Morava E-theory and change of rings

Sander Kupers

April 26, 2013

1 Our goal

Some references: Devinatz's article on the change of rings theorem, Miller-Ravenel, Rezk's notes, Ravenel's green book.

Recall we're trying to compute $\pi_*S_{(p)}$ via $\operatorname{Ext}_{BP_*BP}(BP_*,BP_*)$ and the ANSS. We can in turn compute the ANSS E_2 -page via the CSS, which starts from $\operatorname{Ext}_{BP_*BP}(BP_*,v_n^{-1}BP_*/(p^\infty,\ldots,v_{n-1}^\infty))$; if we want, we can get at this using Bockstein spectral sequences which start from $\operatorname{Ext}_{BP_*BP}(BP_*,v_n^{-1}BP_*/I_n)$.

More generally, we want to compute $\operatorname{Ext}_{BP_*BP}(BP_*, M)$, where M is a comodule satisfying

- (i) $v_n^{-1}M = M$ (so M lives on $\mathcal{M}_{FG}^{\leq n}$), or
- (ii) $v_n^{-1}M = M$ and $I_nM = 0$ (so M lives on $\mathcal{M}_{FG}^{=n}$).

One way to do this is to change Hopf algebroids to some better (A, Γ) and compute $\operatorname{Ext}_{\Gamma}(A, A \otimes_{BP_*} M)$. For case (i), Morava *E*-theory is a good idea; for (ii), Morava *K*-theory is. In these cases, we can interpret our Ext group as the group cohomology of \mathbb{S}_n , the Morava stabilizer group.

(Kirsten: the parenthesized statements about \mathcal{M}_{FG} after conditions (i) and (ii) above aren't equivalent to (i) and (ii), just implied by them.)

2 Defining E_n and \mathbb{S}_n

2.1 Formal group laws

Recall the definitions of formal group law, morphism and (strict) isomorphism, p-series, and p-typical FGL. Let k be a field of characteristic p and F an FGL over k.

Lemma 1. If $f: F \to G$ is a nonzero morphism of FGLs, then $f(x) = g(x^{p^n})$ for some n and some g with g(0) = 0 and $g'(0) \neq 0$.

In particular, $[p]_F(x) = g(x^{p^n})$ for some g and some n, called the **height** of the FGL F. You can also read off the height from the kernel of the map from the p-typical Lazard ring V that classifies F.

Definition 2. Let $k = \mathbb{F}_{p^n}$. Then H_n , the **Honda FGL of height** n, is the FGL classified by the map $V \to k$ sending v_n to 1 and all other $v_i = 0$.

Equivalently, H_n is defined by

$$[p]_{H_n}(x) = x^{p^n}.$$

2.2 The Morava stabilizer group

Definition 3. The Morava stabilizer group is the profinite group $\mathbb{S}_n = \operatorname{Aut}(H_n)$, where by automorphisms we mean strict self-isomorphisms.

We take a moment to establish some intuition about this group. It sits inside $\operatorname{End}(H_n)$, some of whose elements we can easily describe. For instance, there's a map $\mathbb{Z}_p \hookrightarrow \operatorname{End}(H_n)$ given by

$$\sum a_i p^i \mapsto \left[x \mapsto \sum_{i=0}^{\infty} {}^{H_n} [a_i p^i]_{H_n}(x) \right]$$

There's a Frobenius endomorphism given by

$$S: x \mapsto x^p$$

and if ω is a primitive element of \mathbb{F}_{p^n} over \mathbb{F}_p , there's an endomorphism

$$x \mapsto \omega x$$

These endomorphisms satisfy some relations:

$$S^n = p;$$
 $S\omega = \omega^{\sigma} S,$

where σ is the Frobenius automorphism on \mathbb{F}_{p^n} .

Theorem 4 (Lubin-Tate).

$$\operatorname{End}(H_n) = W(\mathbb{F}_{n^n})\langle S \rangle / (S^n = p, Sw = w^{\sigma}S \text{ for } w \in W(\mathbb{F}_{n^n})),$$

where $W(\mathbb{F}_{p^n})$ is the Witt vectors and σ is the lift of the Frobenius map to $W(\mathbb{F}_{p^n})$.

Then, of course, we have $\mathbb{S}_n = \operatorname{End}(H_n)^{\times}$.

It's worth going into a bit more detail about the Witt vectors. These can be defined as the unique (up to isomorphism) complete local ring with residue field \mathbb{F}_{p^n} such that if (B, \mathfrak{m}) is any complete local ring, then there exists a unique (continuous) map filling in the diagram

$$W(\mathbb{F}_{p^n}) - \overline{\exists!} - \geq B$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{F}_{p^n} \longrightarrow B/\mathfrak{m}.$$

Precisely, $W(\mathbb{F}_{p^n}) \cong \mathbb{Z}_p[x]/(q(x))$, where q(x) is a lift of an irreducible factor of $x^{p^n-1}-1=0$ to \mathbb{Z}_p .

2.3 Defining E_n

 E_n will have coefficient ring

$$(E_n)_* = W(\mathbb{F}_{p^n})[[u_1, \dots, u_{n-1}]][u, u^{-1}]$$

where $|u_i| = 0$ and |u| = -2. The degree zero part is the universal deformation ring of H_n , in the following sense. Define the functor

$$\operatorname{Def}_{(\mathbb{F}_{n^n},H_n)}$$
: complete local rings \to groupoids

on a ring B as the groupoid with objects

$$\operatorname{Def}_{(\mathbb{F}_{p^n},H_n)}(B)=\{(G,i): G \text{ a FGL on } B, i: \mathbb{F}_{p^n}\to B/\mathfrak{m}, \text{ such that } i_*H_n=\pi_*G\}.$$

Morphisms $(G_1, i_1) \to (G_2, i_2)$ only exist if $i_1 = i_2$, in which case they are strict isomorphisms $f: G_1 \to G_2$ such that $\pi_* f = 1_{B/\mathfrak{m}}$. (These are called *-isomorphisms.)

Theorem 5 (Lubin-Tate). Def_(\mathbb{F}_{p^n},H_n)(B) splits as a disjoint union of groupoids Def_(\mathbb{F}_{p^n},H_n) $(B)_i$ (the set of pairs (G,i) with fixed i), with

$$\pi_0(\mathrm{Def}_{(\mathbb{F}_{p^n},H_n)}(B)_i) = \mathfrak{m}^{\times (n-1)}$$

and

$$\pi_1(\mathrm{Def}_{(\mathbb{F}_{p^n},H_n)}(B)_i) = *.$$

Thus, $\pi_0(\mathrm{Def}_{(\mathbb{F}_{p^n},H_n)}(\cdot))$ is corepresented by $W(\mathbb{F}_{p^n})[[u_1,\ldots,u_{n-1}]]$.

Corollary 6.

- 1. \mathbb{S}_n acts on $W(\mathbb{F}_{p^n})[[u_1,\ldots,u_{n-1}]]$, and
- 2. $Gal(\mathbb{F}_{p^n}/\mathbb{F}_p)$ acts on this ring as well, by changing the map $i:\mathbb{F}_{p^n}\to B/\mathfrak{m}$.

These combine to give an action of the extended Morava stabilizer group $\mathbb{G}_n = \mathbb{S}_n \rtimes \operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)$.

Now, E_n is a BP_* -module, where v_i acts by $u_i u^{1-p^i}$ for $i \leq n-1$, u^{1-p^n} for i = n, and 0 otherwise. Thus the LEFT applies, and we get a spectrum E_n , called **Morava** E-theory.

3 Change of rings theorems

Recall that we want to compute $\operatorname{Ext}_{BP_*BP}(BP_*, M)$ in cases (i) and (ii) above. First suppose we're in case (ii), where $v_n^{-1}M = M$ and $I_nM = 0$. Miller-Ravenel showed that in this case,

$$\operatorname{Ext}_{BP_*BP}(BP_*, M) \cong \operatorname{Ext}_{\Sigma(n)}(K(n), K(n) \otimes_{BP_*} M).$$

Here K(n) is Morava K-theory and $\Sigma(n) = K(n) \otimes_{BP_*} BP_*BP \otimes_{BP_*} K(n)$. Likewise, in case (i), where we just have $v_n^{-1}M = M$,

$$\operatorname{Ext}_{BP_*BP}(BP_*, M) \cong \operatorname{Ext}_{\widehat{U}(n)}(\widehat{E}(n), \widehat{E}(n) \otimes_{BP_*} M).$$

Here $\widehat{E}(n)$ is completed periodic Johnson-Wilson theory, with coefficient ring $\mathbb{Z}_p[[u_1,\ldots,u_{n-1}]][u,u^{-1}]$; $\widehat{U}(n)$ is defined similarly to $\Sigma(n)$, though it's completed now. We can write these both in terms of group cohomology. In case (i), we have

$$\operatorname{Ext}_{BP_*BP}(BP_*, M) \cong H_c^*(\mathbb{S}_n, E_n \otimes_{BP_*} M)^{\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)};$$

in case (ii), we have a map

$$\operatorname{Ext}_{BP_*BP}(BP_*, M) \to H_c^*(\mathbb{S}_n, \mathbb{F}_n \otimes_{BP_*} M)^{\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)},$$

which becomes an isomorphism after doing some things with the grading.

All this follows from two types of general change-of-rings theorems. Let $f:(A,\Gamma)\to(B,\Sigma)$ be a map of Hopf algebroids. We then have a pair of functors

$$\Gamma$$
-Comod $\xrightarrow{f^*} \Sigma$ -Comod

given by $f^*(M) = B \otimes_A M$ and $f_*(N) = (\Gamma \otimes_A B) \square_{\Sigma} N$. If we'd like, we can view these as pullback and pushforward of quasicoherent sheaves on the stacks $\mathcal{M}_{(A,\Gamma)}$ and $\mathcal{M}_{(B,\Sigma)}$.

The first change-of-rings theorem is Miller-Ravenel's 'push-pull' theorem, which says that in the pair of maps

$$\operatorname{Ext}_{\Gamma}(A, M) \to \operatorname{Ext}_{\Gamma}(A, f_*f^*M) \to \operatorname{Ext}_{\Sigma}(B, f^*M),$$

the first is an isomorphism under conditions on M, and the second is an isomorphism under conditions on f.

The second comes from the concept of equivalence of Hopf algebroids. A Hopf algebroid can be viewed as a functor from rings to groupoids, and a map f of Hopf algebroids induces a natural transformation of functors.

Definition 7. f is an **equivalence of Hopf algebroids** if the associated natural transformation admits an inverse, up to natural equivalence. Equivalently, f is an equivalence if it induces an equivalence on the associated stacks.

In this case, we have a change-of-rings isomorphism $\operatorname{Ext}_{\Gamma}(A, M) \cong \operatorname{Ext}_{\Sigma}(B, f^*M)$.