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Preface

In this text we use the symbol ($) to draw attention every time a physical
assumption or simplification is made.

Thanks are extended to the following people for discussions, sugges-
tions, and early drafts: Thibaut Lienart, Nicholas Maxwell, Pierre-David
Letourneau, Russell Hewett, and Vincent Jugnon.
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Chapter 1

Wave equations

1.1 Physical models

1.1.1 Acoustic waves

Acoustic waves are propagating pressure disturbances in a gas or liquid. With
p(x, t) the pressure fluctuation (a time-dependent scalar field) and v(x, t) the
particle velocity (a time-dependent vector field), the acoustic wave equations
read

∂v

∂t
= − 1

ρ0

∇p, (1.1)

∂p

∂t
= −κ0∇ · v. (1.2)

The two quantities ρ0 and κ0 are the mass density and the bulk modulus,
respectively. They are linked to the wave speed c through κ0 = ρ0c

2. Initial
conditions on p and v must be supplied. A forcing term may be added to
the dynamic balance equation (1.1) when external forces (rather than initial
conditions) create the waves.

Let us now explain how these equations are obtained from a lineariza-
tion of Euler’s gas dynamics equations in a uniform background medium
($). Consider the mass density ρ as a scalar field. In the inviscid case ($),
conservation of momentum and mass respectively read

ρ(
∂v

∂t
+ v · ∇v) = −∇p, ∂ρ

∂t
+∇ · (ρv) = 0.
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An additional equation, called constitutive relation, must be added to close
the system. It typically relates the pressure and the density in an algebraic
way, and encodes a thermodynamic assumption about compression and dila-
tion. For instance if the gas is assumed to be ideal, and if the compression-
dilation process occurring in the wave is adiabatic reversible (no heat trans-
fer), then p ∼ ργ, γ = 1.4, where ∼ indicates equality up to a dimensional
constant. More generally, assume for the moment that the constitutive rela-
tion takes the form

p = f(ρ)

for some scalar function f , which we assume differentiable and strictly in-
creasing (f ′(ρ) > 0 for all ρ > 0).

Consider small disturbances off of an equilibrium state:

p = p0 + p1, ρ = ρ0 + ρ1, v = v0 + v1.

In what follows, neglect quadratic quantities of p1, ρ1, v1. Consider a medium
at rest ($): p0, ρ0 independent of t, and v0 = 0. After some algebraic simpli-
fication the conservation of momentum becomes

ρ0
∂v1

∂t
= −∇p0 −∇p1.

To zero-th order (i.e., at equilibrium, p1 = ρ1 = v1 = 0,) we have

∇p0 = 0 ⇒ p0 constant in x.

To first order, we get

ρ0
∂v1

∂t
= −∇p1,

which is exactly (1.1) after renaming v1 → v, p1 → p. The constitutive
relation must hold at equilibrium, hence p0 constant in x implies that ρ0 is
also constant in x (uniform). Conservation of mass becomes

∂ρ1

∂t
+ ρ0∇ · v1 = 0.

Differentiate the constitutive relation to obtain p1 = f ′(ρ0)ρ1. Call f ′(ρ0) =
c2, a number that we assume positive. Then we can eliminate ρ1 to get

∂p1

∂t
+ ρ0c

2∇ · v1 = 0.
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This is exactly (1.2) with κ0 = ρ0c
2.

Conveniently, the equations for acoustic waves in a variable medium ρ0(x),
κ0(x) are obvious modifications of (1.1), (1.2):

∂v

∂t
= − 1

ρ0(x)
∇p, (1.3)

∂p

∂t
= −κ0(x)∇ · v. (1.4)

A different argument is needed to justify these equations, however. The
previous reasoning does not leave room for variable ρ0(x) or κ0(x). Instead,
it is necessary to introduce a more realistic constitutive relation

p = f(ρ, s),

where s is the entropy. An additional equation for conservation of entropy
needs to be considered. The new constitutive relation allows ρ0 and s0 to be
functions of x in tandem, although p0 is still (necessarily) uniform in x. The
reasoning leading to (1.3), (1.4) is the subject of an exercise in section 1.3.

Acoustic waves can take the form of a first-order system of equations, or
else a second-order scalar equation. Combining (1.3), (1.4), we get

∂2p

∂t2
= κ0(x)∇ · ( 1

ρ0(x)
∇p).

Initial conditions on both p and ∂p/∂t must be supplied. This equation may
come with a right-hand side f(x, t) that indicates forcing. When ρ0 and κ0

are constant, the scalar wave equation reduces to

∂2p

∂t2
= c20 ∆p.

Waves governed by (1.3), (1.4) belong in the category of hyperbolic waves
because they obey conservation of energy. Define

w =

(
v
p

)
, L =

(
0 − 1

ρ0
∇

−κ0∇· 0

)
.

Then the acoustic system simply reads

∂w

∂t
= Lw.

L is called the generator of the evolution.
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Definition 1. The system ∂w
∂t

= Lw is said to be hyperbolic if L is a matrix
of first-order differential operators, and there exists an inner product 〈w,w′〉
with respect to which L∗ = −L, i.e., L is anti-self-adjoint.

An adjoint operator such as L∗ is defined through the equation1

〈Lw,w′〉 = 〈w,L∗w′〉, for all w,w′.

For instance, in the case of the acoustic system, the proper notion of inner
product is (the factor 1/2 is optional)

〈w,w′〉 =
1

2

∫
(ρ0v · v′ +

1

κ0

pp′) dx.

It is an exercise in section 1.3 to show that 〈Lw,w′〉 = 〈w,L∗w′〉 for that
inner product, for all w,w′.

Theorem 1. If ∂w
∂t

= Lw is a hyperbolic system, then E = 〈w,w〉 is con-
served in time.

Proof.

d

dt
〈w,w〉 = 〈∂w

∂t
, w〉+ 〈w, ∂w

∂t
〉

= 2 〈∂w
∂t
, w〉

= 2 〈Lw,w〉
= 2 〈w,L∗w〉
= 2 〈w, (−L)w〉
= −2 〈Lw,w〉.

A quantity is equal to minus itself if and only if it is zero.

In the case of acoustic waves,

E =
1

2

∫
(ρ0v

2 +
p2

κ
) dx,

1The existence of L∗ can be traced back to the Riesz representation theorem once
〈Lw,w′〉 is shown to be a continuous functional of w in some adequate Hilbert space
norm.
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which can be understood as kinetic plus potential energy. We now see that
the factor 1/2 was chosen to be consistent with the physicists’ convention for
energy.

In the presence of external forcings the hyperbolic system reads ∂w/∂t =
Lw + f : in that case the rate of change of energy is determined by f .

For reference, common boundary conditions for acoustic waves include

• Sound soft boundary condition: Dirichlet for the pressure, p = 0.

• Sound-hard boundary condition: Neumann for the pressure, ∂p
∂n

= 0, or
equivalently v · n = 0.

Another important physical quantity is related to acoustic waves: the
acoustic impedance Z =

√
ρ0κ0. We will see later that impedance jumps

determine reflection and transmission coefficients at medium discontinuities.

1.1.2 Elastic waves

Elastic waves are propagating pressure disturbances in solids. The interesting
physical variables are

• The displacement u(x, t), a time-dependent vector field. In terms of u,
the particle velocity is v = ∂u

∂t
.

• The strain tensor

ε =
1

2
(∇u+ (∇u)T ),

a symmetric time-dependent tensor field.

• The stress tensor σ, also a symmetric time-dependent tensor field.

For elastic waves, the density ρ is very often assumed independent of t along
particle trajectories, namely ρ0(x, 0) = ρ0(x+ u(x, t), t).

The equation of elastic waves in an isotropic medium (where all the waves
travel at the same speed regardless of the direction in which they propagate)
($) reads

ρ
∂2u

∂t2
= ∇(λ∇ · u) +∇ · (µ(∇u+ (∇u)T )). (1.5)

where ρ, λ, and µ may possibly depend on x. As for acoustic waves, a forcing
term is added to this equation when waves are generated from external forces.
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To justify this equation, start by considering the equation of conservation
of momentum (“F = ma”),

ρ
∂v

∂t
= ∇ · σ,

possibly with an additional term f(x, t) modeling external forces. The nota-

tion ∇· indicates tensor divergence, namely (∇ · σ)i =
∑

j
∂σij
∂xj

. Stress and

strain are linked by a constitutive relation called Hooke’s law,

σ = C : ε,

where C is the 4-index elastic tensor. In three spatial dimensions, C has
81 components. The colon indicates tensor contraction, so that (C : ε)ij =∑

k`Cijk`εk`.
These equations form a closed system when they are complemented by

∂ε

∂t
=

1

2
(∇v + (∇v)T ),

which holds by definition of ε.
At this point we can check that the first-order system for v and ε defined

by the equations above is hyperbolic. Define

w =

(
v
ε

)
, L =

(
0 L2

L1 0

)
,

with

L1v =
1

2
(∇v + (∇v)T ), L2ε =

1

ρ0

∇ · (C : ε).

Then, as previously, ∂w
∂t

= Lw. An exercise in section 1.3 asks to show that
the matrix operator L is anti-selfadjoint with respect to the inner product

〈w,w′〉 =
1

2

∫
(ρv · v′ + ε : C : ε) dx.

The corresponding conserved elastic energy is E = 〈w,w〉.
Isotropic elasticity is obtained where C takes a special form with 2 degrees

of freedom rather than 81, namely

Cijk` = λδijδkl + µ(δi`δjk + δikδj`).

We are not delving into the justification of this equation. The two elastic
parameters λ and µ are also called Lamé parameters:
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• λ corresponds to longitudinal waves, also known as compressional, pres-
sure waves (P).

• µ corresponds to transverse waves, also known as shear waves (S).

Originally, the denominations P and S come from “primary” and “secondary”,
as P waves tend to propagate faster, hence arrive earlier, than S waves.

With this parametrization of C, it is easy to check that the elastic system
reduces to the single equation (1.5). In index notation, it reads

ρ
∂2ui
∂t2

= ∂i(λ∂juj) + ∂j(µ(∂iuj + ∂jui)).

For reference, the hyperbolic propagator L2 reduces to

L2ε =
1

ρ
(∇(λ tr ε) + 2∇ · (µε)), tr ε =

∑
i

εii,

and the energy inner product is

〈w,w′〉 =
1

2

∫
(ρv · v′ + 2µtr(εT ε′) + λ(tr ε)(tr ε′)) dx.

The elastic wave equation looks like an acoustic wave equation with “2
terms, hence 2 waves”. To make this observation more precise, assume that
λ and µ are constant ($). Use some vector identities2 to reduce (1.5) to

ρ
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∆u,

= (λ+ 2µ)∇(∇ · u)− µ∇×∇× u.

Perform the Helmholtz (a.k.a. Hodge) decomposition of u in terms of poten-
tials φ and ψ:

u = ∇φ+∇× ψ,
where φ is a scalar field and ψ is a vector field3. These two potentials are
determined up to a gauge choice, namely

φ′ = φ+ C, ψ′ = ψ +∇f.
2In this section, we make use of ∇ × ∇ × u = ∇(∇ · u) − ∆u, ∇ · ∇ × ψ = 0, and

∇×∇ψ = 0.
3Normally the Helmholtz decomposition comes with a third term h which obeys ∆h =

0, i.e., h is harmonic, but under suitable assumptions of decay at infinity the only solution
to ∆h = 0 is h = 0.
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Choose f such that ψ′ has zero divergence:

∇ · ψ′ = 0 ⇒ ∆f = −∇ · ψ.

This is a well-posed Poisson equation for f . With this choice of ψ′, it holds
that

∇ · u = ∆φ, ∇× u = ∇×∇× u = −∆ψ.

The elastic wave equation can then be rewritten in terms of φ, ψ as

∇
[
ρ
∂2φ

∂t2
− (λ+ 2µ)∆φ

]
+∇×

[
ρ
∂2ψ

∂t2
− µ∆ψ

]
= 0.

Take the gradient of this equation to conclude that (with a suitable decay
condition at infinity)

ρ
∂2φ

∂t2
− (λ+ 2µ)∆φ = harmonic = 0.

Now that the first term is zero, we get (with a suitable decay condition at
infinity)

ρ
∂2ψ

∂t2
− µ∆ψ = ∇(something) = 0.

Hence each potential φ and ψ solve their own scalar wave equation: one for
the longitudinal waves (φ) and one for the transverse waves (φ). They obey
a superposition principle. The two corresponding wave speeds are

cP =

√
λ+ 2µ

ρ0

, cS =

√
µ

ρ0

.

In the limit µ → 0, we see that only the longitudinal wave remains, and
λ reduces to the bulk modulus. In all cases, since λ ≥ 0 we always have
cP ≥

√
2cS: the P waves are indeed always faster (by a factor at least

√
2)

than the S waves.

The assumption that λ and µ are constant is a very strong one: there is
a lot of physics in the coupling of φ and ψ that the reasoning above does not
capture. Most important is mode conversion as a result of wave reflection at
discontinuity interfaces of λ(x) and/or µ(x).
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1.1.3 Electromagnetic waves

The quantities of interest for electromagnetic waves are:

• Physical fields: the electric field E, and the magnetic field H,

• Medium parameters: the electric permittivity ε and the magnetic per-
meability µ,

• Forcings: electric currents j and electric charges ρ.

The electric displacement field D and the magnetic induction field B are
also considered. In the linearized regime ($), they are assumed to be linked
to the usual fields E and H by the constitutive relations

D = εE, B = µH.

Maxwell’s equations in a medium with possible space-varying parameters
ε and µ read

∇× E = −∂B
∂t

(Faraday’s law) (1.6)

∇×H =
∂D

∂t
+ j (Ampère’s law with Maxwell’s correction) (1.7)

∇ ·D = ρ (Gauss’s law for the electric field) (1.8)

∇ ·B = 0 (Gauss’s law for the magnetic field) (1.9)

The integral forms of these equations are obtained by a volume integral,
followed by a reduction to surface equations by Stokes’s theorem for (1.6),
(1.7) and the divergence (Gauss’s) theorem for (1.8), (1.9). The integral
equations are valid when ε and µ are discontinuous, whereas the differential
equations strictly speaking are not.

The total charge in a volume V is
∫
V
ρdV , while the total current through

a surface S is
∫
S
j·dS. Conservation of charge follows by taking the divergence

of (1.7) and using (1.8):
∂ρ

∂t
+∇ · j = 0.

In vacuum, or dry air, the parameters are constant and denoted ε = ε0,
µ = µ0. They have specific numerical values in adequate units.

We now take the viewpoint that (1.6) and (1.7) are evolution equations for
E and H (or D and B) that fully determine the fields when they are solved
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forward (or backward) in time. In that setting, the other two equations (1.8)
and (1.9) are simply constraints on the initial (or final) condition at t = 0. As
previously, we may write Maxwell’s equations in the more concise hyperbolic
form

∂w

∂t
= Lw +

(
−j/ε

0

)
, with w =

(
E
H

)
,

provided

L =

(
0 1

ε
∇×

− 1
µ
∇× 0

)
.

The “physical” inner product that makes L∗ = −L is

〈w,w′〉 =
1

2

∫
(εEE ′ + µHH ′) dx.

The electromagnetic energy E = 〈w,w〉 is conserved when j = 0.
It is the balanced coupling of E and H through (1.6) and (1.7) that creates

wave-like solutions to Maxwell’s equations (and prompts calling the physical
phenomenon electromagnetism rather than just electricity and magnetism.)
Combining both equations, we obtain

∂2E

∂t2
= −1

ε
∇× (

1

µ
∇× E),

∂2H

∂t2
= − 1

µ
∇× (

1

ε
∇×H).

These wave equations may be stand-alone but E and H are still subject to
essential couplings.

A bit of algebra4 reveals the more familiar form

∆E − εµ∂
2E

∂t2
+
∇µ
µ
× (∇× E) +∇(E · ∇ε

ε
) = 0.

We now see that in a uniform medium, ε and µ are constant and the last two
terms drop, revealing a wave equation with speed

c =
1
√
εµ
.

4Using the relations ∇ × ∇ × F = ∇(∇ · F ) − ∆F again, as well as ∇ · (F × G) =
G · (∇× F )− F · (∇×G).
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The speed of light is c0 = 1/
√
ε0µ0. Even when ε and µ vary in x, the last two

terms are kinematically much less important than the first two because they
involve lower-order derivatives of E. They would not, for instance, change
the path of the “light rays”, a concept that we’ll make clear later.

For reference, we now list the jump conditions that the electric and mag-
netic fields obey at a dielectric interface. These relations can be obtained
from the integral form of Maxwell’s equations, posed over a thin volume
straddling the interface. Let n be the vector normal to a dielectric interface.

n× E1 = n× E2 (continuous tangential components)

n×H1 = n×H2 + jS

n ·D1 = n ·D2 + ρS

n ·H1 = n ·H2 (continuous normal component)

We have used jS and ρS for surface currents and surface charges respectively.
If the two dielectrics correspond to finite parameters ε1, ε2 and µ1, µ2, then
these currents are zero. If material 2 is a perfect electric conductor however,
then these currents are not zero, but the fields E2, H2, D2 and H2 are zero.
This results in the conditions n × E = 0 (E perpendicular to the interface)
and n × H = 0 (H parallel to the interface) in the vicinity of a perfect
conductor.

Materials conducting current are best described by a complex electric
permittivity ε = ε′ + iσ/ω, where σ is called the conductivity. All these
quantities could be frequency-dependent. It is the ratio σ/ε′ that tends to
infinity when the conductor is “perfect”. Materials for which ε is real are
called “perfect dielectrics”: no conduction occurs and the material behaves
like a capacitor. We will only consider perfect dielectrics in this class. When
conduction is present, loss is also present, and electromagnetic waves tend
to be inhibited. Notice that the imaginary part of the permittivity is σ/ω,
and not just σ, because we want Ampère’s law to reduce to j = σE (the
differential version of Ohm’s law) in the time-harmonic case and when B = 0.

1.2 Special solutions

1.2.1 Plane waves, dispersion relations

In this section we study special solutions of wave equations that depend on x
like eikx. These solutions are obtained if we assume that the time dependence



16 CHAPTER 1. WAVE EQUATIONS

is harmonic, namely if the unknown is w(x, t), then we assume ($)

w(x, t) = e−iωtfω(x), ω ∈ R.

The number ω is called angular frequency, or simply frequency. Choosing
e+iωt instead makes no difference down the road. Under the time-harmonic
assumption, the evolution problem ∂w

∂t
= Lw becomes an eigenvalue problem:

−iωfω = Lfω.

Not all solutions are time-harmonic, but all solutions are superpositions of
harmonic waves at different frequencies ω. Indeed, if w(x, t) is a solution,
consider it as the inverse Fourier transform of some ŵ(x, ω):

w(x, t) =
1

2π

∫
e−iωtŵ(x, ω)dω.

Then each ŵ(x, ω) is what we called fω(x) above. Hence there is no loss of
generality in considering time-harmonic solutions.

Consider the following examples.

• The one-way, one-dimensional wave equation

∂u

∂t
+ c

∂u

∂x
= 0, x ∈ R.

Time harmonic solutions u(x, t) = e−iωtfω(x) obey

i
ω

c
fω = f ′ω, x ∈ R.

The solution to this equation is

fω(x) = eikx, k =
ω

c
∈ R.

Evanescent waves corresponding to decaying exponentials in x and t
are also solutions over a half-line, say, but they are ruled out by our
assumption ($) that ω ∈ R.

While ω is the angular frequency (equal to 2π/T where T is the period),
k is called the wave number (equal to 2π/λ where λ is the wavelength.)
It is like a ”spatial frequency”, though it is prudent to reserve the word
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frequency for the variable dual to time. The quantity measured in
Hertz [1/s] and also called frequency is ν = ω/(2π).

The full solution then takes the form

u(x, t) = ei(kx−ωt) = eik(x−ct),

manifestly a right-going wave at speed c. If the equation had been
∂u
∂t
− c∂u

∂x
= 0 instead, the wave would have been left-going: u(x, t) =

eik(x+ct).

• The n-dimensional wave equation in a uniform medium,

∂2u

∂t2
= c2∆u, x ∈ Rn.

When u(x, t) = e−iωtfω(x), the eigenvalue problem is called the (homo-
geneous) Helmholtz equation. It is

−ω2fω(x) = ∆fω(x), x ∈ Rn. (1.10)

Again, plane waves are solutions to this equation:

fω(x) = eik·x,

provided ω2 = |k|2c2, i.e., ω = ±|k|c. Hence fω is a function that
oscillates in the direction parallel to k. The full solution is

u(x, t) = ei(k·x−ωt),

which are plane waves traveling with speed c, along the direction k.
We call k the wave vector and |k| the wave number. The wavelength
is still 2π/|k|. The relation ω2 = |k|2c2 linking ω and k, and encoding
the fact that the waves travel with velocity c, is called the dispersion
relation of the wave equation.

Note that eik·x are not the only (non-growing) solutions of the Helmholtz
equation in free space; so is any linear combination of eik·x that share
the same wave number |k|. This superposition can be a discrete sum
or a continuous integral. An exercise in section 1.3 deals with the con-
tinuous superposition with constant weight of all the plane waves with
same wave number |k|.
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Consider now the general case of a hyperbolic system ∂w
∂t

= Lw, with
L∗ = −L. The eigenvalue problem is −iωfω = Lfω. It is fine to assume ω
real: since L is antiselfadjoint, iL is selfadjoint (Hermitian), hence all the
eigenvalues of L are purely imaginary. This is sometimes how hyperbolic
systems are defined — by assuming that the eigenvalues of the generator L
are purely imaginary.

We still look for eigenfunctions with a eik·x dependence, but since w and
fω may now be vectors with m components, we should make sure to consider

fω(x) = eik·xr, r ∈ Rm.

However, such fω cannot in general expected to be eigenvectors of L. It
is only when the equation is translation-invariant that they will be. This
means that the generator L is a matrix of differential operators with constant
coefficients – no variability as a function of x is allowed. In this translation-
invariant setting, and only in this setting, L is written as a multiplication
by some matrix P (k) in the Fourier domain. Say that f has m components
(f1, . . . fm); then

Lf(x) =
1

(2π)n

∫
eik·xP (k)f̂(k)dk,

where P (k) is anm-by-mmatrix for each k. Here P (k) is called the dispersion
matrix. We refer to operators such as L as diagonal in the Fourier domain,
with respect to the k variable, because they act like a “diagonal matrix” on
vectors of the continuous index k — although for each k the small matrix
P (k) is not in general diagonal5. In pure math, P (k) is called the multiplier,
and L is said to be a multiplication operator in the Fourier domain.

For illustration, let us specialize our equations to the 2D acoustic system
with ρ0 = κ0 = c = 1, where

w =

(
v
p

)
, L =


0 0 − ∂

∂x1

0 0 − ∂
∂x2

− ∂
∂x1

− ∂
∂x2

0

 .

5Non-diagonal, translation-variant operators would require yet another integral over a
k′ variable, and would read Lf(x) = 1

(2π)n

∫ ∫
eik·xQ(k, k′)f̂(k′)dk′, for some more com-

plicated object Q(k, k′) ∈ Rm×m. The name “diagonal” comes from the fact that Q(k, k′)
simplifies as P (k)δ(k−k′) in the translation-invariant case. You can think of P (k)δ(k−k′)
as the continuous analogue of diδij : it is a “diagonal continuous matrix” as a function of
k (continuous row index) and k′ (continuous column index).
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It can be readily checked that

P (k) =


0 0 −ik1

0 0 −ik2

−ik1 −ik2 0

 ,

from which it is apparent that P (k) is a skew-Hermitian matrix: P ∗(k) =
−P (k).

We can now study the conditions under which −iωfω = Lfω: we compute
(recall that r is a fixed vector)

L(eik·xr) =
1

(2π)n

∫
eik
′·xP (k′)[̂eik·xr](k′)dk′,

=
1

(2π)n

∫
eik
′·xP (k′)(2π)nδ(k − k′)rdk′, = eik·xP (k)r.

In order for this quantity to equal −iωeik·xr for all x, we require (at x = 0)

P (k) r = −iω r.

This is just the condition that −iω is an eigenvalue of P (k), with eigenvector
r. We should expect both ω and r to depend on k. For instance, in the 2D
acoustic case, the eigen-decomposition of P (k) is

λ0(k) = −iω0(k) = 0, r0(k) =

 k2

−k1

0


and

λ±(k) = −iω±(k) = −i|k|, r±(k) =

±k1/|k|
±k2/|k|
|k|

 .

Only the last two eigenvalues correspond to physical waves: they lead to the
usual dispersion relations ω(k) = ±|k| in the case c = 1. Recall that the
first two components of r are particle velocity components: the form of the
eigenvector indicates that those components are aligned with the direction k
of the wave, i.e., acoustic waves can only be longitudinal.

The general definition of dispersion relation follows this line of reason-
ing: there exists one dispersion relation for each eigenvalue λj of P (k), and
−iωj(k) = λj(k); for short

det [iωI + P (k)] = 0.
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1.2.2 Traveling waves, characteristic equations

We now consider a few examples that build up to the notion of characteristic
curve/surface.

• Let us give a complete solution to the one-way wave equation of one
space variable in a uniform medium:

∂u

∂t
+ c

∂u

∂x
= 0, u(x, 0) = u0(x). (1.11)

The study of plane wave solutions in the previous section suggests that
the variable x − ct may play a role. Let us perform the change of
variables

ξ = x− ct, η = x+ ct.

It inverts as

x =
ξ + η

2
, t =

η − ξ
2c

.

By the chain rule, e.g.,

∂

∂ξ
=
∂x

∂ξ

∂

∂x
+
∂t

∂ξ

∂

∂t
,

we get

−2c
∂

∂ξ
=

∂

∂t
− c ∂

∂x
, 2c

∂

∂η
=

∂

∂t
+ c

∂

∂x
.

With U(ξ, η) = u(x, t), the wave equation simply becomes

∂U

∂η
= 0,

whose general solution is U(ξ, η) = F (ξ) for some differentiable function
F . Hence u(x, t) = F (x− ct). In view of the initial condition, this is

u(x, t) = u0(x− ct).

The solutions to (1.11) are all the right-going waves with speed c, and
nothing else.

The wave propagate along the lines ξ(x, t) = x−ct =const. in the (x, t)
plane. For this reason, we call ξ the characteristic coordinate, and we
call the lines ξ(x, t) = const. characteristic curves.
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Notice that imposing a boundary condition u(0, t) = v0(t) rather than
an initial condition is also fine, and would result in a solution u(x, t) =
v0(t − x/c). Other choices are possible; they are called Cauchy data.
However, a problem occurs if we try to specify Cauchy data along a
characteristic curve ξ = constant, as v0(η):

1. this choice is not in general compatible with the property that the
solution should be constant along the characteristic curves; and
furthermore

2. it fails to determine the solution away from the characteristic
curve.

In other words, there is a problem with both existence and unique-
ness when we try to prescribe Cauchy data on a characteristic curve.
This fact will be used in the sequel to define these curves when their
geometric intuition becomes less clear.

• Using similar ideas, let us describe the full solution of the (two-way)
wave equation in one space dimension,

∂2u

∂t2
− c2∂

2u

∂x2
= 0, u(x, 0) = u0(x),

∂u

∂t
(x, 0) = u1(x).

The same change of variables leads to the equation

∂U

∂ξ∂η
= 0,

which is solved via

∂U

∂η
(ξ, η) = f(ξ), U(ξ, η) =

∫ ξ

f(ξ′)dξ′ +G(η) = F (ξ) +G(η).

The resulting general solution is a superposition of a left-going wave
and a right-going wave:

u(x, t) = F (x− ct) +G(x+ ct).

Matching the initial conditions yields d’Alembert’s formula (1746):

u(x, t) =
1

2
(u0(x− ct) + u0(x+ ct)) +

1

2c

∫ x+ct

x−ct
u1(y)dy.
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It is the complete solution to the 1D wave equation in a uniform wave
speed c. Notice that we now have two families of criss-crossing charac-
eristic curves, given by ξ(x, t) = const. and η(x, t) = const. Cauchy
data cannot be prescribed on either type of characteristics.

• Consider now the wave equation in a variable medium c(x) (technically,
acoustic waves on an infinite string with variable bulk modulus):

∂2u

∂t2
− c2(x)

∂2u

∂x2
= 0, u(x, 0) = u0(x),

∂u

∂t
(x, 0) = u1(x).

We will no longer be able to give an explicit solution to this problem,
but the notion of characteristic curve remains very relevant. Consider
an as-yet-undetermined change of coordinates (x, t) 7→ (ξ, η), which
generically changes the wave equation into

α(x)
∂2U

∂ξ2
+

∂2U

∂ξ∂η
+ β(x)

∂2U

∂η2
+

[
p(x)

∂U

∂ξ
+ q(x)

∂U

∂η
+ r(x)U

]
= 0,

with

α(x) =

(
∂ξ

∂t

)2

− c2(x)

(
∂ξ

∂x

)2

,

β(x) =

(
∂η

∂t

)2

− c2(x)

(
∂η

∂x

)2

.

The lower-order terms in the square brackets are kinematically less
important than the first three terms6. We wish to define characteristic
coordinates as those along which

U(ξ, η) ' F (ξ) +G(η),

i.e., “directions in which the waves travel” in space-time. It is in general
impossible to turn this approximate equality into an actual equality
(because of the terms in the square brackets), but it is certainly possible
to choose the characteristic coordinates so that the ∂2U

∂ξ2
and ∂2U

∂η2 vanish.

Choosing α(x) = β(x) = 0 yields the same equation for both ξ and η,
here expressed in terms of ξ:(

∂ξ

∂t

)2

− c2(x)

(
∂ξ

∂x

)2

= 0. (1.12)

6In a sense that we are not yet ready to make precise. Qualitatively, they affect the
shape of the wave, but not the character that the waves travel with local speed c(x).
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This relation is called the characteristic equation. Notice that ξ = x−ct
and η = x + ct are both solutions to this equation in the case when
c(x) = c is a constant. But it can be checked that ξ = x ± c(x)t is
otherwise not a solution of (1.12). Instead, refer to the exercise section
for a class of solutions to (1.12).

• Consider now the n dimensional wave equation

∂2u

∂t2
− c2(x)∆u = 0, u(x, 0) = u0(x),

∂u

∂t
(x, 0) = u1(x).

A change of variables would now read (x1, . . . , xn, t) 7→ (ξ, η1, . . . , ηn).
The variable ξ is called characteristic when the coefficient of the lead-
ing term ∂2U

∂ξ2
vanishes in the expression of the equation in the new

coordinates. This condition leads to the n-dimensional version of the
characteristic equation(

∂ξ

∂t

)2

− c2(x)|∇xξ|2 = 0. (1.13)

The same relations should hold for the other coordinates η1, . . . , ηn
if they are to be characteristic as well. Equation (1.13) is called a
Hamilton-Jacobi equation. We now speak of characteristic surfaces
ξ(x, t) = const., rather than curves.

The set of solutions to (1.13) is very large. In the case of constant c,
we can check that possible solutions are

ξ(x, t) = x · k ± ωt, ω = |k|c,

corresponding to more general plane waves u(x, t) = F (x · k ± ωt)
(which the reader can check are indeed solutions of the n-dimensional
wave equation for smooth F ), and

ξ(x, t) = ‖x− y‖ ± ct, for some fixed y, and x 6= y,

corresponding to concentric spherical waves originating from y. We
describe spherical waves in more details in the next section. Notice
that both formulas for ξ reduce in some sense to x ± ct in the one-
dimensional case.
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The choice of characteristic coordinates led to the reduced equation

∂2U

∂ξ∂η
+ lower order terms = 0,

sometimes called “first fundamental form” of the wave equation, on the in-
tuitive basis that solutions (approximately) of the form F (ξ) + G(η) should
travel along the curves ξ = const. and η = const. Let us now motivate this
choice of the reduced equation in more precise terms, by linking it to the
idea that Cauchy data cannot be prescribed on a characteristic curve.

Consider utt = c2uxx. Prescribing initial conditions u(x, 0) = u0, ut(x, 0) =
u1 is perfectly acceptable, as this completely and uniquely determines all the
partial derivatives of u at t = 0. Indeed, u is specified through u0, and all its
x-partials ux, uxx, uxxx, . . . are obtained from the x-partials of u0. The first
time derivative ut at t = 0 is obtained from u1, and so are utx, utxx, . . . by
further x-differentiation. As for the second derivative utt at t = 0, we obtain
it from the wave equation as c2uxx = c2(u0)xx. Again, this also determines
uttx, uttxx, . . . The third derivative uttt is simply c2utxx = c2(u1)xx. For the
fourth derivative utttt, apply the wave equation twice and get it as c4(u0)xxxx.
And so on. Once the partial derivatives are known, so is u itself in a neigh-
borhood of t = 0 by a Taylor expansion — this is the original argument
behind the Cauchy-Kowalevsky theorem.

The same argument fails in characteristic coordinates. Indeed, assume
that the equation is uξη + puξ + quη + ru = 0, and that the Cauchy data
is u(ξ, 0) = v0(ξ), uη(ξ, 0) = v1(η). Are the partial derivatives of u all
determined in a unique manner at η = 0? We get u from v0, as well as
uξ, uξξ, uξξξ, . . . by further ξ differentiation. We get uη from v1, as well as
uηξ, uηξξ, . . . by further ξ differentiation. To make progress, we now need to
consider the equation uξη + (l.o.t.) = 0, but two problems arise:

• First, all the derivatives appearing in the equation have already been
determined in terms of v0 and v1, and there is no reason to believe that
this choice is compatible with the equation. In general, it isn’t. There
is a problem of existence.

• Second, there is no way to determine uηη from the equation, as this term
does not appear. Hence additional data would be needed to determine
this partial derivative. There is a problem of uniqueness.
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The only way to redeem this existence-uniqueness argument is by making
sure that the equation contains a uηη term, i.e., by making sure that η is
non-characteristic.

Please refer to the exercise section for a link between characteristic equa-
tions, and the notions of traveltime and (light, sound) ray. We will return to
such topics in the scope of geometrical optics, in chapter 6.

1.2.3 Spherical waves, Green’s functions

Consider x ∈ R3 and c constant. We will only be dealing with solutions in
3 spatial dimensions for now. We seek radially symmetric solutions of the
wave equation. In spherical coordinate (r, θ, φ), the Laplacian reads

∆u =
1

r

∂2

∂r2
(ru) + angular terms.

For radially symmetric solutions of the wave equation, therefore,

∂2

∂t2
(ru) =

∂2

∂r2
(ru).

This is a one-dimensional wave equation in the r variable, whose solution we
derived earlier:

ru(r, t) = F (r− ct) +G(r + ct) ⇒ u(r, t) =
F (r − ct)

r
+
G(r + ct)

r
.

Spherical waves corresponding to the F term are called outgoing, while waves
corresponding to the G term are called incoming. More generally, spherical
waves can be outgoing/incoming with respect to any point y ∈ R3, for in-
stance

u(x, t) =
F (‖x− y‖ − ct)
‖x− y‖

.

Notice that we had already seen that ‖x− y‖± ct is a characteristic variable
for the wave equation, in the previous section. The surfaces ‖x − y‖ = ct+
const. are often called light cones in the setting of electromagnetic waves.

In what follows we will be interested in the special case F (r) = δ(r), the
Dirac delta, for which the wave equation is only satisfied in a distributional
sense. Superpositions of such spherical waves are still solutions of the wave
equation.
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It turns out that any solution of the wave equation in R3, with constant
c, can be written as a superposition of such spherical waves. Let us consider
a quantity which is not quite the most general yet:

u(x, t) =

∫
R3

δ(‖x− y‖ − ct)
‖x− y‖

ψ(y)dy. (1.14)

Since ‖x−y‖ = ct on the support of the delta function, the denominator can
be written ct. Denoting by Bx(ct) the ball centered at x and with radius ct,
we can rewrite

u(x, t) =
1

ct

∫
∂Bx(ct)

ψ(y)dy.

hence the name spherical means (note that the argument of δ has derivative
1 in the radial variable — no Jacobian is needed.) The interesting question is
that of matching u(x, t) given by such a formula, with the initial conditions.
By the mean value theorem,

u(x, t) ∼ 4πctψ(x), t→ 0,

which tends to zero as t → 0. On the other hand, an application of the
Reynolds transport theorem (or a non-rigorous yet correct derivative in time
of the equation above) yields

lim
t→0

∂u

∂t
(x, t) = 4πcψ(x).

We are therefore in presence of initial conditions u0 = 0, and arbitrary u1 =
4πcψ(x) arbitrary. In that case, the solution of the constant-c wave equation
in R3 is

u(x, t) =

∫
G(x, y; t)u1(y) dy,

with the so-called Green’s function

G(x, y; t) =
δ(‖x− y‖ − ct)

4πc2t
, t > 0, (1.15)

and zero when t ≤ 0.
Let us now describe the general solution for the other situation when

u1 = 0, but u0 6= 0. The trick is to define v(x, t) by the same formula (1.14),
and consider u(x, t) = ∂v

∂t
, which also solves the wave equation:[

∂2

∂t2
− c2∆

]
∂v

∂t
=

∂

∂t

[
∂2

∂t2
− c2∆

]
v = 0.
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The limits are now

lim
t→0

u(x, t) = 4πcψ(x),

and
∂u

∂t
=
∂2v

∂t2
= c2∆v, lim

t→0
c2∆v(x, t) = c2∆ lim

t→0
v(x, t) = 0

(limit and derivative are interchangeable when the function is smooth enough.)
The time derivative trick is all that is needed to generate the solution in the
case u1 = 0:

u(x, t) =

∫
∂G

∂t
(x, y; t)u0(y) dy.

The general solution is obtained by superposition of these two special
cases:

u(x, t) =

∫ [
∂G

∂t
(x, y; t)u0(y) +G(x, y; t)u1(y)

]
dy. (1.16)

The concept of Green’ function G is much more general than suggested
by the derivation above. Equation (1.16), for instance, holds in arbitrary
dimension and for variable media, albeit with a different Green’s function
— a claim that we do not prove here. In two dimensions and constant c for
instance, it can be shown7 that

G(x, y; t) =
1

2πc
√
c2t2 − ‖x− y‖2

, when t > 0,

and zero otherwise. In variable media, explicit formulas are usually not
available.

In the wider context of linear PDE, Green’s functions are more often
introduced as linking a right-hand-side forcing f to the solution u upon inte-
gration. For a linear PDE Lu = f , Green’s functions are to the differential
operator L what the inverse matrix A−1 is to a matrix A. Accordingly, the
Green’s function describes the solution of the wave equation with a right-hand
side forcing — a setting more often encountered in imaging than initial-value
problems. The premise of the proposition below is that G is defined8 through
(1.16), even as x ∈ Rn and c is a function of x.

7By the so called “method of descent”. See the book Introduction to PDE by Gerald
Folland for a wonderful explanation of wave equations in constant media.

8The tables could be turned, and G could instead be defined by (1.17). In that case
(1.16) would be a proposition.
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Proposition 2. (Duhamel principle) For x ∈ Rn, and t > 0, the solution of
the inhomogeneous problem[

∂2

∂t2
− c2(x)∆

]
u(x, t) = f(x, t), u(x, 0) =

∂u

∂t
(x, 0) = 0.

is

u(x, t) =

∫ t

0

∫
G(x, y; t− s)f(y, s) dyds. (1.17)

Proof. Let us check that the wave equation holds.
For each s > 0, consider the auxiliary problem[
∂2

∂t2
− c2(x)∆

]
vs(x, t) = f(x, t), vs(x, 0) = 0,

∂vs
∂t

(x, 0) = f(x, s).

Then

vs(x, t) =

∫
G(x, y; t)f(y, s) dy.

The candidate formula for u is

u(x, t) =

∫ t

0

vs(x, t− s) ds.

Let us now check that this u solves the wave equation. For one, u(x, 0) = 0
because the integral is over an interval of length zero. We compute

∂u

∂t
(x, t) = vs(x, t− s)|s=t +

∫ t

0

∂vs
∂t

(x, t− s) ds =

∫ t

0

∂vs
∂t

(x, t− s) ds.

For the same reason as previously, ∂u
∂t

(x, 0) = 0. Next,

∂2u

∂t2
(x, t) =

∂vs
∂t

(x, t− s)|s=t +

∫ t

0

∂2vs
∂t2

(x, t− s) ds

= f(x, t) +

∫ t

0

c2(x)∆vs(x, t− s) ds

= f(x, t) + c2(x)∆

∫ t

0

vs(x, t− s) ds

= f(x, t) + c2(x)∆u(x, t).

Since the solution of the wave equation is unique, the formula is general.
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Because the Green’s function plays such a special role in the description
of the solutions of the wave equation, it also goes by fundamental solution.
We may specialize (1.17) to the case f(x, t) = δ(x − y)δ(t) to obtain the
equation that the Green’s function itself satsfies,[

∂2

∂t2
− c2(x)∆x

]
G(x, y; t) = δ(x− y)δ(t).

In the spatial-translation-invariant case, G is a function of x − y, and we
may write G(x, y; t) = g(x − y, t). In that case, the general solution of the
wave equation with a right-hand side f(x, t) is the space-time convolution of
f with g.

A spatial dependence in the right-hand-side such as δ(x − y) may be a
mathematical idealization, but the idea of a point disturbance is nevertheless
a very handy one. In radar imaging for instance, antennas are commonly
assumed to be point-like, whether on arrays or mounted on a plane/satellite.
In exploration seismology, sources are often modeled as point disturbances
as well (shots), both on land and for marine surveys.

The physical interpretation of the concentration of the Green’s function
along the cone ‖x−y‖ = ct is called the Huygens principle. Starting from an
initial condition at t = 0 supported along (say) a curve Γ, this principle says
that the solution of the wave equation is mostly supported on the envelope
of the circles of radii ct centered at all the points on Γ.

1.2.4 The Helmholtz equation

It is often convenient to use a formulation of the wave equation in the fre-
quency domain. If

û(x, ω) =

∫
eiωtu(x, t) dt,

and if
[
∂2

∂t2
− c2(x)∆x

]
u = f , then it is immediate to check that the (inho-

mogeneous) Helmholtz equation holds:

−
[
ω2 + c2(x)∆

]
û(x, ω) = f̂(x, ω).

The notion of Green’s function is also very useful for the Helmholtz equation:
it is the function Ĝ(x, y;ω) such that

û(x, ω) =

∫
Ĝ(x, y;ω)f̂(y, ω) dy.
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It is a good exercise to check that Ĝ(x, y;ω) is indeed the Fourier transform
of G(x, y; t) in t, by Fourier-transforming (1.17) and applying the convolu-
tion theorem. By specializing the Helmholtz equation to the right-hand side
f̂(x, ω) = δ(x), we see that the Green’s function itself obeys

−
[
ω2 + c2(x)∆

]
Ĝ(x, y;ω) = δ(x). (1.18)

In particular, for x ∈ R3 and constant c, we get (x 6= y)

Ĝ(x, y;ω) =

∫ ∞
0

eiωt
δ(‖x− y‖ − ct)

4πc2t
dt

=

∫ ∞
0

eiωt
δ(‖x− y‖ − ct)

4πc‖x− y‖
dt

=

∫ ∞
0

ei
ω
c
t′ δ(‖x− y‖ − t′)

4π‖x− y‖
dt′

=
eik‖x−y‖

4π‖x− y‖
, k = ω/c.

We will often use this form of the Green’s function in the sequel. It is an
outgoing spherical wave generated by a “point source” at x = y.

Note that ω → −ω corresponds to time reversal: e−ik‖x−y‖

4π‖x−y‖ is also a solution
of the Helmholtz equation for x 6= y, but it is an incoming rather than
outgoing wave. The sign in the exponent depends on the choice of convention
for the Fourier transform9

Some mathematical care should be exercised when posing the Helmholtz
equation in free space. Uniqueness, in particular, is not as easy to guarantee
as for the time-dependent wave equation. “Sufficient decay as ‖x‖ → ∞” is
not a good criterion for uniqueness, since we’ve just seen an example of two
waves e±iω‖x−y‖/c

4π‖x−y‖ which have the same modulus and obey the same equation

(1.18). Instead, it is customary to require the wave to be outgoing in order
to have a well-posed problem in constant c. We say that û(x, ω) obeys the
Sommerfeld radiation condition in R3 if (r = ‖x‖)(

∂

∂r
− ik

)
û(x, ω) = o(

1

|x|
),

9We choose eiωt for the direct transform, and e−iωt for the inverse transform, in ac-
cordance with practice in signal processing, radar imaging, and seismic imaging. For the
spatial Fourier transforms, however, we adopt the opposite convention e−ik·x for the direct
transform, and eik·x for the inverse transform.
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i.e., lim|x|→∞ |x|
(
∂
∂r
− ik

)
û(x, ω) = 0. It is a good exercise to check that

Ĝ(x, y;ω) obeys this radiation conditions, while Ĝ(x, y;−ω) does not.
For reference, the expression of the Green’s function in two spatial di-

mensions, in a uniform medium c(x) = c, is

Ĝ(x, y, ω) = (...)H
(1)
0 (k|x− y|), k = ω/c.

where H
(1)
0 = J0 + iY0 is called a Hankel function.

1.2.5 Reflected waves

Spatial variability in the physical parameters (ρ, κ; ε, µ;λ, µ, etc.) entering
the wave equation generate wave scattering, i.e., changes of the direction of
propagation of the waves. Of particular interest are discontinuities, or other
non-C∞ singularities, which generate reflected waves alongside transmitted
waves.

Let us study reflection and transmission in the 1D, variable-density acous-
tics equation

∂2u

∂t2
= κ(x)

∂

∂x

(
1

ρ(x)

∂u

∂x

)
.

Consider a step discontinuity at x = 0, with ρ(x) = ρ1 and κ(x) = κ1 in
x < 0, and ρ(x) = ρ2 and κ(x) = κ2 in x > 0. Assume an incident plane
wave ui(x, t) = ei(k1x−ωt) in x < 0; we are interested in finding the reflection
coefficient R and the transmission coefficient T so the solution reads

ui(x, t) + ur(x, t) = ei(k1x−ωt) +Rei(k1x+ωt), x < 0.

ut(x, t) = Tei(k2x−ωt), x > 0.

The connection conditions are the continuity of u and 1
ρ
∂u
∂x

. To justify this,
remember that u is in fact a pressure disturbance in the acoustic case, while
1
ρ
∂u
∂x

is minus the time derivative of particle velocity, and these two quantities
are continuous on physical grounds. There is also a mathematical justification

for the continuity of 1
ρ
∂u
∂x

: if it weren’t, then ∂
∂x

(
1

ρ(x)
∂u
∂x

)
would have a point

mass (Dirac atom) at x = 0, which would pose a problem both for the
multiplication by a discontinuous κ(x), and because ∂2u

∂t2
is supposed to be a

finite function, not a distribution.
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At x = 0, the connection conditions give

1 +R = T,

1

ρ1

(−ik1 − ik1R) =
1

ρ2

(ik2T ).

Eliminate k1 and k2 by expressing them as a function of ρ1, ρ2 only; for
instance

k1

ρ1

=
ω

ρ1c1
=

ω
√
ρ1κ1

,

and similarly for k2
ρ2

. Note that ω is fixed throughout and does not depend
on x. The quantity in the denominator is physically very important: it is
Z = ρc =

√
κρ, the acoustic impedance. The R and T coefficients can then

be solved for as

R =
Z2 − Z1

Z2 + Z1

, T =
2Z2

Z2 + Z1

.

It is the impedance jump Z2 − Z1 which mostly determines the magnitude
of the reflected wave.R = 0 corresponds to an impedance match, even in the
case when the wave speeds differ in medium 1 and in medium 2.

The same analysis could have been carried out for a more general incoming
wave f(x− c1t), would have given rise to the same R and T coefficients, and
to the complete solution

u(x, t) = f(x− c1t) +Rf(−x− c1t), x < 0, (1.19)

u(x, t) = Tf(
c1
c2

(x− c2t)), x > 0. (1.20)

The reader can check the relation

1 = R2 +
Z1

Z2

T 2,

which corresponds to conservation of energy. An exercise in section 1.3 aims
to establish this link. Note that R = R2 and T = Z1

Z2
T 2 are sometimes

referred to as reflection and transmission coefficients, though they measure
intensities rather than amplitudes. The intensity coefficients are even de-
noted as R and T in place of R and T in some texts.

Physically, the acoustic impedance Z is the proportionality constant be-
tween the pressure amplitude and the velocity amplitude of an acoustic wave.
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We do not have direct access to Z in the acoustic equations however, as
p(x, t) 6= Zv(x, t) pointwise – only combinations of partial derivatives match.
So Z is in some sense an “averaged quantity” over at least a wavelength.
On can derive the expression of Z from the time-harmonic regime. The first
equation (1.1) in the acoustic system reads, in the (k, ω) domain (in one
spatial dimension),

iωv̂(k, ω) = − 1

ρ0

ikp̂(k, ω),

or, if we simplify further,

|p̂| = Z|v̂|, Z = ρ0c =
√
ρ0κ0.

The same relation would have been obtained from (1.2). The larger Z, the
more difficult to move particle from a pressure disturbance, i.e., the smaller
the corresponding particle velocity.

The definition of acoustic impedance is intuitively in line with the tradi-
tional notion of electrical impedance for electrical circuits. To describe the
latter, consider Ampère’s law in the absence of a magnetic field:

∂D

∂t
= −j ⇒ ε

∂E

∂t
= −j.

In the time-harmonic setting (AC current), iωεÊ = −ĵ. Consider a conduct-
ing material, for which the permittivity reduces to the conductivity:

ε = i
σ

ω

It results that Ê = Zĵ with the resistivity Z = 1/σ. This is the differential
version of Ohm’s law. The (differential) impedance is exactly the resistivity
in the real case, and can accommodate capacitors and inductions in the
complex case. Notice that the roles of E (or V ) and j (or I) in an electrical
circuit are quite analogous to p and v in the acoustic case.

There are no waves in the conductive regime we just described, so it is
out of the question to seek to write R and T coefficients, but reflections
and transmissions of waves do occur at the interface between two dielectric
materials. Such is the case of light propagating in a medium with variable
index of reflection. To obtain the R and T coefficients in the optical case,
the procedure is as follows:
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• Consider Amp‘ere’s law again, but this time with a magnetic field H
(because it is needed to describe waves) but no current (because we are
dealing with dielectrics):

∂D

∂t
= ∇×H.

Use D = εE.

• Assume plane waves with complex exponentials, or in the form E(k ·
x− ωt) and H(k · x− ωt).

• Use continuity of n×E and n×H at the interface (tangential compo-
nents).

• Assume no magnetism: µ = const.

The quantity of interest is not the impedance, but the index of refraction
n = 1

c
=
√
εµ. Further assuming that the waves are normally incident to the

interface, we have

R =
n2 − n1

n2 + n1

, T =
2n2

n2 + n1

.

These relations become more complicated when the angle of incidence is not
zero. In that case R and T also depend on the polarization of the light. The
corresponding equations for R and T are then called Fresnel’s equations.
Their expression and derivation can be found in “Principles of optics” by
Born and Wolf.

1.3 Exercises

1. Continue the reasoning in section 1.1.1 with the entropy to justify the
equations of variable-density acoustics. [Hints: conservation of entropy
reads ∂s

∂t
+ v ·∇s = 0. Continue assuming that the background velocity

field is v0 = 0. Assume a fixed, variable background density ρ0(x).
The new constitutive relation is p = f(ρ, s). Consider defining c2(x) =
∂f
∂ρ

(ρ0(x), s0(x)).]
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2. First, show the multivariable rule of integration by parts
∫
∇f · g =

−
∫
f ∇ · g, when f and g are smooth and decay fast at infinity, by

invoking the divergence theorem. Second, use this result to show that
L∗ = −L for variable-density acoustics (section 1.1.1), i.e., show that
〈Lw,w′〉 = −〈w,Lw′〉 for all reasonable functions w and w′, and where
〈·, ·〉 is the adequate notion of inner product seen in section 1.1.1.

3. Show that 〈Lw,w′〉 = −〈w,Lw′〉 for general elastic waves.

4. In R2, consider

fω(x) =

∫ 2π

0

eikθ·xdθ, kθ = |k|
(

cos θ
sin θ

)
,

with |k| = ω/c. Show that fω is a solution of the homogeneous
Helmholtz equation (1.10) with constant c, and simplify the expres-
sion of fω by means of a Bessel function. [Hint: show first that fω is
radially symmetric.]

5. Find all the functions τ(x) for which

ξ(x, t) = τ(x)− t

is a solution of (1.12) in the case x ∈ R.

The function τ(x) has the interpretation of a traveltime.

6. Consider a characteristic curve as the level set ξ(x, t) =const., where ξ
is a characteristic coordinate obeying (1.12). Express this curve para-
metrically as (X(t), t), and find a differential equation for X(t) of the
form Ẋ(t) = . . . How do you relate this X(t) to the traveltime function
τ(x) of the previous exercise? Justify your answer.

Such functions X(t) are exactly the rays — light rays or sound rays.
They encode the idea that waves propagate with local speed c(x).

7. Give a complete solution to the wave equation in Rn,

∂2u

∂t2
= c2∆u, u(x, 0) = u0(x),

∂u

∂t
(x, 0) = u1(x),

by Fourier-transforming u(x, t) in the x-variable, solving the resulting
ODE to obtain the e±i|k|/ct time dependencies, matching the initial con-
ditions, and finishing with an inverse Fourier transform. The resulting
formula is a generalization of d’Alembert’s formula.
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8. We have seen the expression of the wave equation’s Green function in
the (x, t) and (x, ω) domains. Find the expression of the wave equa-
tion’s Green function in the (ξ, t) and (ξ, ω) domains, where ξ is dual
to x and ω is dual to t. [Hint: it helps to consider the expressions of
the wave equation in the respective domains, and solve these equations,
rather than take a Fourier transform.]

9. Check that the relation 1 = R2 + Z1

Z2
T 2 for the reflection and transmis-

sion coefficiets follows from conservation of energy for acoustic waves.
[Hint: use the definition of energy given in section 1.1.1, and the gen-
eral form (1.19, 1.20) of a wavefield scattering at a jump interface in
one spatial dimension.]

10. The wave equation (2.2) can be written as a first-order system

M
∂w

∂t
− Lw = f̃ ,

with

w =

(
∂u/∂t
∇u

)
, M =

(
m 0
0 1

)
, L =

(
0 ∇·
∇ 0

)
, f̃ =

(
f
0

)
.

First, check that L∗ = −L for the L2 inner product 〈w,w′〉 =
∫

(w1w
′
1 +

w2 · w′2) dx where w = (w1, w2)
T . Then, check that E = 〈w,Mw〉 is a

conserved quantity.

11. Another way to write the wave equation (2.2) as a first-order system is

M
∂w

∂t
− Lw = f̃ ,

with

w =

(
u
v

)
, M =

(
m 0
0 1

)
, L =

(
0 I
∆ 0

)
, f̃ =

(
f
0

)
.

First, check that L∗ = −L for the inner product 〈w,w′〉 =
∫

(∇u ·∇u′+
vv′) dx. Then, check that E = 〈w,Mw〉 is a conserved quantity.



Chapter 2

Scattering series

In this chapter we describe the nonlinearity of the map c 7→ u in terms of a
perturbation (Taylor) series. To first order, the linearization of this map is
called the Born approximation. Linearization and scattering series are the
basis of most inversion methods, both direct and iterative.

The idea of perturbation permeates imaging for physical reasons as well.
In radar imaging for instance, the background velocity is c0 = 1 (speed
of light), and the reflectivity of scatterers is viewed as a deviation in c(x).
The assumption that c(x) does not depend on t is a strong one in radar:
it means that the scatterers do not move. In seismology, it is common to
consider a smooth background velocity c0(x) (rarely well known), and explain
the scattered waves as reflections due to a “rough” (singular/oscillatory)
perturbations to this background. In both cases, we will write

1

c2(x)
= m(x),

1

c20(x)
= m0(x), m for “model”,

and, for some small number ε,

m(x) = m0(x) + εm1(x). (2.1)

Note that, when perturbing c(x) instead of m(x), an additional Taylor
approximation is necessary:

c(x) = c0(x) + εc1(x) ⇒ 1

c2(x)
' 1

c20(x)
− 2ε

c1(x)

c30(x)
.

While the above is common in seismology, we avoid making unnecessary
assumptions by choosing to perturb m(x) = 1/c2(x) instead.

37
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Perturbations are of course not limited to the wave equation with a single
parameter c. The developments in this chapter clearly extend to more general
wave equations.

2.1 Perturbations and Born series

Let

m(x)
∂2u

∂t2
−∆u = f(x, t), (2.2)

with zero initial conditions and x ∈ Rn. Perturb m(x) as in (2.1). The
wavefield u correspondingly splits into

u(x) = u0(x) + usc(x),

where u0 solves the wave equation in the undisturbed medium m0,

m0(x)
∂2u0

∂t2
−∆u0 = f(x, t). (2.3)

We say u is the total field, u0 is the incident field1, and usc is the scattered
field, i.e., anything but the incident field.

We get the equation for usc by subtracting (2.3) from (2.2), and using
(2.1):

m0(x)
∂2usc
∂t2

−∆usc = −εm1(x)
∂2u

∂t2
. (2.4)

This equation is implicit in the sense that the right-hand side still depends
on usc through u. We can nevertheless reformulate it as an implicit integral
relation by means of the Green’s function:

usc(x, t) = −ε
∫ t

0

∫
Rn
G(x, y; t− s)m1(y)

∂2u

∂t2
(y, s) dyds.

Abuse notations slightly, but improve conciseness greatly, by letting

• G for the operator of space-time integration against the Green’s func-
tion, and

1Here and in the sequel, u0 is not the initial condition. It is so prevalent to introduce
the source as a right-hand side f in imaging that it is advantageous to free the notation
u0 and reserve it for the incident wave.
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• m1 for the operator of multiplication by m1.

Then usc = −εGm1
∂2u
∂t2

. In terms of u, we have the implicit relation

u = u0 − εGm1
∂2u

∂t2
,

called a Lippmann-Schwinger equation. The field u can be formally2 ex-
pressed in terms of u0 by writing

u =

[
I + εGm1

∂2

∂t2

]−1

u0. (2.5)

While this equation is equivalent to the original PDE, it shines a different
light on the underlying physics. It makes explicit the link between u0 and u,
as if u0 “generated” u via scattering through the medium perturbation m1.

Writing [I +A]−1 for some operator A invites a solution in the form of a
Neumann series I − A+ A2 − A3 + . . ., provided ‖A‖ < 1 in some norm. In
our case, we write

u = u0 − ε
(
Gm1

∂2

∂t2

)
u0 + ε2

(
Gm1

∂2

∂t2

)(
Gm1

∂2

∂t2

)
u0 + . . .

This is called a Born series. The proof of convergence, based on the “weak
scattering” condition ε‖Gm1

∂2

∂t2
‖∗ < 1, in some norm to be determined, will

be covered in the next section. It retroactively justifies why one can write
(2.5) in the first place.

The Born series carries the physics of multiple scattering. Explicitly,

u = u0 (incident wave)

− ε
∫ t

0

∫
Rn
G(x, y; t− s)m1(y)

∂2u0

∂t2
(y, s) dyds

(single scattering)

+ ε2
∫ t

0

∫
Rn
G(x, y2; t− s2)m1(y2)

∂2

∂s2
2

[∫ s2

0

∫
Rn
G(y2, y1; s2 − s1)m1(y1)

∂2u0

∂t2
(y1, s1) dy1ds1

]
dy2ds2

(double scattering)

+ . . .

2For mathematicians, “formally” means that we are a step ahead of the rigorous ex-
position: we are only interested in inspecting the form of the result before we go about
proving it. That’s the intended meaning here. For non-mathematicians, “formally” often
means rigorous, i.e., the opposite of “informally”!
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We will naturally summarize this expansion as

u = u0 + εu1 + ε2u2 + . . . (2.6)

where εu1 represent single scattering, ε2u2 double scattering, etc. For in-
stance, the expression of u1 can be physically read as “the incident wave
initiates from the source at time t = 0, propagates to y where it scatters due
to m(y) at time t = s, then further propagates to reach x at time t.” The
expression of u2 can be read as “the incident wave initiates from the source at
t = 0, propagates to y1 where it first scatters at time t = s1, them propagates
to y2 where it scatters a second time at time t = s2, then propagates to x at
time t, where it is observed.” Since scatterings are not a priori prescribed to
occur at fixed points in space and time, integrals must be taken to account
for all physically acceptable scattering scenarios.

The approximation
usc(x) ' εu1(x)

is called the Born approximation. From u1 = −Gm1
∂2u0

∂t2
, we can return to

the PDE and obtain the equation for the primary reflections:

m0(x)
∂2u1

∂t2
−∆u1 = −m1(x)

∂2u0

∂t2
. (2.7)

The only difference with (2.4) is the presence of u0 in place of u in the right-
hand side (and ε is gone, by choice of normalization of u1). Unlike (2.4),
equation (2.7) is explicit: it maps m1 to u1 in a linear way. The incident field
u0 is determined from m0 alone, hence “fixed” for the purpose of determining
the scattered fields.

It is informative to make explicit the dependence of u1, u2, . . . on m1. To
that end, the Born series can be seen as a Taylor series of the forward map

u = F [m],

in the sense of the calculus of variations. Denote by δF
δm

[m0] the “functional
gradient” of F with respect to m, evaluated at m0. It is an operator acting
from model space (m) to data space (u). Denote by δ2F

δm2 [m0] the “functional
Hessian” of F with respect to m, evaluated at m0. It is a bilinear form from
model space to data space. See the appendix for background on functional
derivatives. Then the functional version of the Taylor expansion enables to
express (2.6) in terms of the various derivatives of F as

u = u0 + ε
δF
δm

[m0]m1 +
ε2

2
〈δ

2F
δm2

[m0]m1,m1〉+ . . .
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It is convenient to denote the linearized forward map by (print) F :

F =
δF
δm

[m0],

or, for short, F = ∂u
∂m

. It is a linear operator. The point of F is that it makes
explicit the linear link between m1 and u1:

u1 = Fm1.

While F is supposed to completely model data (up to measurement errors),
F would properly explain data only in the regime of the Born approximation.

Let us show that the two concepts of linearized scattered field coincide,
namely

u1 =
δF
δm

[m0]m1 = −Gm1
∂u0

∂t2
.

This will justify the first term in the Taylor expansion above. For this pur-
pose, let us take the δ

δm
derivative of (2.2). As previously, write u = F(m)

and F = δF
δm

[m]. We get the operator-valued equation

∂2u

∂t2
I +m

∂2

∂t2
F −∆F = 0.

Evaluate the functional derivatives at the base point m0, so that u = u0.
Applying each term as an operator to the function m1, and defining u1 =
Fm1, we obtain

m1
∂2u0

∂t2
+m0

∂2u1

∂t2
−∆u1 = 0,

which is exactly (2.7). Applying G on both sides, we obtain the desired
conclusion that u1 = −Gm1

∂u0

∂t2
.

2.2 Convergence of the Born series (math)

We are faced with two very interrelated questions: justifying convergence of
the Born series, and showing that the Born approximation is accurate when
the Born series converges. The answers can either take the form of mathe-
matical theorems (this section), or physical explanations (next section). As
of 2012, the community’s mathematical understanding is not yet up to par
with the physical intuition!
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Let us describe what is known mathematically about convergence of Born
series in a simple setting. To keep the notations concise, it is more convenient
to treat the wave equation in first-order hyperbolic form

M
∂w

∂t
− Lw = f, L∗ = −L, (2.8)

for some inner product 〈w,w′〉. The conserved energy is then E = 〈w,Mw〉.
See one of the exercises at the end of chapter 1 to illustrate how the wave
equation can be put in precisely this form, with 〈w,w′〉 the usual L2 inner
product and M a positive diagonal matrix.

Consider a background medium M0, so that M = M0 + εM1. Let w =
w0 + εw1 + . . . Calculations very similar to those of the previous section (a
good exercise) show that

• The Lippmann-Schwinger equation is

w = w0 − εGM1
∂w

∂t
,

with the Green’s function G = (M0
∂
∂t
− L)−1.

• The Neumann series of interest is

w = w0 − εGM1
∂w0

∂t
+ ε2GM1

∂

∂t
GM1

∂w0

∂t
+ . . .

We identify w1 = −GM1
∂w0

∂t
.

• In differential form, the equations for the incident field w0 and the
primary scattered field w1 are

M0
∂w0

∂t
− Lw0 = f, M0

∂w1

∂t
− Lw1 = −M1

∂w0

∂t
, (2.9)

• Convergence of the Born series occurs when

ε‖GM1
∂

∂t
‖∗ < 1,

in some induced operator norm, i.e., when ε‖w1‖∗ < ‖w0‖∗ for arbitrary
w0, and w1 = −GM1

∂w0

∂t
, for some norm ‖ · ‖∗.
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Notice that the condition ε‖w1‖∗ < ‖w0‖∗ is precisely one of weak scat-
tering, i.e., that the primary reflected wave εw1 is weaker than the incident
wave w0.

While any induced norm over space and time in principle works for the
proof of convergence of the Neumann series, it is convenient to use

‖w‖∗ = max
0≤t≤T

√
〈w,M0w〉 = max

0≤t≤T
‖
√
M0w‖.

Note that it is a norm in space and time, unlike ‖w‖ =
√
〈w,w〉, which is

only a norm in space.

Theorem 3. (Convergence of the Born series) Assume that the fields w, w0,
w1 are bandlimited with bandlimit3 Ω. Consider these fields for t ∈ [0, T ].
Then the weak scattering condition ε‖w1‖∗ < ‖w0‖∗ is satisfied, hence the
Born series converges, as soon as

εΩT ‖M1

M0

‖∞ < 1.

Proof. We compute

d

dt
〈w1,M0w1〉 = 2〈w1,M0

∂w1

∂t
〉

= 2〈w1, Lw1 −M1
∂w0

∂t
〉

= −2〈w1,M1
∂w0

∂t
〉 because L∗ = −L

= −2〈
√
M0w1,

M1√
M0

∂w0

∂t
〉.

Square roots and fractions of positive diagonal matrices are legitimate oper-
ations. The left-hand-side is also d

dt
〈w1,M0w1〉 = 2‖

√
M0w1‖2 ddt‖

√
M0w1‖2.

By Cauchy-Schwarz, the right-hand-side is majorized by

2‖
√
M0w1‖2 ‖

M1√
M0

∂w0

∂t
‖2.

Hence
d

dt
‖
√
M0w1‖2 ≤ ‖

M1√
M0

∂w0

∂t
‖2.

3A function of time has bandlimit Ω when its Fourier transform, as a function of ω, is
supported in [−Ω,Ω].
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‖
√
M0w1‖2 ≤

∫ t

0

‖ M1√
M0

∂w0

∂t
‖2(s) ds.

‖w1‖∗ = max
0≤t≤T

‖
√
M0w1‖2 ≤ T max

0≤t≤T
‖ M1√

M0

∂w0

∂t
‖2

≤ T‖M1

M0

‖∞ max
0≤t≤T

‖
√
M0

∂w0

∂t
‖2.

This last inequality is almost, but not quite, what we need. The right-
hand side involves ∂w0

∂t
instead of w0. Because time derivatives can grow

arbitrarily large in the high-frequency regime, this is where the bandlimited
assumption needs to be used. We can invoke a classical result known as Bern-
stein’s inequality4, which says that ‖f ′‖∞ ≤ Ω‖f‖∞ for all Ω-bandlimited f .
Then

‖w1‖∗ ≤ ΩT‖M1

M0

‖∞‖w0‖∗.

In view of our request that ε‖w1‖∗ < ‖w0‖∗, it suffices to require

εΩT ‖M1

M0

‖∞ < 1.

See the book Inverse Acoustic and Electromagnetic Scattering Theory by
Colton and Kress for a different analysis that takes into account the size of
the support of M1.

Note that the beginning of the argument, up to the Cauchy-Scwharz
inequality, is called an energy estimate in math. See an exercise at the end
of this chapter. It is a prevalent method to control the size of the solution of
many initial-value PDE, including nonlinear ones.

The weak scattering condition ε‖w1‖∗ < ‖w0‖∗ encodes the idea that the
primary reflected field εw1 is small compared to the incident field w0. It is
satisfied when ε is small, and when w1 is not so large that it would undo the
smallness of ε (via the factors ΩT , for instance). It turns out that

• the full scattered field wsc = w−w0 is also on the order of εΩT‖M1‖∞
— namely the high-order terms don’t compromise the weak scattering
situation; and

4The same inequality holds with the Lp norm for all 1 ≤ p ≤ ∞.
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• the remainder wsc−εw1 = w−w0−εw1 is on the order of ε2(ΩT‖M1‖∞)2.

Both claims are the subject of an exercise at the end of the chapter. The
second claim is the mathematical expression that the Born approximation
is accurate (small wsc − εw1 on the order of ε2) precisely when scattering is
weak (εw1 and wsc on the order of ε.)

2.3 Convergence of the Born series (physics)

Let us explain why the criterion εΩT < 1 (assuming the normalization
‖M1/M0‖∞ = 1) is adequate in some cases, and why it is grossly pessimistic
in others.

• Instead of m or M , consider the wave speed c0 = 1. Consider a constant
perturbation c1 = 1, so that c = c0 + εc1 = 1 + ε. In one spatial
dimension, u(x, T ) = f(x− cT ). As a Taylor series in ε, this is

u(x, T ) = f(x−(1+ε)T ) = f(x−T )−εTf ′(x−T )+
ε2

2
T 2f ′′(x−T )+. . .

We identify u0(x, T ) = f(x−T ) and u1(x, T ) = −Tf ′(x−T ). Assume
now that f is a waveform with bandlimit Ω, i.e., wavelength 2π/Ω. The
Born approximation

f(x− (1 + ε)T )− f(x− T ) ' −εTf ′(x− T )

is only good when the translation step εT between the two waveforms
on the left is a small fraction of a wavelength 2π/Ω, otherwise the
subtraction f(x− (1+ ε)T )−f(x−T ) will be out of phase and will not
give rise to values on the order of ε. The requirement is εT � 2π/Ω,
i.e.,

εΩT � 2π,

which is exactly what theorem 3 is requiring. We could have reached
the same conclusion by requiring either the first or the second term
of the Taylor expansion to be o(1), after noticing that |f ′| = O(Ω) or
|f ′′| = O(Ω2). In the case of a constant perturbation c1 = 1, the waves
undergo a shift which quickly becomes nonlinear in the perturbation.
This is the worst case: the requirement εΩT < 1 is sharp.
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• As a second example, consider c0 = 1 and c1(x) = H(x). The profile
of reflected and transmitted waves was studied in equations (1.19) and
(1.20). The transmitted wave will undergo a shift as in the previous
example, so we expect εΩT < 1 to be sharp for it. The full reflected
wave, on the other hand, is

ur(x, T ) = Rεf(−x− T ), Rε =
ε

2 + ε
.

Notice that ε only appears in the reflection coefficient Rε, not in the
waveform itself. As ε→ 0, ur expands as

ur(x, T ) =
ε

2
f(−x− T )− ε2

4
f(−x− T ) + . . .

We recognize u1 = 1
2
f(−x−T ). The condition for weak scattering and

accuracy of the Born approximation is now simply ε < 1, which is in
general much weaker than εΩT < 1.

• In the case when c0 = 1 and c1 is the indicator function of a thin slab
in one dimension, or a few isolated scatterers in several dimensions,
the Born approximation is often very good. That’s when the inter-
pretation of the Born series in terms of multiple scattering is the most
relevant. Such is the case of small isolated objects in synthetic aperture
radar: double scattering from one object to another is often completely
negligible.

The heuristic for validity of the Born approximation (even when εΩT is
not small) is that

1. c0 or m0 should be smooth

2. c1 or m1 should be localized, or better yet, localized and oscillatory
(zero mean).

We do not yet have a way to turn these empirical criteria and claims into
rigorous mathematical results. Seismologists typically try to operate in the
regime of this heuristic when performing imaging with migration (see next
chapter).

Conversely, there are a few settings in which the Born approximation is
clearly violated: (i) in radar, when waves bounce multiple times before being
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recorded (e.g. on the ground and on the face of a building, or in cavities
such as airplane engines), (ii) in seismology, when trying to optimize over
the low-frequency components of m(x) (model velocity estimation), or when
dealing with multiple scattering (internal multiples, multiples resulting from
acoustic wave-guide reflections in shallow waters, or ghosts due to reflections
at the ocean-air interface.)

Scattered waves that do not satisfy the Born approximation have long
been considered a nuisance in imaging, but have recently become the subject
of some research activity.

2.4 A first look at optimization

In the language of the previous sections, the forward map is denoted

d = F [m], d = data, m = model,

where dr,s(t) = us(xr, t),

• xr is the position of receiver r,

• s indexes the source,

• and t is time.

The inverse problem of imaging is that of solving for m in the system of
nonlinear equations d = F [m]. No single method will convincingly solve
such a system of nonlinear equations efficiently and in all regimes.

A basic, yet quite prolific idea is to view m as the solution of the mini-
mization problem

min
m

J [m], where J [m] =
1

2
‖d−F [m]‖22,

where ‖d‖22 =
∑

r,s

∫ T
0
|dr,s(t)|2 is the L2 norm squared in the space of vectors

indexed by r, s (discrete) and t (continuous, say). J is called the output
least-squares criterion, or objective, or cost.

The Landweber iteration is the gradient descent method applied to J :

m(k+1) = m(k) − α δJ
δm

[m(k)]. (2.10)
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The choice of α is a balance between stability and speed of convergence (see
one exercise at the end of the chapter.) The usual rules of functional calculus
give the expression of δJ

δm
.

Proposition 4. Put F = δF
δm

[m]. Then

δJ

δm
[m] = F ∗(F [m]− d).

Proof. Since F [m+ h] = F [m] + Fh+O(‖h‖2), we have

〈F [m+h]−d,F [m+h]−d〉 = 〈F [m]−d,F [m]−d〉+2〈Fh,F [m]−d〉+O(‖h‖2).

Therefore

J [m+ h]− J [m] =
1

2
2〈Fh,F [m]− d〉+O(‖h‖2)

= 〈h, F ∗(F [m]− d)〉+O(‖h‖2).

We conclude by invoking (A.1).

The problem of computing F ∗ will be completely addressed in the next
chapter.

The Gauss-Newton iteration is Newton’s method applied to J :

m(k+1) = m(k) −
(
δ2J

δm2
[m(k)]

)−1
δJ

δm
[m(k)]. (2.11)

The operator
(
δ2J
δm2 [m(k)]

)−1

is the inverse of the functional Hessian of J (also

called wave-equation Hessian).

The Landweber iteration typically converges slowly, or could converge
to a wrong local minimum when J is nonconvex. This topic will be fur-
ther discussed in chapter 7. The Gauss-Newton iteration converges faster
than gradient descent in the neighborhood of a (local) minimum, but may
otherwise result in wrong update directions. It is in general much more com-
plicated to set up than gradient descent since the wave-equation Hessian is
a large matrix, costly to store and costly to invert.
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2.5 Exercises

1. Repeat the development of section (2.1) in the frequency domain (ω)
rather than in time.

2. Derive Born series with a multiscale expansion: write m = m0 + εm1,
u = u0 + εu1 + ε2u2 + . . ., substitute in the wave equation, and equate
like powers of ε. Find the first few equations for u0, u1, and u2.

3. Write the Born series for the acoustic system, i.e., find the linearized
equations that the first few terms obey. [Hint: repeat the reasoning of
section 2.1 for the acoustic system, or equivalently expand on the first
few three bullet points in section 2.2.]

4. At the end of section 2.1 we found the equation that u1 obeys by differ-
entiating (2.2) with respect to m. Now, differentiate (2.2) twice with
respect to m to obtain the PDE that the Hessian of u with respect to
m satisfies. We may denote the Hessian δ2F/δmδm′. As a corollary,
find an expression for u2 as the solution of a new linearized wave equa-
tion with u1 in the right-hand side. (Your answer should match that
of exercise 2.) This expression of the Hessian is important later on as
we describe accelerated descent methods for the inversion problem.

5. Consider the setting of section 2.2 in the case M = I. No perturbation
will be needed for this exercise (no decomposition of M into M0+εM1).
Prove the following energy estimate for the solution of (2.8):

E(t) ≤
(∫ t

0

‖f‖(s) ds
)2

, (2.12)

where E(t) = 〈w,Mw〉 and ‖f‖2 = 〈f, f〉. [Hint: repeat and adapt the
beginning of the proof of theorem 3.]

6. Consider (2.8) and (2.9) in the special case when M0 = I. Let ‖w‖ =√
〈w,w〉 and ‖w‖∗ = max0≤t≤T ‖w‖. In this exercise we show that

w − w0 = O(ε), and that w − w0 − w1 = O(ε2).

(a) Find an equation for w − w0. Prove that

‖w − w0‖∗ ≤ ε ‖M1‖∞ΩT ‖w‖∗

[Hint: repeat and adapt the proof of theorem 3.]
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(b) Find a similar inequality to control the time derivative of w−w0.

(c) Find an equation for w − w0 − w1. Prove that

‖w − w0 − w1‖∗ ≤ (ε ‖M1‖∞ΩT )2 ‖w‖∗

7. For the Landweber iteration (2.10), and J [m] the output least-squares
criterion, consider

α =
1

‖δJ/δm‖22
,

where ‖ · ‖2 is the usual L2 norm of functions of x. Show that this
choice of α is safe in the sense that the Landweber iteration becomes
a contraction when F is linear.

8. Show that the Gauss-Newton iteration (2.11) results from approxi-
mating J by a quadratic near m(k), and finding the minimum of that
quadratic function.

9. Prove the following formula for the wave-equation Hessian δ2J
δm2 in terms

of F and its functional derivatives:

δ2J

δm2
= F ∗F + 〈δ

2F
δm2

,F [m]− d〉.

(F ∗F is called normal operator.)

10. Show that the spectral radius of the Hessian operator δ2J
δm2 , when data

are (essentially) limited by t ≤ T and ω ≤ Ω, is bounded by a constant
times (ΩT )2.



Chapter 3

Adjoint-state methods

As explained in section (2.4), the adjoint F ∗ of the linearized forward (mod-
eling) operator F plays an important role in the formula of the functional
gradient δJ

δm
of the least-squares cost function J :

δJ

δm
[m] = F ∗(F [m]− d).

While F is the basic linear map from model space to data space, F ∗ is
the basic linear map from data space to model space. F ∗ is not only the
building block of iterative optimization schemes, but the mere application of
F ∗ to data is the simplest form of “imaging”. For instance, when the initial
guess m(0) = m0 is a smooth background model reasonably close to the true
solution m, the first iteration of gradient descent,

m(1) = αF ∗(d−F [m0]),

often gives a good “image” of the scatterers (somewhat close to the actual
εm1). For this reason, F ∗ is often called the imaging operator.

It should also be noted that F ∗ behaves not entirely unlike F−1, i.e., F
is somewhat close to being unitary. This statement does not have a rigorous
formulation of the form ‖F ∗F − I‖ ≤ (. . .), but rather of the form “F ∗F
does not move singularities around like F or F ∗ do”. More details on the
microlocal aspects of this question will be given in chapter 6.

Forming the full matrix F = δF
δm

and transposing it is not a practical way
to compute F ∗. The adjoint-state method provides an elegant solution to
this problem, called the “imaging condition”.

51



52 CHAPTER 3. ADJOINT-STATE METHODS

3.1 The imaging condition

For any dr(t) function of the receiver index r and time t, and m(x) function
of position x (here m and d are any two functions, not necessarily linked to
one another by the forward model), we have

〈d, Fm〉 = 〈F ∗d,m〉.

The inner product on the left is in data space,

〈d, Fm〉 =
∑
r

∫ T

0

dr(t)u(xr, t) dt, u = Fm,

while the inner product on the right is in model space.

〈F ∗d,m〉 =

∫
Rn

(F ∗d)(x)m(x) dx.

The relation u = Fm is implicitly encoded by the two equations(
m0

∂2

∂t2
−∆

)
u = −m∂2u0

∂t2
,

(
m0

∂2

∂t2
−∆

)
u0 = f.

Note that a single right-hand side generates u0, and that we have omitted the
source subscript s in this section; we will return to multiples sources shortly.

The argument that isolates and makes explicit the contribution of m in∑
r

∫ T
0
dr(t)u(xr, t) dt is one of integration by parts. In order to integrate by

parts in x, we need to turn the sum over receivers into an integral. This
can be achieved by considering a distributional extended dataset where each
measurement dr(t) is accompanied by a Dirac delta located at xr:

dext(x, t) =
∑
r

dr(t)δ(x− xr).

We then have

〈d, Fm〉 =

∫
Rn

∫ T

0

dext(x, t)u(x, t) dxdt.

In order to use the wave equation for u, a copy of the differential operator(
m0

∂2

∂t2
−∆

)
needs to materialize. This is done by considering an auxiliary
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field q(x, t) that solves the same wave equation with dext(x, t) as a right-hand
side: (

m0
∂2

∂t2
−∆

)
q(x, t) = dext(x, t), x ∈ Rn, (3.1)

with as-yet unspecified “boundary conditions” in time. Substituting this
expression for dext(x, t), and integrating by parts both in space and in time
reveals

〈d, Fm〉 =

∫
V

∫ T

0

q(x, t)

(
m0

∂2

∂t2
−∆

)
u(x, t) dxdt

+

∫
V

m0
∂q

∂t
u|T0 dx−

∫
V

m0q
∂u

∂t
|T0 dx

+

∫
∂V

∫ T

0

∂q

∂n
u dSxdt−

∫
∂V

∫ T

0

q
∂u

∂n
dSxdt,

where V is a volume that extends to the whole of Rn, and ∂V is the boundary
of V — the equality then holds in the limit of V = Rn.

The boundary terms over ∂V vanish in the limit of large V by virtue
of the fact that they involve u – a wavefield created by localized functions
f,m, u0 and which does not have time to travel arbitrarily far within a time
[0, T ]. The boundary terms at t = 0 vanish due to u|t=0 = ∂u

∂t
|t=0 = 0. As for

the boundary terms at t = T , they only vanish if we impose

q|t=T =
∂q

∂t
|t=T = 0.

Since we are only interested in the values of q(x, t) for 0 ≤ t ≤ T , the above
are final conditions rather than initial conditions, and the equation (3.1) is
run backward in time. The wavefield q is called adjoint field, or adjoint state.
The equation (3.1) is itself called adjoint equation. Note that q is not the
physical field run backward in time (because of the limited sampling at the
receivers), instead, it is introduced purely out of mathematical convenience.

We can now return to the simplification of the left-hand-side,

〈d, Fm〉 =

∫
Rn

∫ T

0

q(x, t)

(
m0

∂2

∂t2
−∆

)
u(x, t) dxdt

= −
∫

Rn

∫ T

0

q(x, t)m(x)
∂2u0

∂t2
dxdt
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This quantity is also supposed to be 〈m,F ∗d〉, regardless of m, so we conclude

(F ∗d)(x) = −
∫ T

0

q(x, t)
∂2u0

∂t2
dt. (3.2)

This equation is called the imaging condition: it expresses the action of F ∗

on d as the succession of the following steps:

1. Place data dr(t) at the location of the receivers with point masses to
get dext;

2. Use dext as the right-hand side in the adjoint wave equation to get the
adjoint, backward field q;

3. Simulate the incident, forward field u0; and finally

4. Take the time integral of the product of the forward field u0 (differen-
tiated twice in t), and the backward field q, for each x independently.

The result is a function of x which sometimes serves the purpose of image,
and may sometimes be called Im(x). Note that we have not performed a full
inversion; if d are measuered data, then Im is not the model m that gave
rise to d. In seismology, the imaging condition (3.2) is called reverse-time
migration, or simply migration. In radar, the imaging condition does not have
a particular name, but in the next chapter we’ll encounter a simplification of
(3.2) called backprojection.

3.2 Stacks

If we now restore the presence of multiple sources, the wavefields u, u0, and
u1 will depend on the source index s. The source term fs — typically of the
form w(t)δ(x− xs) — is in the right-hand side of the wave equations for u0

and u, while u1 implicitly depends on fs through u0. For a fixed source s,
we denote

us = Fs[m], u0,s = Fs[m0], u1,s = Fsm1,

while we continue to denote u = F [m], u0 = F [m0] and u1 = Fm1 for the
collection of such wavefields over s.
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The data inner-product now has an additional sum over s, namely

〈d, Fm〉 =
∑
s

∑
r

∫ T

0

dr,s(t)us(xr, t) dt.

The formula for F ∗ can be obtained by taking adjoints one s at a time,
namely

〈F ∗d,m〉 = 〈d, Fm〉 =
∑
s

〈ds, Fsm〉

=
∑
s

〈F ∗s ds,m〉

= 〈
∑
s

F ∗s ds,m〉,

hence
F ∗ =

∑
s

F ∗s .

More explicitly, in terms of the imaging condition,

(F ∗d)(x) = −
∑
s

∫ T

0

qs(x, t)
∂2u0,s

∂t2
(x, t) dt, (3.3)

where the adjoint field qs is relative to the source s:(
m0

∂2

∂t2
−∆

)
qs(x, t) = dext,s(x, t).

The sum over s in the new imaging condition (3.3) is sometimes called a stack.
It is often the case that particular images F ∗s d are not very informative on
their own, but a stack uses the redundancy in the data to bring out the
information and reveal more details.

The mathematical tidbit underlying stacks is that the operation of creat-
ing a vector (x, x, . . . , x) out of a single number x has for adjoint the operation
of summing the components of a vector.

3.3 The adjoint state as a Lagrange multi-

plier

The adjoint field q was introduced in a somewhat opportunistic and artificial
way in section 3.1. In this section, we show that it has the interpretation
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of a Lagrange multiplier in a constrained optimization framework, where the
wave equation serves as a constraints for an otherwise bare least-squares cost
function.

Specifically consider the least-squares objective as a function of u rather
than m,

J [u] =
1

2
‖d− u‖22,

where u is the wavefield prediction and d are the observed data. The model
m only appears implicitly through the constraint that u needs to satisfy,
namely (

m
∂2

∂t2
−∆

)
u = f.

Critical points are those for which the total derivative of J [u(m)] with respect
to m is zero. Normally one would have to access δu/δm to compute this total
derivative, because by the chain rule1

d

dm
J [u(m)] = 〈δJ

δu
,
δu

δm
〉 = 〈u− d, δu

δm
〉.

A more computationally favorable formula for d
dm
J [u(m)] can be derived

by considering a traditional concept in constrained optimization: the La-
grangian

L[u,m, q] = J [u]− 〈q,
(
m
∂2

∂t2
−∆

)
u− f〉.

Here q is the Lagrange multiplier, itself a function of x and t, and the inner
product is over x and t. Notice that L[u(m),m, q] = J [u(m)] regardless of q
when u = u(m), i.e., when the constraint is satisfied. This expression can be
differentiated to give

d

dm
J [u(m)] = 〈δL

δu
,
δu

δm
〉+

δL
δm

.

After a short exercise of integration by parts identical to the one in the
previous section, and provided q|t=T = ∂q

∂t
|t=T = 0, the partial δL

δu
evaluated

at some point u0 = u(m0) is

δL
δu

= u0 − d−
(
m0

∂2

∂t2
−∆

)
q

1This equation contains a space-time inner product of u− d vs. u differentiated. It is
not the application of δu

δm as an operator F to u − d. Recall that F acts in model space
anyway.
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The other partials evaluated at u0 = u[m0] are immediate:

δL
δm

= −
∫ T

0

q
∂2u0

∂t2
dt,

δL
δq

=

(
m0

∂2

∂t2
−∆

)
u0 − f.

Putting δL
δq

= 0 results in the state equation(
m0

∂2

∂t2
−∆

)
u0 = f,

satisfied as soon as we consider a feasible u0 = u(m0). Putting δL
δu

= 0 results
in the adjoint-state equation(

m0
∂2

∂t2
−∆

)
q = u0 − d. (3.4)

We choose to impose δL
δu

= 0, hence q to satisfy the adjoint-state equation,
precisely so that the gradient of J reduces to

d

dm
J [u(m0)] =

δL
δm

= −
∫ T

0

q
∂2u0

∂t2
dt. (3.5)

This recovers the imaging condition obtained earlier. The formula is in
agreement with our previous characterization of J , namely (back when J
depended explicitly on m),

δJ

δm
[m0] = F ∗(F [m0]− d).

Indeed, we have seen that F ∗ is realized via an imaging condition involving
an adjoint state, and F [m0]− d = u0 − d is the right-hand side in (3.4).

It should be noted that the traditional role of the Lagrangian is to give
optimality conditions on (u,m, q) that describe the critical points of J . This
is done by putting all the partials of L to zero2. What we did earlier was
different: we considered the Lagrangian at points that are not critical, and
only put its partial δL

δu
to zero as a device to simplify the expression of the

gradient of J . In our setting, away from critical points, the partial δL
δm

=
dJ/dm is in general nonzero.

2When L and J are smooth — otherwise one should consider that zero belongs in the
subdifferential of L.
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3.4 The imaging condition in the frequency

domain

We now return to the setting of section 3.1, and modify the exposition to
express both the adjoint-state equation and the imaging condition in the
frequency (ω) domain. The nugget in this section is that complex conjugation
in ω corresponds to time reversal. We assume a single source for simplicity.

We are again interested in finding F ∗ such that 〈d, Fm〉 = 〈F ∗d,m〉 for
all generic d and m. The data inner product 〈d, Fm〉 can be expressed in the
frequency domain by means of the Parseval formula,

〈d, Fm〉 = 2π
∑
r

∫
R
d̂r(ω)(̂Fm)(xr, ω)dω =

∑
r

∫
dr(t)(Fm)(xr, t)dt.

The complex conjugate is important, now that we are in the frequency do-
main. As previously, we pass to the extended dataset

d̂ext(x, ω) =
∑
r

d̂r(ω)δ(x− xr),

and turn the sum over r into an integral over x. The linearized scattered
field is

(̂Fm)(xr, ω) =

∫
Ĝ(x, y;ω)m(y)ω2û0(y, ω) dy. (3.6)

To simplify the resulting expression of 〈d, Fm〉, we let

q̂(x, ω) =

∫
Ĝ(x, y;ω)d̂ext(y, ω) dy. (3.7)

It follows that

〈d, Fm〉 =

∫
m(y)

[
2π

∫
R
q̂(y, ω)ω2û0(y, ω) dω

]
dy,

hence

F ∗d(y) = 2π

∫
R
q̂(y, ω)ω2û0(y, ω) dω. (3.8)

This equation is the same as (3.2), by Parseval’s identity. Equation (3.7) is
the integral version of (3.1) in the frequency domain. The complex conju-

gation of Ĝ in (3.7) expresses time reversal ; such is the case for any Fourier
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transform of a real function:

f̂(ω) =

∫
eiωtf(t) dt =

∫
e−iωtf(t)dt =

∫
eiωtf(−t) dt.

The integral in t in (3.2) is over [0, T ] because such is the support of

q ∂
2u0

∂t2
. The integral in ω in (3.8) is over R. It is tempting to truncate

this integral to “the frequencies that have been measured” — but that is
strictly speaking incompatible with the limits on t (for the same reason that a
function compactly supported in time cannot also be compactly supported in
frequency.) Careful consideration of cutoffs is needed to control the accuracy
of a truncation in ω.

Equation (3.8) is valuable for a few different reasons:

• It can be further simplified in some situations, such as in the next
chapter;

• The integral over ω can be deliberately restricted in the scope of descent
iterations, so as to create sweeps over frequencies. This is sometimes
important to deal with the lack of convexity of full inversion; see chapter
7.

3.5 Exercises

1. Starting from an initial guess model m0, a known source function f ,
and further assuming that the Born approximation is valid, explain
how the inverse problem d = F [m] can be completely solved by means
of F−1, the inverse of the linearized forward operator (provided F is
invertible). The intermediate step consisting in inverting F is called
the linearized inverse problem.

Solution. Form the incident field as u0 = Gf . Subtract from observed
data to get d− u0. Since the Born approximation is assumed valid, we
have d− u0 ' εu1. Invert for m1 by solving the system u1 = Fm1, i.e.,
m1 = F−1u1. Then form m = m0 + εm1.

2. Snapshot migration. The treatment of reverse-time migration seen ear-
lier involves data u(xr, t) for an interval in time t, and at fixed receiver
points xr. Consider instead the snapshot setup, where t is fixed, and
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there are receivers everywhere in the domain of interest. (So we have
full knowledge of the wavefield at some time t.) Repeat the analysis
of the imaging operator, adjoint to the forward operator that forms
snapshot data from singly scattered waves. In particular, find what
the adjoint-state wave equation becomes in this case. [Hint: it involves
nonzero final data, and a zero right-had side.]

3. Sampling. Call S the linear operator that maps a function f(x) to
the vector of point samples {f(xr)}r. Find a formula for S∗. When
the linearized forward model is written as FS, the imaging operator is
S∗F ∗; the presence of S∗ explains why we passed from dr(t) to dext(x, t)
in the first step of the derivation of the imaging operator.



Chapter 4

Synthetic-aperture radar

The object of synthetic aperture radar imaging (SAR) is to infer reflectivity
profiles from measurement of scattered electromagnetic waves. The word
“aperture” refers to the perceived angular resolution from the viewpoint of
the sensor (antenna). The expression “synthetic aperture” refers to the fact
that the aperture is created not from a very directional antenna, or array
of antennas (as in ultrasound), but results from a computational process of
triangulation, implicit in the handling of data with a backprojection formula.

The goal of the chapter is to gain an understanding of the geometry
underlying the operators F and F ∗ arising in SAR. Our reference for this
chapter is the book “Fundamentals of radar imaging” by Cheney and Borden.

4.1 Assumptions

We will make the following basic assumptions: (!)

1. Scalar fields obeying the wave equation, rather than vector fields obey-
ing Maxwell’s equation. This disregards polarization (though process-
ing polarization is a sometimes a simple process of addition of images.)
The reflectivity of the scatterers is then encoded via m(x) as usual,
rather than by specifying the shape of the boundary ∂Ω and the type
of boundary conditions for the exterior Maxwell problem.

2. The Born approximation, so that data d are proportional to εu1, and
u1 = Fm1. This disregards multiple scattering. In the sequel we will
write ε = 1 for simplicity.
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3. No dispersion, so that all waves travel at the same speed regardless of
frequency, as in the wave equation. Dispersion happens for radio waves
in the ionosphere.

4. The reflectivity m(x) = m0(x) + εm1(x) is constant in time, with m0

constant in time and space. This disregards moving scatterers. As
mentioned earlier, we put ε = 1. For convenience, we will also drop
the subscript 1 from m1, so that in this chapter, m stands for the
perturbation in squared slowness 1/c2.

A few other “working” assumptions are made for convenience, but can
easily be removed later:(!)

5. The far field assumption: spherical wavefronts are assumed to be locally
planar, for waves at the scatterer originating from the antenna (or vice-
versa).

6. Monostatic SAR: the same antenna is used for transmission and re-
ception. It is not difficult to treat the bistatic/multistatic case where
different antennas play different roles.

6. Start-stop approximation: in the time it takes for the pulse to travel
back and forth from the antenna to the scatterers, the antenna is as-
sumed not to have moved.

SAR typically operates with radio waves or microwaves, with wavelengths
on the order of meters to centimeters. Moving antennas are typically carried
by planes or satellites. A variant of SAR is to use arrays of fixed antennas,
a situation called MIMO (multiple input, multiple output.)

We will not deal with the very interesting topic of Doppler imaging, where
frequency shifts are used to infer velocities of scatterers. We will also not(!)
cover the important topic of interferometric SAR (InSAR) where the objec-
tive is to create difference images from time-lapse datasets.

Let us now describe the nature of the far-field approximation in more
details, and its consequence for the expression of the Green’s function eik|x−y|

4π|x−y| .
Consider an antenna located near the origin. We will assume that a scatterer
at x is “far” from a point y on the antenna in the sense that

|y| � |x|, k|y|2 � |x|.
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Then, if we let x̂ = x
|x| ,

|x− y| =
√
|x|2 − 2x · y + |y|2

= |x|

√
1− 2

x̂ · y
|x|

+
|y|2
|x|2

' |x|
(

1− x̂ · y
|x|

+
1

2

|y|2

|x|2
+ . . .

)
= |x| − x̂ · y +

1

2

|y|2

|x|
+ . . .

We therefore have

eik|x−y| = eik|x|e−ikbx·y (1 +O

(
k|y|2

|x|

))
,

1

|x− y|
=

1

|x|

(
1 +O

(
|y|
|x|

))
.

As a result, in the far field,

eik|x−y|

4π|x− y|
' eik|x|

4π|x|
e−ikbx·y.

This simplification will cause the y integrals to become Fourier transforms.

4.2 Forward model

We can now inspect the radiation field created by the antenna at the trans-
mission side. The ' sign will be dropped for =, although it is understood
that the approximation is only accurate in the far field. Call j(x, ω) the
scalar analogue of the vector forcing generated by currents at the antenna,
called current density vector. (The dependence on ω is secondary.) Call p̂(ω)
the Fourier transform of the user-specified pulse p(t). Then

û0(x, ω) =

∫
eik|x|

4π|x|
e−ikbx·yj(y, ω)p̂(ω) dy.

This reduces to a spatial Fourier transform of j in its first argument,

û0(x, ω) =
eik|x|

4π|x|
ĵ(1)(kx̂, ω)p̂(ω).
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For short, we let

J(x̂, ω) = ĵ(1)(kx̂, ω),

and call it the radiation beam pattern. It is determined by the shape of the
antenna. As a function of x̂, the radiation beam pattern is often quite broad
(not concentrated).

For an antenna centered at position γ(s), parametrized by s (called slow
time), the radiation field is therefore

û0,s(x, ω) =
eik|x−γ(s)|

4π|x− γ(s)|
J( ̂x− γ(s), ω)p̂(ω).

The scattered field u1(x, ω) is not directly observed. Instead, the recorded
data are the linear functionals

d̂(s, ω) =

∫
As

u1(y, ω)w(y, ω) dy

against some window function w(x, ω), and where the integral is over the
antenna As centered at γ(s). Recall that u1 obeys (3.6), hence (with m
standing for what we used to call m1)

d̂(s, ω) =

∫
As

∫
eik|x−y|

4π|x− y|
ω2û0(x, ω)m(x)w(y, ω) dydx.

In the regime of the the far-field approximation for an antenna at γ(s), we
get instead (still using an equality sign)

d̂(s, ω) =

∫
eik|x−γ(s)|

4π|x− γ(s)|
ω2û0(x, ω)m(x)ŵ(1)(k( ̂x− γ(s)), ω).

The start-stop approximation results in the same γ(s) used at transmission
and at reception. For short, we let

W (x̂, ω) = ŵ(1)(kx̂, ω),

and call it the reception beam pattern. For a perfectly conducting antenna,
the two beam patterns are equal by reciprocity:($)

J(x̂, ω) = W (x̂, ω).
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We can now carry through the substitutions and obtain the expression of the
linearized forward model F :

d̂(s, ω) = F̂m(s, ω) =

∫
e2ik|x−γ(s)|A(x, s, ω)m(x) dx, (4.1)

with amplitude

A(x, s, ω) = ω2 p̂(ω)
J( ̂x− γ(s), ω)W ( ̂x− γ(s), ω)

16π2|x− γ(s)|2
.

So far we have assumed that x = (x1, x2, x3), and that dx a volume
element. We could alternatively assume a two-dimensional reflectivity profile
at a known elevation x3 = h(x1, x2). In that case we write

xT = (x1, x2, h(x1, x2)),

assume a reflectivity of the form m(x) = δ(x3 − h(x1, x2))V (x1, x2), and get (!)

d̂(s, ω) =

∫
e2ik|xT−γ(s)|A(xT , s, ω)V (x1, x2) dx1dx2.

The geometry of the formula for F is apparent if we return to the time
variable. For illustration, reduce A(x, s, ω) = ω2p̂(ω) to its leading ω depen-
dence. Then

d(s, t) =
1

2π

∫
e−iωtd̂(s, ω) dω

= − 1

2π

∫
p′′
(
t− 2

|x− γ(s)|
c0

)
m(x) dx.

We have used the fact that k = ω/c0 to help reduce the phase to the simple
expression

t− 2
|x− γ(s)|

c

Its physical significance is clear: the time taken for the waves to travel to
the scatterer and back is twice the distance |x − γ(s)| divided by the light
speed c0. Further assuming p(t) = δ(t), then there will be signal in the data

d(s, t) only at a time t = 2 |x−γ(s)|
c

compatible with the kinematics of wave
propagation. The locus of possible scatterers giving rise to data d(s, t) is then
a sphere of radius ct/2, centered at the antenna γ(s). It is a good exercise
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to modify these conclusions in case p(t) is a narrow pulse (oscillatory bump)
supported near t = 0, or even when the amplitude is returned to its original
form with beam patterns.

In SAR, s is called slow time, t is the fast time, and |x − γ(s)| is called
range.

4.3 Filtered backprojection

In the setting of the assumptions of section 4.1, the imaging operator F ∗ is
called backprojection in SAR. Consider the data inner product1

〈d, Fm〉 =

∫
d̂(s, ω)F̂m(s, ω) dsdω.

As usual, we wish to isolate the dependence on m to identify 〈d, Fm〉 as
〈F ∗d,m〉. After using (4.1), we get

〈d, Fm〉 =

∫
m(x)

∫∫
e−2ik|x−γ(s)|A(x, s, ω)d̂(s, ω) dsdω.

This means that

(F ∗d)(x) =

∫∫
e−2ik|x−γ(s)|A(x, s, ω)d̂(s, ω) dsdω. (4.2)

Notice that the kernel of F ∗ is the conjugate of that of F , and that the
integration is over the data variables (s, ω) rather than the model variable x.

The physical interpretation is clear if we pass to the t variable, by using
d̂(s, ω) =

∫
eiωtd(s, t) dt in (4.2). Again, assume A(x, s, ω) = ω2p̂(ω). We

then have

(F ∗d)(x) = − 1

2π

∫
p′′
(
t− 2

|x− γ(s)|
c0

)
d(s, t) dsdt.

Further assume p(t) = δ(t). Then F ∗ places a contribution to the reflectivity
at x if and only if there is signal in the data d(s, t) for s, t, x linked by the

same kinematic relation as earlier, namely t = 2 |x−γ(s)|
c

. In other words, it
“spreads” the data d(s, t) along a sphere of radius ct/2, centered at γ(s), and

1It could be handy to introduce a multiplicative factor 2π in case the Parseval identity
were to be used later.
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adds up those contributions over s and t. Notice that p is in practice a narrow
pulse, not a delta, hence those spheres become thin shells. Strictly speaking,
“backprojection” refers to the amplitude-free formulation A =constant, i.e.,
in the case when p′′(t) = δ(t). But we will use the word quite liberally, and
still refer to the more general formula (4.2) as backprojection. So do many
references in the literature.

Backprojection can also be written in the case when the reflectivity pro-
file is located at elevation h(x1, x2). It suffices to evaluate (4.2) at xT =
(x1, x2, h(x1, x2)).

We now turn to the problem of modifying backprojection to give a formula
approximating F−1 rather than F ∗. Hence the name filtered backprojection.
It will only be an approximation of F−1 because of sampling issues that will
be studied in detail in the sequel.

The phase −2ik|x− γ(s)| needs no modification: it is already “kinemat-
ically correct”. Only the amplitude needs to be changed, to yield a new
operator2 B to replace F ∗:

(Bd)(x) =

∫∫
e−2ik|x−γ(s)|Q(x, s, ω)d̂(s, ω) dsdω.

By composing B with F , we obtain

(BFm)(x) =

∫
K(x, y)m(y) dy,

with

K(y, x) =

∫∫
e−2ik|x−γ(s)|+2ik|y−γ(s)|Q(x, s, ω)A(y, s, ω) dsdω.

We wish to choose Q so that BF is as close to the identity as possible, i.e.,

K(x, y) ' δ(x− y).

(...)

2B for filtered Backprojection, or for Beylkin. See why shortly.
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4.4 Resolution

4.5 Exercises

1. Prove (4.2) in an alternative fashion from the imaging condition (3.8)
and the various approximations made near the beginning of the chapter.

2. Bistatic SAR: repeat and modify the derivation of (4.1) in the case
of an antenna γ1(s) for transmission and another antenna γ2(s) for
reception.



Chapter 5

Computerized tomography
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Chapter 6

Seismic imaging

Much of the imaging flowchart was already described in the previous chapters.
An image, or a gradient update, is formed from the imaging condition by
means of the incident and adjoint fields. This operation is called migration
rather than backprojection in the seismic setting. The wave equations are
solved by a numerical method such as finite differences.

In this chapter, we expand on the structure of the Green’s function in vari-
able media. This helps us understand the structure of the forward operator
F , as well as migration F ∗, in terms of a 2-point traveltime function τ(x, y).
This function embodies the variable-media generalization of the idea that
time equals total distance over wave speed, an aspect that was crucial in the
expression of backprojection for SAR. Traveltimes are important for “trav-
eltime tomography”, or matching of traveltimes for inverting a wave speed
profile. Historically, they have also been the basis for Kirchhoff migration, a
simplification of (reverse-time) migration.

6.1 Geometrical optics: traveltimes

In a uniform 3D medium, we have seem that the acoustic Green’s function
(propagator) is

G(x, y, t) =
δ(ct− |x− y|)

4πc|x− y|
. (6.1)

In a variable (smooth) medium c(x), we can no longer expect an explicit
formula for G. However, to good approximation, the Green’s function can
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be expressed in terms of a progressing-wave expansion as

G(x, y, t) = a(x, y)δ(t− τ(x, y)) +R(x, y, t), (6.2)

where a is some smooth amplitude function, τ is the so-called traveltime
function, and R is a remainder which is not small, but smoother than a delta
function.

The functions a and τ are determined by substituting the expression
above in the wave equation(

1

c2(x)

∂2

∂t2
−∆x

)
G(x, y, t) = 0, x 6= y,

and equating terms that have the same order of smoothness. By this, we
mean that a δ(x) is smoother than a δ′(x), but less smooth than a Heaviside
step function H(x). An application of the chain rule gives(

1

c2(x)

∂2

∂t2
−∆x

)
G = a

(
1

c2(x)
− |∇xτ |2

)
δ′′(t− τ)

+ (2∇xτ · ∇xa− a∆xτ) δ′(t− τ)

+ ∆xaδ(t− τ) +

(
1

c2(x)

∂2

∂t2
−∆x

)
R.

The δ′′ term vanishes if, and in the case a 6= 0, only if

|∇xτ(x, y)| = 1

c(x)
, (6.3)

a very important relation called the eikonal equation for τ . It determines τ
completely for x in some neighborhood of y. Notice that τ has the units of
a time.

The δ′ term vanishes if and only if

2∇xτ(x, y) · ∇xa(x, y)− a(x, y)∆xτ(x, y) = 0, (6.4)

a relation called the transport equation for a. It determines a completely for
x in a neighborhood of y, since τ was already determined from the eikonal
equation.

As for the term involving δ, it is a good exercise (see end of chapter) to
check that the solution R of

∆xa(x, y)δ(t− τ(x, y)) +

(
1

c2(x)

∂2

∂t2
−∆x

)
R = δ(x− y)δ(t)
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is smoother than G itself. A good reference for progressing wave expansions
is the book “Methods of Mathematical Physics” by Courant and Hilbert (pp.
622 ff. in volume 2).

This type of expansion for solutions of the wave equation is sometimes de-
rived in the frequency domain ω rather than the time domain t. In that case,
it often takes on the name geometrical optics. Taking the Fourier transform
of (6.2), we get the corresponding Ansatz in the ω domain:

Ĝ(x, y, ω) =

∫
eiωtG(x, y, t) dt = a(x, y)eiωτ(x,y) + R̂(x, y, ω). (6.5)

Because τ appears in a complex exponential, it is also often called a phase.
The same exercise of determining a and τ can be done, by substituting this
expression in the Helmholtz equation, with the exact same outcome as earlier.
Instead of matching like derivatives of δ, we now match like powers of ω. The
ω2 term is zero when the eikonal equation is satisfied, the ω term is zero when
the transport equation is satisfied, etc.

Doing the matching exercise in the frequency domain shows the true
nature of the geometrical optics expression of the Green’s function: it is a
high-frequency approximation.

Let us now inspect the eikonal equation for τ and characterize its solu-
tions. In a uniform medium c(x) = c0, it is easy to check the following two
simple solutions,

• With the condition τ(y, y) = 0, the solution is the by-now familiar

τ(x, y) =
|x− y|
c0

,

which defines a forward light cone, (or − |x−y|
c0

, which defines a backward
light cone,) and which helps recover the phase of the usual Green’s
function (6.1) when plugged in either (6.2) or (6.5).

• This is however not the only solution. With the condition τ(x) = 0

for x1 = 0 (and no need for a parameter y), a solution is τ(x) = |x1|
c0
.

Another one would be τ(x) = x1

c0
.

For more general boundary conditions of the form τ(x) = 0 for x on some
curve Γ, but still in a uniform medium c(x) = c0, τ(x) takes on the interpre-
tation of the distance function to the curve Γ.
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Note that the distance function to a curve may develop kinks, i.e., gradi-
ent discontinuities. For instance, if the curve is a parabola x2 = x2

1, a kink
is formed on the half-line x1 = 0, x2 ≥ 1

4
above the focus point. This com-

plication originates from the fact that, for some points x, there exist several
segments originating from x that meet the curve at a right angle. At the
kinks, the gradient is not defined and the eikonal equation does not, strictly
speaking, hold. For this reason, the eikonal equation is only locally solvable
in a neighborhood of Γ. To nevertheless consider a generalized solution with
kinks, mathematicians resort to the notion of viscosity solution, where the
equation

1

c2(x)
= |∇xτε|2 + ε2

is solved globally, and the limit as ε → 0 is taken. Alternatively, they con-
sider multivalued traveltimes whose branches individually obey the eikonal
equation. Note that in the case of nonuniform c(x), the solution generically
develops kinks even in the case when the boundary condition is τ(y, y) = 0.

In view of how the traveltime function appears in the expression of the
Green’s function, whether in time or in frequency, it is clear that the level
lines

τ(x, y) = t

for various values of t are wavefronts. For a point disturbance at y at t = 0,
the wavefront τ(x, y) = t is the surface where the wave is exactly supported
(when c(x) = c0 in odd spatial dimensions), or otherwise essentially sup-
ported (in the sense that the wavefield asymptotes there.) It is possible to
prove that the wavefield G(x, y, t) is exactly zero for τ(x, y) > t, regardless
of the smoothness of c(x), expressing the idea that waves propagate no faster
than with speed c(x).

Finally, it should be noted that

φ(x, t) = t− τ(x, y)

is for each y (or regardless of the boundary condition on τ) a solution of the
characteristic equation (

∂ξ

∂t

)2

= |∇xξ|2,

called a Hamilton-Jacobi equation, and already encountered in chapter 1.
Hence the wavefronts t− τ(x, y) = 0 are nothing but characteristic surfaces
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for the wave equation. They are the space-time surfaces along which the
waves propagate, in a sense that we will make precise in section 6.4.

6.2 Geometrical optics: rays and amplitudes

We now give a general solution of the eikonal equation, albeit in a somewhat
implicit form, in terms of rays. The rays are the characteristic curves for the
eikonal equation. Since the eikonal equation was already itself characteristic
for the wave equation (see the discussion at the end of the preceding section),
the rays also go by the name bicharacteristics.

The rays are curves X(t) along which the eikonal equation is simplified, in
the sense that the total derivative of the traveltime has a simple expression.
Fix y and remove it from the notations. We write

d

dt
τ(X(t)) = Ẋ(t) · ∇τ(X(t)). (6.6)

This relation will simplify if we define the ray X(t) such that

• the speed |Ẋ(t)| is c(x), locally at x = X(t);

• the direction of Ẋ(t) is perpendicular to the wavefronts, i.e., aligned
with ∇τ(x) locally at x = X(t).

These conditions are satisfied if we specify the velocity vector as

Ẋ(t) = c(X(t))
∇τ(X(t))

|∇τ(X(t))|
.

Since the eikonal equation is |∇τ(x)| = 1/c(x), we can also write

Ẋ(t) = c2(X(t))∇τ(X(t)).

Using either expression of Ẋ(t) in (6.6), we have

d

dt
τ(X(t)) = 1,

which has for solution

τ(X(t))− τ(X(t0)) = t− t0.

We now see that τ indeed has the interpretation of time.
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6.3 Kirchhoff migration

6.4 Microlocal analysis

6.5 Exercises

1. Show that the remainderR in the progressing wave expansion is smoother
than the Green’s function G itself.

2. In this exercise we compute the Fréchet derivative of traveltime with
respect to the wave speed. For simplicity, let n(x) = 1/c(x).

(a) In one spatial dimension, we have already seen that τ(x) =
∫ x
x0
n(x′)dx′.

Find an expression for δτ(x)/δn(y).

(b) In several spatial dimensions, τ(x) obeys |∇τ(x)| = n(x) with
τ(0) = 0, say. First, show that δτ(x)/δn(y) (or equivalently
〈n, δτ(x)/δn〉 for any n), obeys a transport equation along the
rays. Then solve this equation. Argue that δτ(x)/δn(y), as a
function of y, is concentrated along the ray linking 0 to x (pro-
vided there is only one such ray).

(c) What do your answers become when the derivative is taken with
respect to c(x) rather than n(x)?

The function δτ(x)/δn(y) of y is often called sensitivity kernel (of τ
with respect to n). It’s a distribution, really.

3. Show the formula for Kirchhoff migration directly from the imaging
condition (with adjoint field) seen in a previous chapter.



Chapter 7

Optimization

7.1 Regularization and sparsity

7.2 Dimensionality reduction techniques

One way to reduce the dimensionality of a dataset is to scramble data as
d̃ = Cd, where

d̃j,r(t) =
∑
s

cj,sdr,s(t− bj,s).

The numbers cj,s and bj,s may be random, for instance. The point is that
using fewer values of j than s may result in computational savings — a
strategy sometimes called source encoding. By linearity of the wave equation,
the scrambled data d̃ can be seen as originating from scrambled shots, or
supershots f̃ = Cf , for

f̃j(x, t) =
∑
s

cj,sfs(x, t− bj,s).

Scrambled data may be all that’s available in practice, in acquisition scenarios
known as simultaneous sourcing.

The adjoint operation C∗ results in twice-scrambled data D = C∗d̃, where

Dr,s(t) =
∑
j

cj,sd̃j,r(t+ bj,s).

The linearized forward model with scrambling is d̃ = CFm. The ba-
sic imaging operator is still the adjoint, Im = F ∗C∗d̃. In addition to the
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traditional incident and adjoint fields

u0,s = Gfs, qs = Gds,

where G is the Green’s function in the unperturbed medium, and G the
time-reversed Green’s function, we define the scrambled fields

ũ0,j = Gf̃j, q̃j = Gd̃j.

Also define the twice-scrambled adjoint field

Qs = G(C∗d̃)s.

Then

Im(x) = (F ∗C∗d̃)(x) = −
∑
s

∫ T

0

∂2u0,s

∂t2
(x, t)Qs(x, t) dt.

Another formula involving j instead of s (hence computationally more favor-
able) is

Im(x) = −
∑
j

∫ T

0

∂2ũ0,j

∂t2
(x, t) q̃j(x, t) dt. (7.1)

To show this latter formula, use Q = C∗q̃, pass C∗ to the rest of the integrand
with

∑
s vs(C

∗w)s =
∑

j(Cvj)wj, and combine Cu0 = ũ0.
Scrambled data can also be used as the basis of a least-squares misfit,

such as

J̃(m) =
1

2
‖d̃− CF(m)‖22.

The gradient of J̃ is F ∗C∗ applied to the residual, hence can be computed
with (7.1).

[Note about illumination vectors, SVD of data matrix, Abubakar et al.]
[Note about Kaczmarz, coordinate descent, stochastic optimization.]

7.3 Convexification: model velocity estima-

tion, autofocus



Appendix A

Calculus of variations,
functional derivatives

The calculus of variations is to multivariable calculus what functions are
to vectors. It answers the question of how to differentiate with respect to
functions, i.e., objects with an uncountable, infinite number of degrees of
freedom. Functional calculus is used to formulate linearized forward models
for imaging, as well as higher-order terms in Born series. It is also useful
for finding stationary-point conditions of Lagrangians, and gradient descent
directions in optimization.

Let X, Y be two function spaces endowed with norms and inner products
(technically, Hilbert spaces). A functional φ is a map from X to R. We
denote its action on a function f as φ(f). An operator F is a map from X
to Y . We denote its action on a function f as Ff .

We say that a functional φ is Fréchet differentiable at f ∈ X when there
exists a linear functional A : X 7→ R such that

lim
h→0

|φ(f + h)− φ(f)− A(h)|
‖h‖

= 0.

If this relation holds, we say that A is the functional derivative, or Fréchet
derivative, of φ at f , and we denote it as

A =
δφ

δf
[f ].

It is also called the first variation of φ. It is the equivalent of the gradient in
multivariable calculus. The fact that A is a map from X to R corresponds
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to the idea that a gradient maps vectors to scalars when paired with the dot
product, to form directional derivatives. If X = Rn and f = (f1, . . . , fn), we
have

δφ

δf
[f ](h) = ∇φ(f) · h.

For this reason, it is is also fine to write A(h) = 〈A, h〉.
The differential ratio formula for δφ

δf
is called Gâteaux derivative,

δφ

δf
[f ](h) = lim

t→0

φ(f + th)− φ(f)

t
, (A.1)

which corresponds to the idea of the directional derivative in Rn.
Examples of functional derivatives:

• φ(f) = 〈g, f〉,
δφ

δf
[f ] = g,

δφ

δf
[f ](h) = 〈g, h〉

Because φ is linear, δφ
δf

= φ. Proof: φ(f + th) − φ(f) = 〈g, f + th〉 −
〈g, f〉 = t〈g, h〉, then use (A.1).

• φ(f) = f(x0),

δφ

δf
[f ] = δ(x− x0), (Dirac delta).

This is the special case when g(x) = δ(x− x0). Again, δφ
δf

= φ.

• φ(f) = 〈g, f 2〉,
δφ

δf
[f ] = 2fg.

Proof: φ(f + th)− φ(f) = 〈g, (f + th)2〉 − 〈g, f〉 = t〈g, 2fh〉+O(t2) =
t〈2fg, h〉+O(t2), then use (A.1).

Nonlinear operators F [f ] can also be differentiated with respect to their
input function. We say F : X → Y is Fréchet differentiable when there exists
a linear operator F : X → Y

lim
h→0

‖F [f + h]−F [f ]− Fh‖
‖h‖

= 0.
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F is the functional derivative of F , and we write

F =
δF
δf

[f ].

We still have the difference formula

δF
δf

[f ]h = lim
t→0

F [f + th]−F [f ]

t
.

Examples:

• F [f ] = f . Then
δF
δf

[f ] = I,

the identity. Proof: F is linear hence equals its functional derivative.
Alternatively, apply the difference formula to get δF

δf
[f ]h = h.

• F [f ] = f 2. Then
δF
δf

[f ] = 2f,

the operator of multiplication by 2f .

Under a suitable smoothness assumption, the Fréchet Hessian of an op-
erator F can also be defined: it takes two functions as input, and returns
a function in a linear manner (“bilinear operator”). It is defined through a
similar finite-difference formula

〈δ
2F
δf 2

[f ]h1, h2〉 = lim
t→0

F [f + t(h2 + h1)]−F [f + th2]−F [f + th1] + F [f ]

t2
.

The Hessian is also called second variation of F . For practical calculations
of the Hessian, the notation δ2F

δf2 is too cavalier. Instead, it is useful to view
the Hessian as the double directional derivative

δ2F
δfδf ′

in two directions f and f ′, and compute those derivatives one at a time. This
formula is the equivalent of the mixed partial ∂2f

∂xi∂xj
when the two directions

are xi and xj in n dimensions.
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Functional derivatives obey all the properties of multivariable calculus,
such as chain rule and derivative of a product (when all the parties are
sufficiently differentiable).

Whenever in doubt when faced with calculations involving functional
derivatives, keep track of free variables vs. integration variables — the equiv-
alent of “free indices” and “summation indices” in vector calculus. For in-
stance,

• δF
δf

is like δFi
δfj

, with two free indices i and j;

• δF
δf
h is like

∑
j
δFi
δfj
hj, with one free index i and one summation index j.

• δ2F
δf2 is like δ2Fi

δfjδfk
, with three free indices i, j, k.

• 〈 δ2F
δf2 h1, h2〉 is like

∑
j,k

δ2Fi
δfjδfk

(h1)j(h2)k, with one free index i and two

summation indices j and k.

No free index indicates a scalar, one free index indicates a function (or a
functional), two free indices indicate an operator, three indices indicate an
“object that takes in two functions and returns one”, etc.


