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Abstract

We prove sharp lower bounds for the smallest singular value of a partial Fourier matrix with
arbitrary “off the grid” nodes (equivalently, a rectangular Vandermonde matrix with the nodes
on the unit circle), in the case when some of the nodes are separated by less than the inverse
bandwidth. The bound is polynomial in the reciprocal of the so-called “super-resolution factor”,
while the exponent is controlled by the maximal number of nodes which are clustered together.
This generalizes previously known results for the extreme cases when all of the nodes either
form a single cluster, or are completely separated. We briefly discuss possible implications for
the theory and practice of super-resolution under sparsity constraints.
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1 Introduction

1.1 Problem definition

Consider the s× s matrix

G (x,Ω) :=

[
sin (Ω(ti − tj))

Ω (ti − tj)

]
1≤i,j≤s

, (1)

where x is a vector of distinct nodes x := (t1, . . . , ts) with tj ∈
(
−π

2 ,
π
2

]
, and Ω > 0 is the

normalized bandwidth. The scaling of the smallest eigenvalue1 λmin (G) is of interest in applied

∗The research of DB and LD is supported in part by AFOSR grant FA9550-17-1-0316, NSF grant DMS-1255203,
and a grant from the MIT-Skolkovo initiative. The research of GG and YY is supported in part by the Minerva
Foundation.

1It is well-known that G is positive-definite – for instance, because sinc is a positive-definite function.
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harmonic analysis and in particular the theory of super-resolution, where this quantity controls
the worst-case stability of recovering an atomic measure from bandlimited data (see Subsection 1.3
below). Since

sin (Ωt)

Ωt
=

1

2Ω

∫ Ω

−Ω
exp (ıωt) dω = lim

N→∞

1

2N

N∑
k=−N

exp

(
ı
k

N
Ωt

)
,

we see that G is the limit as N →∞ of the matrix

GN :=
1

2N

[
DN

(
Ω (ti − tj)

N

)]
i,j

,

where DN is the Dirichlet (periodic sinc) kernel

DN (ξ) :=
N∑

k=−N
exp (ıkξ) =

sin
(
(N + 1

2)ξ
)

sin ξ
2

. (2)

For each N , let

VN (x,Ω) :=
1√
2N

[
exp

(
ık
tjΩ

N

)]j=1,...,s

k=−N,...,N
(3)

be the rectangular (2N + 1)× s Vandermonde matrix with complex nodes zj,N = exp (ıξj,N ) where

ξj,N =
tjΩ
N . Clearly VHNVN = GN , and so λmin (GN ) = σ2

min (VN ).

The question of lower bounds for λmin(G) (or, equivalently, σmin (VN )) received much attention in
the literature, see e.g. [3, 7, 19, 20, 15, 18, 5, 11].

For t ∈ R, we denote
‖t‖T := |Arg exp (ıt)| = |t mod (−π, π]| ,

where Arg(z) is the principal value of the argument of z ∈ C\{0}, taking values in (−π, π].

Given x as above, we define the minimal separation (in the wrap-around sense) as

∆ = ∆ (x) := min
i 6=j
‖ti − tj‖T.

It is well-known that there are two very different scaling regimes for λmin, depending on the quantity
which is frequently called the “super-resolution factor” (see Subsection 1.3 below)

SRF :=
1

∆Ω
.

If SRF < 1 and s is fixed, the matrix G is well-conditioned, and in fact it can be shown that in this
case

λmin ≈ (1− SRF) . (4)

The case SRF > 1 is somewhat more relevant to super-resolution applications, however all known
results provide sharp bounds only in the particular case when all the nodes are clustered together,
or approximately equispaced. In this setting we have the fast decay

λmin (G) ≈ (Ω∆)2(s−1) , Ω∆� 1. (5)

For details on (4) and (5) see Section 2 below.
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Figure 1: For different values of ∆,Ω we plot the quantity λm = λmin (G (x,Ω)) versus the super-resolution
factor SRF = 1

∆Ω , where x =
(
t1 = ∆, t2 = 2∆, t3 = π

2

)
(i.e. a single cluster with s = 3 and ` = 2). The

correct scaling is seen to be λm ∼ (∆Ω)
2(`−1)

rather than λm ∼ (∆Ω)
2(s−1)

. See Section 4 for further details
regarding the experimental setup. Note that the relationship breaks when SRF ≤ O(1), consistent with (4).

1.2 Main results

It turns out that the bound (5) is too pessimistic if only some of the nodes are known to be
clustered. Consider for instance the configuration x =

(
t1 = ∆, t2 = 2∆, t3 = π

2

)
, then, as can be

seen in Figure 1, we have in fact λmin (G (x,Ω)) ≈ (∆Ω)2, decaying much slower than (∆Ω)4 –
which would be the bound given by (5).

In this paper we bridge this theoretical gap. We consider the partially clustered regime where at
most 2 ≤ ` ≤ s neighboring nodes can form a cluster (there can be several such clusters), with two
additional parameters ρ, τ, controlling the distance between the clusters and the uniformity of the
distribution of nodes within the clusters.

Definition 1.1. The node vector x = (t1, . . . , ts) ⊂ (−π
2 ,

π
2 ] is said to form a (∆, ρ, s, `, τ)-clustered

configuration for some ∆ > 0, 2 ≤ ` ≤ s, ` − 1 ≤ τ < π
∆ and ρ ≥ 0, if for each tj , there exist at

most ` distinct nodes

x(j) = {tj,k}k=1,...,rj ⊂ x, 1 ≤ rj ≤ `, tj,1 ≡ tj ,

such that the following conditions are satisfied:

1. For any y ∈ x(j) \ {tj}, we have

∆ ≤ ‖y − tj‖T ≤ τ∆.

2. For any y ∈ x \ x(j), we have
‖y − tj‖T ≥ ρ.

Our main result is the following generalization of (5) for clustered configurations.
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Theorem 1.1. There exists a constant C1 = C1 (s) such that for any 4τ∆ ≤ ρ, any x forming a
(∆, ρ, s, `, τ)-clustered configuration, and any Ω satisfying

4πs

ρ
≤ Ω ≤ πs

τ∆
, (6)

we have

σmin (VN (x,Ω)) ≥ C1 · (∆Ω)`−1 , whenever N > 2s3

⌈
Ω

4s

⌉
; (7)

λmin (G (x,Ω)) ≥ C2
1 · (∆Ω)2(`−1) . (8)

The proof of Theorem 1.1 is presented in Subsection 3.3 below. It is based on the “decimation”
technique, previously used in the context of super-resolution in [1, 2, 4, 5, 6] and references therein.

Remark 1.1. The same node vector x can be regarded as a clustered configuration with different
choices of the parameters (`, ρ, τ). For example, the vector x from the beginning of this section
(and also Figure 1) is both

(
∆, π2 − 2∆, 3, 2, 1

)
-clustered and

(
∆, ρ, 3, 3, π

2∆ − 1
)
-clustered, with any

ρ. To obtain as tight a bound as possible, one should choose the minimal ` such that the condition
(6) is satisfied for Ω within the range of interest. For instance, Ω might be too small if ρ is small
enough, however by choosing ` = s one is able to increase ρ without bound. See Figure 3 for a
numerical example.

Remark 1.2. The constant C1 is given explicitly in (30), and it decays in s like ∼ s−2s. We do not
know whether this rate can be substantially improved, however it is plausible that the best possible
bound would scale like c−` for some absolute constant c > 1.

For the case of finite N , one might be interested to consider the rectangular Vandermonde matrix
VN without any reference to Ω, i.e.

VN (ξ) :=
1√
2N

[
exp (ıkξj)

]j=1,...,s

k=−N,...,N (9)

for some node vector ξ = (ξ1, . . . , ξs). Our next result is the analogue of (7) in this setting, albeit
under an extra assumption that the nodes are restricted to the interval 1

s2

(
−π

2 ,
π
2

]
.

Corollary 1.1. There exists a constant C2 = C2 (s) such that for any 4τ∆ ≤ min
(
ρ, 1

s2

)
, any

ξ = (ξ1, . . . , ξs) ⊂ 1
s2

(
−π

2 ,
π
2

]
forming a (∆, ρ, s, `, τ)-clustered configuration, and any N satisfying

max

(
4πs

ρ
, 4s3

)
≤ N ≤ πs

τ∆
, (10)

we have
σmin (VN (ξ)) ≥ C2 · (N∆)`−1 . (11)

Proof. Let us choose Ω̃ := N
s2

so that for all j = 1, . . . , s we have

t̃j :=
Nξj

Ω̃
∈
(
−π

2
,
π

2

]
.
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Further define ∆̃ := s2∆, and ρ̃ := s2ρ. We immediately obtain that the vector x̃ :=
(
t̃1, . . . , t̃s

)
forms a

(
∆̃, ρ̃, s, `, τ

)
-clustered configuration according to Definition 1.1, and the rectangular Van-

dermonde matrix VN (ξ) in (9) is precisely VN
(
x̃, Ω̃

)
. Clearly, 4τ∆̃ ≤ s2ρ = ρ̃, and also

Ω̃s2 = N ≥ 4s3 =⇒ Ω̃

4s
≥ 1 =⇒ 2Ω̃

4s
>

⌈
Ω̃

4s

⌉
=⇒ N = Ω̃s2 > 2s3

⌈
Ω̃

4s

⌉
. (12)

Using (10), we obtain precisely the conditions (6) with Ω̃, ρ̃ in place of Ω, ρ respectively. Therefore
the conditions of Theorem 1.1 are satisfied for x̃, Ω̃, ρ̃, ∆̃, τ , and so (11) follows immediately from
(12) and (7), with C2 = C1.

Returning back to Theorem 1.1, it turns out that the bound (8) is asymptotically optimal.

Theorem 1.2. There exists an absolute constant η � 1 and a constant C3 = C3 (`) such that for
any 2 ≤ ` ≤ s and any ∆ satisfying ∆ < π

2(`−1) , there exists a (∆, ρ′, s, `, τ ′)-clustered configuration

xmin with s nodes and certain ρ′, τ ′ depending only on s, `, for which

λmin (G (xmin,Ω)) ≤ C3 · (∆Ω)2(`−1) , ∆Ω < η.

The proof of Theorem 1.2 is presented in Subsection 3.4. Numerical experiments validating the
above results are presented in Section 4.

1.3 Related work and discussion

Our main result has direct implications for the problem of super-resolution under sparsity con-
straints. For simplicity suppose that the nodes tj must belong to the grid of step size ∆. As demon-
strated in [11, 18] and several other works, the minimax error rate for recovery of sparse point mea-
sures f(t) =

∑s
j=1 ajδ(t− tj) from the bandlimited and inexact measurements {f̂ (ω)+e (ω) , |ω| ≤

Ω, ‖e‖2 ≤ ε} is directly proportional to ε · minx,|x|=2s

√
λmin (G (x,Ω)) where x is any vector of

length 2s. Moreover, it is established in those works that without any further constraints on the
support of f , the bound (5) holds and it is the best possible.

It is fairly straightforward to extend the results of [18] and [11] to our setting: if the support of f
is known to be partially clustered (as in Definition 1.1), then the minimax error rate will satisfy

inf
f̃

sup
f

sup
‖e‖≤ε

‖f̃ − f‖ ≈ (SRF)2`−1 ε (13)

for any estimator f̃ and the `2 norm ‖ · ‖ = ‖ · ‖2, and it will be attained by the intractable sparse
`0-minimization, with the additional restriction that the solutions should exhibit the appropriate
clustered sparsity pattern instead of the unconstrained sparsity.

A different but closely related setting was considered in the seminal paper [12], where the measure
f was assumed to have infinite number of spikes on a grid of size ∆, with one spike per unit of time
on average, but whose local complexity was constrained to have not more than R spikes per any
interval of length R. R is called the “Rayleigh index”, being the maximal number of spikes which
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can be clustered together (a related notion of Rayleigh regularity was introduced in [23]). It was
shown in [12] that the minimax recovery rate for such measures essentially scales like (13) where `
is replaced with R (the work [12] had a small gap in the exponents between the lower and upper
bounds, which was later closed in [11] for the finite sparse case). Our partial cluster model can
therefore be regarded as the finite-dimensional version of these “sparsely clumped” measures with
finite Rayleigh index, showing the same scaling of the error – polynomial in SRF and exponential
in the “local complexity” of the signal.

If the grid assumption is relaxed, then one might wish to measure the accuracy of recovery ‖f̃ − f‖
by comparing the locations of the recovered signal f̃ with the true ones {tj}. In this case, there
are additional considerations which are required to derive the minimax rate, and it is possible to
do so under the partial clustering assumptions. See [2, 6] for details, where we prove (13) in this
scenario, for uniform bound on the noise ‖e‖ := sup|ω|≤Ω |e (ω)|. The extreme case ` = s has been
treated recently in [4, 5].

In the case of well-separated spikes (i.e. clusters of size ` = 1), a recent line of work using `1
minimization ([9, 8, 13, 10] and the great number of follow-up papers) has shown that the problem
is stable and tractable.

Therefore, the partial clustering case is somewhat mid-way between the extremes ` = 1 and ` = s,
and while our results in this paper (and also in [6]) show that it is much more stable than in the
unconstrained sparse case, it is an intriguing open question whether provably tractable solution
algorithms exist.

Several candidate algorithms for sparse super-resolution are well-known – MUSIC, ESPRIT/matrix
pencil, and variants; these have roots in parametric spectral estimation [27]. In recent years, the
super-resolution properties of these algorithms are a subject of ongoing interest, see e.g. [14, 19, 25]
and references therein. Smallest singular values of the partial Fourier matrices VN , for finite N ,
play a major role in these works, and therefore we hope that our results and techniques may be
extended to analyze these algorithms as well.

2 Known bounds

2.1 Well-separated regime

Consider the well-separated case ∆Ω > 1, and let VN be as defined in (3), i.e. a rectangular
Vandermonde matrix with nodes zj,N = exp (ıξj,N ) on the unit circle with ξj,N = tj

Ω
N , so that

mini 6=j |ξi,N − ξj,N | := ∆N > 1
N .

Several more or less equivalent bounds on σmin (VN ) are available in this case, using various results
from analysis and number theory such as Ingham and Hilbert inequalities, large sieve inequalities
and Selberg’s majorants [17, 20, 24, 3, 21, 22, 15, 7].

The tightest bound was obtained by Moitra in [20], where he showed that if N − 1 > ∆−1
N then

σmin

(√
NVN

)
≥
√
N − 1− 1

∆N
.
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In our setting, we have ∆N = ∆Ω
N and so as N →∞ we obtain

σmin (VN ) ≥
√

1− 1

N
− 1

N∆N
→
√

1− 1

Ω∆
,

which is exactly (4).

2.2 Single clustered regime

Let us now assume SRF > 1, i.e. ∆Ω < 1 or, equivalently, mini 6=j |ξi,N − ξj,N | < 1
N .

If all the nodes tj are equispaced, say tj = t0 + j∆, j = 1, . . . , s, then the matrix G is the so-called
prolate matrix, whose spectral properties are known exactly [28, 26]. Indeed, we have in this case

Gi,j =
sin (Ω (ti − tj))

Ω(ti − tj)
=

sin (Ω∆ (i− j))
Ω∆ (i− j)

=
π

Ω∆
· sin (2πW (i− j))

π (i− j)
, W :=

Ω∆

2π
,

and therefore G = π
Ω∆ρ(s,W ) where ρ(s,W ) is the matrix defined in [26, eq. (21)]. The smallest

eigenvalue of ρ(s,W ), denoted by λs−1(s,W ) in the same paper, has the exact asymptotics for W
small, given in [26, eqs. (64,65)]:

λs−1 (s,W ) =
1

π
(2πW )2s−1C4(s) (1 +O (W )) , C4(s) :=

22s−2

(2s− 1)
(

2s−2
s−1

)3 , (14)

which gives
λmin (G) = C4 (s) (Ω∆)2s−2 (1 +O (Ω∆)) , Ω∆� 1,

proving (5).

The same scaling was shown using Szego’s theory of Toeplitz forms in [11] – see also Subsection
1.3. The authors showed that there exist C > 0 and y∗ > 0 such that for Ω∆ < y∗

C

16

(
sin

2Ω∆

π

)2s−2

≤ λmin (G) ≤ 16

(
sin

2Ω∆

π

)2s−2

.

Essentially the same result was obtained in [18], where the authors considered partial discrete
Fourier matrices

ΦM,N,S =
[
exp

(
−2πı

mn

N

)]
m,n

,

obtained from the un-normalized Discrete Fourier Transform matrix of size N × N by taking the
first M rows and an arbitrary set of S columns, with N � M and M � S. The authors showed
that as M,N →∞ with the ratio N

M fixed, we have the bound

σmin (ΦM,N,S) ≈
√
M

(
M

N

)S−1

,

which is attained for the configuration of consecutive S columns. In our equispaced setting, it is
easy to see that the matrix

√
NVN for N large is precisely ΦM ′,N ′,s with M ′ = N and M ′

N ′ = Ω∆.
Therefore the above result reduces to

σmin (VN ) ≈ (∆Ω)s−1 ,

which is the same as (5).
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3 Proofs

3.1 Blowup

Here we introduce the uniform blowup of a node vector x = (t1, . . . , ts) by a positive parameter λ,
and study the effect of such a blowup mapping on the minimal wrap-around distance between the
mapped nodes.

Lemma 3.1. Let x form a (∆, ρ, s, `, τ) cluster, and suppose that 4πs
ρ ≤ Ω ≤ πs

τ∆ . Then, for any

0 ≤ ξ ≤ 1 there exists a set I ⊂
[

Ω
2s ,

Ω
s

]
of total measure Ω

2sξ such that for every λ ∈ I the following
holds for every tj ∈ x:

‖λy − λtj‖T ≥ λ∆ ≥ ∆Ω

2s
, ∀y ∈ x(j) \ {tj}; (15)

‖λy − λtj‖T ≥
1− ξ
s2

π, ∀y ∈ x \ x(j). (16)

Furthermore, the set Ic :=
[

Ω
2s ,

Ω
s

]
\ I is a union of at most s2

2

⌈
Ω
4s

⌉
intervals.

Proof. We begin with (15). Let λ ∈
[

Ω
2s ,

Ω
s

]
, then λτ∆ ≤ π and since ‖tj−y‖T ≤ τ∆ we immediately

conclude that
‖λtj − λy‖T = λ‖tj − y‖T ≥ λ∆.

To show (16), let ν be the uniform probability measure on
[

Ω
2s ,

Ω
s

]
. Let tj ∈ x and y ∈ x \ x(j) be

fixed and put δ := ‖y − tj‖T. For λ ∈
[

Ω
2s ,

Ω
s

]
, let γ(λ) = γ(tj ,y)(λ) be the random variable on ν,

defined by
γ(tj ,y)(λ) := ‖λtj − λy‖T.

We now show that for any 0 ≤ α ≤ 1

ν
{
γ(tj ,y) (λ) ≤ απ

}
≤ 2α. (17)

Since δ ≥ ρ ≥ 4πs
Ω , we can write Ω

2s = 2π
δ (n+ ζ) where n ≥ 1 is an integer and 0 ≤ ζ < 1. We

break up the probability (17) as follows:

ν {γ (λ) ≤ απ} =

n∑
k=1

ν

{
γ (λ) ≤ απ

∣∣∣∣∣λ− Ω

2s
∈ 2π

δ
[k − 1, k]

}
ν

{
λ− Ω

2s
∈ 2π

δ
[k − 1, k]

}

+ ν

{
γ (λ) ≤ απ

∣∣∣∣∣λ− Ω

2s
∈ 2π

δ
[n, n+ ζ]

}
ν

{
λ− Ω

2s
∈ 2π

δ
[n, n+ ζ]

}
.

(18)

Now, consider the number a = y − tj . As λ varies between Ω
2s + 2(k−1)π

δ and Ω
2s + 2kπ

δ , the number
exp(ıλa) traverses the unit circle exactly once, and therefore the variable γ(λ) traverses the interval
[0, απ] exactly twice. Consequently,

ν

{
γ (λ) ≤ απ

∣∣∣∣∣λ− Ω

2s
∈ 2π

δ
[k − 1, k]

}
=

2απ

2π
= α.
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Similarly, when λ varies between Ω
2s + 2πn

δ and Ω
2s + 2π(n+ζ)

δ , we have

ν

{
γ (λ) ≤ απ

∣∣∣∣∣λ− Ω

2s
∈ 2π

δ
[n, n+ ζ]

}
≤ 2απ

2πζ
≤ α

ζ
.

Overall,

ν {γ (λ) ≤ απ} ≤ α n

n+ ζ
+
α

ζ

ζ

n+ ζ
= α

n+ 1

n+ ζ
≤ 2α,

proving (17).

It is clear from the above that {λ : γ (λ) ≤ απ} is a union of intervals, each of length 2απ, repeating
with the period of 2π

δ . Consequently the set
{
λ ∈

[
Ω
2s ,

Ω
s

]
: γ (λ) ≤ απ

}
is a union of at most

⌈
Ω
2s

δ
2π

⌉
intervals. Since δ ≤ π we have

⌈
Ω
2s

δ
2π

⌉
≤
⌈

Ω
4s

⌉
, and so the set

{
λ ∈

[
Ω
2s ,

Ω
s

]
: γ(tj ,y) (λ) ≤ απ

}
is a

union of at most
⌈

Ω
4s

⌉
intervals.

Now we put α0 = 1−ξ
s2

and apply (17) for every pair (tj , y) where j = 1, . . . , s and y ∈ x \ x(j). By
the union bound, we obtain

ν
{
∃tj∃y ∈ x \ x(j) : γ(tj ,y)(λ) ≤ α0π

}
≤
∑
tj ,y

2α0 = 2

(
s

2

)
1− ξ
s2

< 1− ξ. (19)

Fixing I as the complement of the above set, I =
[

Ω
2s ,

Ω
s

]
\
{
λ ∈

[
Ω
2s ,

Ω
s

]
: γ (λ) ≤ α0π

}
, we have

that I is of total measure greater or equal to ξ Ω
2s , and for every λ ∈ I the estimate (16) holds.

Clearly Ic is a union of at most s2

2

⌈
Ω
4s

⌉
intervals.

Fix ξ = 1
2 and consider the set I given by Lemma 3.1. Let us also fix a finite and positive integer

N , and consider the set of 2N + 1 equispaced points in [−Ω,Ω]:

PN :=

{
k

Ω

N

}
k=−N,...,N

.

Proposition 3.1. If N > 2s3
⌈

Ω
4s

⌉
, then PN ∩ I 6= ∅.

Proof. By Lemma 3.1, the set Ic consists of K ≤ s2

2

⌈
Ω
4s

⌉
intervals, and by (19) the total length of Ic

is at most Ω
4s . Denote the lengths of those intervals by d1, . . . , dK . The distance between neighboring

points in PN is Ω
N , and therefore each interval contains at most

djN
Ω +1 points. Overall, the interval

Ic contains at most
K∑
j=1

(
djN

Ω
+ 1

)
≤ Ω

4s

N

Ω
+K

points from PN , and since the total number of points in
[

Ω
2s ,

Ω
s

]
is at least N

2s , we have

|PN ∩ I| ≥
N

2s
− N

4s
−K ≥ N

4s
− s2

2

⌈
Ω

4s

⌉
> 0.
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3.2 Square Vandermonde matrices

Let ξ = (ξ1, . . . , ξs) be a vector of s pairwise distinct complex numbers. Consider the square
Vandermonde matrix

V(ξ) :=


1 1 . . . 1
ξ1 ξ2 . . . ξs
ξ2

1 ξ2
2 . . . ξ2

s
...

...
. . .

...

ξs−1
1 ξs−1

2 . . . ξs−1
s

 . (20)

Theorem 3.1 (Gautschi, [16]). For a matrix A = (ai,j) ∈ Cm×n, let ‖A‖ denote the `∞ induced
matrix norm

‖A‖∞ := max
1≤i≤m

∑
1≤j≤n

|ai,j |.

Then we have

‖V−1 (ξ) ‖∞ ≤ max
1≤i≤s

∏
j 6=i

1 + |ξj |
|ξj − ξi|

. (21)

Proposition 3.2. Suppose that ξ = (ξ1, . . . , ξs) is a vector of pairwise distinct complex numbers
with |ξj | = 1, j = 1, . . . , s, and let r ∈ R be arbitrary. Let

V (ξ, r) :=


ξr1 ξr2 . . . ξrs
ξr+1

1 ξr+1
2 . . . ξr+1

s

ξr+2
1 ξr+2

2 . . . ξr+2
s

...
...

. . .
...

ξr+s−1
1 ξr+s−1

2 . . . ξr+s−1
s

 . (22)

For 1 ≤ j < k ≤ s, denote by δj,k the angular distance between ξj and ξk:

δj,k :=

∣∣∣∣Arg

(
ξj
ξk

)∣∣∣∣ =
∣∣Arg(ξj)−Arg(ξk) mod (−π, π]

∣∣.
Then

σmin (V (ξ, r)) ≥ π1−s
√
s

min
1≤j≤s

∏
k 6=j

δj,k. (23)

Proof. Clearly, the matrix V (ξ, r) can be factorized as

V (ξ, r) = V (ξ, 0)× diag {ξr1, . . . , ξrs} .

Since V (ξ, 0) = V (ξ) as in (20), using (21) we immediately have

‖V−1 (ξ, r) ‖∞ ≤ 2s−1 max
1≤j≤s

∏
k 6=j
|ξj − ξk|−1. (24)

For any |θ| ≤ π
2 we have

2

π
|θ| ≤ sin |θ| ≤ |θ| ,
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and since for any ξj 6= ξk

|ξj − ξk| =
∣∣∣∣1− ξj

ξk

∣∣∣∣ = 2 sin

∣∣∣∣12 Arg
ξj
ξk

∣∣∣∣ = 2 sin

∣∣∣∣δj,k2

∣∣∣∣ ,
we therefore obtain

2

π
δj,k ≤ |ξj − ξk| ≤ δj,k. (25)

Plugging (25) into (24) we have

σmax

(
V−1 (ξ, r)

)
≤
√
s‖V−1 (ξ, r) ‖∞ ≤

√
sπs−1 max

1≤j≤s

∏
k 6=j

δ−1
j,k ,

which is precisely (23).

3.3 Proof of Theorem 1.1

We shall bound σmin (VN (x,Ω)) defined as in (3) for sufficiently large N . For any subset R ⊂
{−N, . . . , N} let VN,R, be the submatrix of VN containing only the rows in R. By the Rayleigh
characterization of singular values, it is immediately obvious that if {−N, . . . , N} = R1 ∪ · · · ∪RP
is any partition of the rows of VN then

σ2
min(VN ) ≥

P∑
n=1

σ2
min(VN,Rn). (26)

Let I be the set from Lemma 3.1 for ξ = 1
2 . By Proposition 3.1 we have that for all N > 2s3

⌈
Ω
4s

⌉
,

I will contain a rational multiple of Ω of the form λN = Ω
Nm for some m ∈ N.

Consider the ”new” nodes

uj,N := tj
Ω

N
m = tj

Ω

N

λNN

Ω
= λN tj , j = 1, . . . , s. (27)

Since λN ∈ I, we conclude by Lemma 3.1 that for every j = 1, . . . , s

‖uj,N − uk,N‖T ≥
1

2s
(∆Ω), ∀tk ∈ x(j) \ {tj}; (28)

‖uj,N − uk,N‖T ≥
π

2s2
, ∀tk ∈ x \ x(j). (29)

Since λN ≤ Ω
s it follows that ms ≤ N . Now consider the particular interleaving partition of the

rows {−N, . . . , N} by blocks R−m, . . . , R−1, R0, R1, . . . , Rm of s rows each, separated by m−1 rows

11



between them (some rows might be left out):

R0 = {0,m, . . . , (s− 1)m} ,
R1 = {1,m+ 1, . . . , (s− 1)m+ 1} ,
R−1 = {−1,−m− 1, . . . ,−(s− 1)m− 1} ,

. . .

Rm−1 = {m− 1, 2m− 1, . . . , sm− 1} ,
R−m+1 = {−m+ 1,−2m+ 1, . . . ,−sm+ 1} .

For n = −m+ 1, . . . ,m− 1, each VN,Rn is a square Vandermonde-type matrix as in (22),

VN,Rn =
1√
2N

V (ξ, n) ,

with node vector
ξ = {eıuj,N }sj=1 ,

where uj,N are given by (27). We apply Proposition 3.2 with the crude bound obtained from (28)
and (29) above:

min
1≤j≤s

∏
k 6=j

δj,k ≥
1

2s−1s2s−2
(∆Ω)`−1

and obtain

σmin (VN,Rn) ≥ C5(s)√
2N

(∆Ω)`−1 , C5(s) :=
1

(2π)s−1s2s−2
√
s
.

Now we use (26) to aggregate the bounds on σmin for each square matrix VN,Rn and obtain

λmin

(
VHNVN

)
= σ2

min (VN ) ≥ (2m− 1)
C2

5

2N
(∆Ω)2(`−1) .

Since m = λNN
Ω ≥ ΩN

2sΩ = N
2s and since by assumption N > 2s3, we have that 2m−1

2N ≥ 1
4s and so

σ2
min (VN ) ≥ C2

5

4s
(∆Ω)2(`−1) .

This proves (7) and (8) with

C1(s) :=
1

2(2π)s−1s2s−1
. (30)

3.4 Proof of Theorem 1.2

Let `, s,∆,Ω be fixed, with ∆Ω < η, where η will be specified during the proof below, and ∆ <
π

2(`−1) . We shall exhibit a (∆, ρ′, s, `, τ ′)-clustered configuration xmin with certain ρ′, τ ′, and a

corresponding approximate minimal eigenvector νmin of G (xmin,Ω), for which the Rayleigh-Ritz
quotient satisfies

RG(xmin,Ω) (νmin) :=
〈G (xmin,Ω) νmin, νmin〉

〈νmin, νmin〉
≤ C3 · (∆Ω)2(`−1) , (31)
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for some constant C3 = C3 (`).

Define x`,∆ = {t1, . . . , t`} to be the vector of ` equispaced nodes separated by ∆, i.e. tj = j∆, j =
1, . . . , `. Let G(`,`) = G (x`,∆,Ω) be the corresponding `× ` prolate matrix.

Proposition 3.3. There exists an absolute constant 0 < η1 � 1 and C6 = C6 (`) such that
whenever Ω∆ ≤ η1, we have

λmin

(
G(`,`)

)
≤ C6 · (Ω∆)2(`−1) . (32)

Proof. By Slepian’s results [26] elaborated in Section 2, there exists a constant η′ � 1 for which
(14) holds for all s, in particular for s = `, whenever W ≤ η′, i.e. whenever Ω∆ ≤ η1 := 2πη′.

We define xmin to be the extension of x`,∆ such that the remaining s− ` nodes are equidistributed
between −π

2 and 0, not including the endpoints. Under the assumptions on s, `,∆ specified in
Theorem 1.2, it is easy to check that the nodes t1, . . . , t` are between 0 and π

2 , while the remaining
nodes are separated at least by

ρ′ :=
π

2 (s− `+ 1)
. (33)

Therefore, xmin is a particular (∆, ρ′, s, `, τ ′)-clustered configuration according to Definition 1.1,
with ρ′ given by (33) and τ ′ := `− 1.

Now we construct the vector νmin. Let ν0 ∈ R` be the unit-norm eigenvector of G(`,`) corre-
sponding to the smallest eigenvalue λmin

(
G(`,`)

)
. In fact, ν0 is precisely the (`− 1)st discrete

prolate spheroidal sequence (DPSS) v
(`−1)
n

(
`, ∆Ω

2π

)
as defined in [26, eq. (18)]), index-limited to

n = 0, 1, . . . , `− 1. Let
νmin :=

[
ν0; 0(s−`)×1

]
∈ Rs.

By our choice of ν0 we have ‖νmin‖2 = 1. Now

RG(xmin,Ω) (νmin) = νTminG (xmin,Ω) νmin

= lim
N→∞

‖VN (xmin,Ω) νmin‖2

= lim
N→∞

‖VN (x`,∆,Ω) ν0‖2

= νT0 G(`,`)ν0

= λmin

(
G(`,`)

)
.

Using (32), this concludes the proof of (31) and of Theorem 1.2 with C3 = C6 and η = η1.

4 Numerical experiments

In order to validate Theorem 1.1, we computed λmin (G) for varying values of ∆,Ω, `, s and the
actual clustering configurations. We checked two clustering scenarios:
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10−1 100 101 102

SRF

10−30

10−20

10−10

100

1010

s=8, ℓ=4, ℓcl=1
λₘ
SRF2(1 − ℓ)ₘ
SRF2(1 − ℓ)

(a) s = 8, ` = 4, 1 cluster (configuration C1).

10−1 100 101 102

SRF

10−15

10−10

10−5

100

105

s=5, ℓ=2, ℓcl=2
λₘ
SRF2(1 − ℓ)ₘ
SRF2(1 − ℓ)

(b) s = 5, ` = 2, 2 clusters (configuration C2).

Figure 2: Decay rate of λmin as a function of SRF. Results of n = 1000 random experiments with varying

∆,Ω are plotted versus the theoretical bound (Ω∆)
2(`−1)

. The curve (Ω∆)
2(s−1)

is shown for comparison.
The bound stops to be accurate for SRF < O(1).

C1 A single equispaced cluster of size ` in [∆, `∆], with the rest of the nodes maximally separated
and equidistributed in

(
−π

2 , 0
)

(exactly as in the construction of xmin in Subsection 3.4). For
example, in the case s = 8, ` = 4 (as in Figure 2a) we have tj = j∆ for j = 1, . . . , 4, and
tj = −π

2 + (j − 4) π10 for j = 5, . . . , 8.

C2 Split the s nodes into two groups, and construct two single-clustered configurations as follows:

(a) s1 =
⌊
s
2

⌋
nodes, a single equispaced cluster of size `1 = ` in [∆, `∆], and the rest of the

s1 − `1 nodes maximally separated and equidistributed in
(
`∆, π2

)
;

(b) s2 = s− s1 nodes, a single equispaced cluster of size `2 = ` in
[
−π

2 + ∆,−π
2 + `∆

]
, and

the rest of the s2 − `2 nodes maximally separated and equidistributed in
(
−π

2 + `∆, 0
)
.

For example, in the case s = 5, ` = 2 (as in Figure 2b) we have t1 = ∆, t2 = 2∆ and
t3 = −π

2 + ∆, t4 = −π
2 + 2∆, t5 = −π

4 + ∆.

In each experiment we fixed `, s and one of the scenarios above, and run n = 1000 random tests
for varying ∆,Ω. The results are presented Figure 2.

In another experiment (Figure 3), we fixed ∆, `, s and changed Ω. As expected, when Ω became
small enough, the left inequality in (6) was violated, and indeed we can see that in this case the
asymptotic decay was ≈ SRF2(1−s). See Remark 1.1 for further discussion.

To check Theorem 1.2, we added the computation of the approximate smallest eigenvector νmin as
defined in Subsection 3.4. We compared the exact λmin (G (xmin,Ω)) with λmin

(
G(`,`)

)
, and found

them to be virtually indistinguishable, as is seen in Figure 4.
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101 102 103 104

SRF

10−25

10−20

10−15

10−10

10−5

s=4, ℓ=2, Δ=0.001, ℓcl=1

λₘ
SRF2(1− ℓ)

SRF2(1− ℓ)

(a) Configuration C1.

100.0 100.5 101.0 101.5 102.0 102.5

SRF

10−25

10−20

10−15

10−10

10−5

100 s=5, ℓ=2, Δ=0.01, ℓcl=2

λₘ
SRF2(1− ℓ)

SRF2(1− ℓ)

(b) Configuration C2.

Figure 3: Breakdown of cluster structure. When Ω is small enough, the assumptions of Theorem 1.1 are
violated for certain ` < s. As a result, the decay rate of λmin corresponds to the entire x being a single
cluster of size ` = s. ∆ is kept fixed. See Remark 1.1.

10−8 10−6 10−4 10−2 100

λₘ

10−8

10−6

10−4

10−2

100

Rₐ
(ν

ₘ)

s=5,ₘℓ=ℓ,ₘₐcl=1
λₘₘvsₘRₐ
id

(a) 1 cluster (configuration C1).

10−10.0 10−7.5 10−5.0 10−2.5 100.0

λₘ
10−10.0

10−7.5

10−5.0

10−2.5

100.0

Rₐ
(ν

ₘ)

s=7,ₘℓ=ℓ,ₘₐcl=2
λₘₘvsₘRₐ
id

(b) 2 clusters (configuration C2).

Figure 4: Minimal eigenvalue vs Rayleigh-Ritz quotient of the approximate minimal eigenvector. The values
are virtually indistinguishable, confirming the tightness of the bound in Theorem 1.2.
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