The chromatic spectral sequence

Nima Rasekh

April 22, 2013

1 The ANSS and the first Greek letter elements

Primary source: Miller-Ravenel-Wilson 1977. This constructed the CSS as an algebraic tool which converges to the E_{2} page of the ANSS. Throughout, let p be any prime; when we start doing computations, we'll take $p>2$. Recall that

$$
\begin{gathered}
B P_{*}=\mathbb{Z}_{(p)}\left[v_{1}, \ldots\right], \quad\left|v_{i}\right|=2\left(p^{i}-1\right) \\
B P_{*} B P=B P_{*}\left[t_{1}, \ldots\right], \quad\left|t_{i}\right|=2\left(p^{i}-1\right)
\end{gathered}
$$

For every $X, B P_{*} X$ is a $B P_{*} B P$-comodule, though we will take $X=S$ throughout. The ideals $I_{n}=$ $\left(p, v_{1}, \ldots, v_{n-1}\right) \subseteq B P_{*}$ are the only invariant prime ideals (Landweber).

The E_{2} page of the ANSS is then $\operatorname{Ext}_{B P_{*} B P}\left(B P_{*}, B P_{*}\right)=H^{*}\left(\Omega^{*} B P_{*}\right)$, where $\Omega^{*} B P_{*}$ is the cobar complex, given by

$$
\Omega^{t} B P_{*}=B P_{*} \otimes_{B P_{*}} \underbrace{B P_{*} B P \otimes_{B P_{*}} \cdots \otimes_{B P_{*}} B P_{*} B P}_{t},
$$

with differential induced by $d^{0}(m)=\psi(m)-m \otimes 1 \in B P_{*} \otimes_{B P_{*}} B P_{*} B P$, where ψ is the coaction. We will abbreviate this page as $E_{2}^{*}=H^{*}\left(B P_{*}\right)$.

We now start computing this cohomology in successive degrees (take $p \neq 2$), following the methods of Novikov. For $H^{1}\left(B P_{*}\right)$, we have short exact sequences

$$
0 \rightarrow B P_{*} \xrightarrow{p_{n+1}^{n+1}} B P_{*} \rightarrow B P_{*} / p^{n+1} \rightarrow 0
$$

which induce maps $\delta: H^{0}\left(B P_{*} / p^{n+1}\right) \rightarrow H^{1}\left(B P_{*}\right)$. Novikov shows that $v_{1}^{s p^{n}} \in H^{0}\left(B P_{*} / p^{n+1}\right)$, for s prime to p, is nontrivial and has nontrivial image in $H^{1}\left(B P_{*}\right)$. We write $\alpha_{s p^{n} / n+1}:=\delta\left(v_{1}^{s p^{n}}\right)$, with order p^{n+1}. This is the first family of Greek letter elements. 'Obviously it's α, which is a Greek letter, and it's an element, so yeah.'

2 The chromatic spectral sequence

For $n \in \mathbb{N}$, let $N_{n}^{0}=B P_{*} / I_{n}$ and $M_{n}^{0}=v_{n}^{-1} B P_{*} / I_{n}$. We then inductively construct $N_{n}^{s+1}=M_{n}^{s} / N_{n}^{s}$ and $M_{n}^{s+1}=v_{n+s+1}^{-1} N_{n}^{s+1}$. Thus, for example,

$$
N_{n}^{1}=B P_{*} /\left(p, \ldots, v_{n-1}, v_{n}^{\infty}\right)=\underset{k}{\lim } B P_{*} /\left(p, \ldots, v_{n-1}, v_{n}^{k}\right),
$$

and more generally,

$$
N_{n}^{s}=B P_{*} /\left(p, \ldots, v_{n-1}, v_{n}^{\infty}, \ldots, v_{n+s-1}^{\infty}\right)
$$

and

$$
M_{n}^{s}=v_{n+s}^{-1} B P_{*}\left(p, \ldots, v_{n-1}, v_{n}^{\infty}, \ldots, v_{n+s-1}^{\infty}\right)
$$

The chromatic filtration is

$$
0 \rightarrow B P_{*} / I_{n} \rightarrow M_{n}^{0} \rightarrow M_{n}^{1} \rightarrow \cdots
$$

This gives us a spectral sequence as usual, converging to $H^{*}\left(B P_{*} / I_{n}\right)$. For instance, we could define the chromatic cobar complex as $C_{n}^{u}=\bigoplus_{s+t=u} \Omega^{s} M_{n}^{t}$. This is a bigraded complex, where each column comes from the chromatic filtration, and each row is the cobar complex for some M_{n}^{s}. Taking the cohomology in the column direction gives us $H^{*}\left(B P_{*} / I_{n}\right)$ on $E_{1}=E_{\infty}$, which is what we want. Taking the cohomology in the row direction gives us $E_{1}^{s, t}=H^{s} M_{n}^{t}$.

To continue, we first generalize the Greek letter construction, which was a map $H^{0} N_{0}^{1} \rightarrow H^{1} B P_{*}$. Let $v_{1}^{s p^{n}} / p^{n+1} \in B P_{*} /\left(p^{\infty}\right)$ be the image of $v_{1}^{s p^{n}} \in B P_{*} /\left(p^{n+1}\right)$ (this explains the notation), and generalize this to allow denominators with powers of v_{i}. The boundary maps on cohomology induced by the short exact sequences $0 \rightarrow N_{0}^{s-1} \rightarrow M_{0}^{s-1} \rightarrow N_{0}^{s} \rightarrow 0$ induce maps

$$
H^{t} N_{0}^{s} \rightarrow H^{t+1} N_{0}^{s-1} \rightarrow H^{t+2} N_{0}^{s-2} \rightarrow \cdots
$$

The composition of s of these maps is a map $\eta: H^{t} N_{0}^{s} \rightarrow H^{t+s} B P_{*}$. We define

$$
\eta\left(\frac{v_{s}^{u p}}{p^{i_{0}} v_{1}^{i_{1}} \cdots v_{s-1}^{i_{s-1}}}\right)=\alpha_{u / i_{0}, \ldots, i_{s-1}}^{(s)},
$$

where by $\alpha^{(s)}$ we mean the s th Greek letter (so $\alpha^{(2)}$ is also written β, and so on). The s th Greek letter elements live in $H^{s}\left(B P_{*}\right)$. Note that we need to show, in general, that these elements are nonzero - not all of them necessarily exist.

Work of Landweber generalized this to other regular sequences $A=\left(a_{0}, a_{1}, \ldots\right)$ in $B P_{*}$, satisfying certain conditions that give the M_{n}^{s} comodule structures and so on. Under these conditions, we can likewise do the work of the above paragraph, and get a map η_{A} and ' A-Greek letter elements' in $H^{*}\left(B P_{*}\right)$. Landweber showed that these are always the usual Greek letter elements: the map η_{A} factors through η.

The last step is to understand $H^{0} N_{0}^{s}$. Note that there are exact sequences

$$
0 \rightarrow M_{n+1}^{s-1} \rightarrow M_{n}^{s} \xrightarrow{v_{n}} M_{n}^{s} \rightarrow 0
$$

where the first map just formally divides everything by v_{n}. Adding these together gives an exact couple and thus a spectral sequence. It's maybe simpler, however, to just say that we're using the long exact sequence on cohomology

$$
0 \rightarrow H^{0} M_{n+1}^{s-1} \rightarrow H^{0} M_{n}^{s} \rightarrow \cdots \rightarrow H^{t} M_{n}^{s}
$$

and inducting on s. It remains to understand

$$
M_{n+s}^{0}=v_{n+s}^{-1} \frac{B P_{*}}{\left(p, \ldots, v_{n+s-1}\right)} .
$$

We now use the Morava change of rings theorem, which gives an isomorphism

$$
H^{*} M_{n}^{0}=\operatorname{Ext}_{K(n)_{*} K(n)}\left(K(n)_{*}, K(n)_{*}\right)
$$

This last group is, in principle, computable. Armed with this information, and after doing substantial algebra, we can find the Greek letter elements in $H^{*}\left(B P_{*}\right)$. This has been done up to H^{2}, i.e. for α and β, and this has been the state of knowledge on this problem since 1977. Good luck, young mathematician.

