## Publications (scroll down for the recent conference proceedings)

Year | Title | |
---|---|---|

2018 | D. Batenkov, L. Demanet, G. Goldman, Y. Yomdin Stability of partial Fourier matrices with
clustered nodes, submitted. | |

P. Bharadwaj, L. Demanet, A. Fournier Focused blind deconvolution,
submitted. | ||

D. Batenkov, L. Demanet, H. Mhaskar, Stable soft extrapolation of entire functions, submitted. | ||

2017 | L. Zepeda-Nunez, A. Scheuer, R. Hewett, L. Demanet, The method of polarized traces for the
3D Helmholtz equation, submitted. | |

A. Cosse, L. Demanet Stable rank one matrix completion is solved by two rounds of semidefinite programming
relaxation, submitted. | ||

2016 | A. Ahmed, L. Demanet, Leveraging diversity and sparsity in blind
deconvolution, to appear in Trans. Info. Theory. | |

L. Demanet, A. Townsend, Stable extrapolation of analytic functions,
to appear in Found. Comput. Math. | ||

2015 | Y. Li, L. Demanet,
Full waveform inversion with extrapolated low frequency data
, Geophysics 81.6 (2016): R339-R348. | |

L. Zepeda-Nunez, L. Demanet, Nested domain decomposition with polarized traces for the 2D Helmholtz
equation, to appear in SIAM J. Sci. Comput. | ||

Y. Li, L. Demanet, Phase and amplitude tracking for seismic event separation,
Geophysics 80.6 (2015): WD59-WD72. | ||

2014 |
L. Demanet, N. Nguyen, The recoverability limit for superresolution via sparsity,
submitted. | |

L. Zepeda-Nunez, L. Demanet, The method of polarized traces for the 2D Helmholtz
equation, J. Comp. Phys. 308(1), 347--388, 2016. | ||

R. Belanger-Rioux, L. Demanet, Compressed absorbing boundary conditions via matrix
probing, SIAM J. Num. Analysis, 53(5), 2441-2471, 2015. | ||

2013 | L. Demanet, P. Hand, Scaling law for recovering the sparsest
element in a subspace, Information and Inference, vol. 3, no. 4, pp. 295-309, 2014. | |

L. Demanet, V. Jugnon,
Convex recovery from interferometric measurements, IEEE Transactions on Computational Imaging,
3(2):282-295, 2017. | ||

J. Poulson, N, Maxwell, L. Demanet, L. Ying, A parallel butterfly algorithm,
SIAM J. Sci. Comput., 36(1), C49-C65, 2014. | ||

H. Baek. H. Calandra, L. Demanet,
Velocity estimation via registration-guided least-squares waveform
inversion, Geophysics (2014) 79 (2): R79-R89. | ||

2012 | L. Demanet, X. Zhang, Eventual linear
convergence of the Douglas Rachford iteration for basis pursuit,
Math. Comp. 85 (2016), 209-238 | |

L. Demanet, P. Hand, Stable optimizationless recovery
from phaseless linear measurements, Journal of Fourier Analysis and Applications, 20-1 (2014)
199-221. | ||

J. Hu, S. Fomel, L. Demanet, L. Ying, A fast butterfly
algorithm for generalized Radon transforms, Geophysics 78-4 (2013), U41-U51. | ||

2011 | J. Chiu, L. Demanet, Sublinear
randomized algorithms for skeleton decompositions, SIAM. J. Matrix Anal. and Appl., 34-3 (2013)
13611383. | |

H. Baek, L. Demanet, Conditioning bounds for traveltime
tomography in layered media, Inverse problems 28-5 (2012) 055008.
| ||

J. Chiu, L. Demanet, Matrix probing
and its conditioning, SIAM J. Numer. Anal. 50-1 (2012) 171-193
| ||

2010 | L. Demanet, P.D.
Letourneau,
N. Boumal, H. Calandra, J. Chiu, S. Snelson, Matrix probing: a
randomized preconditioner for the wave-equation hessian, Appl. Comput. Harmon. Anal. 32 (2012) 155-168
| |

L. Demanet,
M. Ferrara, N. Maxwell, J. Poulson, L. Ying, A butterfly algorithm for synthetic aperture radar imaging, SIAM J. Imaging Sci. 5-1 (2012) 203-243 | ||

L. Demanet,
L. Ying, Fast Wave Computation via Fourier Integral Operators, Math. Comp. 81 (2012) 1455-1486 | ||

2008 | L. Demanet, G.
Peyré, Compressive Wave Computation, Found. of Comput. Math. 11-3 (2011) 257-303 | |

E. Candes, L. Demanet, L. Ying, A Fast Butterfly Algorithm for the Computation of
Fourier Integral Operators, SIAM Multiscale Model. Simul. 7-4 (2009) 1727-1750 | ||

L. Demanet, L. Ying, Discrete Symbol Calculus, SIAM Review 53 (2011) 71-104. | ||

L. Demanet, L. Ying, Scattering in Flatland: Efficient Representations via Wave Atoms, Found. of Comput. Math. 10-5 (2010) 569-613. | ||

2007 | L. Demanet, L. Ying, Wave Atoms and Time Upscaling of Wave Equations, Numer. Math. 113-1 (2009) 1-71. | |

2006 | E. Candes, L. Demanet, L. Ying, Fast Computation of
Fourier Integral Operators, SIAM J. Sci. Comput. 29-6 (2007) 2464-2493. | |

L. Demanet, L. Ying, Wave Atoms and Sparsity of
Oscillatory Patterns, Appl. Comput.
Harmon. Anal. 23-3 (2007) 368-387. Matlab
code. | ||

2005 | L. Demanet, W. Schlag, Numerical verification of a
gap condition for a linearized NLS equation, Nonlinearity 19 (2006) 829-852. | |

E. Candes, L. Demanet, D. Donoho, L. Ying, Fast Discrete Curvelet Transforms, SIAM Multiscale Model. Simul. 5-3 (2006) 861-899. | ||

2004 | E. Candes, L. Demanet The Curvelet Representation of Wave Propagators is Optimally Sparse, Comm. Pure Appl. Math 58-11 (2005) 1472-1528. | |

2003 | E. Candes, L. Demanet Curvelets and Fourier Integral Operators, C. R. Acad. Sci. Paris, Ser. I 336 (2003) 395-398. | |

2001 | J.P. Antoine, L. Demanet, L. Jacques, P. Vandergheynst Wavelets on the sphere: Implementation and Approximation, Appl. Comput. Harmon. Anal. 13 (2002) 177-200. |

## Thesis

L. Demanet, Curvelets, Wave Atoms and Wave
Equations, Ph.D. Thesis, California Institute of Technology, May
2006. |

## Conference Proceedings and Technical Reports

H. Sun, L. Demanet
Low Frequency Extrapolation with Deep Learning, preprint
| |

J. Clancy, L. Demanet, J. Helland, Z. Xu
Deep Learning for Making Sense of Ambient Seismic Noise, preprint
| |

P. Bharadwaj, L. Demanet, A. Fournier
Focused blind deconvolution of interferometric Green's functions, preprint
| |

M. Taus, L. Zepeda-Nunez, R. Hewett, L. Demanet,
Pollution-free and fast hybridizable discontinuous Galerkin solvers for the high-frequency Helmholtz equation, in Proc. SEG annual meeting, Houston, 2017
| |

Y. Li, L. Demanet,
Extrapolated full waveform inversion: An image-space approach, in Proc. SEG annual meeting, Houston, 2017 | |

P. Bharadwaj, L. Demanet, A. Fournier,
Deblending random seismic sources via independent component analysis
, in Proc. SEG annual meeting, Houston, 2017 | |

M. Taus, L. Zepeda-Nunez, L. Demanet,
A short note on a fast and high-order Hybridizable Discontinuous Galerkin solver for the 2D high-frequency Helmholtz equation, in Proc. SEG annual meeting, Dallas, October 2016. | |

A. Scheuer, L. Zepeda-Nunez, R. Hewett, L. Demanet,
A short note on a pipelined polarized-trace algorithm for 3D Helmholtz, in Proc. SEG annual meeting, Dallas, October 2016. | |

Y. Li, L. Demanet,
Extrapolated Full waveform inversion (EFWI) with synthesized low frequency data, in Proc. SEG annual meeting, Dallas, October 2016. | |

A. Cosse, L. Demanet,
Rank-one matrix completion is solved by the sum-of-squares relaxation of order two, in Proc. IEEE CAMSAP, Cancun, December 2015. | |

A. Ahmed, A. Cosse, L. Demanet,
A convex approach to blind deconvolution with diverse inputs, in Proc. IEEE CAMSAP, Cancun, December 2015. | |

L. Zepeda-Nunez, L. Demanet,
A short note on the nested-sweep polarized traces method for the 2D Helmholtz equation
, in Proc. SEG annual meeting, New Orleans, October 2015. | |

Y. Li, L. Demanet,
A short note on phase and amplitude tracking for seismic event separation, in Proc. SEG annual meeting, New Orleans, October 2015. | |

A. Cosse, S. Shank, L. Demanet,
A short note on rank-2 relaxation for waveform inversion, in Proc. SEG annual meeting, New Orleans, October 2015. | |

L. Zepeda-Nunez, R. Hewett, L. Demanet, Preconditioning the 2D Helmholtz equation with polarized traces, in Proc. SEG annual meeting, Denver, October
2014 | |

N. Nguyen, L. Demanet,
Sparse image super-resolution via superset selection and pruning, in Proc. IEEE CAMSAP, Saint Martin, December 2013. | |

V. Jugnon, L. Demanet, Interferometric inversion: a robust approach to linear
inverse problems , in Proc. SEG annual meeting, Houston, September 2013. | |

L. Zepeda-Nunez, R. J. Hewett, M. Rao, L. Demanet, Time-stepping beyond CFL: a locally one-dimensional scheme for acoustic wave propagation, in Proc. SEG annual meeting, Houston,
September 2013. | |

M. Leinonen, R. J. Hewett, X. Zhang, L. Ying, L. Demanet, Higher-dimensional wave atoms and compression of seismic datasets, in Proc. SEG annual meeting, Houston, September 2013. | |

H. Baek, H. Calandra, L. Demanet, The failure mode of correlation focusing for model velocity estimation,
in Proc. SEG annual meeting, Houston, September 2013. | |

L. Demanet, D. Needell, N. Nguyen Super-resolution via superset selection and pruning, in Proc. SampTA conference, Bremen, July 2013. | |

A. Vion, R. Belanger-Rioux, L. Demanet, C. Geuzaine, A DDM double sweep preconditioner for the Helmholtz equation with matrix probing of the DtN map, in Proc. Waves 2013 conference,
Tunis, June 2013. | |

H. Baek, H. Calandra, L. Demanet, Registration-guided least-squares waveform inversion,in Proc. EAGE annual meeting, London, June
2013. | |

J. Hu, S. Fomel, L. Demanet,
L. Ying A fast butterfly algorithm for the
hyperbolic Radon transform, in Proc SEG annual meeting, Las
Vegas, November 2012. | |

P. D. Letourneau, L. Demanet,
H. Calandra Approximate inversion of the
wave-equation Hessian via randomized matrix probing, in Proc. SEG
annual meeting, Las Vegas, November 2012. | |

L. Demanet, L. Ying On Chebyshev interpolation of analytic functions, MIT
technical report, March 2010. | |

L. Demanet, L. Ying Curvelets and Wave
Atoms for Mirror-Extended Images, Proc. SPIE Wavelets XII conf, San
Diego, August 2007. Matlab code here and here | |

L. Demanet, Painless, highly accurate discretizations of the Laplacian on a smooth manifold, Technical report, Stanford, December 2006. | |

L. Ying, L. Demanet, E. Candes, 3D Discrete Curvelet Transform, Proc. SPIE Wavelets XI conf., San Diego, July 2005. C++ code. | |

L. Demanet, B. Song, T. Chan, Image Inpainting by Correspondence Maps: a Deterministic Approach, Proc. VLSM conf., Nice, October 2003. | |

L. Demanet, P. Vandergheynst,
Gabor wavelets on the sphere, Proc. SPIE Wavelets X conf., San Diego, August 2003. | |

E. Candes, L. Demanet, Curvelets, Warpings and Optimal Representations of Fourier Integral Operators, Technical Report, November 2002 |

This work was made possible by generous funding from the US National Science Foundation, the Sloan foundation, the US Department of Defense, TOTAL SA, NEC Corp, and MIT's Earth Resources Laboratory.