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1 Real K-theory

Real K-theory is represented by the spectrum KO. In general, we care about KO because we care about
real vector bundles. As homotopy theorists, we care about KO because we care about ImJ , which shows
up as the fiber of a map on p-completed KO. This gives us the height 1 information in π∗S. The only bad
prime at height 1 is p = 2, which Vitaly avoided during his talk; its badness corresponds to a Z2 ⊆ S1.

An upper bound for im J is given by the Adams conjecture, which says morally that Ψp wants to be a
Frobenius map. If this is true, then im J in dimension k is a quotient of a group whose cardinality is the
denominator m(2k) of B2k

4k . A lower bound for im J is given by the theory of cannibalistic classes and Adams
modules over KO, and this puts | im J | = m(2k) in dimension k up to a factor of 2. This is all in Adams’s
papers On the groups J(X), mostly in II and IV. We can repeat the whole theory of K after replacing it
with KO, and we can indeed define KO = KhC2 .

At height n, the analogue of K-theory is En, which now has a Sn-action. If p is bad, there’s a large
maximal finite subgroup G ⊆ Sn, and we define EOn = KOhG.

2 Stacks

We’ve been talking a lot about things like ‘comodules over a Hopf algebroid,’ which make algebraic sense
but aren’t terribly intuitive. It’s time now to get some geometric intuition, inspired by schemes.

Recall that a scheme is a certain kind of functor Ring → Set. A stack is a certain kind of functor
Ring→ Gpd, the category of groupoids – we’ve loosened things up a little by replacing 0-types with 1-types.

One way of thinking of this is a pair of schemes Y
s //

t
//X , with structure maps like those of a groupoid.

(The two maps displayed are source and target maps.) Of course, to make things work out nicely you’ll need
technical conditions, as well – the source and target maps need to be fppf, for example.

Another to introduce stacks is to start with a scheme X with a G-action, and formally define the quotient
X//G. This is a special case of the other definition.

In algebraic topology, the main source of stacks are the Hopf algebroids (E∗, E∗E), where E is a ring
spectrum such that E∗E is flat over E∗. Such an object gives us a stack SpecE∗//SpecE∗E, with a
coaugmentation from the scheme SpecE∗. In general, given a Hopf algebroid (A,Γ) with Γ flat over A, we
have a pullback of stacks

Spec Γ
s //

t

��

SpecA

��
SpecA // SpecA//Spec Γ =: SpecA//Γ.

A quasicoherent sheaf on a stack can be defined as a sheaf that pulls back to a quasicoherent sheaf
on any scheme mapping to that stack. Since the above pullback square is a cover of SpecA//Γ, we see that
a qc sheaf on SpecA//Γ is just a qc sheaf on SpecA that pulls back to isomorphic sheaves on Spec Γ along
the two unit maps. That is, it’s an A-module M with an isomorphism of Γ-modules M ⊗A Γ → Γ ⊗A M .
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Of course we can peel off one of these Γs, thus defining a qc sheaf on SpecA//Γ as an A-module M with a
map of A-modules

M → Γ⊗A M

satisfying some axioms. If you look at this, you’ll realize it’s exactly the definition of a Γ-comodule.
(You may be concerned since we haven’t distinguished between left and right comodules, but in fact we

shouldn’t! The conjugation/inverse structure map gives us a canonical equivalence of the two categories.)
Given a qc sheaf (comodule) F , we can take the cohomology RHom∗(OSpecA//Γ,F). In degree zero, this

should just be the global sections of F . What are the global sections of F if it corresponds to the comodule
M? Well, they’re just maps A→M that agree whichever way you go around the pullback square – that is,
they’re eq(M ⇒M ⊗A Γ). This is the box or cotensor product A�ΓM , also known as HomΓ(A,M).

Letting Sect be the global sections functor, we have Sect(SpecA//Γ,−) = Sect(SpecA,−) ◦ (A�Γ−).
Since SpecA is affine, it has no higher cohomology, so the Grothendieck spectral sequence for the right
derived functors of this composition collapses, giving

RSect∗(SpecA//Γ,F) = Cotor∗Γ(A,M).

That is, the mysterious Cotor functor is just sheaf cohomology!

Example 1. Let E = MU . By the results of Quillen, the stack SpecMU∗//MU∗MU is equivalent to the
stack (now viewed as a functor from rings to groupoids) FGLs // strict isomorphisms. In fact, we can also
write this as SpecL//G, where L is the Lazard ring and G is a group acting on it. The ANSS starts from

MU∗�
R
MU∗MUMU∗X ∼= H∗(SpecL//G,F) ∼= H∗(G,F(SpecL)) ∼= H∗(G,MU∗X).

When X = S, this is just H∗(G,L).

Example 2. The classical ASS comes from SpecFp//A∗. But SpecFp is a point, so this is a global group
quotient. If we replaceA∗ withA(1)∗ or something else of finite rank, we get honest-to-god group cohomology.

3 Computing EhG
n

Consider the ANSS for BP converging to π∗E
hG
n . We have a commutative square

SpecEn∗ //

��

SpecEn∗//G

f

��
SpecBP∗ //MpFGc.

The lower right hand corner is the moduli stack of p-typical formal groups with coordinates. We don’t
actually get a map to SpecBP∗ since taking orbits gives us a formal group, not a formal group law.

Proposition 3. K(n)-locally, BP∗E
hG
n
∼= f∗OSpecEn∗//G as a sheaf onMpFGc.

‘The Morava change-of-rings theorem should now be obvious.’
As an aside, MpFGc has a stratification M=0

pFGc ∪M=1
pFGc ∪ · · · by the height of the formal groups it’s

parametrizing. A sheaf being K(n)-local means that it’s supported on the nth stratum. If ι : M=n → M
is the inclusion, we have RΓ(ι∗F) = RΓ(Rι∗F) (since ι is affine), which is RΓ(F) (by the Lurie spectral
sequence). Also, M=n is the stack SpecK(n)∗//Σ(n)∗, where

Σ(n)∗ = K(n)∗ ⊗BP∗ BP∗BP ⊗BP∗ K(n)∗.

There’s also an En-local version of this, where we look at sheaves supported on M≤n. The MCOR
theorem appears as changing stacks to SpecEn∗//En∗En.

Now, SpecEn∗//G→M is (probably) affine, so the above argument gives us

RΓ(Rf∗OSpecEn∗//G) ∼= RΓ(SpecEn∗//G,OSpecEn∗//G) ∼= H∗(G,En∗),

and G is finite, so we can (probably) replace the ANSS with a homotopy fixed point spectral sequence.
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Example 4. Let n = 2 and p = 2. We can show that G ∼= GL2(F3), and SpecE2∗//G corresponds to the
moduli stack of supersingular height 2 elliptic curves over F4, of which there’s only one. En∗ is complete, so
SpecE2∗//G = Spf E2∗//G. Serre-Tate deformation theory over a perfect field k of positive characteristic p
tells us that a deformation of an abelian variety is the same as a deformation of its p-divisible group (the
pro-abelian formal group of all its p-power torsion). Thus

Spf(E2∗//G) ∼=Mss
1,1
∼=M∧1,1,ss,

the ss denoting ‘supersingular,’ and this is a sixfold quotient of MWeierstrass.


