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Abstract

This note presents an elementary numerical scheme for discretizing the Laplace-Beltrami operator on
smooth manifolds, as a difference operator of arbitrary high order. The method is coordinate-free, and
involves very little geometry.

1 Introduction

This note is a proof of concept that the Laplace-Beltrami operator—or Laplacian for short—on a smooth
manifold can be discretized in a truly accurate manner, without the trouble of going through curvilinear
coordinates, patches, and other niceties of Riemannian geometry. Good schemes for the Laplacian
are in turn useful for accurate simulation of evolution (partial differential) equations on the manifold; or
evolution equations for the manifold; or computation of Laplacian eigenfunctions; or definition of diffusion
maps and diffusion wavelets [7, 8, 9]. Notable applications include mesh enhancement in computer
graphics [12, 15], and high-dimensional classification, clustering, learning, and dimensionality reduction
[1, 8, 10, 14].

Content. Let us assume that our manifold M is C∞ and embedded in R3 (although embedding
in Rn, n > 3, would pose little difficulty.) The main idea of this paper is that the Laplace-Beltrami
operator ∆M acting on a function defined on the manifold M is equal to the standard Laplacian acting
on the normal extension of the function in R3, in a strip around M. The normal extension of a function
outside M is defined as constant along normals to M. This property of the Laplace-Beltrami operator
can then be leveraged to define an accurate difference operator in the tangent plane to each vertex of a
triangulation, or point cloud. The main result of this note is a theorem that guarantees arbitrary high
order of convergence for the discrete Laplace-Beltrami, under a mild nondegeneracy assumption of the
mesh, related to solvability of the interpolation problem.

Related work. Low-order difference formulas for the Laplace-Beltrami operator are well-known;
see for instance [11, 12, 15] and references therein. For convergence for difference formulas on random
point clouds, see [2, 5]. High-order formulas for the Euclidean Laplacian are also well-known, see [6].
The finite-element method can also produce high order Euclidean discretizations, of course, although the
construction of smooth basis functions may be tedious. As for computation of normals to manifolds, and
other differential quantities, see for instance [4, 3].

Acknowledgments. I would like to thank Peter Schröder, Mathieu Desbrun, Mikhail Belkin and
Facundo Memoli for interesting discussions and encouragements.

2 Preliminaries

We focus our discussion to 2-dimensional manifolds for simplicity but the situation is algorithmically
very similar in higher dimension. It does not matter whether the manifold is compact or not, since the
Laplacian is a local operator. Functions on the manifold are sampled at the vertices xi of a point cloud,
made into a mesh: each point xi has immediate neighbors xj to which it is connected. The mesh diameter
h is the longest edge linking two immediate neighbors. In what follows we will consider neighborhoods
which may be larger than the immediate neighborhood, but still of diameter O(h).

The material in this section is presented for the convenience of the reader, and is not new.
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2.1 Discrete Euclidean Laplacians

As a background, let us first address the problem of discretizing the Laplacian in the Euclidean case.
Take a smooth function f for which we know the samples f(xi) at points {xi} in R2, with the mesh
structure explained above. For every point xi we wish to find a set of scalar coefficients w∆

ij , nonzero in
a reasonably small neighborhood of xi, so that

∆if =
X

xj close to xi

w∆
ijf(xj)

would be a good approximation to the true Laplacian ∆f(xi).
A straightforward way of obtaining the weights w∆

ij is to match the Taylor expansions of ∆if to
∆f(xi) at every point xi. We summarize the result:

Lemma 1. Let p be a positive integer and f ∈ Cp+2(M). For each xi, choose a neighborhood {xj : j ∼ i}
(including xi) and denote j ∼ i when xj is a neighbor of xi. Let h be the diameter of the mesh {xi}.
Then the following two statements are equivalent.

1. ∆if =
P

j∼i w
∆
ijf(xj) is a pointwise convergent discretization of order p ≥ 1 to ∆f(xi). This means

that for some constant Cp > 0,

sup
i
|∆if −∆f(xi)| ≤ Cp ·max

j∼i
(h2|wij |) · hp sup

x
‖∇p+2f(x)‖. (1)

The notation ∇p+2f refers to all the partial derivatives of f of order p+ 2.

2. The weights w∆
ij obey the following relations, valid for every i. We have put eij = xj − xi.X

j∼i

w∆
ij = 0,

X
j∼i

w∆
ijeij = 0,

X
j∼i

w∆
ijeij ⊗ eij = Id. + Antisymm.

X
j∼i

w∆
ijeij ⊗ eij ⊗ eij = 0

. . .X
j∼i

w∆
ijeij ⊗ . . .⊗ eij = 0.

The symbol ⊗ denotes the tensor product, in coordinates (u⊗ v)kl = ukvl. In the last equality there
are p+ 1 factors eij.

The proof of this lemma is based on elementary Taylor expansions and left to the reader.
If the linear system consisting of the p + 2 (tensor) equations written above can be solved for,

then any solution gives weights w∆
ij that correspond to a discretization of the Laplacian of order p.

Formulating practical, sufficient conditions for solvability is a difficult problem that this note has no
ambition of solving; let us only remark that ∆if can be interpreted as the Laplacian of an interpolant,
therefore a sufficient condition for solvability of the system for w∆

ij is uniqueness of the multivariate
interpolation problem of order p + 1. In a nutshell, two conditions need to be met for interpolation: 1)
each neighborhood {xj : j ∼ i} needs to contain enough points, and 2) each neighborhood {xj : j ∼ i}
needs to be poised, in the sense that no algebraic curve of degree p + 1 passes through the points1. An
algebraic curve of order p is the zero level set of a (nonzero) bivariate polynomial of order p. See [13] for
details on the interpolation problem.2

For practical computations, the third equation for w∆
ij in Lemma 1 should be rewritten as

P
j w

∆
ijeij⊗S

eij = Id., where ⊗S is the symmetric tensor product, (u ⊗S v)kl = ukvl + ulvk. The system obtained
is roughly Vandermonde, and in case the reader would find black box solvers inadequate, there is an
elegant inversion method based on a block-LU factorization, as described in [13].

In what follows, we also require that the conditioning of the weights’ computation does not deteriorate
as the mesh diameter decreases. We can gather the requirements in the following definition.

1Note that sets of points chosen at random from any non-degenerate probability distribution are poised with probability 1.
2Note also that uniqueness of interpolation of order p + 1 is not necessary: fewer points may be needed for computation of

the Laplacian than for interpolation. The criterion becomes: {xj : j ∼ i} is poised if the points do not belong to the zero level
set of a nonzero bivariate polynomial of order p + 1 whose harmonic part has been removed.
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Definition 1. Fix p > 0. Consider a sequence of meshes {xi}, with diameter h → 0. Let Mh be the
matrix for the linear system in Lemma 1. Then the sequence of meshes is poised for the Laplacian at
order p if there exists a left inverse M−1

h for Mh such that ‖M−1
h ‖ ≤ C · h−2, where C may depend on p

(and on the choice of norm), but not on h.

If a sequence of meshes is poised, then the factor maxj∼i(h
2|wij |) can be removed in equation (1).

Definition 1 generalizes in a straightforward manner to sequences of collections of neighborhoods, instead
of sequence of meshes.

2.2 Computation of the normals

A second preliminary concern is computation of the normal to M, at each point xi, to arbitrary high
order of accuracy.

Let us start by observing that, near every point xi of the smooth manifold M, assumed of class C∞,
there always exist coordinates (y1, y2, z) of R3 in which xi = (0, 0, 0), and M is locally the graph of a
C∞ function z = f(y1, y2). If such a representation is available, then the normal ni at xi is given by

ni =
(∇f(0, 0),−1)tp
|∇f(0, 0)|2 + 1

.

In that case, we are led to the problem of computing the gradient of a function from its samples zj =
f(y1j , y2j), where xj = (y1j , y2j , zj).

Let us first explain why we claim that there exist coordinates for which M is the graph of a function.
Of course taking the two independent variables y1, y2 in the tangent plane at x, and the remaining coor-
dinate z along the normal at x would be a preferred orthobasis for this purpose, but small perturbations
about this canonical choice will work just as well. In fact, an application of the implicit function theorem
would show that O(1) perturbations of the angles about tangency and normalcy are allowed, and still
yield a valid frame in which M is locally the graph of a function.

Therefore an approximate, possibly not very accurate choice of normal npoor
i at a point xi can be

used to define y1, y2 in the “poor tangent” plane, and z along the “poor normal”, such that M is locally
defined by some function z = f(y1, y2). In practice, the poor normal can be chosen as the normal vector
to any triangle formed by xi and two of its immediate neighbors xj . The accuracy of this choice of
normal is O(h) where h is the mesh diameter: the validity of the graph representation is therefore clear
for h small enough. (If h is large we make no claim of accuracy anyway.) An obvious scaling argument
shows that there will be O(h−2) neighbors xj of xi for which the graph representation is valid.

When coordinates have been chosen, we can repeat the reasoning in the previous section to approxi-
mate the gradient of a function as

∇if =
X

xj close to xi

w∇ijf(xj).

Now, each w∇ij is a vector with 2 components. The result is as follows.

Lemma 2. Let q be a positive integer and f ∈ Cq+1(M). For each xi, choose a neighborhood {xj :
j ∼ i}(including xi), where j ∼ i when xj is a neighbor of xi. Then the following two statements are
equivalent.

1. ∇if is a pointwise convergent discretization of order q ≥ 1 to ∇f(xi). This means that for some
constant C > 0,

sup
xi

‖∇if −∇f(xi)‖ ≤ C ·max(h−1|w∇ij |)| · hq sup
x
‖∇q+1f(x)‖. (2)

2. The weights w∇ij obey the following relations, valid for every i. We have put eij = xj − xi.X
j

w∇ij = 0,

X
j

w∇ij ⊗ eij = Id,

X
j

w∇ij ⊗ eij ⊗ eij = 0,

. . .X
j

w∇ij ⊗ eij ⊗ . . .⊗ eij = 0.
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In the last equality there are q factors eij.

Note that the function f of which the gradient needs to be computed is in this section an explicit,
local representation of the manifold as a height field, and not the function interpolating the data as in
Section 2.1.

The solvability discussion is the similar to that in the previous section. In an obvious generalization,
we define a sequence of meshes to be poised for the gradient if the system in Lemma 2 is invertible and
well-conditioned.3 In that case, the factor max(h−1|w∇ij |) can be dropped in equation 2. In the sequel
we will always take our meshes poised for both the Laplacian and the gradient.

The approximate normal is then defined as

ñi =
(∇if,−1)tp
|∇if |2 + 1

,

and as a consequence of Lemma 2, ‖ni − ñi‖ = O(hq).

3 Discrete Laplace-Beltrami on manifolds

3.1 Normal extension

All we need to know about the Laplace-Beltrami operator on a smooth manifold is the following result.

Lemma 3. Let f be a scalar C2 function on a smooth surface M embedded in R3, and let f be the
normal extension of f outside of M, i.e., the extension defined in a thin shell outside of M by keeping
f constant along each normals to M. Then, at points in the interior of M,

∆Mf = ∆R3f. (3)

Proof. The distributional definition of the Laplace-Beltrami operator in the interior of M isZ
M

∆Mf φ = −
Z
M
∇Mf · ∇Mφ,

where ∇M is the gradient intrinsic to M and φ any smooth, compactly supported test function on M.
Let ψ be a signed distance function to M, or “level-set” function, obeying locally (near supp φ)

ψ = 0 on M, |∇ψ| = 1 outside of M. (4)

The normal extension f of f is then defined locally as

f = f on M, ∇f · ∇ψ = 0 outside of M. (5)

It is always possible to solve equations (4) and (5) in a thin shell around the surface, of width κ/2 where
κ = maxx∈M(κ1+κ2

2
) is the maximum mean curvature of the surface.

The intrinsic gradient of f is directly related to the gradient in R3 by ∇M = P∇, where P is
projection onto the local tangent plane, P = I − ∇ψ ⊗ ∇ψ. This is true regardless of the way f is
smoothly extended outside of M. For the normal extension, this of course becomes

∇Mf = ∇f.

We can now proceed to evaluate
R
M∇Mf · ∇Mφ by extending f and φ normally, and expressing the

integral in the embedding space. Let ρε be a compactly supported approximate identity in R, i.e., so
that ρε tends weakly to a Dirac at zero as ε→ 0. Assume that the support of ρε does not extend outside
of a small interval of size κ/2, uniformly in ε. Then σε = ρε ◦ ψ is an approximate surface measure for
M. It follows that Z

M

∇Mf · ∇Mφ = lim
ε→0

Z
R3
∇f · ∇φσε dx.

For fixed ε, the right-hand side can be integrated by parts and gives

−
Z

R3
∆f φσε dx. (6)

3In this context, the condition for a neighborhood {xj ; j ∼ i} to be poised would be that the xj do not lie on the zero level
set of a polynomial of order p + 1 with no constant term.
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We have used the fact that ∇σε = ρ′ε∇ψ is perpendicular to ∇f , as in equation (5), to get rid of the
term involving ∇σε. What remains, (6), tends to

−
Z
M

∆f |M φ,

valid for all smooth φ, which establishes the claim.

Since the extension f is normal, all its derivatives along the normal vanish, which allows to reduce
∆R3 to differentiation in the tangent plane TxM:

∆Mf(x) = ∆TxMf(x).

Therefore, a discretization of the Euclidean Laplacian in the tangent plane at a point xi is also a
discretization of the Laplace-Beltrami operator at the same point xi—provided the function f on the
tangent plane is the normal extension of f on the manifold.

3.2 Main algorithm

Let us denote by nk the normal vector to M at points xk ∈M, and, like before, eik = xk −xi. Consider
the tangent plane TxiM to M at some given point xi, and the image x′k of xk in TxiM obtained by
following nk. A bit of algebra shows that the normal projection of xk is

xk = xk + nk
eik · ni

nk · ni
,

and since the projection of xi is itself,

eik = eik + nk
eik · ni

nk · ni
.

We are now ready to state the algorithm for the discretized Laplace-Beltrami operator ∆̃if at a point
xi ∈M.

1. Consider a discretization ∆i of the 2-D Euclidean laplacian. Its weights w∆
ij depend only on the

vectors eik, as we saw in Lemma 1.

2. For each vertex xk neighboring xi, compute the normal ñk to M by the algorithm suggested in
Lemma 2.

3. Compute the corresponding new ẽik as

ẽik = eik + ñk
eik · ñi

ñk · ñi
.

4. Compute the weigths w∆
ij with ẽik in place of eik.

3.3 Error estimate

As we saw, the normals are known up to some pointwise error of order q. Similarly, the Laplacian in the
tangent plane is only known up to an error of order p. Let us see how these errors combine.

Theorem 1. Fix p and q two positive integers. Consider a sequence of meshes {xi} on M, with
diameters h→ 0, such that the projections of the respective neighborhoods {xj : j ∼ i} on the respective
tangent planes are, together, poised for the Laplacian at order p and the gradient at order q. Suppose the
Laplacian is computed to order p in the tangent planes, and suppose the computation of the normals is
of order q. Then, pointwise and for sufficiently smooth f ,

sup
i
|∆̃if −∆Mf(xi)| ≤ C(f, p, q) · (hp + hq).

Proof. The approximate computation of the nk has for first consequence that the 2D Euclidean Laplacian
is computed in a wrong plane, going through xi and slightly tilted with respect to the true tangent plane
TxiM. In R3 choose coordinates (y1, y2, z) so that TxiM ≡ {z = 0}, and (y′1, y

′
2, z

′) so that the ‘wrong
plane’ is {z′ = 0}. Elementary Taylor expansions of trigonometric functions show that the sets of
coordinates can be defined to obey0@y′1y′2

z′

1A =

0@1 +O(h2q) O(hq) O(hq)
O(hq) 1 +O(h2q) O(hq)
O(hq) O(hq) 1 +O(h2q)

1A 0@y1y2
z

1A .
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The chain rule then gives

∂2

∂y′k
2 = (1 +O(h2q)) · ∂

2

∂y2
k

+O(h2q) · (other derivatives), k = 1, 2.

As a result,

sup
i
|∆Mf(xi)−

„
∂2

∂y′1
2 +

∂2

∂y′2
2

«
f(xi)| ≤ C(f, q) · h2q. (7)

The second source of error is discretization at order p. As per Lemma 1,

sup
i
|
„

∂2

∂y′1
2 +

∂2

∂y′2
2

«
f(xi)−∆′if | ≤ C(f, p) · hp. (8)

where ∆′i is the discrete Laplacian in the tilted plane z′ = 0.
The last source of error comes from the fact that the other normals ñk, for k 6= i, also come with an

error hq. Since the diameter of a neighborhood {xj : j ∼ i} is bounded by C(q) ·h, the distance between
a point and its normal projection onto the tangent plane obeys ‖xj − xj‖ ≤ C(q) · h2. Therefore the
computed projections x̃j obey ‖x̃j − xj‖ ≤ C(q) · h2+q. It is easier to make this discrepancy bear on
the location of evaluation points for the function f , rather than on the computation of the weights w∆

ij

through eik. So we have
|f(x̃j)− f(xj)| ≤ C(f, q) · h2+q, j ∼ i

Thanks to Definition 1, the magnitude of w∆
ij is at most O(h−2), so

sup
i
|∆′if − ∆̃if | ≤ C(f, p, q) · hq. (9)

We conclude by combining (7), (8), and (9).

Notice that a simple difference formula with p = q = 2 is already more accurate than standard
off-the-shelf methods like the cotangent formula [12].

4 Discussion

Two practical aspects have been overlooked in the discussion, but may play important roles in applica-
tions:

• Conditioning. The conditions under which the linear systems in Lemmas 1 and 2 could be ill-
conditioned are linked to the geometric arrangement of the points xj in the neighborhood of each
xi. For instance, they cannot be collinear, and more generally, they should not accumulate near
an algebraic curve. I am unaware of any practical, a priori procedure to test for this geometric
condition.

• Positive-definiteness. The discrete Laplacian need not only be accurate, but also needs to be
positive definite. This property is important to avoid instabilities in simulating time-dependent
equations involving the Laplacian, like the heat equation. A perturbation argument involving the
fact that the eigenvalue of the Laplacian nearest to the origin is of order h2, whereas numerical
errors are of order hp, p > 2, may help settle this question for small h, although in a not-too-elegant
manner.
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