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Abstract

We introduce “wave atoms” as a variant of 2D wavelet packets obeying the parabolic scaling
wavelength ∼ (diameter)2. We prove that warped oscillatory functions, a toy model for texture,
have a significantly sparser expansion in wave atoms than in other fixed standard representations
like wavelets, Gabor atoms, or curvelets. We propose a novel algorithm for a tight frame of wave
atoms with redundancy two, directly in the frequency plane, by the “wrapping” technique. We
also propose variants of the basic transform for applications in image processing, including
an orthonormal basis, and a shift-invariant tight frame with redundancy four. Sparsity and
denoising experiments on both seismic and fingerprint images demonstrate the potential of the
tool introduced.
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1 Introduction

It has been known for some time that oscillatory textures sometimes enjoy reasonably sparse ex-
pansions in wave packet bases of various kinds, such as local cosines [32], brushlets [27], Gabor
atoms [26], wavelet packets [25] complex wavelets [22, 19, 29], or extensions thereof, like dual-tree
M-band wavelets [11, 12]. The rationale for these empirical successes is that good basis elements
should look like the function they are trying to approximate, i.e., they should oscillate somewhat.
A quantitative version of this statement would be desired, not only for its own sake, but because
it could feed back instructive guidelines on the design of the “right” wave packets for oscillatory
textures.

An example of quantitative success story is curvelets, which were designed for the purpose of
providing a sparse expansion of curved edges [8, 9], bandlimited wavefronts [7] and other geometric
features in images. Much is known about the approximation theory for curvelets [9]. Various
alternative transforms have since then been proposed for representing edges in images, often with
their own performance analysis as well: contourlets [17], bandelets [28], shearlets [24].
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As for texture representation however, the validation question is still open. Little is known on,
say, the decay of Gabor coefficients of “texture,” for the good reason that defining complicated
image patterns mathematically has proved to be quite difficult.

There is, however, a model that lends itself to analysis. In this paper we propose to study
warped oscillatory patterns in different wave packet bases. For such images we show that the
sparsity discussion reduces to a well-defined trade-off between competing features of the wave
packets, namely

• the ability to adapt to arbitrary local directions of a pattern, i.e., warpings; and

• the ability to sparsely represent anisotropic patterns aligned with the axes.

We show that a most advantageous compromise is achieved in some basis of wave packets that we
term wave atoms. In a nutshell, wave atoms “interpolate” exactly between directional wavelets [2]
and Gabor [26], in the sense that the period of the oscillations of each wave packet (wavelength) is
linked to the size of the essential support (diameter) by the parabolic scaling

wavelength ∼ (diameter)2.

(for wavelets, diameter ∼ wavelength, and for Gabor, diameter ∼ wavelength0 = const.) We argue
that wavelets, Gabor atoms and curvelets all yield worse asymptotic rates than wave atoms for the
model considered.

The name “wave atoms” comes from the property that they also provide an optimally sparse
representation of wave propagators, a mathematical result of independent interest, with applications
to fast numerical solvers for wave equations [16].

1.1 Classification of Phase-Space Tilings

To make our discussion concrete, we need to classify various wave-packet transforms as phase-space
tilings. In what follows we review the essential features of wavelets, Gabor, ridgelets, curvelets,
wave atoms, and explain how they all fit in a single picture. Interesting new transforms could
possibly emerge from a careful study of that picture.

We denote 2D wave packets as ϕµ(x1, x2), with index µ. Since a complete collection must
“span” all positions and frequencies, we see that wave packets are actually tiles in phase-space1.
Some tilings are more interesting than others. We say a tiling is universal if it treats democratically
all positions and orientations. In that case,

• the geometry of the tiling in space must be Cartesian, or approximately so; and

• the geometry of the tiling in frequency must be polar, or approximately so.

Universality as above suggests that two parameters should suffice to index a lot of known wave
packet architectures: α to index whether the decomposition is multiscale (α = 1) or not (α = 0);
and β to indicate whether basis elements are localized and poorly directional (β = 1) or, on the
contrary, extended and fully directional (β = 0).

In terms of phase-space localization of the wave packets, we will require that
1Phase-space is the set of all positions x and frequencies ω.
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Figure 1: Essential support of a wave packet with parameters (α, β), in space (left), and in frequency
(right). The parameter α indexes the multiscale nature of the transform, from 0 (uniform) to 1
(dyadic). The parameter β measures the wave packet’s directional selectivity, from β = 0 (best
selectivity) to β = 1 (poor selectivity). Wave atoms are the special case α = β = 1/2. On the left,
the dots indicate the grid over which wave packets corresponding to the same wave number should
be translated. On the right, the different wedges correspond to wave vectors at different scales and
angles.

• in x, the essential support of ϕµ(x) is of size ∼ 2−αj vs. 2−βj as scale j ≥ 0, with oscillations
of wavelength ∼ 2−j transverse to the ridge; and

• in frequency ω, the essential support of ϕ̂µ(ω) consists of two bumps, each of size ∼ 2αj vs.
2βj as scale j, at opposing angles and distance ∼ 2j from the origin.

These conditions are perhaps more easily grasped from Figure 1. These are the requirements we
put on each single wave packet. Then the collection of wave packets, corresponding to a choice
of α and β, should be indexed by various wave numbers and positions (put together in the single
index µ), so that the tiling of phase-space is compatible with the estimates above.

We hope that a description in terms of α and β will clarify the connections between various
transforms of modern harmonic analysis. Curvelets [8] correspond to α = 1, β = 1/2, wavelets
(including MRA [26], directional [2], complex [29]) are α = β = 1, ridgelets [4] are α = 1, β = 0,
and the Gabor transform is α = β = 0. Wave atoms are defined as the point α = β = 1/2. The
situation is summarized in Figure 2.

1.2 Trade-off: Warping Invariance vs. Directionality

Let us consider the following very simple model, a toy for anisotropic textures. We say that a
function is an oscillatory pattern if it is the image under a smooth diffeomorphism of a function
that oscillates only in one direction, say along the coordinate x1. Mathematically, we can put
x = (x1, x2) and formulate our model as

f(x) = sin(Ng(x))h(x), (1)
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Figure 2: Identification of various transforms as (α, β) families of wave packets. The triangle
formed by wavelets, curvelets and wave atoms indicates the wave packet families for which sparsity
is preserved under diffeomorphisms. The range of allowable transforms presumably extends beyond
some of the limits shown.

where both g and h are C∞ scalar functions, h is assumed to be compactly supported inside [0, 1]2,
and N is a large constant. We are idealizing a digital image as a function, yet we should think of N
as smaller or comparable to the number of pixels of the underlying image in some direction, either
x1 or x2.2 Of course, using cosine instead of sine in (1) would work just fine.

Equation (1) may be too restrictive to qualify as a fully-fledged texture model, but it is nonethe-
less adequate in a variety of physically relevant contexts, like seismic imaging and astronomy. More
details can be found in Sections 1.3 and 4.

Let us return to the question of finding an adequately sparse representation for functions in the
class defined by (1), for example in the sense of membership of the coefficients in some `p space,
for p small. We will assume that g, h and N are unknown to us, as we are not concerned with
adaptive procedures aimed at determining them from the (possibly noisy) data.

• First, we require that sparsity be preserved under warpings, i.e., smooth diffeomorphisms.
This corresponds to the reasonable requirement that compressibility should not depend on
the choice of local coordinates. It is a somewhat deep result that smooth diffeomorphisms are
bounded on every `p space, p > 0, provided the frame of wave packets obeys 1/2 ≤ β ≤ α,
in the classification introduced above. This restriction corresponds to the shaded triangle in
Figure 2. Intuitively, for β ≥ 1/2 the spatial extend of each wave packet is small enough that

2Bandlimited functions oscillating with local wavelength of order 1/N can be correctly discretized on an N -by-N
grid, by the Shannon sampling theorem, hence the heuristic about the number of pixels. Our function f is not
bandlimited, so sampling will not be exact, but the heuristic is nevertheless relevant.
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warping due to the diffeomorphism is under control.

• Second, we also wish to maximize sparsity of template oscillatory profiles, from which the
more general functions can be obtained by warping. In the example (1), this means studying
sin(Nx1)h(x), a function oscillating only in the x1 direction. The Fourier transform, or Gabor
atoms are ideal for this task; it is easy to see that they each only require a constant number of
coefficients (independent of N) to approximate sin(Nx1)h(x) to fixed accuracy. Gabor atoms
correspond to the point α = β = 0 in Figure 2.

The two above requirements are contradictory, but a good compromise is the point α = β = 1/2
corresponding to wave atoms. We prove the following result in Section 2.

Theorem 1.1. Let f be of the form (1) for some N , with g and h of class C∞, and h compactly
supported inside [0, 1]2. Assume g has no critical points. Then f can be represented to accuracy
ε in L2 by the largest Cε N wave atom coefficients in absolute value, where for all M > 0, there
exists CM > 0 such that Cε ≤ CM ε−1/M .

In other words, O(N) wave atom coefficients suffice to represent f to some given accuracy.
In contrast, as we will argue, we would need O(N3/2) curvelets coefficients; or O(N2) wavelet
coefficients; or O(N2) Gabor coefficients to represent f up to the same accuracy.

Notice that wave atoms are a fixed transform and that the knowledge of N is not needed to
define the transform.

1.3 Importance

Oscillatory patterns are not only ubiquitous in natural images, but also in some inverse imaging
problems involving oscillatory data.

The seismograms, or codas, from reflection seismology are the single most relevant example of
oscillatory data that we have in mind. Seismology is concerned with imaging the interior of the
Earth, both for pressing scientific and industrial purposes. The inverse problem amounts to finding
the physical parameters (like index of refraction of the different geological layers) from petabytes3

of noisy reflected wave measurements at the surface (like earthquake waves). Both the data and the
unknown physical parameters are oscillatory, in the manner modeled by equation (1). There are
by now serious indications that several tasks could be realized more efficiently if an adequate basis
were available, like formulating Bayesian priors for various denoising, recovery and data separation
problems [20, 21]; speeding up numerical computation of wave propagation and Generalized Radon
Transforms [16]; compressing/downsampling seismic databases; redefining seismic migration; etc.
Stylized compression and denoising experiments on a synthetic seismic dataset are presented in
Section 4.

Astronomy and astrophysics also comes with its share of interesting oscillatory data. For in-
stance, the spectacular pictures of the sun acquired by the TRACE satellite seem ideal to help
understand the physics behind formation of the sun’s coronal magnetic loops. Any study of this
kind should start with the proper detection, extraction, or even parameterization of these loops,
for which, to our knowledge, the appropriate tools are still missing [1].

Finally, the Federal Bureau of Investigation (FBI) is currently digitizing their fingerprint image
database using a wavelet scheme with scalar quantization [3]. We believe that fingerprint images

31 petabyte = 1015 bytes.
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fall into the category of oscillatory patterns considered here; hence wave atoms coupled with a
clever quantization scheme may be of interest as a novel compression tool. See also the numerical
experiments in Section 4.

1.4 Organization

The rest of the paper is organized as follows. In Section 2, we discuss and prove the efficiency of
wave atoms for the sparse representation of oscillatory patterns. In the light of that discussion,
Section 3 presents our choice of implementation for wave atoms. Finally, in Section 4, we present
elementary image compression and denoising experiments, related to the areas of application evoked
above.

2 Sparse Representation of Oriented Textures

2.1 Definition of Wave Atoms

In what follows we restrict the exposition to two dimensions, and write x = (x1, x2), although this
restriction is not essential. Our convention for the 2D Fourier transform is

f̂(ω) =
∫
e−ix·ωf(x) dx, f(x) =

1
(2π)2

∫
eix·ωf̂(ω) dω.

We write wave atoms as ϕµ(x), with subscript µ = (j,m,n) = (j,m1,m2, n1, n2). All five
quantities j,m1,m2, n1, n2 are integer-valued and index a point (xµ, ωµ) in phase-space, as

xµ = 2−jn, ωµ = π2jm, C12j ≤ max
i=1,2

|mi| ≤ C22j . (2)

where C1, C2 are two positive constants left unspecified for convenience, but whose values will be
implied by the specifics of the implementation. Heuristically, the position vector xµ is the center of
ϕµ(x) and the wave vector ωµ determines the centers of both bumps of ϕ̂µ(ω) as ±ωµ. Note that
the range of m needs to be further reduced to m2 > 0, (or m2 = 0 and m1 > 0,) to account for
the central symmetry of the Fourier transform of real-valued functions about the origin in ω. Some
further restriction on n (cutoff in space) and j (cutoff in scale), are of course necessary in practice,
but not for the description of a frame of L2(R2).

Wave atoms then need to obey a localization condition around the phase-space point (xµ, ωµ).

Definition 2.1. (Wave Atoms) Let xµ and ωµ be as in equations (2) for some C1, C2. The elements
of a frame of wave packets {ϕµ} are called wave atoms when

|ϕ̂µ(ω)| ≤ CM · 2−j(1 + 2−j |ω − ωµ|)−M + CM · 2−j(1 + 2−j |ω + ωµ|)−M , for all M > 0, (3)

and
|ϕµ(x)| ≤ CM · 2j(1 + 2j |x− xµ|)−M , for all M > 0. (4)

It is of course possible to restrict the decay order or even moderately alter the definition of
xµ and ωµ—and still call the basis functions “wave atoms”—but this is a refinement we will not
address here.
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The parabolic scaling is encoded in the localization conditions as follows: at scale 2−2j , or
frequency |ωµ| ∼ 22j , the essential frequency support is of size ∼ 2j (for each bump) and the
essential spatial support is of size ∼ 2−j . The oscillations within the envelope of a wave atom in x
have wavelength ∼ 2−2j . Note that the subscript j indexes the different “dyadic coronae,” whereas
the additional subscript m labels the different wave numbers ωµ within each dyadic corona.

Our choice of indexing wave atoms using j and m may seem cumbersome, but it follows closely
the standard notation for wavelet packets. See Section 3 and Chapter 8 in [26].

2.2 Sparsity: Heuristics

Theorem 1.1 states that an oscillatory object such as f(x) = sin(Ng(x))h(x), where both g and h
are non-oscillatory, can be represented to high accuracy with O(N) wave atom coefficients. This
result can be understood intuitively as follows.

The scale index j can take on any positive integer value, but the scale of oscillations of f is
about j∗ = 1

2 log2N . Without loss of generality, we can concentrate on j = j∗, because functions
oscillating at very different frequencies result in very small inner products.

The translation step at scale j∗ is ∼ 2−j
∗

= 1√
N

, in both directions. Let us therefore imagine a

square grid of stepsize 1√
N

overlaid, say, on the unit square. For every point n = (n1, n2) on that
grid, there are a lot of potentially large wave atom coefficients, corresponding to the wave number
subscript m.

However, on a length scale ∼ 1√
N

, the function f oscillates in one direction only, with definite
wavelength, meaning that its energy is strongly localized in frequency. More precisely, the wave
numbers (frequencies) spanned by f in such a neighborhood are contained in a ball of radius ∼

√
N

in the ω-plane, at a distance O(N) from the origin. This is exactly the scaling of wave atoms: as
a result, essentially one wave number m will contribute in the wave atom expansion of f around
the point (n1, n2). Of course in practice “one wave number” may become a small, fixed number Cε
depending on the desired accuracy ε.

The overall number of wave atom coefficients necessary to represent f is therefore proportional
to the number of grid points at scale 1√

N
, that is O(N) in 2D.

We can perform the same type of analysis to study sparsity in other domains; the result would
be the following.

• Wavelets: O(N2) coefficients. For wavelets at scale j∗ ' log2N , the translation step is
O(1/N). All the wavelet coefficients on the N -by-N grid can be expected to be of comparable
magnitude. As a result, we can expect to require O(N2) wavelet coefficients to encode f (i.e.,
almost all the coefficients until scale j∗.)

• Gabor and nonadaptive local cosines: O(N2) coefficients. Gabor atoms [26] are indexed by
the wave number m (taking on O(N2) values) and the position index n (taking on O(1)
values once m is fixed.) The spatial translation step is O(1) and independent of m. At a
scale O(1) the function f does not have a definite frequency content; rather, it oscillates in
all possible directions. As a result, most of the O(N2) directions will be needed, resulting in
O(N2) Gabor atom coefficients.

• Curvelets: O(N3/2) coefficients. Curvelets [9, 6] come at different scales, orientations and
locations. A good heuristic for curvelets is that large coefficients correspond to directions
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aligned with the oscillations. Since the essential support of a curvelet at scale j∗ ∼ log2N
is of size ∼ 2−j

∗
-by-2−j

∗/2, we would need O(N3/2) coefficients to tile the unit square, hence
represent f accurately. One way to explain why curvelets are inferior to wave atoms is that
curvelets only capture the coherence of the pattern along the oscillations, not across.

• Wavelet packets. It is a natural question to ask whether a proper tree of wavelet packets,
implementing the parabolic scaling of wave atoms, would do as good a job at sparsity of oscil-
latory patterns. The answer is likely negative, because wavelet packets built from filterbanks
do not have adequate frequency localization [30, 34]. We will discuss this phenomenon further
in Section 3.1.

Of course the heuristics concerning wave atoms need to be made precise, which is the subject
of the next section.

2.3 Sparsity: Proof

In this section, we prove Theorem 1.1.
Let us start by noticing that the function g in (1) has the interpretation of a warping, because

it has been assumed not to have any critical point; in other words, it can be taken as the first
component of a diffeomorphism g : R2 → R2. We can therefore define the oscillating profile
pre-warping as

f̃(x) = sin(Nx1)h(g−1(x)). (5)

We study g and h separately, and split the proof accordingly by means of two lemmas. We will
detail at the end how the two lemmas should be combined.

Lemma 2.2. Let u ∈ L2(R2), and g a C∞ diffeomorphism. If the wave atom coefficients of u
belong to the unit ball in `p for some p > 0, then the wave atoms coefficients of u ◦ g belong to a
ball of radius R in the same `p space, where R only depends on the smoothness constants of g.

Proof. A smooth diffeomorphism like g(x) is a special case of an operator known as a Fourier
Integral Operator, because we can write, for any (well-behaved) function u(x), that

u(g(x)) =
1

(2π)2

∫
eig(x)·ωû(ω) dω.

Such oscillatory integrals and their generalizations were studied in [5, 6], where it was shown
(among other results) that they preserve the `p sparsity in curvelets. The necessary phase-space
localization properties of curvelets are also shared by wave atoms: a careful inspection of the main
argument in [6] would show that it generalizes mechanically. The definition of pseudo-distance for
wave atoms, and the related almost-orthogonality result, can be found in [16].

Lemma 2.3. Let f̃ be given by (5). Then for all 0 < p < 2 the wave atom coefficients of f̃ belong
to `p, with norm no greater than

CpN
1
p
− 1

2 ,

for some constant Cp > 0 depending on p.
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Proof. We use the notation 〈ω〉 =
√

1 + |ω|2 throughout, not to be confused with the inner product.

Let N1 = πN

(
1
0

)
. Since h ◦ g−1 is smooth, the frequency localization estimate for f̃ is

ˆ̃
f(ω) ≤ CM · (〈ω −N1〉−M + 〈ω + N1〉−M ),

for all M > 0. On the other hand, the estimate (3) implies that wave atoms have two bumps in
frequency, of the form 2−jψ̂(2−jω±m) for some ψ in the Schwartz class. Without loss of generality
we can discard one of these bumps, and bound the wave atom coefficient cj,m,n of f by

|
∫

ˆ̃
f(ω)2−jψ̂(2−jω −m) dω| ≤ 2−jCM · 〈2jm−N1〉−M .

This bound is valid uniformly over the O(22j) values taken on by the position index n. The p-th
power of the `p norm of the coefficients is then bounded by∑

j

∑
m,n

|cj,m,n|p ≤ CM ·
∑
j

∑
m

22j |2−j〈2jm−N1〉−M |p.

In this remaining sum, the terms decay near-exponentially away from j∗ = 1
2 log2(N), and m∗ =

2−jN1. The overall sum is therefore bounded by a constant times 22j∗2−j
∗p, i.e., a constant times

N1−p/2.

With Lemmas 2.2 and 2.3 at our disposal, we are now ready to prove the main theorem.

Proof of Theorem 1.1. The L2 error of the best M -term wave atom approximant fM obeys

‖f − fM‖22 ≤ C ·M
1− 2

p · ‖c‖2`p ,

where 0 < p < 2 and c are the wave atom coefficients of f . See [26], Chapter 9, p. 390 for a proof.
We would like to make this error smaller than ε2, implying that it is enough to keep M∗ coefficients,
with

M∗ ≥ Cp · ε
2p

p−2 · ‖c‖
2p

2−p

`p
.

By Lemmas 2.2 and 2.3, the wave atoms coefficients of f belong to `p for all p > 0, with bound

‖c‖`p ≤ N
1
p
(1− p

2
). Substituting above gives the desired result,

M∗ ≥ Cp · ε
2p

p−2 ·N,

valid for arbitrarily small p > 0.

We would like to remark that Theorem 1.1 generalizes in a straightforward manner to slightly
less smooth texture patterns, namely of the form

f ](x) = sin(Ng(x))h(
√
Nx), (6)

with g and h smooth, and h supported inside [0,
√
N ]2, say. Again, onlyO(N) wave atom coefficients

suffice to represent f up to given accuracy. The proof would be very similar. In fact, wave atoms
qualify as an optimal transform for the model (6), because f itself contains O(N) degrees of freedom.
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Let us conclude this section by remarking the central and nontrivial role of Lemma 2.2; the rest
of the analysis is quite secondary and straightforward in comparison. We believe that invariance of
sparsity under diffeomorphisms is an important notion, which could prove fruitful in other contexts
as well. For instance, Emmanuel Candès and the authors believe that the proof of the main
approximation result for curvelets in [9] can be quite simplified using invariance of curvelet sparsity
under diffeomorphisms.

3 Digital Wave Atoms

3.1 Implementation of Wave Atoms: 1D Warmup

In practice, wave atoms will be constructed from tensor products of adequately chosen 1D wave
packets.

We will first build a one-dimensional family of real-valued wave packets ψjm,n(x), j ≥ 0,m ≥
0, n ∈ Z, centered in frequency around ±ωj,m = ±π2jm, with C12j ≤ m ≤ C22j ; and centered
in space around xj,n = 2−jn. The one-dimensional version of the parabolic scaling dictates that
the support of (each bump of) ψ̂jm,n(ω) be of length O(2j) while ωj,m = O(22j). The desired
corresponding tiling of frequency is illustrated at the bottom of Figure 3.

Filterbank-based wavelet packets naturally come to mind as a potential definition of an or-
thonormal basis satisfying these localization properties. They also come with fast algorithms. The
wavelet packet tree, defining the partitioning of the frequency axis in 1D, can be chosen to have
depth j when the frequency is ∼ 22j , as illustrated in Figure 3. However, there is a well-documented
problem associated with standard wavelet packets, namely that the sense in which they satisfy fre-
quency localization is rather weak. It is an unavoidable feature of the filterbank architecture that
the uncertainty (product of time and frequency deviations) increases with the frequency, instead
of remaining close to the Heisenberg bound. For references for precise estimates of the “wavelet
packet curse,” see [30, 34]. As a result, in our context, we cannot hope to satisfy the wave atom
definition using basis functions which come from a wavelet packet analysis.

An elegant solution to the frequency localization problem was given by Lars Villemoes in [34].
The trick consists in exhibiting adequate symmetric pairs of compactly supported bumps in fre-
quency, given by the formula

ψ̂0
m(ω) = e−iω/2

[
eiαmg(εm(ω − π(m+

1
2

))) + e−iαmg(εm+1(ω + π(m+
1
2

)))
]
, (7)

where εm = (−1)m and αm = π
2 (m + 1

2). The function g is an appropriate real-valued, C∞ bump
function, compactly supported on an interval of length 2π, and chosen such that∑

m

|ψ̂0
m(ω)|2 = 1.

Then the translates {ψm(t − n)} form an orthonormal basis of L2(R). This construction provides
a uniform tiling of the frequency axis,4 in the sense that every bump in frequency has the same
support size, 2π. We note in passing that Villemoes’s construction is not very different from the
Wilson basis of Daubechies, Jaffard and Journé [15].

4For specialists, the secret to avoiding the Balian-Low no-go theorem is to use two bumps in frequency.
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Multiscale tilings like the one in Figure 3 can be obtained by combining dyadic dilates and
translates of ψ̂0

m on the frequency axis. We need to introduce the subscript j to index scale, and
write our basis functions as

ψjm,n(x) = ψjm(x− 2−jn) = 2j/2ψ0
m(2jx− n).

To preserve orthonormality of the ψjm,n(x), the profile g needs to be asymmetric in addition to all
the other properties, in the sense that

g(−2ω − π

2
) = g(

π

2
+ ω)

for ω ∈ [−π/3, π/3], with g itself supported on [−7π/6, 5π/6]. We say g(ω) is “left-handed”, whereas
g(−ω) is “right-handed”. As a result, the uniform partitioning of the frequency axis is obtained
as an alternating sequence of staggered right-handed and left-handed bumps. On the positive part
of the frequency axis, a scale doubling can be achieved by concatenating two right-handed bumps
at scales differing by a factor 2. Figure 3, bottom row, depicts the Villemoes system where three
scale doublings have been implemented. Let us remark in passing that scale halving could be
implemented using left-handed bumps at different scales, but scale quadrupling is impossible using
the present scheme.

As for labeling, note that the couple (j,m) refers to a point on the wavelet packet tree; the
depth at that point is J − j, where J is the maximum depth, and m can be interpreted as the
number of nodes on the left at the same depth (nodes are not necessarily leaves). This is the
standard indexing scheme for wavelet packets used in [26]. The translation step is now 2−j at scale
j, whereas each bump in frequency is supported on an interval of length 2j × 2π. Choosing the
“parabolic tree” as in Figure 3 amounts to specifying the wave vector ωj,m, defined as the center
of the positive frequency bump, as

ωj,m = π2jm ∼ 22j

More precisely, the admissible values for m are in the interval [2j−1 + 1, . . . , 2j+1 + 1], when j ≥ 2.
The resulting basis of wavelet packets {ψjm,n(x)} is orthonormal for L2(R).

The implementation of Villemoes wavelet packets is rather straightforward in the frequency
domain. For each wave number ωj,m, the coefficients cj,m,n can be seen as a decimated convolution
at scale 2−j ,

cj,m,n =
∫
ψjm(x− 2−jn)u(x) dx,

By Plancherel,

cj,m,n =
1

2π

∫
ei2

−jnωψ̂jm(ω)û(ω) dω.

Assuming that the function u is accurately discretized at xk = kh, h = 1/N , k = 1, . . . , N , then
up to some small truncation error,

cj,m,n ' cDj,m,n =
∑

k=2π(−N/2+1:1:N/2)

ei2
−jnkψ̂jm(k)û(k). (8)
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This equation makes sense for couples (j,m) for which the support of ψ̂jm(k) lies entirely inside the
interval [−πN, πN ], so we may write k ∈ 2πZ for the index range5.

If the windowed data ψ̂jm(k)û(k) were supported in an interval of length 2j × 2π, then the sum
(8) could be restricted to values of k inside that interval, and computed efficiently using a reduced
inverse FFT, of size 2j (to match the 2−j in the exponent). In reality the support properties of g
are such that the windowed data is supported inside two disjoints intervals of size 2j+1π, symmetric
about the origin, hence on 2j+1 points. The sum (8) can still be computed by a reduced inverse
FFT provided ψ̂jmû is first folded by 2j+1π-periodicity inside an interval of size 2j+1π centered
about the origin:

cDj,m,n =
∑

k=2π(−2j/2+1:1:2j/2)

ei2
−jnk

∑
p∈2πZ

ψ̂jm(k + 2jp)û(k + 2jp). (9)

We have used the fact that [2−jn(k + 2jp)] mod 2π = [2−jnk] mod 2π to go from equation (8)
to equation (9). Notice that the sum over p has only two nonzero terms, because of the size
of the support of ψ̂jm(k), and is therefore very cheap to compute. Figure 4, top row, illustrates
this operation, which we call “wrapping”. The outer sum over k can then be computed using an
inverse FFT. The wrapping trick was already used for the implementation of the discrete curvelet
transform, see [7]. The simple algorithm for wavelet packets is then the following.

• Perform a FFT of size N of the samples u(xk).

• For each pair (j,m), wrap the product ψ̂jmû by periodicity inside the interval [−2jπ, 2jπ] (this
is the sum over p in (9)). Then perform an inverse FFT of size 2j of the result to obtain
cDj,m,n.

• Repeat over (j,m).

The complexity of each inverse FFT at scale j is O(j2j), and there are O(2j) frequency bumps
at scale j, indexed by m, so the total complexity is∑

0≤j≤J
O(j22j) = O(J22J) = O(N logN),

with N = 22J .
Since the cDj,m,n are coefficients in an orthonormal basis, the inverse transform is simply the

adjoint and can be computed by reversing all the steps in the above algorithm.

• For each (j,m), perform a FFT in n of cj,m,n, of size 2j , unwrap the result on the frequency
axis around the support of ψ̂jm (that is also a sum over p, as in (9)), and multiply the
unwrapped data with ψ̂jm.

• Sum the contributions corresponding to all the couples (j,m).

5For those very few couples (j,m) such that ψ̂j
m(k) lies on the boundary k = ±πN , the window ψ̂j

m(k) needs to
be copied by 2πN -periodicity to the other side of the frequency domain, in such a way as to preserve orthonormality.
Let us only mention that this is possible and implemented in the code.
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π2jm ∼22j

ω

2π j2

0

LH RH

Figure 3: The wavelet-packet tree corresponding to wave atoms. Textbook material on wavelet
packet trees can be found in [26], Chapter 8. The bottom graph depicts Villemoes wavelet packets
on the positive frequency axis. The dot under the axis indicates a frequency where a change of
scale occurs. The labels “LH”, respectively “RH” indicate a left-handed (m even), respectively
right-handed window (m odd).

• Perform an inverse FFT, of size N , to obtain u(xk).

Likewise, the complexity of the inverse transform is O(N logN).
The decomposition into two bumps, of positive and negative frequency respectively, can be

written
ψ̂jm,n(ω) = ψ̂jm,n,+(ω) + ψ̂jm,n,−(ω), (10)

with the symmetry relation ψ̂jm,n,−(ω) = ψ̂jm,n,+(−ω), which owes to the real-valuedness of ψjm,n.
After performing a Hilbert transform, Hψjm,n is another orthonormal basis of L2(R). In the fre-
quency domain, Hilbert transformation amounts to taking a linear combination of the two bumps6

with weights (−i, i) instead of (1, 1):

Ĥψjm,n(ω) = −iψ̂jm,n,+(ω) + iψ̂jm,n,−(ω). (11)

Although we made a point that the Villemoes basis functions do not come from a standard
multiresolution analysis, we still continue to call them “wavelet packets” in what follows.

3.2 Implementation of Wave Atoms: 2D Extension

Two-dimensional orthonormal basis functions with 4 bumps in the frequency plane can be formed by
individually taking products of 1D wavelet packets. As we did in earlier sections, let us abbreviate

6Strictly speaking, the name “Hilbert transform” for equation (11) is valid for all wave numbers except m = 0
near the origin. In this latter case, the two bumps overlap and the linear combination (11), although not the Hilbert
transform, is the proper way to define an orthobasis. In fact, analyzing with (10), then reconstructing with (11) looks
like an intriguingly nice way to approximate the continuous Hilbert transform on a finite interval.
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Figure 4: Top row : Standard, Fourier wrapping in the case j = 0 and m = 3. The windowed data
is copied by 2π-periodicity inside the interval [−π, π]. Bottom row : One-sided Fourier wrapping in
the case j = 0 and m = 3. In the case of a single frequency bump, the wrapped windowed data
does not overlap, signaling the absence of aliasing.

µ = (j,m,n), where m = (m1,m2) and n = (n1, n2). We write

ϕ+
µ (x1, x2) = ψjm1

(x1 − 2−jn1)ψjm2
(x2 − 2−jn2),

The Fourier transform is also separable, namely

ϕ̂+
µ (ω1, ω2) = ψ̂jm1

(ω1)e−i2
jn1ω1 ψ̂jm2

(ω2) e−i2
jn2ω2 .

A dual orthonormal basis can be defined from the “Hilbert-transformed” wavelet packets,

ϕ−µ (x1, x2) ≡ Hψjm1
(x1 − 2−jn1) Hψjm2

(x2 − 2−jn2).

It is easy to see from relations (10) and (11) that the recombination

ϕ(1)
µ =

ϕ+
µ + ϕ−µ

2
, ϕ(2)

µ =
ϕ+
µ − ϕ−µ

2
, (12)

provides basis functions with two bumps in the frequency plane, symmetric with respect to the
origin, hence directional wave packets (oscillating in one single direction). Together, ϕ(1)

µ and ϕ
(2)
µ

form the wave atom frame and may be denoted jointly as ϕµ. The price to pay in considering both
ϕ

(1)
µ and ϕ

(2)
µ is an increase of a factor 2 in the redundancy. Wave atoms otherwise remain a tight

frame, in the sense that ∑
µ

|〈ϕ(1)
µ , u〉|2 +

∑
µ

|〈ϕ(2)
µ , u〉|2 = ‖u‖2.
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They also satisfy all the wave atom properties, by construction.
Note that considering Hilbert-transformed bases, and performing the combination (12) in 2D,

are both well-known tricks in wavelet theory: for instance, they are part of the definition of the
2D dual-tree complex wavelet transform (CWT, see [29] for a review), as well as the definition of
brushlets [27].

As the reader might have noticed, the construction is not a simple tensor product because there
is only one scale subscript j. This is akin to the construction of “nonstandard,” or MRA wavelet
bases in 2D where the point is to enforce the same scale in both directions, hence an isotropic
aspect ratio. The resulting tiling of the frequency plane is shown in Figure 5.

In practice, the algorithm for wave atoms is based on the obvious generalization of the 1D
wrapping strategy to two dimensions—except for a slight complication. The admissible tilings of
the frequency plane at scale j are restricted by

max
i=1,2

|mi| = 4nj + 1, (13)

for some integer nj depending on j. In Figure 5, we check that this property holds with n0 = 0,
n1 = 1 and n2 = 2. The rationale for this (benign) restriction is that a window needs to be right-
handed in both directions near a scale doubling (in the positive quadrant), and that this parity
needs to match with the rest of the lattice. The rule is that ψ̂jm,+ is right-handed for m odd and
left-handed for m even, so for instance ψ̂2

2(ω1)ψ̂2
2(ω2) would not be an admissible window near a

scale doubling, whereas ψ2
3(x1)ψ2

3(x2) is admissible (and its tile is indicated in Figure 5 by a dot).
In complete analogy with the 1D case, the complexity of wave atoms is of course O(N2 logN).
The adjoint wave atom transform is still an inverse (actually the Moore-Penrose pseudo-inverse)

because the frame is tight. As explained previously, it is computed by reversing all the operations
in the direct transform, and also takes O(N2 logN) operations.

Let us conclude this section by mentioning that, in the present implementation, most wave
atoms have an infinite number of (directional) vanishing moments in the sense that∫

ϕµ(y1, y2) yk1 dy1 = 0, for all k ≥ 0, for all y2, (14)

where y1 is the spatial coordinate along the wave vector ωµ, and y2 is perpendicular. This property
follows from the fact that most atoms ϕ̂µ(ω) vanish in a (large) strip including the origin, oriented
in the direction perpendicular to ωµ. In contrast, those few atoms obeying ϕ̂µ(0) 6= 0 form the
small minority of “coarse scale” wave atoms, when j = 0.

3.3 Variations

There are many ways the construction presented above can be modified to suit certain applications
in image processing or numerical analysis:

• The orthobasis variant. In practice, one may want to work with the original orthonormal
basis ϕ+

µ (x) instead of a tight frame. Since ϕ+
µ (x) = ϕ

(1)
µ (x) + ϕ

(2)
µ (x), each basis function

ϕ+
µ (x) oscillates in two distinct directions, instead of one. We call this the orthobasis variant.

It may be useful when redundancy is uncalled-for, e.g., in image compression and numerical
analysis.
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Figure 5: The wave atom tiling of the frequency plane. Only the first quadrant is shown. The size
of the squares doubles when the scale j increases by 1. At a given scale j, squares are indexed by
m1,m2 starting from zero near the axes. The dot indicates the same change of scale as in Figure
3 and corresponds to the basis function denoted ψ2

3(x1)ψ2
3(x2) in the text.
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• The complex variant. On the contrary, it is possible to isolate each bump in frequency while
keeping the same translation steps. This modification defines a complex-valued tight frame
with redundancy four :

{ψjm1,n1,+(x1)ψjm2,n2,+(x2) , ψjm1,n1,+(x1)ψjm2,n2,−(x2) ,

ψjm1,n1,−(x1)ψjm2,n2,+(x2) , ψjm1,n1,−(x1)ψjm2,n2,−(x2)}.

The advantage of breaking the central symmetry in the frequency plane (and thereby creating
complex-valued templates in (x1, x2)), is to increase the redundancy in order to create exact
shift-invariance of subspaces of fixed j,m. Namely, let (Tp1,p2u)(x1, x2) = u(x1− p1, x2− p2)
where p1, p2 are translations on the grid. Then if uj,m denotes the partial reconstruction

uj,m(x1, x2) =
∑
ν1=±

∑
ν2=±

∑
n

cj,m,n,ν1,ν2ψ
j
m1,n1,ν1(x1)ψjm2,n2,ν2(x2),

where cj,m,ν,ν1,ν2 are the adequate tight frame coefficients, then we have shift invariance7:

(Tp1,p2u)j,m(x1, x2) = uj,m(x1 − p1, x2 − p2).

This property helps in reducing denoising artifacts, for instance, and neither holds true for
the wave atom tight frame with redundancy two, nor for the orthobasis variant. Ultimately,
shift-invariance owes to the absence of aliasing in the coefficients cj,m,n,ν1,ν2 , because there
is no overlap during the “wrapping” operation, as in Figure 4, bootm row. In other words,
the sum over p has only one nonzero term in (9) when the basis function has only one bump
in frequency. In fact, for the tight frame with redundancy four, the delicate phase factors
of formula (7) are unnecessary and can be omitted without compromising the tight frame
property.

Shift-invariance (or near-shift invariance) is a much sought-after property in wavelet design for
denoising applications, particularly when the implied redundancy increase is under control.
It may reduce the need for cycle-spinning, although not completely so—individual coefficients
are still not shift-invariant. See for instance [29] for a discussion.

• Mirror-extended images. Defining wave atoms in the discrete frequency plane has one side
effect: the FFT implicitly treats the image on [0, 1]2 as periodic across its boundaries. This
may pose a problem for image processing applications. One typical remedy is to work on the
mirror-extended image, defined on the square [−1, 1]2 as

ũ(x1, x2) = u(|x1|, |x2|).

Applying the wave atom algorithm to an image twice the original size will normally result in
a computational penalty of a factor slightly more than four. The overhead is easily identified:
it is due to redundant translation steps in the mirrored portions of the image.

We regard as very interesting the problem of adapting the wave atom transform to mirror-
extended images with a lower computational penalty. We have no solution to report on at
this time.

7Or more precisely, shift-covariance.
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• We have been advocating the choice of a parabolically-shaped wavelet packet tree, in order
to best represent oscillatory patterns. This is a result valid in the continuum limit. When it
comes to discrete data, of course, nothing replaces a good old tree search for the best basis
[26], or other heuristics. The architecture of wave atom transform lends itself quite well to
changes in the wavelet packet tree, although, as we explained previously, only scale doublings
and halvings are authorized. We call these “balanced trees”; see [34] for more details in the
1D case. In the 2D case, we remind the reader that there is also a restriction due to equation
(13).

3.4 Related work

The construction of wave atoms presented here follows a long legacy in pure and applied harmonic
analysis. We would like to present a nonexhasutive list of related constructions.

First, a continuous version of the wave atom transform, involving Gaussians, and the same
parabolic scaling of oscillations vs. support size, has been known in mathematics under the name
“Córdoba-Fefferman wave packets” since the late 1970s [14]. We apologize to harmonic analysts
for choosing to name the discrete transform differently.

Second, the 2D recombination strategy using Hilbert-transform pairs, but based on standard
wavelet packets instead of Villemoes packets, has already been considered in the field of image
processing under the name “dual-tree M-band wavelets,” see [11] and references therein. If this re-
construction is based on wavelets instead of Villemoes packets, then one obtains “dual-tree complex
wavelets”, see [22, 19, 13] and references therein.

Third, we would like to mention E. Kolaczyk’s approach [23] for the implementation of Meyer
wavelets, and by extension Villemoes wavelet packets, based on local cosine windowing of the
frequency axis. His approach explains in a transparent manner the aliasing cancellations during
inversion of the wavelet transform, though the implementation looks involved in contrast to the
“wrapping” approach.

On a related note, an implementation of (discretized continuous) directional wavelets directly
in the frequency plane was proposed by P. Vandergheynst and J. F. Gobbers in [33]. The imple-
mentation of curvelets in the frequency plane is in [7].

Finally, another way of performing local cosine windowing in the frequency plane are the brush-
lets of F. Meyer and R. Coifman [27]. They appear to be similar to Villemoes wavelet packets (and
could be a good alternative) but unfortunately do not fit in the framework of the spatial localization
estimate (4)—they have two or more bumps in space.

4 Numerical Examples

This section presents several numerical examples to illustrate the properties and potential of the
wave atom frame and its orthobasis variation.

We begin by showing several wave atoms in both the spatial and frequency domain. Figure
6 illustrates three members of the wave atom frame at increasing scales on an N × N grid with
N = 512. Every function oscillates coherently in a preferred direction and decays rapidly in the
spatial domain. In the frequency domain, the Fourier transform of these functions are all sharply
localized by construction. The members of the wave atom orthobasis are only slightly different:
each of them is a superposition of two oscillating wave packets, and its Fourier transform has four
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bumps instead of two in the frequency domain. Given an arbitrary input image, a forward wave
atom transform followed by its inverse recovers the input data up to machine accuracy, which is
expected due to the exact tightness of the discrete transform. Moreover, both the forward and
inverse transforms are highly efficient—in our experience they each take about the time of 8 to 10
FFTs.8

Now we illustrate the potential of the wave atoms with two examples. In the first example, we
consider the compression properties, i.e, the decay rate of the coefficients of images under the wave
atom bases. Besides the wave atom orthobasis and the wave atom frame, we include two other
bases for comparison: the Daubechies db5 wavelet, and a wavelet packet that uses db5 filter and
shares the same wavelet packet tree with our wave atom orthobasis.

The first input image (Figure 7(a)) is a synthetic seismogram corresponding to the acoustic
response of a one-dimensional layered medium to a point source. The PSNR curves for partial
reconstruction with increasing number of largest coefficients are shown in Figure 7(b). The result
suggests that both the wave atom frame and its orthobasis variation outperform the wavelet basis
and the wavelet packet by a significant margin. Figures 7(c) and (d) are reconstructed images using
1536 largest wave atom and wavelet coefficients respectively, and it is clear that the wave atom
frame does a much better job.

The second input image (Figure 8(a)) is a fingerprint image. This image fits well in the setting of
Theorem 1.1: its structure defines almost everywhere a predominant direction which can be aligned
with the axes by a continuous warping. The PSNR curves in Figure 8(b) show that the numerical
result matches well with our theoretical prediction. Both reconstructed from 512 largest coefficients,
the wave atom approximant (Figure 8(c)) captures most of the structures of the fingerprint while
the wavelet approximant (Figure 8(d)) is almost unusable. Of course this experiment is idealized:
in practice a true compression algorithm would also require quantization of the coefficients. In
addition, the features that make a fingerprint unique are not the oscillations themselves, but the so-
called minutiae (ridge endings, ridge bifurcations). Those features tend to be lost in the aggressive
wave atom thresholding of Figure 8(c).

For both images, we observe that the wave atom frame outperforms the orthobasis when the
number of terms used in partial reconstruction is relatively small. This is mostly due to the fact
that each frame element is a single coherent oscillating pattern, which makes it similar to these
images. On the other hand, as the number of terms grows, the redundancy effect kicks in and the
wave atom orthobasis offers better PSNR value.

The second example is image denoising. We use the two same images as before. The noise-
to-signal ratio is set to σ = 0.1 for the seismogram and to σ = 0.2 for the fingerprint image. For
simplicity, the denoising algorithm used is hard thresholding at 3σ combined with cycle spinning,
for all transforms9. Besides the wave atom frame with redundancy 2, we use the dual-tree CWT
frame, the wavelet packet basis, and the curvelet frame [7] for comparison. We do not include the
results of the wave atom orthobasis here since it is well known that redundancy is generally helpful
for image denoising. Figures 9 and 10 summarize the denoising results for the synthetic seismogram
and the fingerprint image respectively. The results show that the wave atom frame outperform all

8This complexity estimate is valid for the standard wave atom transform, with periodization at the edges. If for
instance a naive variant using a mirror-extended image was used instead, then those FFTs would relate to an image
twice larger.

9The threshold is in fact 3σ multiplied by the `2 norm of the basis elements, in the case of tight frames with
varying redundancy. We have checked that he value 3σ does not favor wave atoms over the other transforms
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Figure 6: Wave atoms at increasing finer scales for N = 512. The left images show wave atoms in
the spatial domain. We zoom in these images to show the detail profile of the wave atoms. The
right images show the modulus of their Fourier transform in the frequency domain.
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Figure 7: Compression analysis. (a) A synthetic seismogram. (b) PSNR curve of partial reconstruc-
tion with largest coefficients. (c) Reconstructed image with 1536 largest wave atom coefficients.
(d) Reconstructed image with 1536 largest db5 wavelet coefficients.

three other transforms in both cases.

5 Discussion

This paper presents a new member in the family of oriented, multiscale transforms for image
processing and numerical analysis.

The first lesson is that the parabolic scaling governing oscillations vs. support size of wave
atoms, visible on Figure 6, is the proper way to obtain universally sparse expansions of functions
oscillating in smoothly varying directions.
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Figure 8: Compression analysis. (a) A fingerprint image. (b) PSNR curve of partial reconstruction
with largest coefficients. (c) Reconstructed image with 512 largest wave atom coefficients. (d)
Reconstructed image with 512 largest db5 wavelet coefficients.

The second lesson of our investigations is that standard wavelet packets should be avoided as
an implementation of wave atoms. Instead, we propose to extend a construction of Lars Villemoes
to 2D, and to implement it directly in the frequency domain. The wave atom Matlab software can
be downloaded from the authors’ respective webpages.

Of course, we need to mention that wave atoms only provide a low-level nonadaptive transfor-
mation of images, in the sense that no effort is necessary to “discover the geometry”, i.e., estimate
local orientation and wave vector of the oscillatory data. In non-stylized applications the story is
always more complicated: a transform is usually just a black box in the flowchart of the algorithm,
and a priori physical information often plays a role in optimizing performance. A typical example
is image compression via wavelets, where quantization of the coefficients can be based on physiolog-
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ical principles; where higher-level adaptive transform (like wedgeprints [35] or bandelets [28]) can
even be defined on top of wavelets; and where nonlinear recovery techniques can exploit sparsity
in the wavelet domain [32, 18, 10]. In this regard, we are very enthusiastic about the potential of
wave atoms as part of the next generation of image algorithms.

Finally, we did not discuss the case of higher-dimensional data in this paper, but the ideas and
methods extend in a straightforward way. The wave atom toolbox includes both a 2D and a 3D
version of wave atoms.
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original image noisy image with sigma=0.10

wave atom frame, psnr = 36.09 wavelet packet, psnr = 34.65

wavelet db5, psnr = 33.29 curvelet, psnr = 35.77

Figure 9: Denoising results for the synthetic seismogram. Notice the good results of the wave
atom frame, but also the artifacts due to periodization at the edges. The “blotches” in the last
two images are artifacts of the choice of nonlinear colormap, used in this example to enhance the
oscillations in the original image.
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original image noisy image with sigma=0.20

wave atom frame, psnr = 22.60 wavelet packet, psnr = 22.05

wavelet db5, psnr = 21.91 curvelet, psnr = 22.08

Figure 10: Denoising results for the fingerprint image.
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