Nilpotence

Callan McGill

April 22, 2013

1 Various forms of nilpotence

The first statement on nilpotence in the homotopy groups of spheres is

Theorem 1 (Nishida). Every $\alpha \in \pi_n(S^0)$ for n > 0 is nilpotent.

Definition 2. Let E be an associative ring spectrum. If $f: X \to Y$ is such that $1_E \wedge f^{\wedge n}: E \wedge X^{\wedge n} \to E \wedge Y^{\wedge n}$ is trivial for some n, then f is $E \to n$ **ilpotent**. If $f: \Sigma^d X \to X$ is a self-map such that $1_E \wedge f^{\circ n}$ is trivial for some n, then f is $E \to n$ **ilpotent**. (Here by $f^{\circ n}$, we mean the composition $f \circ \Sigma^d f \circ \cdots \circ \Sigma^{(n-1)d} f$.) If R is a (not necessarily associative) ring spectrum, $\alpha \in \pi_* R$, and $1_E \wedge (\mu^n \alpha^n)$ is trivial for any sequence of multiplications $\mu^n: R^n \to R$, then α is E-Hurewicz nilpotent.

If $\alpha \in \pi_n R$ for R a ring spectrum, then there's a self-map $\overline{\alpha} : \Sigma^n R \to R \land R \to R$, and we define

$$\overline{\alpha}^{-1}R = \text{hocolim}(R \to \Sigma^{-n}R \to \Sigma^{-2n}R \to \cdots).$$

(For example, this could be constructed as a mapping telescope.)

Lemma 3. $\overline{\alpha}^{-1}R \wedge E \simeq * iff \alpha \text{ is } E\text{-Hurewicz nilpotent.}$

2 The main theorem

Theorem 4 (Nilpotence theorem, Devinatz-Hopkins-Smith).

- I. Suppose R is a connective associative ring spectrum of finite type. Then if $\alpha \in \pi_n(R)$ is MU-Hurewicz nilpotent, it is nilpotent in π_*R .
- II. The same, where R is any ring spectrum.
- III. If $f: F \to X$ for F a finite spectrum is $MU \land$ nilpotent, then f is nilpotent.
- IV. If we have a sequence

$$\cdots \to X_{n+1} \stackrel{f_{n+1}}{\to} X_n \stackrel{f_n}{\to} X_{n-1} \to \cdots,$$

and f_n is c_n -connected for $c_n \ge mn + b$ for some m, b, with $MU(f_n) = 0$ for all n, then the homotopy colimit of this sequence is contractible.

- V. If R is p-local, and $\alpha \in \pi_*(R)$ is BP-Hurewicz nilpotent, then α is nilpotent.
- VI. If R is p-local, and $\alpha \in \pi_*(R)$ is K(n)-Hurewicz nilpotent for all $0 \le n \le \infty$, then α is nilpotent.

Note that Nishida's theorem follows as an immediate corollary – since we know that all elements of $\pi_n S$ for n > 0 are torsion and that $\pi_* MU$ is torsion-free, the image of any $\alpha \in \pi_n S$ in $\pi_n MU$ must be zero, so that α is nilpotent by statement III.

Proof of $I \Rightarrow III$. Suppose that $\alpha: F \to X$ is MU- \wedge nilpotent; replacing F and X with sufficiently high smash powers, we see that $1 \wedge \alpha: MU \wedge F \to MU \wedge X$ is zero. Since F is finite, it has a Spanier-Whitehead dual DF, and $\overline{\alpha}: S \to X \wedge DF$ is zero after smashing with MU. Since S is a small object, the image of this map is some finite subspectrum of $X \wedge DF$, and any given nullhomotopy must likewise factor through some finite subspectrum. Let X' be such a subspectrum; after sufficient suspension, we can take X' to be connective. The tensor algebra $T(X') = \bigvee_{n \geq 0} (X')^{\wedge n}$ is then a connective associative ring spectrum of finite type, and if $i: X' \to T(X')$ is the inclusion, then $i_*\overline{\alpha}$ is MU-Hurewicz nilpotent in T(X'), so by I, $\overline{\alpha}$ is nilpotent, and thus α is nilpotent.

 $III \Rightarrow II$. Suppose $\alpha \in \pi_n(R)$ is MU-Hurewicz nilpotent, so that $MU \wedge S^n \to MU \wedge MU \wedge R \to MU \wedge R$ is nilpotent. It immediately follows that α is nilpotent.

 $III \Rightarrow IV$. See the DHS paper.

 $II \Rightarrow V$. This follows from the splitting of $MU_{(n)}$.

 $V \Rightarrow VI$. We have $\langle BP \rangle = \langle K(0) \rangle \vee \cdots \vee \langle K(n) \rangle \vee \langle P(n+1) \rangle$, where angle brackets denote the Bousfield class and P(n+1) is the cohomology theory with $P(n+1)_* = \mathbb{Z}_{(p)}[v_{n+1},\ldots]$. Note that $\varinjlim P(n) = H\mathbb{F}_p$. Thus if $f: F \to X$ is K(n)-Hurewicz nilpotent for all n, then $F \to \varprojlim P(n) \wedge X$ factors through some $P(n) \wedge X$, and it is therefore BP-Hurewicz nilpotent, thus nilpotent by V.

The nilpotence theorem resolves the following conjecture:

Conjecture 5 (Ravenel's nilpotence conjecture). If we have $f: \Sigma^d X \to X$ with $MU_*(f) = 0$, and X is finite, then f is composition nilpotent.

Proof. The mapping telescope of f is contractible, so some composite of f is zero.

Outline of proof of the nilpotence theorem. We've reduced the theorem to proving I. We have a sequence of maps

$$* \simeq \Omega SU(1) \to \Omega SU(2) \to \cdots \to \Omega SU \to BU.$$

If X(n) is the Thom spectrum of $\Omega SU(n) \to BU$, then we can write MU as a colimit

$$S^0 = X(0) \to X(1) \to \cdots \to X(\infty) \to MU$$

where $X(n) \to MU$ is 2n-1-connected. Thus if $\alpha \in \pi_d(R)$ has zero MU-Hurewicz image, it also has zero X(n)-Hurewicz image for sufficiently large n.

We thus reduce to showing that if α is X(n+1)-Hurewicz nilpotent, then it is X(n)-Hurewicz nilpotent. As usual, it suffices to look locally at each p; this is sketched out below.

3 Homology of various spaces

Fix $L_0 \in \mathbb{C}P^{n-1}$. We have a map $\Sigma \mathbb{C}P^{n-1} \to SU(n)$ given by $(z, L) \mapsto (z^{-1}\pi_{L_0} + \pi_{L_0^{\perp}})(z\pi_L + \pi_{L^{\perp}})$. The adjoint maps $\mathbb{C}P^{n-1} \to \Omega SU(n)$ are compatible with the inclusions $\mathbb{C}P^{n-1} \to \mathbb{C}P^n$, $\Omega SU(n) \hookrightarrow \Omega SU(n+1)$, and thus we get a map $\mathbb{C}P^{\infty} \to \Omega SU \to BU$.

Let V be the virtual vector bundle $\mathcal{O}(-1)-1$ over $\mathbb{C}P^{n-1}$. Then the Thom spectrum $(\mathbb{C}P^{n-1})^V$ is $\Sigma^{-2}\mathbb{C}P^n$, and we get complex n-orientations $\Sigma^{-2}\mathbb{C}P^n \to X(n)$ for each n with colimit $\Sigma^{-2}\mathbb{C}P^\infty \to MU$. We have $H_*(\mathbb{C}P^{n-1}) = \mathbb{Z}\{\beta_0,\ldots,\beta_n\}$, and such an identification induces $H_*(\Omega SU(n)) = \mathbb{Z}[\beta_0,\ldots,\beta_n]/(\beta_0-1)$. The Thom isomorphism gives $H_*(X(n)) = \mathbb{Z}[b_0,\ldots,b_n]/(b_0-1)$, where b_i comes from $\Sigma^{-2}\mathbb{C}P^{n+1}$.

Proposition 6. Suppose $k \le n$. Then $X(n)_* \mathbb{C}P^k = X(n)_* \{\beta_1, ..., \beta_k\}$, and $X(n)_* X(k) = X(n)_* [b_0, ..., b_k] / (b_0 - 1)$.

Theorem 7. $X(n)_*X(n)$ is flat over X(n).

4 Further reductions

There's a pullback square

Write $F_{k,n}$ for the Thom spectrum of $F'_{k,n} \to \Omega SU(n+1) \to BU$. We have maps

$$F_{0,n} = X(n) \rightarrow F_{1,n} \rightarrow \cdots \rightarrow X(n+1),$$

and we define $G_{k,n} = (F_{p^{k-1},n})_{(p)}$.

Theorem 8. if $X(n+1) \wedge \alpha^{-1}R \simeq *$ then $G_{k,n} \wedge \alpha^{-1}R \simeq *$ for large enough k.

Theorem 9. $\langle G_{k,n} \rangle = \langle G_{k+1,n} \rangle$ as Bousfield classes.

Thus, $G_{0,n} \wedge \alpha^{-1}R \simeq *$, and it follows that $X(n)_{(p)} \wedge \alpha^{-1}R \simeq *$, as desired.