
A compact and fast Matlab code solving the incompressible

Navier-Stokes equations on rectangular domains

mit18086 navierstokes.m

Benjamin Seibold
Applied Mathematics

Massachusetts Institute of Technology
www-math.mit.edu/~seibold

seibold@math.mit.edu

March 31, 2008

1 Introduction

On the following pages you find a documentation for the Matlab program
mit18086 navierstokes.m, as it is used for Course 18.086: Computational Science and En-
gineering II at the Massachusetts Institute of Technology. The code can be downloaded from
the Computational Science and Engineering web page http://www-math.mit.edu/cse. It
is also linked on the course web page http://www-math.mit.edu/18086.

This code shall be used for teaching and learning about incompressible, viscous flows.
It is an example of a simple numerical method for solving the Navier-Stokes equations. It
contains fundamental components, such as discretization on a staggered grid, an implicit
viscosity step, a projection step, as well as the visualization of the solution over time. The
main priorities of the code are

1. Simplicity and compactness: The whole code is one single Matlab file of about
100 lines.

2. Flexibility: The code does not use spectral methods, thus can be modified to more
complex domains, boundary conditions, and flow laws.

3. Visualization: The evolution of the flow field is visualized while the simulation runs.

4. Computational speed: Full vectorization and pre-solving the arising linear systems
in an initialization step results in fast time stepping.

The code provides:

• variable box sizes, grid resolution, time step, and Reynolds numbers

• implicit time stepping for the fluid viscosity

1

• visualization of pressure field, velocity field and streamlines

• automatic transition from central to donor-cell discretization for the nonlinear advec-
tion part

• fast computation of the time-dependent solution for small to moderate mesh sizes

The code does not provide:

• 3d

• unstructured meshes or complex geometries

• time-dependent geometries

• adaptivity, such as local mesh refinement, time step control, etc.

• non-constant viscosity or density

• higher order time stepping

• turbulence models

• time and memory efficiency for large computations

The code qualifies as a basis for modifications and extensions. The following extensions
have already been applied to the code by MIT students and other users:

• external forces

• inflow and outflow boundaries

• addition of a drag region

• geometry change to a backwards facing step

• time dependent geometries

• coupling with an advection-diffusion equation

2 Incompressible Navier-Stokes Equations

We consider the incompressible Navier-Stokes equations in two space dimensions

ut + px = −(u2)x − (uv)y +
1

Re
(uxx + uyy) (1)

vt + py = −(uv)x − (v2)y +
1

Re
(vxx + vyy) (2)

ux + vy = 0 (3)

2

on a rectangular domain Ω = [0, lx]×[0, ly]. The four domain boundaries are denoted North,
South, West, and East. The domain is fixed in time, and we consider no-slip boundary
conditions on each wall, i.e.

u(x, ly) = uN (x) v(x, ly) = 0 (4)
u(x, 0) = uS(x) v(x, 0) = 0 (5)
u(0, y) = 0 v(0, y) = vW (y) (6)
u(lx, y) = 0 v(lx, y) = vE(y) (7)

A derivation of the Navier-Stokes equations can be found in [2]. The momentum equations
(1) and (2) describe the time evolution of the velocity field (u, v) under inertial and viscous
forces. The pressure p is a Lagrange multiplier to satisfy the incompressibility condition
(3). Note that the momentum equations are already put into a numerics-friendly form. The
nonlinear terms on the right hand side equal

(u2)x + (uv)y = uux + vuy (8)

(uv)x + (v2)y = uvx + vvy (9)

which follows by the chain rule and equation (3). The above right hand side is often written
in vector form as (u · ∇)u. We choose to numerically discretize the form on the left hand
side, because it is closer to a conservation form.

The incompressibility condition is not a time evolution equation, but an algebraic condi-
tion. We incorporate this condition by using a projection approach [1]: Evolve the momen-
tum equations neglecting the pressure, then project onto the subspace of divergence-free
velocity fields.

3 Visualization

Every fixed number of time steps the current pressure and velocity field are visualized.
The pressure field is shown as a color plot with some contour lines. On top of this, the
normalized velocity field is shown as a quiver plot, i.e. little arrows indicate the direction of
the flow. Since in a lid driven cavity the flow rate varies significantly over different areas,
outputting the normalized velocity field is a common procedure. Additionally, stream lines
are shown. Those are paths particles would take in the flow if the velocity field was frozen
at the current instant in time. Since the velocity field is divergence-free, the streamlines are
closed. The stream lines are contour lines of the stream function q. It is a function whose
orthogonal gradient is the velocity field

(∇q)⊥ = u ⇐⇒ −qy = u and qx = v (10)

Applying the 2d-curl to this equation yields

−∆q = ∇× (∇q)⊥ = ∇× u ⇐⇒ −∆q = −qyy − qxx = uy − vx (11)

The stream function exists since the compatibility condition ∇·u = ux +vy = 0 is satisfied.

3

4 Numerical Solution Approach

The general approach of the code is described in Section 6.7 in the book Computational
Science and Engineering [4].

While u, v, p and q are the solutions to the Navier-Stokes equations, we denote the
numerical approximations by capital letters. Assume we have the velocity field Un and V n

at the nth time step (time t), and condition (3) is satisfied. We find the solution at the
(n + 1)st time step (time t + ∆t) by the following three step approach:

1. Treat nonlinear terms
The nonlinear terms are treated explicitly. This circumvents the solution of a nonlinear
system, but introduces a CFL condition which limits the time step by a constant times
the spacial resolution.

U∗ − Un

∆t
= −((Un)2)x − (UnV n)y (12)

V ∗ − V n

∆t
= −(UnV n)x − ((V n)2)y (13)

In Section 5 we will detail how to discretize the nonlinear terms.

2. Implicit viscosity
The viscosity terms are treated implicitly. If they were treated explicitly, we would
have a time step restriction proportional to the spacial discretization squared. We
have no such limitation for the implicit treatment. The price to pay is two linear
systems to be solved in each time step.

U∗∗ − U∗

∆t
=

1
Re

(U∗∗
xx + U∗∗

yy) (14)

V ∗∗ − V ∗

∆t
=

1
Re

(V ∗∗
xx + V ∗∗

yy) (15)

3. Pressure correction
We correct the intermediate velocity field (U∗∗, V ∗∗) by the gradient of a pressure
Pn+1 to enforce incompressibility.

Un+1 − U∗∗

∆t
= −(Pn+1)x (16)

V n+1 − V ∗∗

∆t
= −(Pn+1)y (17)

The pressure is denoted Pn+1, since it is only given implicitly. It is obtained by solving
a linear system. In vector notation the correction equations read as

1
∆t

Un+1 − 1
∆t

Un = −∇Pn+1 (18)

Applying the divergence to both sides yields the linear system

−∆Pn+1 = − 1
∆t
∇ ·Un (19)

Hence, the pressure correction step is

4

(a) Compute Fn = ∇ ·Un

(b) Solve Poisson equation −∆Pn+1 = − 1
∆tF

n

(c) Compute Gn+1 = ∇Pn+1

(d) Update velocity field Un+1 = Un −∆tGn+1

The question, which boundary conditions are appropriate for the Poisson equation
for the pressure P , is complicated. A standard approach is to prescribe homoge-
neous Neumann boundary conditions for P wherever no-slip boundary conditions are
prescribed for the velocity field. For the lid driven cavity problem this means that
homogeneous Neumann boundary conditions are prescribed everywhere. This implies
in particular that the pressure P is only defined up to a constant, which is fine, since
only the gradient of P enters the momentum equation.

In addition to the solution steps, we have the visualization step, in which the stream function
Qn is computed. Similarly to the pressure is is obtained by the following steps

1. Compute Fn = (V n)x − (Un)y

2. Solve Poisson equation −∆Qn = −Fn

We prescribe homogeneous Dirichlet boundary conditions.

5 Spacial Discretization

The spacial discretization is performed on a staggered grid with the pressure P in the cell
midpoints, the velocities U placed on the vertical cell interfaces, and the velocities V placed
on the horizontal cell interfaces. The stream function Q is defined on the cell corners.

Consider to have nx×ny cells. Figure 1 shows a staggered grid with nx = 5 and ny = 3.
When speaking of the fields P , U and V (and Q), care has to be taken about interior and
boundary points. Any point truly inside the domain is an interior point, while points on or
outside boundaries are boundary points. Dark markers in Figure 1 stand for interior points,
while light markers represent boundary points. The fields have the following sizes:

field quantity interior resolution resolution with boundary points
pressure P nx × ny (nx + 2)× (ny + 2)

velocity component U (nx − 1)× ny (nx + 1)× (ny + 2)
velocity component V nx × (ny − 1) (nx + 2)× (ny + 1)

stream function Q (nx − 1)× (ny − 1) (nx + 1)× (ny + 1)

The values at boundary points are no unknown variables. For Dirichlet boundary conditions
they are prescribed, and for Neumann boundry conditions they can be expressed in term
of interior points. However, boundary points of U and V are used for the finite difference
approximation of the nonlinear advection terms. Note that the boundary points in the four
corner are never used.

5

U
V
P

Figure 1: Staggered grid with boundary cells

5.1 Approximating derivatives

• Second derivatives
Finite differences can approximate second derivatives in a grid point by a centered
stencil. At an interior point Ui,j we approximate the Laplace operator by

∆Ui,j = (Uxx)i,j + (Uyy)i,j ≈
Ui−1,j − 2Ui,j + Ui+1,j

h2
x

+
Ui,j−1 − 2Ui,j + Ui,j+1

h2
y

(20)

Here one or two of the neighboring points might be boundary points. The same
formula holds for the component V , and for the Laplacian of the pressure P and
the stream function Q. If the unknown quantity is stored in a large column vector,
then the above approximation can be represented as a large sparse block matrix being
applied from the left. Thus, solving the Poisson equations for P and Q, as well as
solving implicitly for the viscosity terms in U and V , yields sparse linear systems to
be solved, as detailed in Section 7.

• First derivatives
A first derivative in a grid point can be approximated by a centered stencil.

(Ux)i,j ≈
Ui+1,j − Ui−1,j

2hx
(21)

6

This, however, can yield instabilities, as shown in many textbooks on numerical anal-
ysis. Here the staggered grid comes into play. Assume, we are not interested in the
value of Ux in the position of Ui,j , but instead we want the value in the middle between
the points Ui+1,j and Ui,j . Then the approximation

(Ux)i+ 1
2
,j ≈

Ui+1,j − Ui,j

hx
(22)

is a stable centered approximation to Ux in the middle between the two points. In
the staggered grid this position happens to be the position of Pi,j .

– Pressure correction
In the pressure correction, the approximation of first derivatives on a staggered
grid works out perfectly:
1. The divergence of the velocity field F = ∇ ·U computes Ux and Vy. Both

values then live in the cell centers, i.e. they can be added directly.
2. For the pressure Poisson equation −∆P = − 1

∆tF , both sides are defined in
the cell centers, and −∆P can be approximated as described above.

3. The gradient of the pressure G = ∇P requires the computation of Px and
Py. Again, a look at Figure 1 indicates that the former then live at the
position of U , while the latter live at the positions of V . Exactly where both
are needed to update the velocity field.

– Stream function
Similarly, the staggered grid works fine for the stream function. Both Vx and Uy

live on the cell corners, so the Poisson right hand side F = Vx−Uy and thus the
stream function Q lives at the cell corners.

– Nonlinear terms (central differencing)
The nonlinear terms are the only place where the discretization on the staggered
grid does not work directly. For instance, the product UV is not directly defined,
since U and V live in different positions. The solution is to take the arguments
backwards: For updating U , we need (U2)x and (UV)y. If the flow in each time
step is comparably slow, we wish to use the same centered staggered derivatives
as before. This requires U2 to be defined in the cell centers, and UV to the defined
in the cell corners. We obtain these quantities by interpolating two neighboring
values.

(U2)i+ 1
2
,j =

(
Ui,j + Ui+1,j

2

)2

(23)

Ui,j+ 1
2

=
Ui,j + Ui,j+1

2
(24)

Vi+ 1
2
,j =

Vi,j + Vi+1,j

2
(25)

Analogously for the component V . The index notation lets this idea look more
complicated than it is. All we do is create new data between two points by av-
eraging. Using an overbar with superscript h to indicate a horizontally averaged

7

quantity, and an overbar with superscript v to indicate a vertically averaged
quantity, we can write the update for the nonlinear terms as

U∗ − U

∆t
= −((Ūh)2)x − (ŪvV̄ h)y (26)

V ∗ − V

∆t
= −(ŪvV̄ h)x − ((V̄ v)2)y (27)

– Nonlinear terms (upwinding)
The above centered differencing is appropriate if quantities are not transported
too far in each time step. For faster flows or larger time steps, the discretization
shall be closer to an upwinding approach. We implement a smooth transition
between centered differencing and upwinding using a parameter γ ∈ [0, 1]. We
define it as

γ = min
(

1.2 ·∆t ·max
(

max
i,j

|Ui,j |,max
i,j

|Vi,j |
)

, 1
)

(28)

The value of gamma is the maximum fraction of a cells which information can
travel in one time step, multiplied by 1.2, and capped by 1. The factor of 1.2 is
taken from the experience that often times tending a bit more towards upwinding
can be advantageous for accuracy [3].
The linear combination between centered differencing and upwinding is imple-
mented in the following way. In corresponence to the averaged quantities, we
define differenced quantities

(Ũh)i+ 1
2
,j =

Ui+1,j − Ui,j

2
(29)

(Ũv)i,j+ 1
2

=
Ui,j+1 − Ui,j

2
(30)

and analogously for Ṽ h and Ṽ v. Using the linear combination, equations (26)
and (27) generalize to

U∗ − U

∆t
= −

(
(Ūh)2 − γ|Ūh|Ũh

)
x
−

(
(ŪvV̄ h)− γ|V̄ h|Ũv

)
y

(31)

V ∗ − V

∆t
= −

(
(ŪvV̄ h)− γ|Ūv|Ṽ h

)
x
−

(
(V̄ v)2 − γ|V̄ v|Ṽ v

)
y

(32)

One can check the approximation values, as for instance for the U2 term:(
(Ūh)2 − γ|Ūh|Ũh

)
i+ 1

2
,j

= |Ūh|
(
|Ūh| − γŨh

)
i+ 1

2
,j

(33)

= Ūh

(

1−γ
2

)
Ui+1,j +

(
1+γ

2

)
Ui,j if Ūh ≥ 0(

1+γ
2

)
Ui+1,j +

(
1−γ

2

)
Ui,j if Ūh < 0

(34)

One can easily see that this becomes averaged central differencing for γ = 0 and
conservative upwinding for γ = 1.

8

5.2 Boundary conditions

In the lid driven cavity problem we provide Dirichlet boundary conditions for U and V , and
Neumann boundary conditions for P . Applying the correct boundary conditions requires
care, since for the staggered grid some points lie on a boundary while others have a boundary
between them. At the points that lie on the boundary the value is directly prescribed, such
as U at the west and east boundary, and V at the north and south boundary. For U at the
north and south boundary and for V at west and east boundary, one has to define a value
between two data points. The idea is the same as above: average the values of two points.
For instance, the north boundary lies between points with velocity U . Let the two points
below respectively above the boundary be Ui,j and Ui,j+1, and let the prescribed boundary
value be UN . Then the boundary condition is

Ui,j + Ui,j+1

2
= UN ⇐⇒ Ui,j + Ui,j+1 = 2UN (35)

Analogously at the south boundary, and for V at the west and east boundary.
The normal derivative ∂P

∂n at the boundary is defined using two points which have the
boundary in their middle. For instance, at the north boundary, prescribing homogeneous
Neumann boundary conditions yields

Pi,j+1 − Pi,j

hy
= 0 ⇐⇒ Pi,j+1 = Pi,j (36)

The stream function is defined on cell boundary points. Thus all its boundary points lie
on the domain boundary. We prescibe homogeneous Dirichlet boundary conditions, which
can be prescribed directly.

6 Solving the Linear Systems

The pressure correction and the implicit discretization of the viscosity terms requires linear
systems to be solved in every time step. Additionally, the computation of the stream
function requires another system to be solved whenever the data is plotted. Since neither
geometry nor discretization change with time, the corresponding system matrices remain the
same in every step. This means that all matrices can be constructed in an initialization step.
Of course, one would would even wish to compute the inverse matrices in an initialization
step, but even for medium grid resolutions these could not be saved, since they are full
matrices. Of the many possible approaches to do at least some work in the initialization,
we propose the following three:

• Use Fourier methods based on the fast Fourier transform in the solution step. Initialize
memory and constants in the setup phase.

• Compute good preconditioners in the setup phase. Candidates are ILU or multigrid.
Save the preconditioners as sparse matrices and use them in the solution phase.

• Use elimination with reordering to compute the inverse matrices exactly, but in a
comparably sparse format.

9

In the code the third approach is implemented. Since the matrices are symmetric positive
definite, the sparse Cholesky decomposition can be used.

7 Implementation in Matlab

We take advantage of the Matlab data structures and save the field quantities as matrices.
Each quantity is stored without boundary points, yielding matrices of the following sizes.

quantity matrix size
U (nx − 1)× (ny + 1)
V (nx + 1)× (ny − 1)
P nx × ny

Q (nx − 1)× (ny − 1)

In solving for P and Q, as well as for the viscosity part for U and V , the boundary conditions
are brought to the right hand side. The only time boundary values are used explicitly is
when evaluating the nonlinear terms. Here, we extend the matrices U and V to matrices
containing also the boundary points.

7.1 Updates in matrix form

Approximating derivatives can be done in matrix form using the command diff. If P
is a matrix of values living in the cell centers (size nx × ny), then diff(P)/hx yields a
matrix approximating Px (size (nx − 1) × ny) whose values live on the vertical cell edges.
Analogously, diff(P’)’/hy yields a matrix approximating Py (size nx × (ny − 1)) whose
values live on the horizontal cell edges. Similarly, we define the function avg, which averages
in the horizontal direction, i.e. avg(P) yields an (nx − 1) × ny matrix whose values are
horizontally averaged, and avg(P’)’ yields an nx×(ny−1) matrix whose values are vertically
averaged. Using diff and avg, we can write the updating steps as follows:

• Treat nonlinear terms
First we extend the velocity matrices by rows and columns of boundary points.

Ue = [uW;U;uE]; Ue = [2*uS’-Ue(:,1) Ue 2*uN’-Ue(:,end)];
Ve = [vS’ V vN’]; Ve = [2*vW-Ve(1,:);Ve;2*vE-Ve(end,:)];

The boundary points which fall onto a boundary are concatenated directly. The
values of the boundary points half a meshsize outside of the boundary are computed
using relation (35). These extended matrices U e and V e are used to proceed further.
Compute (UV)x and (UV)y by averaging U vertically and V horizontally, and using
the transition parameter γ:

Ua = avg(Ue’)’; Ud = diff(Ue’)’/2;
Va = avg(Ve); Vd = diff(Ve)/2;
UVx = diff(Ua.*Va-gamma*abs(Ua).*Vd)/hx;
UVy = diff((Ua.*Va-gamma*Ud.*abs(Va))’)’/hy;

10

Compute (U2)x and (V 2)y by averaging U horizontally and V vertically:

Ua = avg(Ue(:,2:end-1)); Ud = diff(Ue(:,2:end-1))/2;
Va = avg(Ve(2:end-1,:)’)’; Vd = diff(Ve(2:end-1,:)’)’/2;
U2x = diff(Ua.^2-gamma*abs(Ua).*Ud)/hx;
V2y = diff((Va.^2-gamma*abs(Va).*Vd)’)’/hy;

Update values of interior points:

U = U-dt*(UVy(2:end-1,:)+U2x);
V = V-dt*(UVx(:,2:end-1)+V2y);

• Pressure correction
Compute divergence of the velocity field ∇ ·U:

diff(U(:,2:end-1))/hx+diff(V(2:end-1,:)’)’/hy

Update values of interior points by −∇P :

U(2:end-1,2:end-1) = U(2:end-1,2:end-1)-diff(P)/hx;
V(2:end-1,2:end-1) = V(2:end-1,2:end-1)-diff(P’)’/hy;

• Stream function
Compute curl of the velocity field ∇×U:

diff(U’)’/hy-diff(V)/hx

7.2 Linear Solves

To access the field quantities by a linear combination we transform them into a long column
vector using the command reshape. Multiplying a large sparse block matrix from the left
yields the desired linear combination. Afterward the column vector is reshaped back into
the appropriate matrix size. These steps are done whenever linear systems are solved:

• Implicit viscosity
Consider interior points only. Add appropriate boundary values (for implicit viscosity
step). Reshape. Solve linear system. Reshape and update interior points:

rhs = reshape(U(2:end-1,2:end-1)+Ubc,[],1);
u(peru) = Ru\(Rut\rhs(peru));
U(2:end-1,2:end-1) = reshape(u,nx-1,ny);

• Pressure correction
Compute right hand side in matrix form. Reshape. Solve linear system. Reshape
back and update interior points:

11

rhs = reshape(diff(U(:,2:end-1))/hx+diff(V(2:end-1,:)’)’/hy,[],1);
p(perp) = -Rp\(Rpt\rhs(perp));
P = reshape(p,nx,ny);
U(2:end-1,2:end-1) = U(2:end-1,2:end-1)-diff(P)/hx;
V(2:end-1,2:end-1) = V(2:end-1,2:end-1)-diff(P’)’/hy;

• Stream function
Compute right hand side in matrix form. Reshape. Solve linear system. Reshape
back:

rhs = reshape(diff(U’)’/hy-diff(V)/hx,[],1);
q(perq) = Rq\(Rqt\rhs(perq));
Q = zeros(nx+1,ny+1);
Q(2:end-1,2:end-1) = reshape(q,nx-1,ny-1);

For visualization purposes, the homogeneous Dirichlet boundary points are included
in the matrix Q.

7.3 System matrices

The Laplace operator with appropriate boundary conditions is discretized in the system
matrices Lp, Lu, Lv and Lq. The matrices act on the corresponding field quantities P , U , V
and Q, all in column vector shape. Since we use the sparse Cholesky presolve step, solving
the system may look cumbersome. It is not. In principle (yet not efficient), the pressure
correction could be computed as simple as

p = Lp\rhs;

All information required is contained in the four matrices themselves. They are constructed
in the initialization step. Since the unknowns are reshaped into a long column vector
row by row, we can construct the block matrices using the kron command: Let K1x be a
tridiagonal matrix approximating − ∂2

∂x2 , and K1y a matrix approximating − ∂2

∂y2 , both in one

space dimension. Then the two dimensional Laplace matrix, approximating − ∂2

∂x2 − ∂2

∂y2 is
obtained by

kron(speye(ny),K1x)+kron(K1y,speye(nx))

This is it. Only care has to be taken to use the correct boundary conditions in the 1d
matrices. We provide the function K1 which generates the matrix

K1 =
1
h2

a11 −1
−1 2 −1

.
−1 2 −1

−1 a11

 (37)

The choice of the parameter a11 allows three kinds of boundary conditions, all of which can
be derived by inserting the boundary relations into a three point Laplace stencil:

12

a11 type of boundary condition
1 Neumann
2 Dirichlet for point on the boundary
3 Dirichlet for boundary between two points

This leaves us with one small detail: We prescribe Neumann boundary conditions for P .
Hence, the matrix Lp is of corank 1. Its nullspace is N(Lp) = span(~e), where ~e = (1, . . . , 1)T .
Since Lp is symmetric, its range is R(Lp) = {~b : ~eT~b = 0}. The right hand side is in the range
of Lp by construction of the projection step. In order to perform a Cholesky factorization,
we modify Lp so that it becomes a regular matrix, while still yielding a correct solution for
the pressure. This is achieved by adding 1 to the last entry. The proof is as follows.

Let ~w = (0, . . . , 0, 1)T . Thus ~w~wT is a matrix with its only nonzero entry being a 1 in
the last position. Let A be the Neumann-Poisson matrix, i.e. A~e = 0. The new modified
Poisson matrix is B = A + ~w~wT . Let ~u be an arbitrary vector. Then

B~u = A~u︸︷︷︸
⊥~e

+(~wT~u) ~w︸︷︷︸
6⊥~e

. (38)

This sum can only equal 0 if ~u = 0. Hence B has full rank. It remains to show that for any
right hand side ~b, which is admissible (i.e. ~b ⊥ ~e), the solution to B~u = ~b satisfies A~u = ~b.
First note that due to (38), we have B−1 ~w = ~e. Hence, we get

AB−1 = (B − ~w~wT)B−1 = I − ~w~wT B−1 = I − ~w~eT ,

and consequently AB−1~b = ~b.

7.4 Presolve with sparse Cholesky

Instead of solving the full system

p = Lp\rhs;

in each time step, we compute a Cholesky matrix in an initialization step. A plain Cholesky
matrix would have many nonzero entries. We use a reordering of the unknowns to minimize
the amount of fill-in due to elimination steps. A good permutation of the unknown with
respect to elimination for symmetric matrices is obtained by the command symamd. The
index permutation is stored in a permutation vector. The Cholesky decomposition of the
reordered (rows and columns) system matrix is computed. Finally, to prevent Matlab from
allocating memory in the solution phase we store also the transposed Cholesky matrix to
gain extra speed.

perp = symamd(Lp);
Rp = chol(Lp(perp,perp));
Rpt = Rp’;

In the solution step, the system is solved by a backward and a forward solution step,
applied to the reordered right hand side. The inverse reordering is obtained by applying
the permutation vector to the left hand side:

p(perp) = -Rp\(Rpt\rhs(perp));

13

8 Matlab Code

The code can be downloaded from http://www-math.mit.edu/18086 and
http://www-math.mit.edu/cse

function mit18086_navierstokes

%MIT18086_NAVIERSTOKES

% Solves the incompressible Navier-Stokes equations in a

% rectangular domain with prescribed velocities along the

% boundary. The solution method is finite differencing on

% a staggered grid with implicit diffusion and a Chorin

% projection method for the pressure.

% Visualization is done by a colormap-isoline plot for

% pressure and normalized quiver and streamline plot for

% the velocity field.

% The standard setup solves a lid driven cavity problem.

% 07/2007 by Benjamin Seibold

% http://www-math.mit.edu/~seibold/

% Feel free to modify for teaching and learning.

%---

Re = 1e2; % Reynolds number

dt = 1e-2; % time step

tf = 4e-0; % final time

lx = 1; % width of box

ly = 1; % height of box

nx = 90; % number of x-gridpoints

ny = 90; % number of y-gridpoints

nsteps = 10; % number of steps with graphic output

%---

nt = ceil(tf/dt); dt = tf/nt;

x = linspace(0,lx,nx+1); hx = lx/nx;

y = linspace(0,ly,ny+1); hy = ly/ny;

[X,Y] = meshgrid(y,x);

%---

% initial conditions

U = zeros(nx-1,ny); V = zeros(nx,ny-1);

% boundary conditions

uN = x*0+1; vN = avg(x)*0;

uS = x*0; vS = avg(x)*0;

uW = avg(y)*0; vW = y*0;

uE = avg(y)*0; vE = y*0;

%---

Ubc = dt/Re*([2*uS(2:end-1)’ zeros(nx-1,ny-2) 2*uN(2:end-1)’]/hx^2+...

[uW;zeros(nx-3,ny);uE]/hy^2);

Vbc = dt/Re*([vS’ zeros(nx,ny-3) vN’]/hx^2+...

[2*vW(2:end-1);zeros(nx-2,ny-1);2*vE(2:end-1)]/hy^2);

fprintf(’initialization’)

Lp = kron(speye(ny),K1(nx,hx,1))+kron(K1(ny,hy,1),speye(nx));

Lp(1,1) = 3/2*Lp(1,1);

perp = symamd(Lp); Rp = chol(Lp(perp,perp)); Rpt = Rp’;

Lu = speye((nx-1)*ny)+dt/Re*(kron(speye(ny),K1(nx-1,hx,2))+...

kron(K1(ny,hy,3),speye(nx-1)));

peru = symamd(Lu); Ru = chol(Lu(peru,peru)); Rut = Ru’;

14

Lv = speye(nx*(ny-1))+dt/Re*(kron(speye(ny-1),K1(nx,hx,3))+...

kron(K1(ny-1,hy,2),speye(nx)));

perv = symamd(Lv); Rv = chol(Lv(perv,perv)); Rvt = Rv’;

Lq = kron(speye(ny-1),K1(nx-1,hx,2))+kron(K1(ny-1,hy,2),speye(nx-1));

perq = symamd(Lq); Rq = chol(Lq(perq,perq)); Rqt = Rq’;

fprintf(’, time loop\n--20%%--40%%--60%%--80%%-100%%\n’)

for k = 1:nt

% treat nonlinear terms

gamma = min(1.2*dt*max(max(max(abs(U)))/hx,max(max(abs(V)))/hy),1);

Ue = [uW;U;uE]; Ue = [2*uS’-Ue(:,1) Ue 2*uN’-Ue(:,end)];

Ve = [vS’ V vN’]; Ve = [2*vW-Ve(1,:);Ve;2*vE-Ve(end,:)];

Ua = avg(Ue’)’; Ud = diff(Ue’)’/2;

Va = avg(Ve); Vd = diff(Ve)/2;

UVx = diff(Ua.*Va-gamma*abs(Ua).*Vd)/hx;

UVy = diff((Ua.*Va-gamma*Ud.*abs(Va))’)’/hy;

Ua = avg(Ue(:,2:end-1)); Ud = diff(Ue(:,2:end-1))/2;

Va = avg(Ve(2:end-1,:)’)’; Vd = diff(Ve(2:end-1,:)’)’/2;

U2x = diff(Ua.^2-gamma*abs(Ua).*Ud)/hx;

V2y = diff((Va.^2-gamma*abs(Va).*Vd)’)’/hy;

U = U-dt*(UVy(2:end-1,:)+U2x);

V = V-dt*(UVx(:,2:end-1)+V2y);

% implicit viscosity

rhs = reshape(U+Ubc,[],1);

u(peru) = Ru\(Rut\rhs(peru));

U = reshape(u,nx-1,ny);

rhs = reshape(V+Vbc,[],1);

v(perv) = Rv\(Rvt\rhs(perv));

V = reshape(v,nx,ny-1);

% pressure correction

rhs = reshape(diff([uW;U;uE])/hx+diff([vS’ V vN’]’)’/hy,[],1);

p(perp) = -Rp\(Rpt\rhs(perp));

P = reshape(p,nx,ny);

U = U-diff(P)/hx;

V = V-diff(P’)’/hy;

% visualization

if floor(25*k/nt)>floor(25*(k-1)/nt), fprintf(’.’), end

if k==1|floor(nsteps*k/nt)>floor(nsteps*(k-1)/nt)

% stream function

rhs = reshape(diff(U’)’/hy-diff(V)/hx,[],1);

q(perq) = Rq\(Rqt\rhs(perq));

Q = zeros(nx+1,ny+1);

Q(2:end-1,2:end-1) = reshape(q,nx-1,ny-1);

clf, contourf(avg(x),avg(y),P’,20,’w-’), hold on

contour(x,y,Q’,20,’k-’);

Ue = [uS’ avg([uW;U;uE]’)’ uN’];

Ve = [vW;avg([vS’ V vN’]);vE];

Len = sqrt(Ue.^2+Ve.^2+eps);

quiver(x,y,(Ue./Len)’,(Ve./Len)’,.4,’k-’)

hold off, axis equal, axis([0 lx 0 ly])

p = sort(p); caxis(p([8 end-7]))

15

title(sprintf(’Re = %0.1g t = %0.2g’,Re,k*dt))

drawnow

end

end

fprintf(’\n’)

%===

function B = avg(A,k)

if nargin<2, k = 1; end

if size(A,1)==1, A = A’; end

if k<2, B = (A(2:end,:)+A(1:end-1,:))/2; else, B = avg(A,k-1); end

if size(A,2)==1, B = B’; end

function A = K1(n,h,a11)

% a11: Neumann=1, Dirichlet=2, Dirichlet mid=3;

A = spdiags([-1 a11 0;ones(n-2,1)*[-1 2 -1];0 a11 -1],-1:1,n,n)’/h^2;

Acknowledgments

The author is thankful to Per-Olof Persson and Jean-Christophe Nave for their useful com-
ments, which helped make the code more efficient, and to Gilbert Strang for his helpful
remarks on notation and presentation.

References

[1] A.J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comput. 22,
745–762, 1968.

[2] A.J. Chorin, J.E. Marsden, A mathematical introduction to fluid mechanics. Third
edition, Springer, 2000.

[3] M. Griebel, T. Dornseifer, T. Neunhoeffer, Numerical simulation in fluid dynamics: A
practical introduction. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 1998.

[4] G. Strang, Computational Science and Engineering, First Edition. Wellesley-
Cambridge Press, 2007.

16

