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If A is of size 3 x 2 or 10 x 3, then Az = b usually does not have a solution.
For example,
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does not have a unique solution because there is no line y = ¢ + dz that goes
through (2,1), (3/2,2), and (4, 1).

Instead, for rectangular matrices we seek the least squares solution. That
is, we minimize the sum of squares of the error

|b— Az||3 = (b— Az)3 + ...+ (b— Ax)?.

In the above example the least squares solution finds the global minimum of the
sum of squares, i.e.,

fle,d)=(1—c—2d)?+(2—c—3/2d)* + (1 — c — 4d)*. (1)

At the global minimium the gradient of f vanishes. That is,
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These equations can be solved by the following linear system (using elimination,
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MATLAB calculates the global minimum of (1) as 8/21 when (¢,d) =
(43/21,—2/7). This is the least squares solution. The line of best-fit is
y = 43/21 — 2/7z. This is not remarkable.

But this is:
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There is no need to differentiate to solve a minimization problem! Just solve
the normal equations!



NORMAL EQUATIONS:

AT Az = ATh

Why the normal equations? To find out you will need to be slightly crazy
and totally comfortable with calculus.
In general, we want to minimize!

f(z)=|b— Az||2 = (b— Az)T (b — Az) = bTb— 2T ATb — bT Az + 2T AT Ax.

If x is a global minimum of f, then its gradient V f(x) is the zero vector. Let’s
take the gradient of f remembering that

Vi) =

We have the following three gradients:
V(zTATh) = ATh, V(T Az) = ATb, V(a7 AT Az) = 24T Az

To calculate these gradients, write out 7 ATb, bT Az, and 2T AT Az, in terms
of sums and differentiate with respect to x1,...,z, (this gets very messy).
Thus, we have
Vf(x) =247 Az — 2ATb,

just like we saw in the example. We can solve Vf(z) = 0 or, equivalently
AT Az = ATb to find the least squares solution. Magic.

Is this the global minimum? Could it be a maximum, a local minimum,
or a saddle point? To find out we take the “second derivative” (known as the
Hessian in this context):

Hf =2ATA.

Next week we will see that AT A is a positive semi-definite matrix and that this
implies that the solution to AT Az = ATb is a global minimum of f(x). Roughly
speaking, f(z) is a function that looks like a bowl.

Here, x is a vector not a 1D variable.



