THIRD PROBLEM SESSION EXERCISES

The purpose of these exercises is to provide a proof of the Shannon Sampling Theorem discussed in class. We introduce a few extra concepts first. For a given $h > 0$, which will be fixed throughout, let $x_j = hj$ for all integers j. The semidiscrete Fourier transform (SFT) of a function u on \mathbb{R} with sufficiently fast decay is defined to be

$$\hat{v}(k) = h \sum_{j=-\infty}^{\infty} e^{-ikx_j} u(x_j), \quad k \in [-\pi/h, \pi/h]$$

and the inverse semidiscrete Fourier transform (ISFT) is

$$u(x_j) = \frac{1}{2\pi} \int_{-\pi/h}^{\pi/h} e^{ikx_j} \hat{v}(k) \, dk.$$

We will take as given that these two transforms are right and left inverses of one another if u decays fast enough and \hat{v} is sufficiently regular, although this can be an extra exercise if you want to be complete. We emphasize that we will consistently use the notation \hat{u} for the continuous Fourier transform of u, which is

$$\hat{u}(k) = \int_{\mathbb{R}} e^{-ixk} u(x) \, dx,$$

while the SFT of u is $\hat{v}(k)$.

(1) Let $q(x) = \frac{\sin(\pi x/h)}{\pi x/h}$.

Note that $q(x)$ is a smooth function. Let $\chi_{[-\pi/h, \pi/h]}$ be the indicator function of the interval $[-\pi/h, \pi/h]$. Show that the continuous Fourier transform of q is given by

$$\hat{q}(k) = h \chi_{[-\pi/h, \pi/h]}(k).$$

(2) For u decaying sufficiently fast, let \hat{v} be the SFT of u. Show that $\chi_{[-\pi/h, \pi/h]}(k) \hat{v}(k)$ is the continuous Fourier transform of

$$p(x) = \sum_{j=-\infty}^{\infty} u(x_j) q(x - x_j).$$
(3) For \(u \) sufficiently regular and decaying sufficiently fast, \(\hat{u} \) the continuous Fourier transform of \(u \), and \(\hat{v} \) the SFT of \(u \), prove the Poisson summation formula

\[
\hat{v}(k) = \sum_{j=-\infty}^{\infty} \hat{u}(k + j \frac{2\pi}{h}), \quad k \in [-\pi/h, \pi/h].
\]

Hint: Start by taking the ISFT.

(4) Combine the previous parts to prove the Shannon Sampling Theorem stated in class:

Theorem 1. If \(u \) is band limited in the interval \([-\pi/h, \pi/h]\) (which means \(\hat{u} \) is supported in that interval) and decays sufficiently fast at \(\infty \) then

\[
u(x) = p(x)
\]

where \(p(x) \) is as defined in question (2). Also, if \(f \) and \(g \) both satisfy the same hypotheses then

\[
\int_{\mathbb{R}} f(x) \overline{g(x)} \, dx = h \sum_{j=-\infty}^{\infty} f(x_j) \overline{g(x_j)}.
\]

When \(u \) is not band limited it is possible to use the Poisson summation formula to characterize the error incurred when approximating \(u \) by \(p \) in terms of the regularity of \(u \). This error is known as aliasing and corresponds to the mistaken identification of higher frequency parts of the signal \(u \) as having lower frequencies because they are not sampled densely enough.