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1 Various forms of nilpotence

The first statement on nilpotence in the homotopy groups of spheres is

Theorem 1 (Nishida). Every α ∈ πn(S0) for n > 0 is nilpotent.

Definition 2. Let E be an associative ring spectrum. If f : X → Y is such that 1E∧f∧n : E∧X∧n → E∧Y ∧n
is trivial for some n, then f is E-∧ nilpotent. If f : ΣdX → X is a self-map such that 1E ∧ f◦n is trivial
for some n, then f is E-◦ nilpotent. (Here by f◦n, we mean the composition f ◦ Σdf ◦ · · · ◦ Σ(n−1)df .) If
R is a (not necessarily associative) ring spectrum, α ∈ π∗R, and 1E ∧ (µnαn) is trivial for any sequence of
multiplications µn : Rn → R, then α is E-Hurewicz nilpotent.

If α ∈ πnR for R a ring spectrum, then there’s a self-map α : ΣnR→ R ∧R→ R, and we define

α−1R = hocolim(R→ Σ−nR→ Σ−2nR→ · · · ).

(For example, this could be constructed as a mapping telescope.)

Lemma 3. α−1R ∧ E ' ∗ iff α is E-Hurewicz nilpotent.

2 The main theorem

Theorem 4 (Nilpotence theorem, Devinatz-Hopkins-Smith).

I. Suppose R is a connective associative ring spectrum of finite type. Then if α ∈ πn(R) is MU -Hurewicz
nilpotent, it is nilpotent in π∗R.

II. The same, where R is any ring spectrum.

III. If f : F → X for F a finite spectrum is MU -∧ nilpotent, then f is nilpotent.

IV. If we have a sequence

· · · → Xn+1
fn+1→ Xn

fn→ Xn−1 → · · · ,

and fn is cn-connected for cn ≥ mn+ b for some m, b, with MU(fn) = 0 for all n, then the homotopy
colimit of this sequence is contractible.

V. If R is p-local, and α ∈ π∗(R) is BP -Hurewicz nilpotent, then α is nilpotent.

VI. If R is p-local, and α ∈ π∗(R) is K(n)-Hurewicz nilpotent for all 0 ≤ n ≤ ∞, then α is nilpotent.

Note that Nishida’s theorem follows as an immediate corollary – since we know that all elements of πnS
for n > 0 are torsion and that π∗MU is torsion-free, the image of any α ∈ πnS in πnMU must be zero, so
that α is nilpotent by statement III.
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Proof of I ⇒ III. Suppose that α : F → X is MU -∧ nilpotent; replacing F and X with sufficiently high
smash powers, we see that 1∧α : MU ∧F →MU ∧X is zero. SInce F is finite, it has a Spanier-Whitehead
dual DF , and α : S → X ∧ DF is zero after smashing with MU . Since S is a small object, the image of
this map is some finite subspectrum of X ∧DF , and any given nullhomotopy must likewise factor through
some finite subspectrum. Let X ′ be such a subspectrum; after sufficient suspension, we can take X ′ to be
connective. The tensor algebra T (X ′) =

∨
n≥0(X ′)∧n is then a connective associative ring spectrum of finite

type, and if i : X ′ → T (X ′) is the inclusion, then i∗α is MU -Hurewicz nilpotent in T (X ′), so by I, α is
nilpotent, and thus α is nilpotent.

III ⇒ II. Suppose α ∈ πn(R) is MU -Hurewicz nilpotent, so that MU ∧ Sn → MU ∧MU ∧ R → MU ∧ R
is nilpotent. It immediately follows that α is nilpotent.

III ⇒ IV. See the DHS paper.

II ⇒ V. This follows from the splitting of MU(p).

V ⇒ VI. We have 〈BP 〉 = 〈K(0)〉 ∨ · · · ∨ 〈K(n)〉 ∨ 〈P (n + 1)〉, where angle brackets denote the Bousfield
class and P (n + 1) is the cohomology theory with P (n + 1)∗ = Z(p)[vn+1, . . . ]. Note that lim−→P (n) = HFp.
Thus if f : F → X is K(n)-Hurewicz nilpotent for all n, then F → lim←−P (n) ∧ X factors through some
P (n) ∧X, and it is therefore BP -Hurewicz nilpotent, thus nilpotent by V.

The nilpotence theorem resolves the following conjecture:

Conjecture 5 (Ravenel’s nilpotence conjecture). If we have f : ΣdX → X with MU∗(f) = 0, and X is
finite, then f is composition nilpotent.

Proof. The mapping telescope of f is contractible, so some composite of f is zero.

Outline of proof of the nilpotence theorem. We’ve reduced the theorem to proving I. We have a sequence of
maps

∗ ' ΩSU(1)→ ΩSU(2)→ · · · → ΩSU → BU.

If X(n) is the Thom spectrum of ΩSU(n)→ BU , then we can write MU as a colimit

S0 = X(0)→ X(1)→ · · · → X(∞)→MU,

where X(n) → MU is 2n− 1-connected. Thus if α ∈ πd(R) has zero MU -Hurewicz image, it also has zero
X(n)-Hurewicz image for sufficiently large n.

We thus reduce to showing that if α is X(n+ 1)-Hurewicz nilpotent, then it is X(n)-Hurewicz nilpotent.
As usual, it suffices to look locally at each p; this is sketched out below.

3 Homology of various spaces

Fix L0 ∈ CPn−1. We have a map ΣCPn−1 → SU(n) given by (z, L) 7→ (z−1πL0
+ πL⊥0 )(zπL + πL⊥). The

adjoint maps CPn−1 → ΩSU(n) are compatible with the inclusions CPn−1 ↪→ CPn, ΩSU(n) ↪→ ΩSU(n+1),
and thus we get a map CP∞ → ΩSU → BU .

Let V be the virtual vector bundle O(−1) − 1 over CPn−1. Then the Thom spectrum (CPn−1)V is
Σ−2CPn, and we get complex n-orientations Σ−2CPn → X(n) for each n with colimit Σ−2CP∞ →MU . We
have H∗(CPn−1) = Z{β0, . . . , βn}, and such an identification induces H∗(ΩSU(n)) = Z[β0, . . . , βn]/(β0−1).
The Thom isomorphism gives H∗(X(n)) = Z[b0, . . . , bn]/(b0 − 1), where bi comes from Σ−2CPn+1.

Proposition 6. Suppose k ≤ n. Then X(n)∗CP k = X(n)∗{β1, . . . , βk}, and X(n)∗X(k) = X(n)∗[b0, . . . , bk]/(b0−
1).

Theorem 7. X(n)∗X(n) is flat over X(n).
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4 Further reductions

There’s a pullback square

F ′k,n
//

��

ΩSU(n+ 1)

��
JkS

2n // ΩS2n+1.

Write Fk,n for the Thom spectrum of F ′k,n → ΩSU(n+ 1)→ BU . We have maps

F0,n = X(n)→ F1,n → · · · → X(n+ 1),

and we define Gk,n = (Fpk−1,n)(p).

Theorem 8. if X(n+ 1) ∧ α−1R ' ∗ then Gk,n ∧ α−1R ' ∗ for large enough k.

Theorem 9. 〈Gk,n〉 = 〈Gk+1,n〉 as Bousfield classes.

Thus, G0,n ∧ α−1R ' ∗, and it follows that X(n)(p) ∧ α−1R ' ∗, as desired.


