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Recall that the CSS arises from a filtration

BP∗ → p−1BP∗ → v−1
1 BP∗/p

∞ → · · ·

that comes from algebraic periodicity in BP∗. One is led to wonder whether this algebraic periodicity is
realized topologically.

Definition 1. Let X be finite and p-local and v : ΣkX → X a self map. v is a vn-self map if K(m)∗v is
nilpotent for m 6= n, an isomorphism for m = n 6= 0, and multiplication by a nonzero rational number for
m = n = 0.

Theorem 2 (Periodicity theorem, Devinatz-Hopkins-Smith). X admits a vn-self map iff it is K(n − 1)∗-
acyclic.

The proof of this entirely relies on the nilpotence theorem in its Morava K-theory incarnation, which we
just proved.

Let C0 be the category of p-local finite spectra and Cn the full subcategory of K(n− 1)∗-acyclic spectra
in C0.

Theorem 3 (Ravenel, Mitchell-Smith). There is a chain of proper inclusions

C∞ ( · · · ( Cn ( · · · ( C1 ( C0.

Definition 4. A full subcategory C of C0 is thick if it is closed under weak equivalences, cofiber sequences,
and retracts.

Theorem 5 (Thick subcategory theorem, Hopkins-Smith). If C ⊆ C0 is thick, then it is equal to some Cn.

Proof. This follows from the nilpotence theorem, and is in fact equivalent to it.

Definition 6. A property of finite spectra is generic if the category of spectra having that property is
thick.

Let Vn ⊆ C0 be the full subcategory of spectra admitting vn-self maps. We want to show that Vn = Cn.
First, Cn+1 ⊆ Vn: any self map of a K(n)∗-acyclic spectrum is a vn-self map. Second, Vn ⊆ Cn. Suppose
X admits a vn-self map but K(i)∗X 6= 0 for some i < n. If Y is the cofiber of the vn-self map, then
K(n)∗Y = 0, but K(i)∗Y 6= 0, contradicting Ravenel’s theorem above.

Third, we must show that the property of admitting a vn-self map is generic, which we will prove
below. This will prove that Vn = Cn+1 or Cn. The fourth step, which completes the proof, is to exhibit an
X ∈ Vn ∩ Cn \ Cn+1. This is technical and will not be discussed today.

Lemma 7. Let f : ΣkX → X be a vn-self map. Then there exist i, j with K(m)∗f
i equal to multiplication

by vjn for m = n and 0 for m 6= n.

Lemma 8. Under the above conditions, there exists i such that f i ∈ Z(End(X)).

Lemma 9. Let g be another vn-self map. Then there exist i, j with f i = gj.
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Lemma 10. Let f be as above, g a vn-self map of Y . Then there exist i, j such that for all h : X → Y , the
square

ΣMX
ΣMh //

fi

��

ΣMY

gj

��
X

h // Y

commutes.

Now, since X is finite, it has a Spanier-Whitehead dual DX with [X,Y ]∗ ∼= [S,DX ∧ Y ]∗ for all Y . In
particular, HomK(m)∗(K(m)∗X,K(m)∗Y ) ∼= K(m)∗(Y ∧ DX). Our strategy will be to dualize and apply
the nilpotence theorem a lot.

Definition 11. Let R be a finite ring spectrum of the form (X∧DX) and αinπ∗R. Then α is a vn-element
if K(m)∗α is multiplication by a unit for m = n and nilpotent for m 6= n.

There’s a clear correspondence between vn-self maps of X and vn-elements of π∗(X ∧DX).

Proof of Lemma 7. We can restate the lemma as saying that if α ∈ π∗R is a vn-element, then there exist i,
j such that K(m)∗α

i = vjn for m = n and 0 for m 6= n. For large m, K(m)∗X ∼= HFp∗X ⊗Fp K(m)∗, and
a map f : X → Y has K(m)∗f = HFp∗f ⊗ 1K(m)∗ . Thus if K(m)∗α is nilpotent for m � 0, then HFp∗α
is nilpotent for m � 0, so HFp∗α = 0 for m � 0. In particular, K(m)∗α = 0 for all but finitely many m,
and since α is a vn-element, raising it to a sufficiently high power gives K(m)∗α = 0 for all m 6= n. Finally,
K(n)∗R/(vn − 1) has a finite group of units, and α is a unit in this ring; thus, raising it to some power, we
get α = 1 in this ring and thus α = vjn, as desired.

Proof of Lemma 8. The dual statement of this lemma is that for α a vn-element, there exists i such that
αi ∈ Z(π∗R). We first establish an auxiliary lemma:

Lemma 12. Let x, y be commuting elements of a Z(p)-algebra such that (x − y) is nilpotent and torsion.

Then for N � 0, xp
N

= yp
N

.

This follows from the binomial theorem.
Now let `(α) and r(α) be multiplication on the left and right by α, respectively. Then `(α) − r(α) has

finite order, and since α is central in K-theory, K(m)∗(`(α) − r(α)) = 0 for all m. Thus by the nilpotence

theorem, `(α)− r(α) is nilpotent, and so `(α)p
N

= r(α)p
N

, proving that some power of α is in Z(π∗R).

Proof of Lemma 9. The dual statement is that if α, β ∈ π∗R are vn-elements, then after taking high enough
powers, they are equal.

This is the same proof as the previous one: after taking high enough powers, K(m)∗(α − β) = 0 for all
m, and α, β are central. So α− β is nilpotent and finite order, and after taking more powers, it is zero.

Proof of Lemma 10. Let vX and vY be vn-self maps on X and Y respectively, and h : X → Y . We have a
square

ΣMX
ΣMh //

vX

��

ΣMY

vY

��
X

h // Y

and dualizing gives a diagram

SM // Y ∧DX

1Y ∧DvX
��

vY ∧1DX

��
Y ∧DX.

One can show that the parallel maps are again vn-self maps, so taking high enough powers gives the desired
result.
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Proof that Vn is thick. First we show that it’s closed under cofiber sequences. Clearly, X admits a vn-self
map iff ΣX does. Thus it suffices to show that if X → Y → Z is a cofiber sequence with X and Y admitting
vn-self maps, then Z does as well. By lemma 4, there’s a diagram

ΣMX //

vX

��

ΣMY //

vY

��

ΣMZ

vZ

��
X // Y // Z

and if we let vZ be any map filling in the diagram, it’s easy to see that vZ is a vn-self map as well.

Second, we show that Vn is closed under retracts. Let Y
i→ X

r→ Y be a retraction, and let vX be a
vn-self map of X commuting with ir. Then one can check that rvX i is a vn-self map of Y .

As we said, the last step is to show that Vn is not equal to Cn+1, which is a difficult argument, using
vanishing lines and stuff.

One nice corollary is

Theorem 13. Let X ∈ Cn. The map Z([X,X]∗)→ Fp[vn] has kernel consisting of nilpotent elements, and
image containing some vjn.


