d)) + O(||n][*).

We conclude by invoking (A.1). O

The problem of computing F* will be completely addressed in the next
chapter.
The Gauss-Newton iteration is Newton’s method applied to J:

2 _1
kD) — (k) (5 J [m(k)]) 8J [m®)]. (2.11)

om? om

The operator (g%[m(k)]) ~is the inverse of the functional Hessian of .J (also

called wave-equation Hessian).

The Landweber iteration typically converges slowly, or could converge
to a wrong local minimum when J is nonconvex. This topic will be fur-
ther discussed in chapter 7. The Gauss-Newton iteration converges faster
than gradient descent in the neighborhood of a (local) minimum, but may
otherwise result in wrong update directions. It is in general much more com-
plicated to set up than gradient descent since the wave-equation Hessian is
a large matrix, costly to store and costly to invert.
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2.5 Exercises

1.

Repeat the development of section (2.1) in the frequency domain (w)
rather than in time.

Derive Born series with a multiscale expansion: write m = mgy + emq,
u = ug + euy + €2uy + . . ., substitute in the wave equation, and equate
like powers of €. Find the first few equations for ug, ui, and us.

Write the Born series for the acoustic system, i.e., find the linearized
equations that the first few terms obey. [Hint: repeat the reasoning of
section 2.1 for the acoustic system, or equivalently expand on the first
few three bullet points in section 2.2.]

. At the end of section 2.1 we found the equation that u; obeys by differ-

entiating (2.2) with respect to m. Now, differentiate (2.2) twice with
respect to m to obtain the PDE that the Hessian of u with respect to
m satisfies. We may denote the Hessian §°F/dmdm’. As a corollary,
find an expression for u, as the solution of a new linearized wave equa-
tion with u; in the right-hand side. (Your answer should match that
of exercise 2.) This expression of the Hessian is important later on as
we describe accelerated descent methods for the inversion problem.

Consider the setting of section 2.2 in the case M = I. No perturbation
will be needed for this exercise (no decomposition of M into My+e€Mj).
Prove the following energy estimate for the solution of (2.8):

o= ([ s ) 2.12)

where E(t) = (w, Mw) and || f||* = (f, f). [Hint: repeat and adapt the
beginning of the proof of theorem 3.]

Consider (2.8) and (2.9) in the special case when My = I. Let |Jw|| =
(w,w) and ||w||« = maxo<i<r ||w||. In this exercise we show that
w — wy = O(e), and that w — wy —w; = O(€?).

(a) Find an equation for w — wy. Prove that
lw = wol[« < €[Mloo QT [|w]].

[Hint: repeat and adapt the proof of theorem 3.
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(b) Find a similar inequality to control the time derivative of w — wy.

(¢) Find an equation for w — wy — wy. Prove that

lw — wo — will. < (¢ [ Ma]low QT) ]

7. For the Landweber iteration (2.10), and J[m| the output least-squares

criterion, consider

1
=,
16.7/0ml[3
where || - ||z is the usual L? norm of functions of z. Show that this

choice of « is safe in the sense that the Landweber iteration becomes
a contraction when F is linear.

. Show that the Gauss-Newton iteration (2.11) results from approxi-

mating .J by a quadratic near m® and finding the minimum of that
quadratic function.

. Prove the following formula for the wave-equation Hessian g% in terms

of F' and its functional derivatives:

2] 8F

(F*F is called normal operator.)



Chapter 3

Adjoint-state methods

As explained in section (2.4), the adjoint F™* of the linearized forward (mod-
eling) operator F' plays an important role in the formula of the functional
gradient 5—7‘7]1 of the least-squares cost function J:

6J

om

[m] = F*(Fm] — d).

While F' is the basic linear map from model space to data space, F™ is
the basic linear map from data space to model space. F* is not only the
building block of iterative optimization schemes, but the mere application of
F* to data is the simplest form of “imaging”. For instance, when the initial
guess m® = my is a smooth background model reasonably close to the true
solution m, the first iteration of gradient descent,

mY = aF*(d — Flmy)),

often gives a good “image” of the scatterers (somewhat close to the actual
emy). For this reason, F* is often called the imaging operator.

It should also be noted that F* behaves not entirely unlike F'~!, ie., '
is somewhat close to being unitary. This statement does not have a rigorous
formulation of the form ||F*F — I|| < (...), but rather of the form “F*F
does not move singularities around like F' or F* do”. More details on the
microlocal aspects of this question will be given in chapter 6.

Forming the full matrix F' = g—i and transposing it is not a practical way
to compute F*. The adjoint-state method provides an elegant solution to
this problem, called the “imaging condition”.

o1
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3.1 The imaging condition

For any d,(t) function of the receiver index r and time ¢, and m(z) function
of position x (here m and d are any two functions, not necessarily linked to
one another by the forward model), we have

(d, Fm) = (F*d,m).

The inner product on the left is in data space,

(d, Fm) Z/ u(x,, t)dt, u=Fm,

while the inner product on the right is in model space.

(F*d,m) = /n(F*d)(x)m(x) dx.

The relation ©w = F'm is implicitly encoded by the two equations

32 82U0
moﬁ —Alu= —mw,

82
<m0@ — A) Uy = f

Note that a single right-hand side generates 1y, and that we have omitted the
source subscript s in this section; we will return to multiples sources shortly.
The argument that isolates and makes explicit the contribution of m in
> fOT d,(t)u(z,,t)dt is one of integration by parts. In order to integrate by
parts in z, we need to turn the sum over receivers into an integral. This
can be achieved by considering a distributional extended dataset where each
measurement d,.(t) is accompanied by a Dirac delta located at x,.:

dext (T, ) = Zd Sz — x,).

(d, Fm) = / n /0 " o (e ) didt

In order to use the wave equation for u, a copy of the differential operator

We then have

(mog—; — A) needs to materialize. This is done by considering an auxiliary
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field g(x,t) that solves the same wave equation with dey(x,t) as a right-hand
side:

32
(W?O@ - A) q(z,t) = dexi(z, 1), x e R, (3.1)

with as-yet unspecified “boundary conditions” in time. Substituting this
expression for dey(x,t), and integrating by parts both in space and in time

reveals
T 92
(d, Fm) = / / q(z,t) <m0@ — A) u(z,t) dedt

/mg ulg do — /mgqa | dx
/ / —udS dt — / / q—dS dt,
ov ov

where V' is a volume that extends to the whole of R™, and 0V is the boundary
of V' — the equality then holds in the limit of V' = R".

The boundary terms over V' vanish in the limit of large V by virtue
of the fact that they involve u — a wavefield created by localized functions
f,m,ug and which does not have time to travel arbitrarily far within a time

[0, 7). The boundary terms at ¢ = 0 vanish due to ul;—g = %%|;—9 = 0. As for
the boundary terms at ¢ = T', they only vanish if we impose

dq

-7 = — =7 = 0.
QIt_T at’t_T

Since we are only interested in the values of ¢(z,t) for 0 < ¢ < T, the above

are final conditions rather than initial conditions, and the equation (3.1) is

run backward in time. The wavefield q is called adjoint field, or adjoint state.

The equation (3.1) is itself called adjoint equation. Note that ¢ is not the

physical field run backward in time (because of the limited sampling at the

receivers), instead, it is introduced purely out of mathematical convenience.
We can now return to the simplification of the left-hand-side,

(d, Fm) = /n /T q(z,t) (mog—; - A) u(z,t) dedt
/n/ (x,t)m &2 O dadt
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This quantity is also supposed to be (m, F*d), regardless of m, so we conclude

02U0

(F*d)(z) = — /0 ol 1) S . (3.2)

This equation is called the imaging condition: it expresses the action of F™*
on d as the succession of the following steps:

1. Place data d,.(t) at the location of the receivers with point masses to
get dext;

2. Use dext as the right-hand side in the adjoint wave equation to get the
adjoint, backward field ¢;

3. Simulate the incident, forward field ug; and finally

4. Take the time integral of the product of the forward field ug (differen-
tiated twice in t), and the backward field ¢, for each x independently.

The result is a function of x which sometimes serves the purpose of image,
and may sometimes be called I,,,(x). Note that we have not performed a full
inversion; if d are measuered data, then I,, is not the model m that gave
rise to d. In seismology, the imaging condition (3.2) is called reverse-time
migration, or simply migration. In radar, the imaging condition does not have
a particular name, but in the next chapter we’ll encounter a simplification of
(3.2) called backprojection.

3.2 Stacks

If we now restore the presence of multiple sources, the wavefields u, ug, and
uy will depend on the source index s. The source term f, — typically of the
form w(t)d(z — x5) — is in the right-hand side of the wave equations for w
and u, while u; implicitly depends on f, through ug. For a fixed source s,
we denote

Us = st[m]a Ug,s = fs[mO]a Uy,s = Fsmla

while we continue to denote v = F[m|, ug = F|my] and u; = Fm, for the
collection of such wavefields over s.
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The data inner-product now has an additional sum over s, namely

(d, Fm)y =YY" /O dy ()t (2, 1) dt.

The formula for F* can be obtained by taking adjoints one s at a time,
namely

(F*d,m) = (d, Fm) = > (d,, Fm)
= Z(Fjds,m)
= (D Frde,m),

hence
Fr=>F;.

More explicitly, in terms of the imaging condition,

(Frd)(z) == /0 qs(:)s,t)a(;:g’s (z,t) dt, (3.3)

where the adjoint field ¢, is relative to the source s:

82
(mw _ A) 0a(21) = e (5, 1).

The sum over s in the new imaging condition (3.3) is sometimes called a stack.
It is often the case that particular images Fd are not very informative on
their own, but a stack uses the redundancy in the data to bring out the
information and reveal more details.

The mathematical tidbit underlying stacks is that the operation of creat-
ing a vector (x, z, . .., z) out of a single number x has for adjoint the operation
of summing the components of a vector.

3.3 The adjoint state as a Lagrange multi-
plier

The adjoint field ¢ was introduced in a somewhat opportunistic and artificial
way in section 3.1. In this section, we show that it has the interpretation
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of a Lagrange multiplier in a constrained optimization framework, where the
wave equation serves as a constraints for an otherwise bare least-squares cost
function.

Specifically consider the least-squares objective as a function of u rather
than m,

1
Tl = 5lld - ul,

where u is the wavefield prediction and d are the observed data. The model
m only appears implicitly through the constraint that u needs to satisfy,

namely

o2
Critical points are those for which the total derivative of J[u(m)] with respect
to m is zero. Normally one would have to access du/dm to compute this total
derivative, because by the chain rule!

d 0J du ou
%J[U(m)] = (@, %> = (u—d, %%

A more computationally favorable formula for - .J[u(m)] can be derived
by considering a traditional concept in constrained optimization: the La-
grangian

92
Clumd] = Jlal ~ . (s = &) u= 1)
Here ¢ is the Lagrange multiplier, itself a function of x and ¢, and the inner
product is over x and t. Notice that Llu(m), m,q] = J[u(m)] regardless of ¢
when u = u(m), i.e., when the constraint is satisfied. This expression can be
differentiated to give

d oL du 4]
L Jugm)) = (22, 8%y 4 O

After a short exercise of integration by parts identical to the one in the
previous section, and provided ¢l = %hzgp = 0, the partial g—ﬁ evaluated
at some point uy = u(myg) is

oL 02
5—u:u0—d—<moﬁ—A>q

IThis equation contains a space-time inner product of u — d vs. u differentiated. It is
not the application of (%L as an operator F' to u — d. Recall that F' acts in model space
anyway.
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The other partials evaluated at uy = u[my] are immediate:

oL T 0%y
— == dt
om /0 Top ™

oL 0?
E: (mgﬁ—A)uo—f

Putting % = 0 results in the state equation

02
(mO@_A) uozfa

satisfied as soon as we consider a feasible uy = u(mg). Putting g—ﬁ = 0 results
in the adjoint-state equation

02
moﬁ—A qg=1up—d. (3.4)

We choose to impose % = 0, hence ¢ to satisfy the adjoint-state equation,

precisely so that the gradient of J reduces to

d oL T 9%
—J =—=— dt. 3.5
e tu(me)) = 5= == [ o (35

This recovers the imaging condition obtained earlier. The formula is in
agreement with our previous characterization of J, namely (back when J
depended explicitly on m),

<2 lima] = F* (Flono] — d).
Indeed, we have seen that F* is realized via an imaging condition involving
an adjoint state, and F[mo] — d = up — d is the right-hand side in (3.4).

It should be noted that the traditional role of the Lagrangian is to give
optimality conditions on (u, m, q) that describe the critical points of J. This
is done by putting all the partials of £ to zero?. What we did earlier was
different: we considered the Lagrangian at points that are not critical, and
only put its partial g—ﬁ to zero as a device to simplify the expression of the
gradient of J. In our setting, away from critical points, the partial % =
d.J/dm is in general nonzero.

2When £ and J are smooth — otherwise one should consider that zero belongs in the
subdifferential of L.
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3.4 The imaging condition in the frequency
domain

We now return to the setting of section 3.1, and modify the exposition to
express both the adjoint-state equation and the imaging condition in the
frequency (w) domain. The nugget in this section is that complex conjugation
in w corresponds to time reversal. We assume a single source for simplicity.

We are again interested in finding F* such that (d, F'm) = (F*d, m) for
all generic d and m. The data inner product (d, F'm) can be expressed in the
frequency domain by means of the Parseval formula,

(d, Fm) —QWZ/ Fm )z, w dw—Z/ m)(z,, t)dt.

The complex conjugate is important, now that we are in the frequency do-
main. As previously, we pass to the extended dataset

ext Zd ZE—IT),

and turn the sum over r into an integral over . The linearized scattered

field is

—

) (2 ) = / 8,y 0)m(y)eP oy, w) dy. (3.6)

To simplify the resulting expression of (d, Fm), we let

f(z,w) = / Gy @) (9, dy. (3.7)

It follows that

(@.Fm) = [ miy [% [ Tty o a

hence

Frd(y) = 2n / T 2Py, w) do. (3.8)

This equation is the same as (3.2), by Parseval’s identity. Equation (3.7) is
the integral version of (3.1) in the frequency domain. The complex conju-
gation of G in (3.7) expresses time reversal; such is the case for any Fourier
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transform of a real function:

Fflw) = / it £ () dt = / e~ F(1)dlt = / e F(—t) dt.

The integral in ¢ in (3.2) is over [0,7] because such is the support of
8;%0. The integral in w in (3.8) is over R. It is tempting to truncate
this integral to “the frequencies that have been measured” — but that is
strictly speaking incompatible with the limits on ¢ (for the same reason that a
function compactly supported in time cannot also be compactly supported in
frequency.) Careful consideration of cutoffs is needed to control the accuracy
of a truncation in w.

Equation (3.8) is valuable for a few different reasons:

e It can be further simplified in some situations, such as in the next
chapter;

e The integral over w can be deliberately restricted in the scope of descent
iterations, so as to create sweeps over frequencies. This is sometimes
important to deal with the lack of convexity of full inversion; see chapter

7.

3.5 Exercises

1. Starting from an initial guess model mg, a known source function f,
and further assuming that the Born approximation is valid, explain
how the inverse problem d = F[m] can be completely solved by means
of F~1 the inverse of the linearized forward operator (provided F is
invertible). The intermediate step consisting in inverting F is called
the linearized inverse problem.

Solution. Form the incident field as ug = G'f. Subtract from observed
data to get d — ug. Since the Born approximation is assumed valid, we
have d —ug =~ euy. Invert for my by solving the system uy = Fmy, i.e.,
my = F~Yuy. Then form m = mqg + em,.

2. Snapshot migration. The treatment of reverse-time migration seen ear-
lier involves data u(z,,t) for an interval in time ¢, and at fixed receiver
points x,. Consider instead the snapshot setup, where ¢ is fixed, and
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there are receivers everywhere in the domain of interest. (So we have
full knowledge of the wavefield at some time t.) Repeat the analysis
of the imaging operator, adjoint to the forward operator that forms
snapshot data from singly scattered waves. In particular, find what
the adjoint-state wave equation becomes in this case. [Hint: it involves
nonzero final data, and a zero right-had side.]

. Sampling. Call S the linear operator that maps a function f(z) to

the vector of point samples {f(x,)},. Find a formula for S*. When
the linearized forward model is written as F'S, the imaging operator is
S*F*; the presence of S* explains why we passed from d,.(t) to dex(z, )
in the first step of the derivation of the imaging operator.



Chapter 4

Synthetic-aperture radar

The object of synthetic aperture radar imaging (SAR) is to infer reflectivity
profiles from measurement of scattered electromagnetic waves. The word
“aperture” refers to the perceived angular resolution from the viewpoint of
the sensor (antenna). The expression “synthetic aperture” refers to the fact
that the aperture is created not from a very directional antenna, or array
of antennas (as in ultrasound), but results from a computational process of
triangulation, implicit in the handling of data with a backprojection formula.

The goal of the chapter is to gain an understanding of the geometry
underlying the operators F' and F* arising in SAR. Our reference for this
chapter is the book “Fundamentals of radar imaging” by Cheney and Borden.

4.1 Assumptions
We will make the following basic assumptions:

1. Scalar fields obeying the wave equation, rather than vector fields obey-
ing Maxwell’s equation. This disregards polarization (though process-
ing polarization is a sometimes a simple process of addition of images.)
The reflectivity of the scatterers is then encoded via m(x) as usual,
rather than by specifying the shape of the boundary 0f2 and the type
of boundary conditions for the exterior Maxwell problem.

2. The Born approximation, so that data d are proportional to eu;, and
u; = Fm;y. This disregards multiple scattering. In the sequel we will
write € = 1 for simplicity.
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3. No dispersion, so that all waves travel at the same speed regardless of
frequency, as in the wave equation. Dispersion happens for radio waves
in the ionosphere.

4. The reflectivity m(z) = mo(x) + emy(z) is constant in time, with mg
constant in time and space. This disregards moving scatterers. As
mentioned earlier, we put ¢ = 1. For convenience, we will also drop
the subscript 1 from my, so that wn this chapter, m stands for the
perturbation in squared slowness 1/c?.

A few other “working” assumptions are made for convenience, but can
)
easily be removed later:

5. The far field assumption: spherical wavefronts are assumed to be locally
planar, for waves at the scatterer originating from the antenna (or vice-
versa).

6. Monostatic SAR: the same antenna is used for transmission and re-
ception. It is not difficult to treat the bistatic/multistatic case where
different antennas play different roles.

6. Start-stop approximation: in the time it takes for the pulse to travel
back and forth from the antenna to the scatterers, the antenna is as-
sumed not to have moved.

SAR typically operates with radio waves or microwaves, with wavelengths
on the order of meters to centimeters. Moving antennas are typically carried
by planes or satellites. A variant of SAR is to use arrays of fixed antennas,
a situation called MIMO (multiple input, multiple output.)

We will not deal with the very interesting topic of Doppler imaging, where
frequency shifts are used to infer velocities of scatterers. We will also not
cover the important topic of interferometric SAR (InSAR) where the objec-
tive is to create difference images from time-lapse datasets.

Let us now describe the nature of the far-field approximation in more
details, and its consequence for the expression of the Green’s function %.
Consider an antenna located near the origin. We will assume that a scatterer
at x is “far” from a point y on the antenna in the sense that

| < |zf,  kly]* < |z].
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Then, if we let ¥ = ]’
z|

|z —y| = /|z2 — 2z -y + |y|?

— 5
el f1— 2y P
2| [xf?

Ty 1y
~ 1 - — 4+ —=— 4+ ...
’“( ERPI
1|y

We therefore have

2
oiklz—yl _ ikle| ,—ikdy (1 +0 <k|y\ )) ’
|z
1 1
(o ()
z—yl || ||

As a result, in the far field,

ik|lx—y| ik|z|
€ € —ikZ-y

Art|x — y = 47 |x|

This simplification will cause the y integrals to become Fourier transforms.

4.2 Forward model

We can now inspect the radiation field created by the antenna at the trans-
mission side. The ~ sign will be dropped for =, although it is understood
that the approximation is only accurate in the far field. Call j(z,w) the
scalar analogue of the vector forcing generated by currents at the antenna,
called current density vector. (The dependence on w is secondary.) Call p(w)
the Fourier transform of the user-specified pulse p(t). Then

R ezk|x\ ik R
o) = [ e, )ple) d

This reduces to a spatial Fourier transform of j in its first argument,
ezk|x\ R

= — TOEF D)D)
prat (kZ,w)p(w).

to(, w)
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For short, we let
J(@,w) = O (kZ,w),

and call it the radiation beam pattern. It is determined by the shape of the
antenna. As a function of Z, the radiation beam pattern is often quite broad
(not concentrated).

For an antenna centered at position y(s), parametrized by s (called slow
time), the radiation field is therefore

piklz—(s)] .

Ups(r,w) = J(x —~(s),w)p(w).

drlz —(s)l

The scattered field u(x,w) is not directly observed. Instead, the recorded
data are the linear functionals

~

d(s,w):/ uy (y, w)w(y,w) dy

8

against some window function w(z,w), and where the integral is over the
antenna Ag centered at 7y(s). Recall that u; obeys (3.6), hence (with m
standing for what we used to call m;)

o[ f T iyl ) dyda.

dr|r — y|

In the regime of the the far-field approximation for an antenna at v(s), we
get instead (still using an equality sign)

—

- ikl ()|
s,w) = | ——————wip(x, w)m ()W (k(x — v(s)), w).
U0 = [ fr—og ilem(@)a® (e =),

The start-stop approximation results in the same 7(s) used at transmission
and at reception. For short, we let

W&, w) = oW (kT,w),

and call it the reception beam pattern. For a perfectly conducting antenna,
the two beam patterns are equal by reciprocity:

J(7,w) = W(F,w).
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We can now carry through the substitutions and obtain the expression of the
linearized forward model F"

~ —

d(s,w) = Fm(s,w) = /ezik”_”(s)'A(x,s,w)m(x) dx, (4.1)
with amplitude

o () @)W (= 4().w)
Az, s,w) = wp(w) 16722 — ()2 :

So far we have assumed that © = (x1,29,x3), and that dz a volume
element. We could alternatively assume a two-dimensional reflectivity profile
at a known elevation x3 = h(x1,x2). In that case we write

rr = (xla T2, h(xh 33'2)),

assume a reflectivity of the form m(z) = d(z5 — h(z1, 22))V (21, 22), and get
d(s,w) = / 2kler =Y Ay, 5, W)V (21, 22) dzydas.

The geometry of the formula for F' is apparent if we return to the time
variable. For illustration, reduce A(x,s,w) = w?p(w) to its leading w depen-
dence. Then

d(s,t) = i/ —t(s, w) dw

_ __/ < Z< ”) m(z) da.

We have used the fact that k = w/cy to help reduce the phase to the simple
expression
[z —(s)|

c

t—2

Its physical significance is clear: the time taken for the waves to travel to
the scatterer and back is twice the distance |z — v(s)| divided by the light
speed cg. Further assuming p(t) = §(¢), then there will be signal in the data
d(s,t) only at a time t = 2‘90_—2(5)‘ compatible with the kinematics of wave
propagation. The locus of possible scatterers giving rise to data d(s, t) is then
a sphere of radius ct/2, centered at the antenna 7(s). It is a good exercise
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to modify these conclusions in case p(t) is a narrow pulse (oscillatory bump)
supported near ¢t = 0, or even when the amplitude is returned to its original
form with beam patterns.

In SAR, s is called slow time, ¢ is the fast time, and |z — y(s)| is called
range.

4.3 Filtered backprojection

In the setting of the assumptions of section 4.1, the imaging operator F™* is
called backprojection in SAR. Consider the data inner product!

(d,Fm) = /(f(s,w)ﬁl(s,w) dsdw.

As usual, we wish to isolate the dependence on m to identify (d, Fm) as
(F*d,m). After using (4.1), we get

(d, Fm) = /m(a:) // e 21N A (1 s, w)d(s, w) dsdw.
This means that
(F*d)(z) = // e~ 2kl A (g, s,w)c?(s,w) dsdw. (4.2)

Notice that the kernel of F* is the conjugate of that of F, and that the
integration is over the data variables (s,w) rather than the model variable x.
__ The physical interpretation is clear if we pass to the ¢ variable, by using
d(s,w) = [e*d(s,t)dt in (4.2). Again, assume A(x,s,w) = w?p(w). We
then have

Co

(F*d)(z) = —% / P (t - 2w) d(s,1) dsdt.

Further assume p(t) = §(t). Then F™* places a contribution to the reflectivity

at = if and only if there is signal in the data d(s,t) for s,t,x linked by the

same kinematic relation as earlier, namely t = ZW. In other words, it

“spreads” the data d(s, t) along a sphere of radius ct/2, centered at ~y(s), and

Tt could be handy to introduce a multiplicative factor 2 in case the Parseval identity
were to be used later.
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adds up those contributions over s and ¢. Notice that p is in practice a narrow
pulse, not a delta, hence those spheres become thin shells. Strictly speaking,
“backprojection” refers to the amplitude-free formulation A =constant, i.e.,
in the case when p”(t) = §(t). But we will use the word quite liberally, and
still refer to the more general formula (4.2) as backprojection. So do many
references in the literature.

Backprojection can also be written in the case when the reflectivity pro-
file is located at elevation h(zy,xzs). It suffices to evaluate (4.2) at zp =
(1'1, 9, h(l’l, Ig))

We now turn to the problem of modifying backprojection to give a formula
approximating F'~! rather than F*. Hence the name filtered backprojection.
It will only be an approximation of F~! because of sampling issues that will
be studied in detail in the sequel.

The phase —2ik|z — 7(s)| needs no modification: it is already “kinemat-
ically correct”. Only the amplitude needs to be changed, to yield a new
operator? B to replace F*:

(Bd)(z) = // e 2k (1, 5, w)d(s, w) dsdw.

By composing B with F', we obtain

(BPm)(@) = [ K, y)mly) dy
with
K(y,z) = // e~ 2klz=y(IF2kly= O Q (1, 5, W) A(y, 5, w) dsdw.
We wish to choose @) so that BF is as close to the identity as possible, i.e.,

K(x,y) = d(x —y).

[In class for 10/23 and 10/25/2012: continue with pages 2 to 5 from the
10/29/2009 lecture, in the handwritten notes. Then continue with pages 2 to
middle of 5 from the 11/05/2009 lecture. See also Cheney’s book, of course.
We’ll then move on to spotlight SAR where s in an angle 6. This will be a
lead-in for the next chapter on Radon transforms.]

2B for filtered Backprojection, or for Beylkin. See why shortly.
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4.4 Resolution

4.5 Exercises

1. Prove (4.1) from (3.8) and the various approximations made near the
beginning of the chapter.

2. Bistatic SAR: repeat and modify the derivation of (4.1) in the case
of an antenna 7 (s) for transmission and another antenna 7(s) for
reception.



Chapter 5

Computerized tomography
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Chapter 6

Seismic imaging

6.1 Geometrical optics
6.2 Kirchhoff migration

6.3 Microlocal analysis
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Chapter 7

Optimization

7.1 Regularization and sparsity

7.2 Dimensionality reduction techniques

One way to reduce the dimensionality of a dataset is to scramble data as
d = Cd, where
dir(t) = ¢jsdrslt = bs).
S

The numbers ¢; and b; ; may be random, for instance. The point is that
using fewer values of 5 than s may result in computational savings — a
strategy sometimes called source encoding. By linearity of the wave equation,
the scrambled data d can be seen as originating from scrambled shots, or
supershots f = Cf, for

Fi,t) =D ejufalm,t = by,

Scrambled data may be all that’s available in practice, in acquisition scenarios
known as simultaneous sourcing. B
The adjoint operation C* results in twice-scrambled data D = C*d, where

Dyo(t) = cjadp(t + bjs).
J

The linearized forward model with scrambling is g = CFm. The ba-
sic imaging operator is still the adjoint, I,,, = F*C*d. In addition to the

73



74 CHAPTER 7. OPTIMIZATION

traditional incident and adjoint fields
Ug,s = Gfsa s = adsa

where G is the Green’s function in the unperturbed medium, and G the
time-reversed Green’s function, we define the scrambled fields

Uy =Gf;, @ =Gd;

Also define the twice-scrambled adjoint field

Qs = G(C*d)s.

Then
. T 82 u078

L(z) = (F*Crd)(z) = =) 0 (2,1) Qs(z, 1) dt.

ot?

S

Another formula involving j instead of s (hence computationally more favor-
able) is

In(z) = —Z/O aazg’j(x,t)ijj(x,t) dt. (7.1)

To show this latter formula, use Q = C*¢, pass C* to the rest of the integrand
with >, vs(C*w)s = >~ (Cvj)w;, and combine Cug = .

Scrambled data can also be used as the basis of a least-squares misfit,
such as

Tm) = 1T~ CFm)

The gradient of J is F*C* applied to the residual, hence can be computed
with (7.1).
[Note about illumination vectors, SVD of data matrix, Abubakar et al.]
[Note about Kaczmarz, coordinate descent, stochastic optimization. |

7.3 Convexification: model velocity estima-
tion, autofocus



Appendix A

Calculus of variations,
functional derivatives

The calculus of variations is to multivariable calculus what functions are
to vectors. It answers the question of how to differentiate with respect to
functions, i.e., objects with an uncountable, infinite number of degrees of
freedom. Functional calculus is used to formulate linearized forward models
for imaging, as well as higher-order terms in Born series. It is also useful
for finding stationary-point conditions of Lagrangians, and gradient descent
directions in optimization.

Let X,Y be two function spaces endowed with norms and inner products
(technically, Hilbert spaces). A functional ¢ is a map from X to R. We
denote its action on a function f as ¢(f). An operator F is a map from X
to Y. We denote its action on a function f as F'f.

We say that a functional ¢ is Fréchet differentiable at f € X when there
exists a linear functional A : X — R such that

100+ h) — 9(f) — A(h)
i 7]

=0.

If this relation holds, we say that A is the functional derivative, or Fréchet
derivative, of ¢ at f, and we denote it as

A=

of

It is also called the first variation of ¢. It is the equivalent of the gradient in
multivariable calculus. The fact that A is a map from X to R corresponds

[/]-

5
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to the idea that a gradient maps vectors to scalars when paired with the dot
product, to form directional derivatives. If X = R™ and f = (f1,..., fn), we
have

0

A1) = Vo(s) - h

For this reason, it is is also fine to write A(h) = (A, h).

The differential ratio formula for g—? is called Gateaux derivative,

66 . G +th) = 6(f)
571/l =lim t , (A1)

which corresponds to the idea of the directional derivative in R".
Examples of functional derivatives:

e o(f) = {9, /),

o0 o0

5 71110 = (g. )

Because ¢ is linear, % = ¢. Proof: ¢(f +th)—o(f) = (g9, f +th) —
(g, f) =t{g, h), then use (A.1).

o ¢(f) = f(xo),

fl=g,

—f1=d(z — x0), (Dirac delta).

This is the special case when g(x) = 6(x — xp). Again, 32 = ¢.

o o(f) = (9, /), 5o
ﬁ[f] =2fg.

Proof: ¢(f +th) — ¢(f) = (g, (f +th)*) — (g, f) = t{g,2fh) + O(t*) =
t(2fg,h) + O(t?), then use (A.1).

Nonlinear operators F|[f] can also be differentiated with respect to their
input function. We say F : X — Y is Fréchet differentiable when there exists
a linear operator F' : X — Y
FLf ) = S - PR

lim

0.
h—0 il




7

F is the functional derivative of F, and we write

oF
F= W[f]-

We still have the difference formula

OF Y Flf +th] — F[f]

o7 Ih =l t '
Examples:

e F[f] = f. Then
oF

the identity. Proof: F is linear hence equals its functional derivative.
Alternatively, apply the difference formula to get %[ flh = h.

e F[f] = f2 Then
Va
W[’ﬂ =2f,

the operator of multiplication by 2f.

Under a suitable smoothness assumption, the Fréchet Hessian of an op-
erator F' can also be defined: it takes two functions as input, and returns
a function in a linear manner (“bilinear operator”). It is defined through a
similar finite-difference formula

82F _ FIf +t(ha + hy)] — Ff + tho] — F[f + thi] + F[f]
<(5—fQ[f]h1, ha) = 1{% o .
The Hessian is also called second variation of F. For practical calculations

of the Hessian, the notation ‘;27]; is too cavalier. Instead, it is useful to view

the Hessian as the double directional derivative
F
afof

in two directions f and f’, and compute those derivatives one at a time. This

formula is the equivalent of the mixed partial % when the two directions
10T

are r; and x; in n dimensions.
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Functional derivatives obey all the properties of multivariable calculus,
such as chain rule and derivative of a product (when all the parties are
sufficiently differentiable).

Whenever in doubt when faced with calculations involving functional
derivatives, keep track of free variables vs. integration variables — the equiv-
alent of “free indices” and “summation indices” in vector calculus. For in-
stance,

OF o 1ilew OFi
o 57 is like 5F

with two free indices ¢ and 7;

SF 1 i 1 SFi 1 . . . . . .
* 57 h is like iof, h;, with one free index ¢ and one summation index j.

‘?Tj; is like %, with three free indices 1, j, k.

o <(<5527J§h1’ ha) is like 3, (;;j—?}k(hl)j(hz)k, with one free index ¢ and two

summation indices j and k.

No free index indicates a scalar, one free index indicates a function (or a
functional), two free indices indicate an operator, three indices indicate an
“object that takes in two functions and returns one”, etc.



