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1 Our goal

Some references: Devinatz’s article on the change of rings theorem, Miller-Ravenel, Rezk’s notes, Ravenel’s
green book.

Recall we’re trying to compute π∗S(p) via ExtBP∗BP (BP∗, BP∗) and the ANSS. We can in turn compute
the ANSS E2-page via the CSS, which starts from ExtBP∗BP (BP∗, v

−1
n BP∗/(p

∞, . . . , v∞n−1)); if we want, we
can get at this using Bockstein spectral sequences which start from ExtBP∗BP (BP∗, v

−1
n BP∗/In).

More generally, we want to compute ExtBP∗BP (BP∗,M), where M is a comodule satisfying

(i) v−1
n M = M (so M lives on M≤nFG), or

(ii) v−1
n M = M and InM = 0 (so M lives on M=n

FG).

One way to do this is to change Hopf algebroids to some better (A,Γ) and compute ExtΓ(A,A ⊗BP∗ M).
For case (i), Morava E-theory is a good idea; for (ii), Morava K-theory is. In these cases, we can interpret
our Ext group as the group cohomology of Sn, the Morava stabilizer group.

(Kirsten: the parenthesized statements about MFG after conditions (i) and (ii) above aren’t equivalent
to (i) and (ii), just implied by them.)

2 Defining En and Sn

2.1 Formal group laws

Recall the definitions of formal group law, morphism and (strict) isomorphism, p-series, and p-
typical FGL. Let k be a field of characteristic p and F an FGL over k.

Lemma 1. If f : F → G is a nonzero morphism of FGLs, then f(x) = g(xp
n

) for some n and some g with
g(0) = 0 and g′(0) 6= 0.

In particular, [p]F (x) = g(xp
n

) for some g and some n, called the height of the FGL F . You can also
read off the height from the kernel of the map from the p-typical Lazard ring V that classifies F .

Definition 2. Let k = Fpn . Then Hn, the Honda FGL of height n, is the FGL classified by the map
V → k sending vn to 1 and all other vi = 0.

Equivalently, Hn is defined by

[p]Hn
(x) = xp

n

.
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2.2 The Morava stabilizer group

Definition 3. The Morava stabilizer group is the profinite group Sn = Aut(Hn), where by automor-
phisms we mean strict self-isomorphisms.

We take a moment to establish some intuition about this group. It sits inside End(Hn), some of whose
elements we can easily describe. For instance, there’s a map Zp ↪→ End(Hn) given by

∑
aip

i 7→

[
x 7→

∞∑Hn

i=0

[aip
i]Hn(x)

]

There’s a Frobenius endomorphism given by

S : x 7→ xp,

and if ω is a primitive element of Fpn over Fp, there’s an endomorphism

x 7→ ωx.

These endomorphisms satisfy some relations:

Sn = p; Sω = ωσS,

where σ is the Frobenius automorphism on Fpn .

Theorem 4 (Lubin-Tate).

End(Hn) = W (Fpn)〈S〉/(Sn = p, Sw = wσS for w ∈W (Fpn)),

where W (Fpn) is the Witt vectors and σ is the lift of the Frobenius map to W (Fpn).

Then, of course, we have Sn = End(Hn)×.
It’s worth going into a bit more detail about the Witt vectors. These can be defined as the unique (up to

isomorphism) complete local ring with residue field Fpn such that if (B,m) is any complete local ring, then
there exists a unique (continuous) map filling in the diagram

W (Fpn)

��

∃!
// B

��
Fpn // B/m.

Precisely, W (Fpn) ∼= Zp[x]/(q(x)), where q(x) is a lift of an irreducible factor of xp
n−1 − 1 = 0 to Zp.

2.3 Defining En

En will have coefficient ring
(En)∗ = W (Fpn)[[u1, . . . , un−1]][u, u−1]

where |ui| = 0 and |u| = −2. The degree zero part is the universal deformation ring of Hn, in the following
sense. Define the functor

Def(Fpn ,Hn) : complete local rings → groupoids

on a ring B as the groupoid with objects

Def(Fpn ,Hn)(B) = {(G, i) : G a FGL on B, i : Fpn → B/m, such that i∗Hn = π∗G}.

Morphisms (G1, i1)→ (G2, i2) only exist if i1 = i2, in which case they are strict isomorphisms f : G1 → G2

such that π∗f = 1B/m. (These are called ∗-isomorphisms.)
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Theorem 5 (Lubin-Tate). Def(Fpn ,Hn)(B) splits as a disjoint union of groupoids Def(Fpn ,Hn)(B)i (the set
of pairs (G, i) with fixed i), with

π0(Def(Fpn ,Hn)(B)i) = m×(n−1)

and
π1(Def(Fpn ,Hn)(B)i) = ∗.

Thus, π0(Def(Fpn ,Hn)(·)) is corepresented by W (Fpn)[[u1, . . . , un−1]].

Corollary 6.

1. Sn acts on W (Fpn)[[u1, . . . , un−1]], and

2. Gal(Fpn/Fp) acts on this ring as well, by changing the map i : Fpn → B/m.

These combine to give an action of the extended Morava stabilizer group Gn = Sn o Gal(Fpn/Fp).

Now, En is a BP∗-module, where vi acts by uiu
1−pi for i ≤ n − 1, u1−pn for i = n, and 0 otherwise.

Thus the LEFT applies, and we get a spectrum En, called Morava E-theory.

3 Change of rings theorems

Recall that we want to compute ExtBP∗BP (BP∗,M) in cases (i) and (ii) above. First suppose we’re in case
(ii), where v−1

n M = M and InM = 0. Miller-Ravenel showed that in this case,

ExtBP∗BP (BP∗,M) ∼= ExtΣ(n)(K(n),K(n)⊗BP∗ M).

Here K(n) is Morava K-theory and Σ(n) = K(n)⊗BP∗ BP∗BP ⊗BP∗ K(n). Likewise, in case (i), where we
just have v−1

n M = M ,

ExtBP∗BP (BP∗,M) ∼= ExtÛ(n)(Ê(n), Ê(n)⊗BP∗ M).

Here Ê(n) is completed periodic Johnson-Wilson theory, with coefficient ring Zp[[u1, . . . , un−1]][u, u−1]; Û(n)
is defined similarly to Σ(n), though it’s completed now. We can write these both in terms of group coho-
mology. In case (i), we have

ExtBP∗BP (BP∗,M) ∼= H∗c (Sn, En ⊗BP∗ M)Gal(Fpn/Fp);

in case (ii), we have a map

ExtBP∗BP (BP∗,M)→ H∗c (Sn,Fp ⊗BP∗ M)Gal(Fpn/Fp),

which becomes an isomorphism after doing some things with the grading.
All this follows from two types of general change-of-rings theorems. Let f : (A,Γ)→ (B,Σ) be a map of

Hopf algebroids. We then have a pair of functors

Γ–Comod
f∗
//
Σ–Comod

f∗

oo

given by f∗(M) = B ⊗A M and f∗(N) = (Γ ⊗A B)�ΣN . If we’d like, we can view these as pullback and
pushforward of quasicoherent sheaves on the stacks M(A,Γ) and M(B,Σ).

The first change-of-rings theorem is Miller-Ravenel’s ‘push-pull’ theorem, which says that in the pair of
maps

ExtΓ(A,M)→ ExtΓ(A, f∗f
∗M)→ ExtΣ(B, f∗M),

the first is an isomorphism under conditions on M , and the second is an isomorphism under conditions on
f .

The second comes from the concept of equivalence of Hopf algebroids. A Hopf algebroid can be viewed
as a functor from rings to groupoids, and a map f of Hopf algebroids induces a natural transformation of
functors.
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Definition 7. f is an equivalence of Hopf algebroids if the associated natural transformation admits
an inverse, up to natural equivalence. Equivalently, f is an equivalence if it induces an equivalence on the
associated stacks.

In this case, we have a change-of-rings isomorphism ExtΓ(A,M) ∼= ExtΣ(B, f∗M).


