Periodicity

Rob Legg

April 22, 2013

Recall that the CSS arises from a filtration

$$BP_* \to p^{-1}BP_* \to v_1^{-1}BP_*/p^{\infty} \to \cdots$$

that comes from algebraic periodicity in BP_* . One is led to wonder whether this algebraic periodicity is realized topologically.

Definition 1. Let X be finite and p-local and $v: \Sigma^k X \to X$ a self map. v is a v_n -self map if $K(m)_*v$ is nilpotent for $m \neq n$, an isomorphism for $m = n \neq 0$, and multiplication by a nonzero rational number for m = n = 0.

Theorem 2 (Periodicity theorem, Devinatz-Hopkins-Smith). X admits a v_n -self map iff it is $K(n-1)_*$ -acyclic.

The proof of this entirely relies on the nilpotence theorem in its Morava K-theory incarnation, which we just proved.

Let C_0 be the category of p-local finite spectra and C_n the full subcategory of $K(n-1)_*$ -acyclic spectra in C_0 .

Theorem 3 (Ravenel, Mitchell-Smith). There is a chain of proper inclusions

$$C_{\infty} \subsetneq \cdots \subsetneq C_n \subsetneq \cdots \subsetneq C_1 \subsetneq C_0.$$

Definition 4. A full subcategory C of C_0 is **thick** if it is closed under weak equivalences, cofiber sequences, and retracts.

Theorem 5 (Thick subcategory theorem, Hopkins-Smith). If $C \subseteq C_0$ is thick, then it is equal to some C_n .

Proof. This follows from the nilpotence theorem, and is in fact equivalent to it.

Definition 6. A property of finite spectra is **generic** if the category of spectra having that property is thick.

Let $\mathcal{V}_n \subseteq \mathcal{C}_0$ be the full subcategory of spectra admitting v_n -self maps. We want to show that $\mathcal{V}_n = \mathcal{C}_n$. First, $\mathcal{C}_{n+1} \subseteq \mathcal{V}_n$: any self map of a $K(n)_*$ -acyclic spectrum is a v_n -self map. Second, $\mathcal{V}_n \subseteq \mathcal{C}_n$. Suppose X admits a v_n -self map but $K(i)_*X \neq 0$ for some i < n. If Y is the cofiber of the v_n -self map, then $K(n)_*Y = 0$, but $K(i)_*Y \neq 0$, contradicting Ravenel's theorem above.

Third, we must show that the property of admitting a v_n -self map is generic, which we will prove below. This will prove that $\mathcal{V}_n = \mathcal{C}_{n+1}$ or \mathcal{C}_n . The fourth step, which completes the proof, is to exhibit an $X \in \mathcal{V}_n \cap \mathcal{C}_n \setminus \mathcal{C}_{n+1}$. This is technical and will not be discussed today.

Lemma 7. Let $f: \Sigma^k X \to X$ be a v_n -self map. Then there exist i, j with $K(m)_* f^i$ equal to multiplication by v_n^j for m = n and 0 for $m \neq n$.

Lemma 8. Under the above conditions, there exists i such that $f^i \in Z(\text{End}(X))$.

Lemma 9. Let g be another v_n -self map. Then there exist i, j with $f^i = g^j$.

Lemma 10. Let f be as above, g a v_n -self map of Y. Then there exist i, j such that for all $h: X \to Y$, the square

$$\begin{array}{ccc}
\Sigma^{M} X & \xrightarrow{\Sigma^{M} h} \Sigma^{M} Y \\
\downarrow^{f^{i}} & & \downarrow^{g^{j}} \\
X & \xrightarrow{h} Y
\end{array}$$

commutes.

Now, since X is finite, it has a Spanier-Whitehead dual DX with $[X,Y]_* \cong [S,DX \wedge Y]_*$ for all Y. In particular, $\operatorname{Hom}_{K(m)_*}(K(m)_*X,K(m)_*Y) \cong K(m)_*(Y \wedge DX)$. Our strategy will be to dualize and apply the nilpotence theorem a lot.

Definition 11. Let R be a finite ring spectrum of the form $(X \wedge DX)$ and $\alpha in\pi_*R$. Then α is a v_n -element if $K(m)_*\alpha$ is multiplication by a unit for m=n and nilpotent for $m \neq n$.

There's a clear correspondence between v_n -self maps of X and v_n -elements of $\pi_*(X \wedge DX)$.

Proof of Lemma 7. We can restate the lemma as saying that if $\alpha \in \pi_* R$ is a v_n -element, then there exist i, j such that $K(m)_* \alpha^i = v_n^j$ for m = n and 0 for $m \neq n$. For large m, $K(m)_* X \cong H\mathbb{F}_{p*} X \otimes_{\mathbb{F}_p} K(m)_*$, and a map $f: X \to Y$ has $K(m)_* f = H\mathbb{F}_{p*} f \otimes 1_{K(m)_*}$. Thus if $K(m)_* \alpha$ is nilpotent for $m \gg 0$, then $H\mathbb{F}_{p*} \alpha$ is nilpotent for $m \gg 0$, so $H\mathbb{F}_{p*} \alpha = 0$ for $m \gg 0$. In particular, $K(m)_* \alpha = 0$ for all but finitely many m, and since α is a v_n -element, raising it to a sufficiently high power gives $K(m)_* \alpha = 0$ for all $m \neq n$. Finally, $K(n)_* R/(v_n - 1)$ has a finite group of units, and α is a unit in this ring; thus, raising it to some power, we get $\alpha = 1$ in this ring and thus $\alpha = v_n^j$, as desired.

Proof of Lemma 8. The dual statement of this lemma is that for α a v_n -element, there exists i such that $\alpha^i \in Z(\pi_*R)$. We first establish an auxiliary lemma:

Lemma 12. Let x, y be commuting elements of a $\mathbb{Z}_{(p)}$ -algebra such that (x-y) is nilpotent and torsion. Then for $N \gg 0$, $x^{p^N} = y^{p^N}$.

This follows from the binomial theorem.

Now let $\ell(\alpha)$ and $r(\alpha)$ be multiplication on the left and right by α , respectively. Then $\ell(\alpha) - r(\alpha)$ has finite order, and since α is central in K-theory, $K(m)_*(\ell(\alpha) - r(\alpha)) = 0$ for all m. Thus by the nilpotence theorem, $\ell(\alpha) - r(\alpha)$ is nilpotent, and so $\ell(\alpha)^{p^N} = r(\alpha)^{p^N}$, proving that some power of α is in $Z(\pi_*R)$. \square

Proof of Lemma 9. The dual statement is that if $\alpha, \beta \in \pi_* R$ are v_n -elements, then after taking high enough powers, they are equal.

This is the same proof as the previous one: after taking high enough powers, $K(m)_*(\alpha - \beta) = 0$ for all m, and α, β are central. So $\alpha - \beta$ is nilpotent and finite order, and after taking more powers, it is zero. \square

Proof of Lemma 10. Let v_X and v_Y be v_n -self maps on X and Y respectively, and $h: X \to Y$. We have a square

$$\begin{array}{c|c}
\Sigma^{M} X & \xrightarrow{\Sigma^{M} h} \Sigma^{M} Y \\
v_{X} & & & \downarrow v_{Y} \\
X & \xrightarrow{h} & Y
\end{array}$$

and dualizing gives a diagram

$$S^{M} \xrightarrow{v_{Y} \wedge 1_{DX}} Y \wedge DX$$

$$\downarrow V \wedge DX$$

$$V \wedge DX$$

One can show that the parallel maps are again v_n -self maps, so taking high enough powers gives the desired result.

Proof that V_n is thick. First we show that it's closed under cofiber sequences. Clearly, X admits a v_n -self map iff ΣX does. Thus it suffices to show that if $X \to Y \to Z$ is a cofiber sequence with X and Y admitting v_n -self maps, then Z does as well. By lemma 4, there's a diagram

$$\begin{array}{c|cccc} \Sigma^M X & \longrightarrow \Sigma^M Y & \longrightarrow \Sigma^M Z \\ v_X & & v_Y & & v_Z & \\ & & & & & \downarrow \\ X & \longrightarrow Y & \longrightarrow Z \end{array}$$

and if we let v_Z be any map filling in the diagram, it's easy to see that v_Z is a v_n -self map as well.

Second, we show that \mathcal{V}_n is closed under retracts. Let $Y \xrightarrow{i} X \xrightarrow{r} Y$ be a retraction, and let v_X be a v_n -self map of X commuting with ir. Then one can check that rv_Xi is a v_n -self map of Y.

As we said, the last step is to show that V_n is not equal to C_{n+1} , which is a difficult argument, using vanishing lines and stuff.

One nice corollary is

Theorem 13. Let $X \in \mathcal{C}_n$. The map $Z([X,X]_*) \to \mathbb{F}_p[v_n]$ has kernel consisting of nilpotent elements, and image containing some v_n^j .