We say that a real X is n-generic relative to a perfect tree T if X is a path through T and for every $\Sigma_n(T)$ set S there exists a number k such that either $X - k$ is in S or every string extending $X - k$ is not in S. A real X is n-generic relative to a perfect tree if there exists such a T. We show that for every number n all but countably many reals are n-generic relative to a perfect tree. Second, we show that for every ordinal α below the least fixed point of the function which maps m to the m-th admissable, the α iterated hyperjump is not 5-generic relative to a perfect tree. Finally, we demonstrate some necessary and sufficient conditions for a real to be 1-generic relative to a perfect tree.