Chromatic homotopy theory at height 1 and the image of J

Vitaly Lorman
Johns Hopkins University
April 23, 2013

Key players at height 1

Formal group law:
Let $F_m(x, y)$ be the p-typification of the multiplicative formal group law $x + y + xy$ over F_p. Then the p-series of F_m is

$$[p]_{F_m}(x) = x^p$$

Thus, F_m is exactly the height 1 Honda formal group law.

Morava E-theory

In general, we have that $E(k, \Gamma) = \mathbb{W}k[[u_1, \ldots, u_{n-1}]]$

In this case,

$$\mathbb{W}F_p = \mathbb{Z}_p$$

and

$$E(F_p, F_m) = \mathbb{Z}_p$$

Adjoining an invertible class in degree -2 to make this into an even periodic theory, we have that the first Morava E-theory E_1 has coefficients $\mathbb{Z}_p[u^{\pm 1}]$. Furthermore, we may take F as a universal deformation of itself. Turning it into a degree -2 formal group law, we have

$$F(x, y) = u^{-1}F(ux, uy)$$

E_1 is a model for p-complete complex K-theory (it has the same coefficients and the same formal group law).

Morava stabilizer group:

We are interested in the group of endomorphisms of the multiplicative formal group law, F. First, note that it must contain \mathbb{Z}: given an integer $n \in \mathbb{Z}$, we send it to the n-series $[n]_F(x)$. We may extend this to \mathbb{Z}_p, since a p-adically convergent sequence of integers
n_1, n_2, \ldots gives a p-adically convergent sequence of power series $[n_1](x), [n_2](x), \ldots$ (this requires checking $[p^r](x) \mod x^{pr+1}$). It turns out that there are no other endomorphisms, i.e. $\text{End}(F) \cong \mathbb{Z}_p$.

S_1, the group of automorphisms of F, is the group of units in the p-adics. The reduction mod p map $\mathbb{Z}_p^\times \to \mathbb{F}_p^\times$ sits in a short exact sequence

$$1 \to 1 + p\mathbb{Z}_p \to \mathbb{Z}_p^\times \to \mathbb{F}_p^\times$$

Thinking of \mathbb{F}_p^\times as the group μ_{p-1} of $(p-1)$st roots of unity over \mathbb{F}_p, we may use Hensel’s Lemma to construct a splitting $\mu_{p-1} \to \mathbb{Z}_p^\times$ so that $\mathbb{Z}_p^\times \cong \mu_{p-1} \times (1 + p\mathbb{Z}_p)$.

For odd primes, the above is topologically cyclic, generated by any element $g = (\zeta, \alpha)$ such that ζ is a primitive $(p-1)$st root of unity and $\alpha \notin 1 + p^2\mathbb{Z}_p$. For $p = 2$, we have $\mathbb{Z}_2^\times \cong \{\pm 1\} \times (1 + 4\mathbb{Z}_2)$ and while \mathbb{Z}_2^\times is not topologically cyclic, $1 + 4\mathbb{Z}_2$ is.

S_1 acts on the homology theory E_1 as follows. Given an automorphism $g(x)$ of the multiplicative formal group law over \mathbb{F}_p, we lift the coefficients to \mathbb{Z}_p and adjust for the grading to get $\tilde{g}(x) = u^{-1}g(ux)$. The induced map $\psi : \mathbb{Z}_p = E(\mathbb{F}_p, F) \to E(\mathbb{F}_p, F) = \mathbb{Z}_p$ must be the identity, and so $\psi^*F = F$. We extend ψ to $\mathbb{Z}_p[u^{\pm 1}]$ by defining $\psi(u^{-1}) = g'(0)u^{-1}$.

This is the action of S_1 on the coefficients of E_1. When $g(x) = [n]_F(x) = (1 + x)^n - 1$, then $\tilde{g}(x) = u^{-1}((1 + ux)^n - 1)$, $g'(0) = n$, and

$$\psi(u) = nu$$

The action on the homology theory E_1 is given by applying Landweber exactness. $\psi : \mathbb{Z}_p[u^{\pm 1}] \to \mathbb{Z}_p[u^{\pm 1}]$ is a map of MU_*-modules and so we have an automorphism of $E_1 = \mathbb{Z}_p[u^{\pm 1}] \otimes_{MU_*} MU_*(-)$.

Defining the image of J

Let $\mathcal{H}(n)$ denote the monoid of homotopy self-equivalences of S^n that preserve the basepoint. It sits inside $\Omega^n S^n$ as the union of two components. There is an obvious map $O(n) \to \mathcal{H}(n)$ (There is also a map from $U(n)$ to $\mathcal{H}(2n)$ which factors through $O(2n)$). The composition

$$O(n) \to \mathcal{H}(n) \to \Omega^n S^n$$
induces
\[\pi_i(O(n)) \to \pi_i(\Omega^n S^n) = \pi_{n+i} S^n \]
and we can check that these maps commute with the maps \(O(n) \to O(n+1) \) and \(H(n) \to H(n+1) \) to yield a map of colimits
\[\phi : O \to H \to \Omega^\infty \Sigma^\infty S^0 \]
and a map of stable homotopy groups
\[\pi_i O \to \pi_i^s \]
We call this map the \(J \)-homomorphism and denote its image by \(J(S^i) \).
The map \(O(n) \to H(n) \) sits in a fiber sequence
\[O(n) \to H(n) \to H(n)/O(n) \to BO(n) \to B H(n) \]
Notice that \(BO(n) \to B H(n) \) is the map that classifies the underlying spherical fibration of the universal bundle over \(BO(n) \).

Stable Adams operations

Recall that the Adams operations \(\psi^k : K(X) \to K(X) \) are the unique natural ring homomorphisms such that \(\psi^k(L) = L^k \) whenever \(L \) is a line bundle. They are unstable in the sense that the diagram
\[
\begin{array}{ccc}
\Sigma^2 BU & \xrightarrow{B} & BU \\
1 \land \psi^k \downarrow & & \downarrow \psi^k \\
\Sigma^2 BU & \xrightarrow{B} & BU
\end{array}
\]
does not commute. If we invert \(k \), we can fix this by defining \(\tilde{\psi}^k \) on the \(2^n \)th space of \(KU \) by \(\tilde{\psi}^k = \frac{\psi^k}{k^\infty} \). It maps to \(KU[\frac{1}{k}] \). Since \(\psi^k \) acts on the Bott class \(\beta \in \pi_2(BU) \) by \(\psi^k(\beta) = k \beta \) and the map \(\Sigma^2 KU_0 \to KU_2 \) is just multiplication by \(\beta \). Our definition of \(\tilde{\psi}^k \) adjusts for this.

If we complete at a prime \(p \), then \(\tilde{\psi}^k \) is defined for \(k \) coprime to \(p \) and from here on we drop the tilde and refer to these stable Adams operations as \(\psi^k \). So \(\mathbb{Z} \) sits inside \([K_p, K_p] \). One can show that \([K_p, K_p] \) is complete, so that the Adams operations extend to \(\mathbb{Z}_p \).

This actually turns out to be an isomorphism.

Notice that the action of the stable Adams operations on
\[\pi_* KU_p = \mathbb{Z}_p[\beta^\pm 1] \]
is exactly the action of the Morava stabilizer group on \(E_1 \).

The Adams conjecture

Adams Conjecture: If \(k \in \mathbb{N} \), then for any \(x \in K(X) \), we have \(k^n(\psi^k(x) - x) = 0 \) in the image of \(J \) for some \(n \gg 0 \).

This gives us an upper bound on the image of \(J \).
The image of J completed at p

If we complete at a prime p, the Adams conjecture implies that the composition of the map $1 - \psi^k$ with $BU_p \to B\mathcal{H}_p$ is nullhomotopic whenever k is coprime to p. This induces a map $\text{hofib}(1 - \psi^k) \to \mathcal{H}$ such that the following diagram commutes

$$
\begin{array}{cccc}
U_p & \longrightarrow & \text{hofib}(1 - \psi^k) & \longrightarrow & BU_p \\
\downarrow & & \downarrow & & \downarrow \\
U_p & \longrightarrow & \mathcal{H}_p & \longrightarrow & \mathcal{H}_p/U_p \\
\downarrow & & \downarrow & & \downarrow \\
& & BU_p & & BU_p
\end{array}
$$

Thus, we have shown that the Adams conjecture implies that the J homomorphism factors through the homotopy of the fiber of $1 - \psi^k$. If p is odd, let g be a generator of \mathbb{Z}_p^\times. Then in fact $\text{hofib}(1 - \psi^g)$ is a split summand of \mathcal{H}_p. We will come back to this later. For now, let’s assume

Theorem: The map $\pi_n(\text{hofib}(1 - \psi^g)) \to \pi_nB\mathcal{H}_p = \pi_nS^0_p$ is the inclusion of a split summand of $\pi_nS^0_p$ for $n \geq 0$.

hofib($1 - \psi^g$) and $L_{K(1)}S$

The theorem of Devinatz-Hopkins that $L_{K(n)}S^0 = E_n^{hS_n}$ in this case says that $L_{K(1)}S^0 = K^{h\mathbb{Z}_p^\times}$

Proposition: Let g be a topological generator of \mathbb{Z}_p. Then $K^{h\mathbb{Z}_p^\times} = \text{hofib}(1 - \psi^g)$.

Proof: Consider the diagram

$$
\begin{array}{cccc}
K_p^\mathbb{Z} & \longrightarrow & K_p & \longrightarrow & * \\
\downarrow & & \downarrow & & \downarrow \\
K_p & \longrightarrow & K_p \times K_p & \longrightarrow & K_p
\end{array}
$$

Both squares are pullbacks. This implies that the fibers of the horizontal compositions are equivalent. That is, $\text{hofib}(1 - \psi^g) = K^{h\mathbb{Z}_p}$. It remains to show that $K^{h\mathbb{Z}_p} = K^{h\mathbb{Z}_p^\times}$. To see this we use the homotopy fixed point spectral sequence. There is a map $K^{h\mathbb{Z}_p} \to K^{h\mathbb{Z}_p^\times}$ given by inclusion of fixed points. It induces a map of homotopy fixed point spectral sequences, and

$$
H^*_c(\mathbb{Z}_p^\times, \pi_*(K_p)) \to H^*_c(\mathbb{Z}, \pi_*(K_p))
$$

is an isomorphism of E_2-terms. This can be seen by computing both of them.
Computing $\pi_n L_{K(1)} S$

Since $L_{K(1)} S = \text{hofib}(1 - \psi^g)$, we may use the long exact sequence of the fibration

$$L_{K(1)} S \rightarrow K_p \rightarrow K_p$$

to compute the homotopy of $L_{K(1)} S$. Recall that g is chosen to be a generator of $\mathbb{Z}_p^\times = \mu_{p-1} \times (1 + p\mathbb{Z}_p)$ so that $g = (\zeta, y)$ where p divides $g - 1$ but p^2 does not. Firstly, since ψ^g acts on $\pi_0 K_p = \mathbb{Z}_p$ by the identity, $1 - \psi^g$ vanishes on π_0 and since $\pi_2 K_p = 0$, we have

$$\pi_0 L_{K(1)} S \cong \mathbb{Z}_p$$

and

$$\pi_{-1} L_{K(1)} S \cong \mathbb{Z}_p$$

On $\pi_{2k} K_p$, ψ^g acts by g^k. Thus, $1 - \psi^g$ is injective for $k \neq 0$ and so

$$\pi_{2k} L_{K(1)} S = 0$$

and

$$\pi_{2k-1} L_{K(1)} S \cong \mathbb{Z}_p / (1 - g^k)$$

Now, if $p - 1$ does not divide k, then $g^k - 1$ is a unit mod p and $\pi_{2k-1} L_{K(1)} S = 0$. If $k = (p - 1)m$, then $g^k = (g^{p-1})^m$, and g^{p-1} topologically generates $1 + p\mathbb{Z}_p$. If $m = p^r l$ where l is coprime to p, then $(g^{p-1})^m = ((g^{p-1})^{p^r})^m$ topologically generates the cyclic subgroup $1 + p^{r+1} \mathbb{Z}_p$ so that $1 - g^k$ generates $p^{r+1} \mathbb{Z}_p$ topologically. Thus, if $k = (p - 1)p^r l$, then

$$\pi_{2k-1} = \mathbb{Z} / p^{r+1}$$

That is,

$$\pi_n L_{K(1)} S = \begin{cases}
\mathbb{Z}_p & : n = 0, -1 \\
\mathbb{Z} / p^{r+1} \mathbb{Z} & : n + 1 = 2(p - 1)p^r l \neq 0 \text{ mod } p \\
0 & : \text{otherwise}
\end{cases}$$

Aside: Bernoulli numbers

The Bernoulli numbers β_t are given by the power series of the function $x / (e^x - 1)$:

$$\frac{x}{e^x - 1} = \sum_{t=0}^{\infty} \beta_t \frac{x^t}{t!}$$

Since $\frac{x}{e^x - 1} - 1 + \frac{x}{2}$ is an even function, $\beta_{2t+1} = 0$ for $t > 0$. Also, $\beta_1 = -\frac{1}{2}$.

This definition of Bernoulli numbers will come up in the lower bound of the image of J. What we will really be interested in are the denominators of $\frac{\beta_{2t}}{15}$ when the fraction is expressed in lowest terms. Call this $m(2s)$. Adams describes $m(2s)$ by giving its p-adic evaluation:

Proposition: For p odd, $\nu_p(m(t)) = 1 + \nu_p(t)$ if $(p - 1)$ divides t and is zero otherwise. For $p = 2$, $\nu_2(m(t)) = 2 + \nu_2(t)$ if t is even and 1 otherwise.

Notice that the order of $\pi_n L_{K(1)} S$ is exactly $\nu_p(\frac{n+1}{2})$, that is, the denominator of $\beta_{(n+1)/2} / (n+1)$. 5
Computing $\pi_* L_{E(1)} S$

To compute $\pi_* L_{E(1)} S$, we use the pullback square

$$
\begin{array}{ccc}
L_{E(1)} S & \longrightarrow & L_{K(1)} S \\
\downarrow & & \downarrow \\
L_{E(0)} S & \longrightarrow & L_{E(0)} L_{K(1)} S
\end{array}
$$

which gives a long exact sequence in homotopy

$$
\cdots \rightarrow \pi_{n+1} L_{E(0)} L_{K(1)} S \rightarrow \pi_n L_{E(1)} S \rightarrow \pi_n L_{K(1)} S \oplus \pi_n L_{E(0)} S \rightarrow \pi_n L_{E(0)} L_{K(1)} S \rightarrow \cdots
$$

Recall that $L_{E(0)} S \simeq H \mathbb{Q} \simeq S \mathbb{Q}$ (where the right hand side is the rational Eilenberg-Moore spectrum). There is a universal coefficients theorem for $\pi_* SG$

$$
0 \rightarrow G \otimes \pi_* X \rightarrow \pi_* (SG \wedge X) \rightarrow \text{Tor}(G, \pi_{*-1} X) \rightarrow 0
$$

which for $G = \mathbb{Q}$ implies that

$$
\pi_* L_{E(0)} L_{K(1)} S \cong \pi_* (L_{E(0)} S \wedge L_{K(1)} S) \cong \mathbb{Q} \otimes \pi_* (L_{K(1)} S)
$$

Thus, $\pi_n (L_{E(0)} L_{K(1)} S) \cong \mathbb{Q}_p$ for $n = 0, -1$ and is zero otherwise.

Then for $n \neq 0, -1, -2$ we have $\pi_n L_{E(1)} S \cong \pi_n L_{K(1)} S$. For the remaining groups, we have the exact sequence

$$
0 \rightarrow \pi_0 L_{E(1)} S \rightarrow \mathbb{Z}_p \oplus \mathbb{Q} \rightarrow \mathbb{Q}_p \rightarrow \pi_{-1} L_{E(1)} S \rightarrow \mathbb{Z}_p \rightarrow \mathbb{Q}_p \rightarrow \pi_{-2} L_{E(1)} S \rightarrow 0
$$

It follows that

$$
\pi_n L_{E(1)} S = \begin{cases}
\mathbb{Z} & : n = 0 \\
\mathbb{Q}_p/\mathbb{Z}_p & : n = -2 \\
\mathbb{Z}/p^{r+1} \mathbb{Z} & : n + 1 = 2(p - 1)p^r l \not\equiv 0 \mod p \\
0 & : \text{otherwise}
\end{cases}
$$

Adams’ lower bound on the image of J

The e-invariant

Adams computed a lower bound on the image of J and showed that it is the same as the upper bound. The computation consists of defining a homomorphism

$$
e : \pi_k^s \rightarrow \mathbb{Q}/\mathbb{Z}
$$

such that the composition

$$
\pi_{2k-1} U(n) \xrightarrow{J} \pi_{2n+2k-1} S^{2n} \xrightarrow{e} \mathbb{Q}/\mathbb{Z}
$$

when evaluated on a generator of $\pi_{2k-1} U(n)$ has denominator $m(k)$.

Given a map \(g : S^{2m-1} \to S^{2n} \), let \(C_g \) denote the cofiber. Then we have a short exact sequence in \(K \)-theory

\[
0 \to \tilde{K}(S^{2m}) \to \tilde{K}(C_g) \to \tilde{K}(S^{2n}) \to 0
\]

Applying the Chern character, we have a homomorphism of short exact sequences

\[
\begin{array}{cccc}
0 & \longrightarrow & \tilde{K}(S^{2m}) & \longrightarrow & \tilde{K}(C_g) & \longrightarrow & \tilde{K}(S^{2n}) & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & \tilde{H}^*(S^{2m}; \mathbb{Q}) & \longrightarrow & \tilde{H}^*(C_g; \mathbb{Q}) & \longrightarrow & \tilde{H}^*(S^{2n}; \mathbb{Q}) & \longrightarrow & 0
\end{array}
\]

Let \(\alpha, \beta \) denote elements of \(\tilde{K}(C_g) \) mapping from and to generators of \(\tilde{K}(S^{2m}) \) and \(\tilde{K}(S^{2n}) \), respectively. Similarly, let \(a, b \in \tilde{H}^*(C_g; \mathbb{Q}) \) be elements mapping from and to generators of \(H^2m(S^{2m}; \mathbb{Z}) \) and \(H^2n(S^{2n}; \mathbb{Z}) \), respectively. We may assume \(\text{ch}(\alpha) = a \) and \(\text{ch}(\beta) = b + ra \) for some \(r \in \mathbb{Q} \). \(\beta \) and \(b \) are not uniquely determined, but if we vary them by integer multiples of \(\alpha \) and \(a \), we change \(r \) by an integers. So \(r \) is well-defined in \(\mathbb{Q}/\mathbb{Z} \).

We define \(e(g) = r \). One can check that it is a homomorphism.

Bounding the image of \(J \) below

The key to evaluating \(e(Jf) \) is the following lemma.

Lemma: \(C_{Jf} \) is the Thom space of the bundle \(E_f \to S^{2k} \) determined by the clutching function \(f : S^{2k-1} \to U(n) \). Under this identification, \(\beta \in \tilde{K}(C_{Jf}) \) corresponds to the Thom class of \(E_f \).

\(K(T(E_f)) \) is a free one-dimensional module over \(K(S^{2k}) \). It can be identified with a submodule of \(K(P(E_f)) \) generated by a specific relation corresponding to the Thom class. One may then apply the splitting principle and compute the value of the Chern character.

Theorem: (Atiyah?) Let \(E \) be any \(n \)-dimensional complex vector bundle with base \(B \). Let \(U \) denote the Thom class in \(H^*(T(E); \mathbb{Q}) \) which corresponds to \(1 \in H^*(B; \mathbb{Q}) \) under the Thom isomorphism \(\Phi : H^*(B; \mathbb{Q}) \to \tilde{H}^*(T(E); \mathbb{Q}) \). Let \(bh_E \) denote the image of the characteristic class in \(H^*(BU(n); \mathbb{Q}) \) whose image in \(H^*(BU(1)^n; \mathbb{Q}) \) is

\[
\prod_{1 \leq r \leq n} \frac{e^{x_r} - 1}{x_r}
\]

Then

\[
\Phi^{-1}\text{ch}(U) = bh_E
\]

After some manipulation of power series, this implies

\[
e(Jf) = \alpha_k = \beta_k/k
\]
The α-family

Theorem: Let p be an odd prime, $m = p^f$, and $r = (p - 1)p^f$. Then there exists $\alpha \in \pi_{2r-1}^s$ such that

(i) $m\alpha = 0$

(ii) $e(\alpha) = -\frac{1}{m}$, and

(iii) The Toda bracket $\{m, \alpha, m\}$ is zero mod $m\pi_{2r}^s$.

For q large, we have

$$\alpha : S^{2q+2r-2} \to S^{2q-1}$$

and the Toda bracket gives a map

$$S^{2q+2r-1} \to S^{2q-1}$$

Let Y denote the cofiber of $m : S^{2q-1} \to S^{2q-1}$. Then since $m\{m, \alpha, m\} = 0$, the Toda bracket induces a map on the cofiber of m

$A : \Sigma^{2r}Y \to Y$

and we have a diagram

$$\begin{array}{ccc}
\Sigma^{2r}Y & \xrightarrow{A} & Y \\
\downarrow i & & \downarrow j \\
S^{2q+r-1} & \xrightarrow{\alpha} & S^{2q}
\end{array}$$

Adams defines the d invariant of a map $f : X \to Y$ as $f^* \in \text{Hom}(K^*(Y), K^*(X))$. The e invariant may be viewed as an element of a certain Ext group, and Adams shows that

$$d(jA) = -me(\alpha)$$

which in this case implies

$$d(jA) = 1$$

Thus, A must be an isomorphism in K-theory.

Now, since A is induces an isomorphism in K-theory, so does any composite

$$A \circ \Sigma^{2r}A \circ \Sigma^{4r}A \circ \cdots \circ \Sigma^{2r(s-1)}A : \Sigma^{2rs}Y \to Y$$

We may now construct a map α_s via the following diagram.

$$\begin{array}{ccc}
\Sigma^{2rs}Y & \longrightarrow & Y \\
\downarrow i & & \downarrow j \\
S^{2q+2rs-1} & \xrightarrow{\alpha_s} & S^{2q}
\end{array}$$

An argument like the one above shows that

$$e(\alpha_s) = -\frac{1}{m}$$

which shows that α_s is essential.