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SUMMARY

We detail a novel multichannel blind deconvolution (BD) al-
gorithm that extracts the cross-correlated or interferometric
Green’s functions from the records due to a single noisy source.
In this framework, we perform a least-squares fit of the cross-
correlated records, rather than the raw records, which greatly
reduces the indeterminacy inherent to traditional BD meth-
ods. To resolve the remaining degrees of freedom, we seek a
first approximation where the Green’s functions are “maximally
white”, and relax this requirement as the iterations progress.
This requirement is encoded as the focusing near zero lag of
the energy of the auto-correlated Green’s functions, hence we
call the method focused blind deconvolution (FBD). We demon-
strate the benefits of FBD using synthetic seismic-while-drilling
experiments to look around and ahead of a bore-hole. Here,
the noise due to the operation of the drill bit is not directly us-
able for reflection imaging, but FBD can provide the processing
needed to extract the noise signature without unrealistically as-
suming the drill noise to be uncorrelated. The interferometric
Green’s functions obtained from FBD can either be directly im-
aged or further processed to output the usual subsurface Green’s
functions. Note that FBD is designed for an acquisition where
the noise is recorded for a longer time period than the propaga-
tion time of the seismic waves e.g., as could be done during nor-
mal drilling operations. Traditional seismic imaging may now
be augmented by added information around and ahead of the
drill bit, potentially allowing less frequent traditional surveys.

INTRODUCTION

There are situations where seismic experiments are to be per-
formed in environments with a noisy source. The source gen-
erates unknown, noisy signals; one fails to dependably isolate
these signals despite deploying an attached receiver. For exam-
ple, the exact signature of the operating drill bit in a bore-hole
environment cannot be recorded (Haldorsen et al., 1995; Am-
inzadeh and Dasgupta, 2013). Imaging of these noisy-source
signals is only possible when they are analyzed to discover the
subsurface Green’s functions. This is the subject of seismic
interferometry (Schuster et al., 2004; Snieder, 2004; Shapiro
et al., 2005; Wapenaar et al., 2006; Curtis et al., 2006; Schus-
ter, 2009), where the cross-correlation between the records at
two receivers is treated as a proxy for the cross-correlated or
interferometric Green’s function. A summation on the interfer-
ometric Green’s functions over various noisy sources, evenly
distributed in space, will result in the Green’s functions due to
a virtual source at one of the receivers (Wapenaar and Fokkema,
2006). In the absence of multiple evenly distributed noisy sources,
the interferometric Green’s functions can still be directly used
for imaging (Claerbout, 1968; Draganov et al., 2006; Borcea
et al., 2006; Demanet and Jugnon, 2017; Vidal et al., 2014), al-
though this requires knowledge of the source signature. In the
present work neither an even distribution of the noisy sources,
nor knowledge of the source signature is assumed.

We assume that the recorded seismic traces can be modeled as
the output of a linear system that convolves (denoted by ∗) a
seismic source (with excitation s(t) at time t) with the earth’s
impulse response (Robinson and Treitel, 1980). Denote the

signal record at the ith receiver by di(t) and temporal cross-
correlation by ⊗, so that the observed

di j(t) = [di⊗d j](t) = [sa ∗gi j](t), (1)

that is, the goal of interferometry, construction of the interfero-
metric Green’s functions gi j= g j⊗g j given di j(t), is impeded
by the auto-correlation sa= s⊗ s of the source. Here, gi(t) is the
“ith Green’s function” i.e., the unique Green’s function g(~x, t)
evaluated at the receiver location~xi. In a situation with a zero-
mean white noisy source, the di j would be precisely propor-
tional to gi j; but this is not at all realistic, so we have developed
a better way.

In this paper, we first consider an unregularized least-squares
fitting problem that extracts the gi j from the di j at multiple
receivers. This corresponds to a multichannel deconvolution
(Amari et al., 1997; Douglas et al., 1997; Sroubek and Flusser,
2003) of the cross-correlated records in eq. 1, with an unknown
blurring kernel sa. We label this problem as interferometric
blind deconvolution (IBD) and demonstrate that it can only be
solved up to an indeterminacy due to a real and non-negative
filter in the frequency domain. Therefore, we add an additional
constraint to the IBD framework to focus the energy near zero
lag in the estimated gii. This constraint is then relaxed to en-
hance the data fit. We call the resulting algorithm focused blind
deconvolution (FBD). It can effectively retrieve the gi j, pro-
vided the following conditions are met:

1. the duration length of the unknown gi j should be much
briefer than that of the di j;

2. sufficiently dissimilar receivers record the noise.

In the seismic imaging context, the first condition is very con-
venient, as usual drilling practice enables us to record noise for
a time period much longer compared to the wave-propagation
time. We show that the second condition can be satisfied in most
practical situations. FBD is a mostly data-driven algorithm, in
the sense that it doesn’t require any velocity model or prior as-
sumption on the noisy source, although it does apply a type of
sparsity prior on the Green’s functions.

Deconvolution is also an important step in the processing work-
flow used by exploration geophysicists to improve the resolu-
tion of the seismic sections (Ulrych et al., 1995; Liu and Liu,
2003; Van der Baan and Pham, 2008). Spiking deconvolution
(Yilmaz, 2001) estimates a Wiener filter that increases the white-
ness of the seismic records, therefore, removing the effect of
the seismic sources. In blind deconvolution (BD∗) the chal-
lenge is that the source signature is unknown. It is widely used
for deblurring (Levin et al., 2011a,b), where an unknown blur
kernel contaminates the visually plausible sharp image. Severe
non-uniqueness issues are inherent to BD; there could be many
possible gi and s pairs whose convolution will result in the ob-
served data. In order to alleviate these non-uniqueness issues,
recent BD algorithms in geophysics: 1. take advantage of the
multichannel nature of the seismic data (Kaaresen and Taxt,
1998; Kazemi and Sacchi, 2014; Nose-Filho et al., 2015; Liu
et al., 2016); 2. sensibly choose the initial estimates of the gi
in order to converge to a desired solution (Liu et al., 2016);

∗Surveys of BD algorithms in the signal and image processing literature are given in
Kundur and Hatzinakos (1996) and Campisi and Egiazarian (2016).
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and/or 3. constrain the sparsity of the gi (Kazemi and Sacchi,
2014). Kazemi et al. (2016) used sparse multichannel BD to es-
timate source and receiver wavelets while processing land seis-
mic data. The BD algorithms in the current geophysics liter-
ature handle roughly impulsive source wavelets that are due to
well-controled sources, as opposed to the noisy sources in FBD,
about which we assume very little. It has to be observed that
building initial estimates of the gi is difficult for any algorithm,
as the functional distances between the di and the actual gi are
quite large. Unlike standard methods, FBD does not require
an extrinsic starting guess. Note also that regularization in the
sense of minimal L1 i.e., mean-absolute norm, as some meth-
ods employ, does not fully address the type of indeterminacy
described below in eq. 8.

The failure of seismic noisy sources to be white† is already
well known in seismic interferometry (Curtis et al., 2006; Vas-
concelos and Snieder, 2008). To extract a building response,
Snieder and Safak (2006) propose a deconvolution of the re-
corded waves at different locations in the building rather than
the cross-correlation. Seismic interferometry by multi-dimen-
sional deconvolution (Wapenaar et al., 2008, 2011; van der Neut
et al., 2011; Broggini et al., 2014) uses an estimated interfero-
metric point spread function as a deconvolution operator. The
results obtained from this approach depend on the accuracy of
the estimated point spread function, which relies on a uniform
distribution of multiple noisy sources in space. In contrast to
these seismic-interferometry-by-deconvolution approaches, our
FBD is designed to perform a blind deconvolution in the pres-
ence of a single noisy source. The reflection-imaging experi-
ments in this paper are similar to those of Tateno et al. (1998),
Vidal et al. (2014), Boullenger et al. (2014) and Nishitsuji et al.
(2016), except that we deal with a single noisy source at a
known location. In the presence of multiple noisy sources, as
a pre-process to FBD, one has to use techniques such as inde-
pendent component analysis for deblending (Bharadwaj et al.,
2017).

FOCUSED BLIND DECONVOLUTION

In this section, we will detail three different multichannel BD
algorithms for a single seismic noisy source. The gist of these
algorithms is a least-squares fitting of the (cross-correlated) di
to jointly optimize two variables i.e., the (cross-correlated) gi
and the (auto-correlated) s. The joint optimizations in these al-
gorithms can be suitably carried out using alternating minimiza-
tion (Ayers and Dainty, 1988; Sroubek and Milanfar, 2012): in
one cycle, we fix one variable and optimize the other, and then
fix the other and optimize the first. Several cycles are expected
to be performed to reach convergence. In order to effectively
solve these problems, it is required that the length of the (cross-
correlated) records at the receivers be longer than that of the
unknown (cross-correlated) Green’s functions (Ahmed et al.,
2015; Ahmed and Demanet, 2016).

We denote the time domains of s and gi by {t | 0≤ t ≤ T} and
{t | 0 ≤ t ≤ τ}, respectively. Here, τ denotes the propagation
time necessary for the seismic energy, including multiple scat-
tering, traveling from the source to a total of nr receivers, to
decrease below an ad-hoc threshold. Approximating the Earth
as a linear system, the recorded signals at the ith receiver are
given by a convolution of the source signature with the Green’s
functions: di(t) = [s ∗ gi](t). The data are measured only for

†For example, the noise generated by drill bit operations is heavily correlated in time
(Rector III and Marion, 1991; Joyce et al., 2001).

0 ≤ t ≤ T , so we are not assuming that the source is turned off
throughout that time interval, just as in usual drilling operations.

Definition 1 (LSBD: Least-squares Blind Deconvolution). It is
the most basic formulation, where both the unknown s(t) and
the unknown gi(t) are estimated given the recorded data di(t):

U(s,g j) =
∑

i

∑
t
{di(t)− [s∗gi](t)}2; (2)

(ŝ, ĝi) = argmin
s,gi

U (3)

subject to
∑

t
s2(t) = 1.

We have fixed the energy (i.e., sum-of-squares) norm of s in
order to resolve the scaling ambiguity. Note that the length T
of the first unknown variable s has to be greater than the length
τ of the second unknown variable gi. Later in this section, we
will discuss that the LSBD problem can only be solved up to
some indeterminacy.

Definition 2 (IBD: Interferometric Blind Deconvolution). This
reformulation deals with the cross-correlated records di j : {t |
−T ≤ t ≤ T} → R between every possible receiver pair (cf.,
Demanet and Jugnon, 2017). The optimization is carried out
over sa : {t | −T ≤ t ≤ T}→R and gi j : {t | −τ ≤ t ≤ τ}→R:

V (sa,gi j) =
∑
i, j

∑
t
{di j(t)− [sa ∗gi j](t)}2; (4)

(ŝa, ĝi j) = argmin
sa,gi j

V (5)

subject to sa(0) = 1.

During the minimization, we have conveniently fixed sa(0) in
order to resolve the scaling ambiguity. IBD also requires T > τ

and its indeterminacy is lesser compared to that of the LSBD
approach.

Definition 3 (FBD: Focused Blind Deconvolution). FBD starts
by seeking a solution of the underdetermined IBD problem where
the Green’s functions are “maximally white", as measured by
the concentration of their autocorrelation near zero lag. To-
wards that end, we use a regularizing term that penalizes the
energy of the autocorrelated Green’s functions gii at non-zero
lags, before returning to solving the regular IBD problem. This
prescription does not guarantee that the recovered interferomet-
ric Green’s functions are physical:

W (sa,gi j) =V (sa,gi j)+α

∑
i

∑
t

|t|
τ

g2
ii(t); (6)

(ŝa, ĝi j) = argmin
sa,gi j

W (7)

subject to sa(0) = 1.

Here, α > 0 is a regularization parameter. We consider a homo-
topy (Osborne et al., 2000) approach to solve FBD, where eq. 7
is solved in succession for decreasing values of α , the result ob-
tained for previous α being used as an initializer for the cycle
that uses the current α . In the numerical examples, we simply
choose α = ∞ first, and then α = 0.

Ill-posedness is the major challenge of BD, irrespective of the
number of receivers. For instance, when nr = 1, an undesir-
able minimizer for eqs. 2, 4 & 6 would be the Kronecker delta
for the second variable at the receiver, making the first variable
equal the record vector. To quantify the ambiguity of the LSBD
formulation, when nr ≥ 1, consider that a filter φ(t) and its in-
verse φ−1(t) (where φ ∗ φ−1 = δ ) can be applied to s and gi
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respectively, and leave their convolution unchanged:

di(t) = [s∗gi](t) = {[s∗φ ]∗ [gi ∗φ
−1]}(t). (8)

If furthermore s∗φ and gi ∗φ−1 obey the constraints otherwise
placed on s and gi, namely in our case that gi should be sup-
ported on 0≤ t ≤ τ , then we are in presence of a true ambiguity
not resolved by those constraints. We then speak of φ as be-
longing to a set P of undetermined filters (other than the iden-
tity). This formalizes the lack of uniqueness: For every φ ∈ P,
(ŝ ∗ φ , ĝi ∗ φ−1) is an additional possibly undesirable solution
that minimizes the least-squares functional in eq. 2, resulting in
non-uniqueness. Note that the indeterminacy, quantified by |P|,
reduces with increase in nr.

In the case of IBD, eq. 4 has similar unwanted minimizers, ob-
tained by applying a filter Φ to sa and Φ−1 to gi j , but it is easily
computed that in the frequency domain Φ̄ has to be real and
nonnegative. The set of filters P is now much smaller than in
the case of LSBD, hence the indeterminacy is greatly reduced
in the case of IBD.

The FBD approach uses the focusing constraint, as in eq. 6, to
resolve the remaining indeterminacy of IBD. Minimizing the
energy of the auto-correlated Green’s functions gii at non-zero
lags will result in a solution where the Green’s functions are
heuristically as white as possible. In other words, the intention
and key innovation of FBD is that the undetermined filter Φ,
which tends to have finite impulse response, is pushed onto the
source term sa as much as possible, where it is less harmful than
on the sparse gi j. It is difficult to achieve the same result with
standard ideas from sparse regularization.

For the success of FBD, it is also important that the receivers
and their data are sufficiently dissimilar. Receivers are said to
be sufficiently dissimilar unless there exists a spurious γ ∈P and
functions gi j such that the true interferometric Green’s func-
tion g0

i j = γ ∗gi j . Here, γ is a real and nonnegative filter in the
frequency domain (nontrivial in the sense that it is not com-
pletely frequency-independent), independent of the receiver in-
dex i, that causes indeterminacy of the IBD problem. In our
experiments, FBD reconstructs a good approximation of the
true interferometric Green’s functions if the receivers are suf-
ficiently dissimilar. Otherwise, FBD outputs an undesirable so-
lution (s0

a ∗ γ,gi j), as opposed to the true solution (s0
a,γ ∗ gi j),

where s0
a is the true auto-correlated source signature. In the next

section, we will show numerical examples with both similar and
dissimilar receivers for a subsurface model with single reflector.

IMAGING USING DRILL-BIT NOISE

The seismic-while-drilling experiments in this section, with ho-
mogeneous velocity cp = 2.9km/s, are classified into three sce-
narios that assume acoustic subsurface models. The goal of
these experiments is to reconstruct the subsurface interferomet-
ric Green’s functions gi j that contain: 1. the direct arrival from
the drill bit to the drill-string receivers — useful for determina-
tion of the background velocity; and 2. the scattered waves from
either horizontal or vertical reflectors due to a mass-density
contrast — necessary for imaging. The mass-density models
are shown in the Figures 1a–1c, where the drill bit and ten re-
ceivers, evenly spaced roughly 8m apart on either a vertical or
horizontal bore hole, are also marked. We used an acoustic
time-domain staggered-grid finite-difference solver for wave-
equation modeling. To generate the ‘observed’ data di, a band-
limited correlated drill-bit signal is injected for T = 2s. The sig-

Figure 1: Subsurface models used for drill-bit-noise numerical
experiments. a) Seismic impedance model with a horizontal
reflector and dissimilar receivers for FBD. b) Same as (a), but
with similar receivers. c) Model with two reflectors resulting
in strong multiple scattering. c) A section of the Marmousi II
P-wave velocity model with a deviated well.

Figure 2: For the drill-bit source used in the synthetic experi-
ments: (a) auto-correlation that contaminates the interferomet-
ric Green’s functions in the time domain — only 1% of T is
plotted; (b) power spectrum.

nal’s auto-correlation and power spectrum are plotted in the Fig-
ures 2a and 2b, respectively. The ‘true’ interferometric Green’s
functions g0

i j in Figures 3c, 3f and 3i, which we aim to recon-
struct, are generated following these steps: 1. get data for τ =
0.1s using a Ricker source wavelet (peak frequency of 400Hz);
2. create cross-correlated data; and 3. perform a determinis-
tic deconvolution on the cross-correlated data using the power
spectrum of the Ricker wavelet. Observe that we have chosen
the propagation time to be τ = 0.1s, such that T/τ = 20.

In all three scenarios, the drill bit’s auto-correlation contami-
nates the cross-correlated data di j, as plotted in Figures 3a, 3d
and 3g, which prevents extraction of both the direct and the
scattered arrivals of the true interferometric Green’s functions.
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Figure 3: FBD results corresponding to the seismic-while-
drilling experiments in: a)—c) Figure 1a; d)—f) Figure 1b;
g)—i) Figure 1c.

In the case of the first scenario, FBD results in a favorable out-
come ĝi j , as plotted in Figure 3b, because the receivers are suf-
ficiently dissimilar. For the second scenario, the FBD outcome
in Figure 3e doesn’t clearly depict the scattered arrivals because
of the receiver similarity, corresponding to the reflector being
parallel to the line of receiver positions. In this regard, observe
that the Figure-3f true interferometric Green’s functions at var-
ious receiver indices j differ only by a fixed time-translation
instead of curving as in Figure 3c. In fact, the receiver positions
in the second scenario are probably sufficiently dissimilar for
any other subsurface model than the one with only horizontal

Figure 4: FBD for the Marmousi experiment in Figure 1d.

reflectors; as an example, we look at the results using the third-
scenario model with two reflectors. FBD satisfactorily recovers
the interferometric Green’s functions, as plotted in Figure 3h,
even when there is multiple scattering due to two strong reflec-
tors.

Finally, we consider a more realistic scenario with a section of
the Marmousi cp model in Figure 1d and a deviated well. The
parameters for this scenario are the same as that of the previous
scenarios. The results in Figure 4 confirm that FBD doesn’t
suffer from the complexities in the subsurface models.

CONCLUSIONS

Focused blind deconvolution (FBD) extracts the interferometric
Green’s functions by least-squares fitting of the cross-correlated
records due to a single noisy source that can be a drill bit with
noise whose temporal correlations would stymie traditional meth-
ods. FBD focuses the energy of the auto-correlated Green’s
functions at the zero lag before aiming for an improved data
fit. It is a mostly data-driven algorithm that doesn’t demand any
velocity-model or noisy-source assumptions, designed for an
acquisition with longer record time (e.g., from normally sched-
uled drilling operations) than the wave-propagation time. We
have demonstrated the benefits of FBD using seismic-while-
drilling experiments to look around and ahead of a bore-hole.
FBD doesn’t guarantee that the recovered interferometric Green’s
functions are physical.
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