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1 Various forms of nilpotence
The first statement on nilpotence in the homotopy groups of spheres is
Theorem 1 (Nishida). Every a € m,(S°) for n > 0 is nilpotent.

Definition 2. Let E be an associative ring spectrum. If f : X — Y is such that 1gAf " : EAX" — EAY /"
is trivial for some n, then f is E-A nilpotent. If f : ¥¢X — X is a self-map such that 1z A fo7 is trivial
for some n, then f is E-o nilpotent. (Here by f°", we mean the composition fo X%fo...oXMm=Ddf) If
R is a (not necessarily associative) ring spectrum, « € m. R, and 1g A (u"a™) is trivial for any sequence of
multiplications p” : R” — R, then « is E-Hurewicz nilpotent.

If a € m, R for R a ring spectrum, then there’s a self-map @ : X" R — R A R — R, and we define
@ 'R =hocolim(R — ¥R — X"?"R — ---).
(For example, this could be constructed as a mapping telescope.)

Lemma 3. @ 'RA E ~ « iff a is E-Hurewicz nilpotent.

2 The main theorem
Theorem 4 (Nilpotence theorem, Devinatz-Hopkins-Smith).

I Suppose R is a connective associative ring spectrum of finite type. Then if a € 7, (R) is MU -Hurewicz
nilpotent, it is nilpotent in m, R.

II. The same, where R is any ring spectrum.
HI If f: F — X for F a finite spectrum is MU -N\ nilpotent, then f is nilpotent.

1V. If we have a sequence
S X T X T X,

and fyn, is cp-connected for ¢, > mn+b for some m, b, with MU(f,) =0 for all n, then the homotopy
colimit of this sequence is contractible.

V. If R is p-local, and o € w.(R) is BP-Hurewicz nilpotent, then « is nilpotent.
VI If R is p-local, and o € w.(R) is K(n)-Hurewicz nilpotent for all 0 < n < oo, then « is nilpotent.

Note that Nishida’s theorem follows as an immediate corollary — since we know that all elements of 7, S
for n > 0 are torsion and that 7, MU is torsion-free, the image of any o € 7,5 in 7, MU must be zero, so
that « is nilpotent by statement III.



Proof of I = III. Suppose that o : F — X is MU-A nilpotent; replacing F' and X with sufficiently high
smash powers, we see that 1ANa: MUAF — MU A X is zero. Slnce F is finite, it has a Spanier-Whitehead
dual DF, and & : S — X A DF is zero after smashing with MU. Since S is a small object, the image of
this map is some finite subspectrum of X A DF', and any given nullhomotopy must likewise factor through
some finite subspectrum. Let X’ be such a subspectrum; after sufficient suspension, we can take X’ to be
connective. The tensor algebra T'(X') = \/, -, (X’)"" is then a connective associative ring spectrum of finite
type, and if i : X’ — T(X’) is the inclusion, then i,a is MU-Hurewicz nilpotent in T'(X’), so by I, @ is
nilpotent, and thus « is nilpotent. O

III = II. Suppose a € 7, (R) is MU-Hurewicz nilpotent, so that MU A S™ - MU AMUANR — MU AR

is nilpotent. It immediately follows that « is nilpotent. O
III = IV. See the DHS paper. O
II = V. This follows from the splitting of MU . O
V = VI. We have (BP) = (K(0)) V---V (K(n)) V (P(n + 1)), where angle brackets denote the Bousfield
class and P(n + 1) is the cohomology theory with P(n + 1) = Z,)[vny1,-..]. Note that hﬂP(n) = HF,.
Thus if f : F — X is K(n)-Hurewicz nilpotent for all n, then F' — lim P(n) A X factors through some
P(n) A X, and it is therefore BP-Hurewicz nilpotent, thus nilpotent by V. O

The nilpotence theorem resolves the following conjecture:

Conjecture 5 (Ravenel’s nilpotence conjecture). If we have f : XX — X with MU,(f) = 0, and X is
finite, then f is composition nilpotent.

Proof. The mapping telescope of f is contractible, so some composite of f is zero. O

Outline of proof of the nilpotence theorem. We've reduced the theorem to proving I. We have a sequence of
maps
x>~ QSU(1) - QSU(2) —» --- = QSU — BU.

If X (n) is the Thom spectrum of QSU(n) — BU, then we can write MU as a colimit
S% = X(0) = X(1) = -+ — X(o0) = MU,

where X(n) — MU is 2n — 1-connected. Thus if o € m4(R) has zero MU-Hurewicz image, it also has zero
X (n)-Hurewicz image for sufficiently large n.

We thus reduce to showing that if a is X (n + 1)-Hurewicz nilpotent, then it is X (n)-Hurewicz nilpotent.
As usual, it suffices to look locally at each p; this is sketched out below. O

3 Homology of various spaces

Fix Ly € CP"!. We have a map XCP"~! — SU(n) given by (2, L) — (27 mp, + mp)(zmn + wpa). The
adjoint maps CP"~! — QSU(n) are compatible with the inclusions CP*~! < CP", QSU(n) — QSU(n+1),
and thus we get a map CP* — QSU — BU.

Let V be the virtual vector bundle O(—1) — 1 over CP"~!. Then the Thom spectrum (CP" 1)V is
¥ 72CP", and we get complex n-orientations X "2CP"™ — X (n) for each n with colimit X=2CP>* — MU. We
have H,(CP"~ ') = Z{By, .- ., Bn}, and such an identification induces H,(2SU (n)) = Z[Bo, - - -, Bn]/(Bo — 1).
The Thom isomorphism gives H, (X (n)) = Zlbo, .. ., byn]/(bo — 1), where b; comes from L ~2CP"*1.

Proposition 6. Suppose k < n. Then X (n),CP* = X(n).{B1,...,B:}, and X (n). X (k) = X (n)«[bo, - . -, bx]/(bo—
1).

Theorem 7. X (n),X(n) is flat over X(n).



4. FURTHER REDUCTIONS

4 Further reductions

There’s a pullback square
F,gn ——QSU(n+1)

]

Jk SQn 952n+1 .

Write Fj, , for the Thom spectrum of Fy ,, — QSU(n + 1) — BU. We have maps
Fon=X(n)— Fip— - —X(n+1),

and we define G, = (Fpr-1.,,)(p)-

Theorem 8. if X(n+ 1) Aa 'R~ x then Gy, AN a 'R ~ x for large enough k.

Theorem 9. (Gi ) = (Gikt1n) as Bousfield classes.

Thus, Go,, A a 'R ~ %, and it follows that X(n)p A a 'R ~ %, as desired.



