18.085 Computational Science and Engineering Problem Set 1 Due in-class on 19th Feb 2015

Clarification required? Email ajt@mit.edu

1. (10 marks) Show that

$$u''(x) \approx \frac{u(x+2h) - 2u(x+h) + u(x)}{h^2} + \mathcal{O}(h).$$

2. (10 marks) The 2nd order differential equation -u''(x) = f(x), u'(0) = 0, u'(1) = 0 has the following $(n+1) \times (n+1)$ matrix discretization:

$$\underbrace{\begin{pmatrix} 1 & -1 & & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 1 \end{pmatrix}}_{=B_{n+1}} \underbrace{\begin{pmatrix} u(0) \\ u(h) \\ \vdots \\ u((n-1)h) \\ u(1) \end{pmatrix}}_{= \begin{pmatrix} h^2 f(0) \\ h^2 f(h) \\ \vdots \\ h^2 f((n-1)h) \\ h^2 f(1) \end{pmatrix}}_{= \begin{pmatrix} h^2 f(0) \\ h^2 f(h) \\ \vdots \\ h^2 f((n-1)h) \\ h^2 f(1) \end{pmatrix}$$

where h = 1/(n+1). Perform elimination on B_4 . Is B_4 invertible? Show that B_{n+1} is not invertible for $n \ge 4$. Show that the differential equation does not have a unique solution.

- 3. (10 marks) Find examples of 2×2 matrices such that:
 - (a) $AB \neq BA$,
 - (b) $A^2 = -I$, where A has real entries and I is the identity matrix,
 - (c) $B^2 = 0$, where B has no zero entries.
- 4. (10 marks) Can you find a formula for the (i,j) entry of K_n^{-1} , where

$$K_n = \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}?$$

(You may wish to use the MATLAB command inv to make a guess.) Use your formula to write down the solution v to $K_n v = (1, 0, ..., 0)^T$. Which 2nd order differential equation did you just solve?