Branching algebras for classical groups

Soo Teck Lee
National University of Singapore

Survey on some of the works done by Roger Howe and his collaborators (Jackson, Kim, Lee, Tan, Wang, Willenbring) on branching algebras.
Setting:

G: complex classical group

H: certain subgroup of G (mostly symmetric subgroup)

Examples of (G, H): $(\text{GL}_n, \text{O}_n)$, $(\text{Sp}_{2n}, \text{GL}_n)$, $(\text{GL}_n \times \text{GL}_n, \text{GL}_n)$
Setting:
G: complex classical group
H: certain subgroup of G (mostly symmetric subgroup)

Examples of (G, H): $(\text{GL}_n, \text{O}_n)$, $(\text{Sp}_{2n}, \text{GL}_n)$, $(\text{GL}_n \times \text{GL}_n, \text{GL}_n)$

Branching problem for (G, H)
If V be an irreducible rational G module, what is $V|_H$?

(1) We have
\[V|_H = \bigoplus_U m_{U, V} U \]
where the Us are irreducible H modules.

Determine the branching multiplicities $m(U, V)$.

(2) Describe the H submodules of V.
Use highest weight theory:

Let \(B_H = A_H U_H \) be a Borel subgroup of \(H \), and consider

\[
V^{U_H} = \{ v : g.v = v \ \forall g \in U_H \}.
\]

This is a module for \(A_H \), and

\[
V^{U_H} = \bigoplus_{\lambda} (V^{U_H})_{\lambda}
\]

where

\[
(V^{U_H})_{\lambda} = \{ v \in V^{U_H} : a.v = \lambda(a)v \ \forall a \in A_H \}
\]

\((H \text{ highest weight vectors of weight } \lambda)\)

Then

\[
V|_H \simeq \bigoplus_{\lambda} (\dim(V^{U_H})_{\lambda}) U_{\lambda}
\]

where

\(U_{\lambda} = \text{irreducible } H \text{ module with highest weight } \lambda. \)
Branching rule $G \downarrow H$: \[V|_H \cong \bigoplus_{\lambda} \dim(V^U H) \lambda U\lambda \]

Questions:
1. How to calculate $\dim(V^U H) \lambda$?
2. Can we describe a basis for $(V^U H) \lambda$?
Howe’s approach:

(i) Consider a “concrete” algebra \mathcal{R}_G with an G action such that \mathcal{R}_G is decomposed as a multiplicity free sum of irreducible G submodules as

$$\mathcal{R}_G = \bigoplus_i V_i.$$
Howe’s approach:

(i) Consider a “concrete” algebra \mathcal{R}_G with an G action such that \mathcal{R}_G is decomposed as a multiplicity free sum of irreducible G submodules as

$$\mathcal{R}_G = \bigoplus_i V_i.$$

(ii) Consider the subalgebra of U_H invariants:

$$\mathcal{A}(G,H) := \mathcal{R}_G^{U_H} = \bigoplus_i V_i^{U_H}.$$

It is a A_H module.
Howe’s approach:

(i) Consider a “concrete” algebra \mathcal{R}_G with an G action such that \mathcal{R}_G is decomposed as a multiplicity free sum of irreducible G submodules as

$$\mathcal{R}_G = \bigoplus_i V_i.$$

(ii) Consider the subalgebra of U_H invariants:

$$\mathcal{A}_{(G,H)} := \mathcal{R}_G^{U_H} = \bigoplus_i V_i^{U_H}.$$

It is a A_H module.

(iii) The structure of $\mathcal{A}_{(G,H)}$ encodes part of the branching rule from G to H, so call it a **branching algebra** for (G, H).
Howe’s approach:

(i) Consider a “concrete” algebra \mathcal{R}_G with an G action such that \mathcal{R}_G is decomposed as a multiplicity free sum of irreducible G submodules as

$$\mathcal{R}_G = \bigoplus_i V_i.$$

(ii) Consider the subalgebra of U^H invariants:

$$\mathcal{A}_{(G,H)} := \mathcal{R}_G^{U^H} = \bigoplus_i V_i^{U^H}.$$

It is a A_H module.

(iii) The structure of $\mathcal{A}_{(G,H)}$ encodes part of the branching rule from G to H, so call it a branching algebra for (G, H).

(iv) Study the branching algebra $\mathcal{A}_{(G,H)}$.
Basic example:

\[G = \text{GL}_n \times \text{GL}_n, \quad H = \Delta(\text{GL}_n) = \{(g, g) : g \in \text{GL}_n\}. \]
Basic example:

\[G = \text{GL}_n \times \text{GL}_n, \quad H = \Delta(\text{GL}_n) = \{(g, g) : g \in \text{GL}_n\}. \]

Polynomial representations of \(\text{GL}_n \) are parametrized by Young diagrams with at most \(n \) rows (i.e. with depth \(\leq n \)).

\[D \text{ (Young diagram)} \longrightarrow \rho^D_n \text{ (representation of } \text{GL}_n). \]
Basic example:

\[G = \text{GL}_n \times \text{GL}_n, \quad H = \Delta(\text{GL}_n) = \{(g, g) : g \in \text{GL}_n\}. \]

Polynomial representations of GL_n are parametrized by Young diagrams with at most n rows (i.e. with depth $\leq n$).

\[D \text{ (Young diagram)} \longrightarrow \rho_n^D \text{ (representation of } \text{GL}_n). \]

Example of a Young diagram:

\[
D = \begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\end{array}
= (6,4,4,2) \text{ or } (6,4,4,2,0) \text{ etc}
\]
Branching problem for \((G, H) = (\text{GL}_n \times \text{GL}_n, \text{GL}_n)\):

For Young diagrams \(D\) and \(E\), \(\rho_n^D \otimes \rho_n^E\) is an irreducible module for \(\text{GL}_n \times \text{GL}_n\).

Restrict the action to \(\text{GL}_n = \Delta(\text{GL}_n)\), and describe the \(\text{GL}_n\) module structure of \(\rho_n^D \otimes \rho_n^E\).
Branching problem for \((G, H) = (\text{GL}_n \times \text{GL}_n, \text{GL}_n)\):

For Young diagrams \(D\) and \(E\), \(\rho_n^D \otimes \rho_n^E\) is an irreducible module for \(\text{GL}_n \times \text{GL}_n\).

Restrict the action to \(\text{GL}_n = \Delta(\text{GL}_n)\), and describe the \(\text{GL}_n\) module structure of \(\rho_n^D \otimes \rho_n^E\).

In other words, we want to decompose the \(\text{GL}_n\) tensor product \(\rho_n^D \otimes \rho_n^E\).
Branching problem for \((G, H) = (\text{GL}_n \times \text{GL}_n, \text{GL}_n)\):

For Young diagrams \(D\) and \(E\), \(\rho_n^D \otimes \rho_n^E\) is an irreducible module for \(\text{GL}_n \times \text{GL}_n\).

Restrict the action to \(\text{GL}_n = \Delta(\text{GL}_n)\), and describe the \(\text{GL}_n\) module structure of \(\rho_n^D \otimes \rho_n^E\).

In other words, we want to decompose the \(\text{GL}_n\) tensor product

\[\rho_n^D \otimes \rho_n^E. \]

So the branching rule in this case is **the Littlewood-Richardson (LR) Rule**:

\[\rho_n^D \otimes \rho_n^E = \bigoplus_F c_{D,E}^F \rho_n^F, \]

where \(c_{D,E}^F\) is the number of LR tableaux of shape \(F/D\) and content \(E\).
We want to construct a branching algebra $\mathcal{A}_{(G,H)}$ which encodes the LR rule.
We want to construct a branching algebra $\mathcal{A}_{(G,H)}$ which encodes the LR rule.

First we need an algebra $\mathcal{R}_G = \bigoplus_{D,E} \rho^D_n \otimes \rho^E_n$.
We want to construct a branching algebra $\mathcal{A}_{(G,H)}$ which encodes the LR rule.

First we need an algebra $\mathcal{R}_G = \bigoplus_{D,E} \rho_n^D \otimes \rho_n^E$.

Then

$$\mathcal{A}_{(G,H)} := \mathcal{R}_G^{U_H} \quad \text{where} \quad U_H = U_n = \left\{ \begin{pmatrix} 1 & \cdots & * \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix} \in \text{GL}_n \right\}.$$
The construction of \mathcal{R}_G:

$\text{GL}_n \times \text{GL}_k$ acts on the algebra $\mathcal{P}(M_{nk})$ of polynomial functions on $M_{nk}(\mathbb{C})$:

$$\mathcal{P}(M_{nk}) \cong \bigoplus_D \rho_n^D \otimes \rho_k^D \quad (\text{GL}_n, \text{GL}_k \text{ duality})$$
The construction of \mathcal{R}_G:

$\text{GL}_n \times \text{GL}_k$ acts on the algebra $\mathcal{P}(\text{M}_{nk})$ of polynomial functions on $\text{M}_{nk}(\mathbb{C})$:

$$\mathcal{P}(\text{M}_{nk}) \cong \bigoplus_D \rho_n^D \otimes \rho_k^D \quad (\text{GL}_n, \text{GL}_k) \text{ duality}$$

Extracting U_k invariants:

$$\mathcal{P}(\text{M}_{nk})^{U_k} \cong \bigoplus_D \rho_n^D \otimes (\rho_k^D)^{U_k} \cong \bigoplus_D \rho_n^D.$$
The construction of \mathcal{R}_G:

$GL_n \times GL_k$ acts on the algebra $\mathcal{P}(M_{nk})$ of polynomial functions on $M_{nk}(\mathbb{C})$:

$$\mathcal{P}(M_{nk}) \cong \bigoplus_{D} \rho_n^D \otimes \rho_k^D \quad \text{(GL}_n, \text{GL}_k \text{) duality)}$$

Extracting U_k invariants:

$$\mathcal{P}(M_{nk})^{U_k} \cong \bigoplus_{D} \rho_n^D \otimes (\rho_k^D)^{U_k} \cong \bigoplus_{D} \rho_n^D.$$

Take another copy:

$$\mathcal{P}(M_{n\ell})^{U_{\ell}} \cong \bigoplus_{E} \rho_n^E \otimes (\rho_{\ell}^E)^{U_{\ell}} \cong \bigoplus_{E} \rho_n^E.$$
Form the tensor product:

\[\mathcal{R}_G := \mathcal{P}(M_{nk})^U_k \otimes \mathcal{P}(M_{n\ell})^U_\ell \cong \left(\bigoplus_D \rho_n^D \right) \otimes \left(\bigoplus_E \rho_n^E \right) \cong \bigoplus_{D,E} \rho_n^D \otimes \rho_n^E \]
Form the tensor product:

\[R_G := \mathcal{P}(M_{nk})^{U_k} \otimes \mathcal{P}(M_{n\ell})^{U_\ell} \simeq \left(\bigoplus_{D} \rho_n^D \right) \otimes \left(\bigoplus_{E} \rho_n^E \right) \simeq \bigoplus_{D,E} \rho_n^D \otimes \rho_n^E \]

Extract the \(U_n = \Delta(U_n) \) invariants:

\[\mathcal{A}_{(G,H)} := R_G^{UH} = \left(\mathcal{P}(M_{nk})^{U_k} \otimes \mathcal{P}(M_{n\ell})^{U_\ell} \right)^{U_n} \simeq \bigoplus_{D,E} \left(\rho_n^D \otimes \rho_n^E \right)^{U_n}. \]
Form the tensor product:

\[R_G := P(M_{nk})^{U_k} \otimes P(M_{n\ell})^{U_\ell} \cong \bigoplus_D \rho_n^D \otimes \rho_n^E \cong \bigoplus_{D,E} \rho_n^D \otimes \rho_n^E \]

Extract the \(U_n = \Delta(U_n) \) invariants:

\[\mathcal{A}_{(G,H)} := R_G^{U_H} = \left(P(M_{nk})^{U_k} \otimes P(M_{n\ell})^{U_\ell} \right)^{U_n} \cong \bigoplus_{D,E} \left(\rho_n^D \otimes \rho_n^E \right)^{U_n} \]

It can be further decomposed as

\[\mathcal{A}_{(G,H)} \cong \bigoplus_{D,E} \left\{ \bigoplus_F \left(\rho_n^D \otimes \rho_n^E \right)^{U_n}_F \right\} = \bigoplus_{D,E,F} \mathcal{A}_{(G,H)}^{(D,E,F)} \]

where

\[\mathcal{A}_{(G,H)}^{(D,E,F)} = \left(\rho_n^D \otimes \rho_n^E \right)^{U_n}_F = \text{highest weight vectors of weight } F \text{ in } \rho_n^D \otimes \rho_n^E \]

\[\dim \mathcal{A}_{(G,H)}^{(D,E,F)} = \text{multiplicity of } \rho_n^F \text{ in } \rho_n^D \otimes \rho_n^E \]

Howe et al. call \(\mathcal{A}_{(G,H)} \) a \(\text{GL}_n \) tensor product algebra.
It turns out that $\mathcal{A}(G,H)$ also encodes another branching rule:

$$\mathcal{A}(G,H) = R^U_H = \left(\mathcal{P}(M_{nk})^U_k \otimes \mathcal{P}(M_{n\ell})^U_\ell \right)^U_n \simeq \mathcal{P}(M_{nk} \oplus M_{n\ell})^U_{U_n \times U_k \times U_\ell}$$

$$\simeq \mathcal{P}(M_{n(k+\ell)})^U_{U_n \times U_k \times U_\ell} \simeq \left(\bigoplus_F \rho_n^F \otimes \rho_{k+\ell}^F \right)^U_{U_n \times U_k \times U_\ell}$$

$$\simeq \bigoplus_F \left(\rho_n^F \right)^U_{U_n} \otimes \left(\rho_{k+\ell}^F \right)^U_{U_k \times U_\ell} \simeq \bigoplus_F \left(\rho_{k+\ell}^F \right)^U_{U_k \times U_\ell}.$$
It turns out that $\mathcal{A}_{(G,H)}$ also encodes another branching rule:

$$\mathcal{A}_{(G,H)} = R^H_G = \left(\mathcal{P}(M_{nk})^U_k \otimes \mathcal{P}(M_{n\ell})^U_\ell \right)^U_n \simeq \mathcal{P}(M_{nk} \oplus M_{n\ell})^{U_n \times U_k \times U_\ell}$$

$$\simeq \mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k \times U_\ell} \simeq \left(\bigoplus_F \rho_n^F \otimes \rho_{k+\ell}^F \right)^{U_n \times U_k \times U_\ell}$$

$$\simeq \bigoplus_F \left(\rho_n^F \right)^{U_n} \otimes \left(\rho_{k+\ell}^F \right)^{U_k \times U_\ell} \simeq \bigoplus_F \left(\rho_{k+\ell}^F \right)^{U_k \times U_\ell}.$$

$\mathcal{A}_{(G,H)}$ encodes the branching rule for $\text{GL}_{k+\ell} \downarrow \text{GL}_k \times \text{GL}_\ell$.

So the algebra $\mathcal{A}_{(G,H)}$ encodes two branching rules.
It turns out that $\mathcal{A}_{(G,H)}$ also encodes another branching rule:

$$
\mathcal{A}_{(G,H)} = R^U_G = \left(\mathcal{P}(M_{nk})^U_k \otimes \mathcal{P}(M_{n\ell})^U_\ell \right)^U_n \cong \mathcal{P}(M_{nk} \oplus M_{n\ell})^U_n \times U_k \times U_\ell \\
\cong \mathcal{P}(M_{n(k+\ell)})^U_n \times U_k \times U_\ell \cong \left(\bigoplus_F \rho_n^F \otimes \rho_{k+\ell}^F \right)^U_n \times U_k \times U_\ell \\
\cong \bigoplus_F \left(\rho_n^F \right)^U_n \otimes \left(\rho_{k+\ell}^F \right)^U_k \times U_\ell \cong \bigoplus_F \left(\rho_{k+\ell}^F \right)^U_k \times U_\ell .
$$

$\mathcal{A}_{(G,H)}$ encodes the branching rule for $\text{GL}_{k+\ell} \downarrow \text{GL}_k \times \text{GL}_\ell$.

So the algebra $\mathcal{A}_{(G,H)}$ encodes two branching rules.

From this, we obtain the reciprocity law:

$$
\dim \mathcal{A}^{(D,E,F)}_{(G,H)} = \text{multiplicity of } \rho_k^D \otimes \rho_\ell^E \text{ in } \rho_n^F = \text{multiplicity of } \rho_n^F \text{ in } \rho_n^D \otimes \rho_n^E
$$
Problem: Find a basis for $\mathcal{A}_{(G,H)}$.

Since $\mathcal{A}_{(G,H)} = \bigoplus_{D,E,F} \mathcal{A}_{(G,H)}^{(D,E,F)}$, it suffices to find a basis for each subspace $\mathcal{A}_{(G,H)}^{(D,E,F)}$.

Problem: Find a basis for $\mathcal{A}_{(G,H)}$.

Since $\mathcal{A}_{(G,H)} = \bigoplus_{D,E,F} \mathcal{A}_{(G,H)}^{(D,E,F)}$, it suffices to find a basis for each subspace $\mathcal{A}_{(G,H)}^{(D,E,F)}$.

By the Littlewood-Richardson Rule,

\[
\dim \mathcal{A}_{(G,H)}^{(D,E,F)} = c_{D,E}^F
\]

\[
= \text{number of LR tableaux } T \text{ of shape } F/D \text{ and content } E.
\]
Problem: Find a basis for $\mathcal{A}_{(G,H)}$.

Since $\mathcal{A}_{(G,H)} = \bigoplus_{D,E,F} \mathcal{A}_{(G,H)}^{(D,E,F)}$, it suffices to find a basis for each subspace $\mathcal{A}_{(G,H)}^{(D,E,F)}$.

By the Littlewood-Richardson Rule,

$$\dim \mathcal{A}_{(G,H)}^{(D,E,F)} = c^F_{D,E} = \text{number of LR tableaux } T \text{ of shape } F/D \text{ and content } E.$$

Plan: LR tableau $T \rightarrow$ construct a basis vector Δ_T in $\mathcal{A}_{(G,H)}^{(D,E,F)}$.
Now

\[\mathcal{A}_{(G,H)} = \left(\mathcal{P}(M_{nk})^{U_k} \otimes \mathcal{P}(M_{n\ell})^{U_{\ell}} \right)^{U_n} \]

\[= \mathcal{P}(M_{n,k} \oplus M_{n,\ell})^{U_n \times U_k \times U_{\ell}}, \]

it is a subalgebra of \(\mathcal{P}(M_{n,k} \oplus M_{n,\ell}) \).
Now

\[\mathcal{A}_{(G,H)} = \left(\mathcal{P}(M_{nk})^U_k \otimes \mathcal{P}(M_{n\ell})^U_\ell \right)^{U_n} \]
\[= \mathcal{P}(M_{n,k} \oplus M_{n,\ell})^{U_n \times U_k \times U_\ell}, \]

it is a subalgebra of \(\mathcal{P}(M_{n,k} \oplus M_{n,\ell}) \).

Write the coordinates of \(M_{n,k} \oplus M_{n,\ell} \) as

\[
\begin{pmatrix}
 x_{11} & x_{12} & \cdots & x_{1k} & y_{11} & y_{12} & \cdots & y_{1\ell} \\
 x_{21} & x_{22} & \cdots & x_{2k} & y_{21} & y_{22} & \cdots & y_{2\ell} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 x_{n1} & x_{n2} & \cdots & x_{nk} & y_{n1} & y_{n2} & \cdots & y_{n\ell}
\end{pmatrix}
\]

Then each \(\Delta_T \) is a polynomial on these variables.
Associate each skew tableau T with a monomial m_T.

Example: $T = \begin{array}{ccc}
1 \\
1 \\
2
\end{array} \rightarrow \begin{array}{ccc}
x_{11} & x_{11} & y_{11} \\
x_{22} & y_{21} \\
y_{32}
\end{array} \rightarrow m_T = (x_{11}x_{22}y_{11}y_{32})(x_{11}y_{21})$
Associate each skew tableau T with a monomial m_T.

Example: $T = \begin{array}{ccc} 1 \\ 1 \\ 2 \end{array} \rightarrow \begin{array}{ccc} x_{11} & x_{11} & y_{11} \\ x_{22} & y_{21} \\ y_{32} \end{array} \rightarrow m_T = (x_{11}x_{22}y_{11}y_{32})(x_{11}y_{21})$

Introduce a monomial ordering: the graded lexicographic order with

$$x_{11} > x_{21} > \cdots > x_{n1} > x_{12} > \cdots > x_{nk} > y_{11} > y_{21} > \cdots > y_{n\ell}.$$

$$\text{LM}(f) = \text{leading monomial of } f.$$
Associate each skew tableau T with a monomial m_T.

Example: $T = \begin{array}{c}
\hline
\hline
\hline
\hline
\hline
1 \\
1 \\
2 \\
\end{array}$ \rightarrow $\begin{array}{c}
\hline
\hline
\hline
\hline
\hline
x_{11} & x_{11} & y_{11} \\
x_{22} & y_{21} \\
y_{32} \\
\end{array}$ \rightarrow $m_T = (x_{11}x_{22}y_{11}y_{32})(x_{11}y_{21})$

Introduce a monomial ordering: the graded lexicographic order with $x_{11} > x_{21} > \cdots > x_{n1} > x_{12} > \cdots > x_{nk} > y_{11} > y_{21} > \cdots > y_{n\ell}$.

$\text{LM}(f) = \text{leading monomial of } f$.

Theorem (Howe-Tan-Willenbring, Advances 2005)

$\mathcal{A}^{(D,E,F)}_{(G,H)}$ has a basis $\{\Delta_T\}$ with the property that for each T,

$\text{LM}(\Delta_T) = m_T$.

35
Example. Let $D = \begin{array}{c} \end{array}$, $E = \begin{array}{c} \end{array}$, $F = \begin{array}{c} \end{array}$.

Then ρ_n^F occurs in $\rho_n^D \otimes \rho_n^E$ with multiplicity 2.
Example. Let $D = \begin{array}{cc}
1 & 1 \\
1 & 2 \\
\end{array}$ $E = \begin{array}{cc}
1 & 1 \\
1 & 2 \\
\end{array}$ $F = \begin{array}{cc}
1 & 1 \\
1 & 2 \\
\end{array}$.

Then ρ_n^F occurs in $\rho_n^D \otimes \rho_n^E$ with multiplicity 2.

$$T_1 = \begin{array}{ccc}
1 & 1 \\
1 & 2 \\
\end{array} \quad \Delta_{T_1} = \begin{vmatrix}
x_{11} & x_{12} & y_{11} & y_{12} \\
x_{21} & x_{22} & y_{21} & y_{22} \\
x_{31} & x_{32} & y_{31} & y_{32} \\
0 & 0 & y_{11} & y_{12} \\
\end{vmatrix} \begin{vmatrix}
x_{11} & y_{11} \\
x_{21} & y_{21} \\
\end{vmatrix}$$

$\text{LM}(\Delta_{T_1}) = (x_{11}x_{22}y_{11}y_{32})(x_{11}y_{21}) = m_{T_1}$
Example. Let $D = \begin{array}{c}
\end{array}$
$E = \begin{array}{c}
\end{array}$
$F = \begin{array}{c}
\end{array}$.

Then ρ_n^F occurs in $\rho_n^D \otimes \rho_n^E$ with multiplicity 2.

$$T_1 = \begin{array}{ccc}
1 & 1 & 2 \\
\end{array}$$

$$\Delta_{T_1} = \begin{vmatrix}
x_{11} & x_{12} & y_{11} & y_{12} \\
x_{21} & x_{22} & y_{21} & y_{22} \\
x_{31} & x_{32} & y_{31} & y_{32} \\
0 & 0 & y_{11} & y_{12}
\end{vmatrix}$$

$$\text{LM}(\Delta_{T_1}) = (x_{11}x_{22}y_{11}y_{32})(x_{11}y_{21}) = m_{T_1}$$

$$T_2 = \begin{array}{ccc}
1 & 2 & 1 \\
1 & & \\
\end{array}$$

$$\Delta_{T_2} = \begin{vmatrix}
x_{11} & x_{12} & y_{11} \\
x_{21} & x_{22} & y_{21} \\
x_{31} & x_{32} & y_{31} \\
0 & 0 & y_{11} & y_{12}
\end{vmatrix}$$

$$\text{LM}(\Delta_{T_2}) = (x_{11}x_{22}y_3)(x_{11}y_{11}y_{22}) = m_{T_2}$$
Let
\[S_{(G,H)} = \{ \text{LM}(f) : f \in \mathcal{A}_{(G,H)}, f \neq 0 \} = \{ m_T \}. \]
Then \(S_{(G,H)} \) is a semigroup because \(\mathcal{A}_{(G,H)} \) is an algebra and
\[\text{LM}(f_1 f_2) = \text{LM}(f_1) \text{LM}(f_2). \]
Let

\[S_{(G,H)} = \{ \text{LM}(f) : f \in \mathcal{A}_{(G,H)}, \ f \neq 0 \} = \{ m_T \}. \]

Then \(S_{(G,H)} \) is a semigroup because \(\mathcal{A}_{(G,H)} \) is an algebra and

\[\text{LM}(f_1 f_2) = \text{LM}(f_1) \text{LM}(f_2). \]

What we can we say about this semigroup \(S_{(G,H)} \)?
Let

\[S_{(G,H)} = \{ \text{LM}(f) : f \in \mathcal{A}_{(G,H)}, f \neq 0 \} = \{ m_T \}. \]

Then \(S_{(G,H)} \) is a semigroup because \(\mathcal{A}_{(G,H)} \) is an algebra and

\[\text{LM}(f_1 f_2) = \text{LM}(f_1) \text{LM}(f_2). \]

What we can we say about this semigroup \(S_{(G,H)} \)?

There is a rational polyhedral cone \(C \) in some \(\mathbb{R}^N \) such that

\[S_{(G,H)} \cong C \cap \mathbb{Z}^N. \]

It is finitely generated.
Let
\[S_{(G,H)} = \{ \text{LM}(f) : f \in \mathcal{A}_{(G,H)}, f \neq 0 \} = \{ m_T \}. \]

Then \(S_{(G,H)} \) is a semigroup because \(\mathcal{A}_{(G,H)} \) is an algebra and
\[\text{LM}(f_1 f_2) = \text{LM}(f_1) \text{LM}(f_2). \]

What we can we say about this semigroup \(S_{(G,H)} \)?

There is a rational polyhedral cone \(C \) in some \(\mathbb{R}^N \) such that
\[S_{(G,H)} \cong C \cap \mathbb{Z}^N. \]

It is finitely generated.

The polyhedral cone \(C \) is called the **Littlewood-Richardson cone**
by Igor Pak, and
\[c_{D,E}^F = \text{number of integral points in a polytope contained in } C. \]
The **initial algebra** in($\mathcal{A}_{(G,H)}$) of $\mathcal{A}_{(G,H)}$ is the subalgebra of $\mathcal{P}(M_{nk} \oplus M_{nl})$ generated by $S_{(G,H)}$.
The **initial algebra** \(\text{in}(\mathcal{A}_{(G,H)}) \) of \(\mathcal{A}_{(G,H)} \) is the subalgebra of \(\mathcal{P}(M_{nk} \oplus M_{nl}) \) generated by \(S_{(G,H)} \).

So

\[
\text{in}(\mathcal{A}_{G,H}) \cong \mathbb{C}[S_{(G,H)}]
\]

is the **semigroup algebra** on \(S_{(G,H)} \), and it is finitely generated.
The **initial algebra** \(\text{in}(\mathcal{A}_{(G,H)}) \) of \(\mathcal{A}_{(G,H)} \) is the subalgebra of \(\mathcal{P}(M_{nk} \oplus M_{nl}) \) generated by \(S_{(G,H)} \).

So

\[
\text{in}(\mathcal{A}_{G,H}) \simeq \mathbb{C}[S_{(G,H)}]
\]

is the **semigroup algebra** on \(S_{(G,H)} \), and it is finitely generated.

By a general results of Conca, Herzog, and Valla, we have:

Theorem ([HJLTW]). *The semigroup algebra \(\mathbb{C}[S_{(G,H)}] \) is a flat deformation of \(\mathcal{A}_{(G,H)} \).*
Similar results also hold for the following symmetric pairs (under a stable range condition):

\[(\text{GL}_n, \text{O}_n), \ (\text{O}_{n+m}, \text{O}_n \times \text{O}_m), \ (\text{Sp}_{2n}, \text{GL}_n), \ (\text{GL}_{2n}, \text{Sp}_{2n}), \ (\text{Sp}_{2(n+m)}, \text{Sp}_{2n} \times \text{Sp}_m), \ (\text{O}_{2n}, \text{GL}_n)\]

Branching multiplicities in these cases can be deduced from the algebra structure and the LR rule.
m-fold tensor product algebra

This is a branching algebra $\mathcal{A}_{(G,H)}$ which describes the decomposition of m-fold tensor products of GL_n modules:

$$\rho^D_1 \otimes \rho^D_2 \otimes \cdots \otimes \rho^D_m$$

where

$$G = \text{GL}_n^m, \quad H = \Delta(\text{GL}_n).$$
m-fold tensor product algebra

This is a branching algebra \(\mathcal{A}_{(G,H)} \) which describes the decomposition of \(m \)-fold tensor products of \(\text{GL}_n \) modules:

\[
\rho_n^{D_1} \otimes \rho_n^{D_2} \otimes \cdots \otimes \rho_n^{D_m}
\]

where

\[
G = \text{GL}_n^m, \quad H = \Delta(\text{GL}_n).
\]

A Special case: tensor product of the form

\[
\rho_n^{D} \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_\ell)} \simeq \rho_n^{D} \otimes S^{\alpha_1}(\mathbb{C}^n) \otimes S^{\alpha_2}(\mathbb{C}^n) \otimes \cdots \otimes S^{\alpha_\ell}(\mathbb{C}^n).
\]

We call a description of this tensor product **an iterated Pieri rule**.
An algebra which encodes the iterated Pieri rule:

$$\mathcal{P}(M_{n(k+\ell)}) = \mathcal{P}(M_{nk} \oplus \mathbb{C}^n \oplus \mathbb{C}^n \oplus \cdots \oplus \mathbb{C}^n)$$

$$= \mathcal{P}(M_{nk}) \otimes \mathcal{P}(\mathbb{C}^n) \otimes \mathcal{P}(\mathbb{C}^n) \otimes \cdots \otimes \mathcal{P}(\mathbb{C}^n)$$

$$\simeq \bigoplus_{D} \rho^D_n \otimes \rho^D_k \otimes \bigoplus_{\alpha_1} \rho^{(\alpha_1)}_n \otimes \cdots \otimes \bigoplus_{\alpha_\ell} \rho^{(\alpha_\ell)}_n$$
An algebra which encodes the iterated Pieri rule:

\[\mathcal{P}(M_{n(k+\ell)}) = \mathcal{P}(M_{nk} \oplus \mathbb{C}^n \oplus \mathbb{C}^n \oplus \cdots \oplus \mathbb{C}^n) \]

\[= \mathcal{P}(M_{nk}) \otimes \mathcal{P}(\mathbb{C}^n) \otimes \mathcal{P}(\mathbb{C}^n) \otimes \cdots \otimes \mathcal{P}(\mathbb{C}^n) \]

\[\simeq \bigoplus_{D} \rho_D^{D_n} \otimes \rho_k^{D_k} \otimes \bigoplus_{\alpha_1} \rho_n^{(\alpha_1)} \otimes \bigoplus_{\alpha_\ell} \rho_n^{(\alpha_\ell)} \]

Extract \(U_n \times U_k \) invariants:

\[\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k} \simeq \bigoplus_{D, \alpha} \left(\rho_D^{D_n} \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_\ell)} \right)^{U_n} \otimes \rho_k^{D_k} \]

We call \(\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k} \) an *iterated Pieri algebra* for GL\(_n\).
The iterated Pieri algebra $\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k}$ also encodes the branching rule for

$$GL_{k+\ell} \downarrow GL_k \times GL_1^\ell = GL_k \times (GL_1 \times \cdots \times GL_1).$$
The iterated Pieri algebra $\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k}$ also encodes the branching rule for

$$GL_{k+\ell} \downarrow GL_k \times GL_1^\ell = GL_k \times (GL_1 \times \cdots \times GL_1).$$

Special case: If $k = 1$, then this is branching for

$$GL_{\ell+1} \downarrow = GL_1^{\ell+1} = \underbrace{GL_1 \times \cdots \times GL_1}_{\ell+1}.$$

That is, decompose $\rho_{\ell+1}^D$ into weight spaces, and find a basis of each weight space.
Comparing tensor product algebra with iterated Pieri algebra

GL_n tensor product algebra:

$\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k \times U_\ell}$ describes general tensor products $\rho_n^D \otimes \rho_n^E$.
Comparing tensor product algebra with iterated Pieri algebra

GL\(_n\) tensor product algebra:

\[\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k \times U_\ell} \] describes general tensor products \(\rho_n^D \otimes \rho_n^E \).

Iterated Pieri algebra for GL\(_n\):

\[\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k} \] describes tensor products of the form

\[\rho_n^D \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_\ell)}. \]
Comparing tensor product algebra with iterated Pieri algebra

\textbf{GL}_n \text{ tensor product algebra:}

\[\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k \times U_\ell} \] describes general tensor products \[\rho_n^D \otimes \rho_n^E. \]

\textbf{Iterated Pieri algebra for } \textbf{GL}_n : \quad \text{for } n \geq k \geq \ell \geq 0

\[\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k} \] describes tensor products of the form

\[\rho_n^D \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_\ell)}. \]

We have

\[\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k \times U_\ell} \subseteq \mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k} \]

By analyzing how the tensor product algebra sits inside the iterated Pieri algebra, we can give a proof of the Littlewood-Richardson Rule ([Howe-Lee], BAMS 2012).
What is the semigroup S associated with the iterated Pieri algebra $\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k}$?

The elements of S should count the multiplicity in the tensor product

$$\rho_n^D \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_\ell)}.$$
What is the semigroup S associated with the iterated Pieri algebra $P(M_{n(k+\ell)})^{U_n \times U_k}$?

The elements of S should count the multiplicity in the tensor product

$$\rho_n^D \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_\ell)}.$$

By the Pieri Rule,

$$\rho_p^D \otimes \rho_p^{(\alpha_1)} = \bigoplus_F \rho_p^F$$

(multiplicity free)

where F satisfies the interlacing condition: If $D = (d_1, \ldots, d_p)$ and $F = (f_1, \ldots, f_p)$, then

$$f_1 \geq d_1 \geq f_2 \geq d_2 \geq \cdots \geq f_p \geq d_p.$$
What is the semigroup S associated with the iterated Pieri algebra $\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k}$?

The elements of S should count the multiplicity in the tensor product

$$
\rho_n^{D} \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_{\ell})}.
$$

By the Pieri Rule,

$$
\rho_p^{D} \otimes \rho_p^{(\alpha_1)} = \bigoplus_F \rho_p^F \quad \text{ (multiplicity free)}
$$

where F satisfies the interlacing condition: If $D = (d_1, \ldots, d_p)$ and $F = (f_1, \ldots, f_p)$, then

$$
f_1 \geq d_1 \geq f_2 \geq d_2 \geq \cdots \geq f_p \geq d_p.
$$

We indicate these inequalities by writing

$$
d_1 \quad d_2 \quad \cdots \quad d_p
$$

$$
f_1 \quad f_2 \quad \cdots \quad f_p
$$
By iterating the Pieri Rule,
\[\rho_n^D \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_\ell)} = \bigoplus_F m_F \rho_n^F \]

where \(m_F \) is the number of “Gelfand-Zeltlin” of the form

\[
\lambda =
\begin{pmatrix}
\lambda_{10} & \lambda_{20} & \cdots & \lambda_{n0} \\
\lambda_{11} & \lambda_{21} & \cdots & \lambda_{n1} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{1\ell} & \lambda_{2\ell} & \cdots & \lambda_{n\ell}
\end{pmatrix}
\]

where \(D = (\lambda_{10}, \lambda_{20}, \cdots, \lambda_{p0}) \) and \(F = (\lambda_{1\ell}, \lambda_{2\ell}, \cdots, \lambda_{n\ell}) \).
By iterating the Pieri Rule,
\[\rho_n^D \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_\ell)} = \bigoplus_{F} m_F \rho_n^F \]
where \(m_F \) is the number of “Gelfand-Zeltlin” of the form
\[\lambda = \begin{array}{cccc}
\lambda_{10} & \lambda_{20} & \cdots & \lambda_{n0} \\
\lambda_{11} & \lambda_{21} & \cdots & \lambda_{n1} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{1\ell} & \lambda_{2\ell} & \cdots & \lambda_{n\ell}
\end{array} \]
where \(D = (\lambda_{10}, \lambda_{20}, \cdots, \lambda_{p0}) \) and \(F = (\lambda_{1\ell}, \lambda_{2\ell}, \cdots, \lambda_{n\ell}) \).

These patterns can be viewed as **order preserving functions on a poset** \(\Gamma \)
\[\lambda : \Gamma \to \mathbb{Z}^+ . \]
The set

\[(\mathbb{Z}^+)_{\Gamma; \geq} = \{ f : \Gamma \to \mathbb{Z}^+ | f \text{ is order preserving} \}\]

forms a semigroup, and is called a \textbf{Hibi cone}. It has a very simple semigroup structure.

(More generally, we can replace \(\Gamma\) by a finite poset)
The set

$$(\mathbb{Z}^+)_{\Gamma, \geq} = \{f : \Gamma \to \mathbb{Z}^+ | f \text{ is order preserving}\}$$

forms a semigroup, and is called a **Hibi cone**. It has a very simple semigroup structure.

(More generally, we can replace Γ by a finite poset)

Call a subset A of Γ **increasing** if

$$a \in A, \ x \in \Gamma, \ x \geq a \implies x \in A.$$

Denote by $J^*(\Gamma)$ the collection of all increasing subsets of Γ.

62
For each $A \in J^*(\Gamma)$, let

$$\chi_A(x) = \begin{cases}
1 & x \in A \\
0 & x \notin A.
\end{cases}$$

Then clearly $\chi_A \in (\mathbb{Z}^+)\overline{\Gamma},\geq$.
For each $A \in J^*(\Gamma)$, let

$$\chi_A(x) = \begin{cases} 1 & x \in A \\
0 & x \notin A. \end{cases}$$

Then clearly $\chi_A \in (\mathbb{Z}^+)^{\Gamma,\succeq}$.

Theorem. The semigroup $(\mathbb{Z}^+)^{\Gamma,\succeq}$ is generated by $\{\chi_A : A \in J^*(\Gamma)\}$ and it has relations

$$\chi_A + \chi_B = \chi_{A \cup B} + \chi_{A \cap B}, \quad A, B \in J^*(\Gamma).$$
For each $A \in J^*(\Gamma)$, let

$$\chi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A. \end{cases}$$

Then clearly $\chi_A \in \Omega_{\Gamma}$.

Theorem. The semigroup $(\mathbb{Z}^+)_{\geq}^\Gamma$ is generated by $\{\chi_A : A \in J^*(\Gamma)\}$ and it has relations

$$\chi_A + \chi_B = \chi_{A \cup B} + \chi_{A \cap B}, \quad A, B \in J^*(\Gamma).$$

It follows that every $f \in (\mathbb{Z}^+)_{\geq}^\Gamma$ can be expressed as

$$f = \sum_j c_j \chi_{A_j}$$

where $c_j \in \mathbb{N}$ and $A_1 \subset A_2 \subset \cdots \subset A_N = \Gamma$ is a chain in $J^*(\Gamma)$. 65
In the case when \(n = 3, k = \ell = 2 \), \((\mathbb{Z}^+)_{\Gamma, \geq}\) consists of patterns of the form

\[
\lambda = \begin{pmatrix}
\lambda_{10} & \lambda_{20} & 0 \\
\lambda_{11} & \lambda_{21} & \lambda_{31} \\
\lambda_{12} & \lambda_{22} & \lambda_{32}
\end{pmatrix}
\]
In the case when $n = 3, k = \ell = 2$, $(\mathbb{Z}^+)^{\Gamma, \geq}$ consists of patterns of the form

\[
\lambda = \begin{pmatrix}
\lambda_{10} & \lambda_{20} & 0 \\
\lambda_{11} & \lambda_{21} & \lambda_{31} \\
\lambda_{12} & \lambda_{22} & \lambda_{32}
\end{pmatrix}
\]

The generators χ_A of $(\mathbb{Z}^+)^{\Gamma, \geq}$ are:

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
For general n, k, ℓ, each generator χ_A of $(\mathbb{Z}^+)^{\Gamma_{\geq}}$ corresponds to an element in $\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k}$ of the form

$$\delta_A = \begin{vmatrix}
 x_{11} & x_{12} & \cdots & x_{1p} & y_{1s_1} & y_{1s_2} & \cdots & y_{1s_q} \\
 x_{21} & x_{22} & \cdots & x_{2p} & y_{2s_1} & y_{2s_2} & \cdots & y_{2s_q} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 x_{(p+q)1} & x_{(p+q)2} & \cdots & x_{(p+q)p} & y_{(p+q)s_1} & y_{(p+q)s_2} & \cdots & y_{(p+q)s_q}
\end{vmatrix}.$$

Let Q be the set of all δ_A.

68
For general n, k, ℓ, each generator χ_A of $(\mathbb{Z}^+)^{\Gamma_\geq}$ corresponds to an element in $\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k}$ of the form

$$\delta_A = \begin{vmatrix}
x_{11} & x_{12} & \cdots & x_{1p} & y_{1s_1} & y_{1s_2} & \cdots & y_{1s_q} \\
x_{21} & x_{22} & \cdots & x_{2p} & y_{2s_1} & y_{2s_2} & \cdots & y_{2s_q} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
x_{(p+q)1} & x_{(p+q)2} & \cdots & x_{(p+q)p} & y_{(p+q)s_1} & y_{(p+q)s_2} & \cdots & y_{(p+q)s_q}
\end{vmatrix}.$$

Let Q be the set of all δ_A.

If $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_r$, then we call the product

$$\delta_{A_1} \delta_{A_2} \cdots \delta_{A_r}$$

a *standard monomial* on Q.

69
For general \(n, k, \ell \), each generator \(\chi_A \) of \((\mathbb{Z}^+)_{\Gamma; \geq} \) corresponds to an element in \(P(M_{n(k+\ell)})^{U_n \times U_k} \) of the form

\[
\delta_A = \begin{vmatrix}
 x_{11} & x_{12} & \cdots & x_{1p} & y_{1s_1} & y_{1s_2} & \cdots & y_{1s_q} \\
 x_{21} & x_{22} & \cdots & x_{2p} & y_{2s_1} & y_{2s_2} & \cdots & y_{2s_q} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 x_{(p+q)1} & x_{(p+q)2} & \cdots & x_{(p+q)p} & y_{(p+q)s_1} & y_{(p+q)s_2} & \cdots & y_{(p+q)s_q}
\end{vmatrix}.
\]

Let \(Q \) be the set of all \(\delta_A \).

If \(A_1 \subseteq A_2 \subseteq \cdots \subseteq A_r \), then we call the product

\[
\delta_{A_1} \delta_{A_2} \cdots \delta_{A_r}
\]

a **standard monomial** on \(Q \).

It turns out that the set of all standard monomials on \(Q \) forms a vector space basis for \(P(M_{n(k+\ell)})^{U_n \times U_k} \). We say that \(P(M_{n(k+\ell)})^{U_n \times U_k} \) has a standard monomial theory for \(Q \).

This treatment was given by **Sangjib Kim** in his thesis.
What other branching algebras are associated with Hibi cones?

The double Pieri algebra $\mathcal{L}_{(n,p),(k,q)}$ for $\text{GL}_n \times \text{GL}_k$

It describes

$$\left\{ \rho_n^D \otimes \left(\bigotimes_{i=1}^p \rho_n^{(\alpha_i)} \right) \right\} \otimes \left\{ \rho_k^D \otimes \left(\bigotimes_{j=1}^q \rho_k^{(\alpha_j)} \right) \right\}$$

with depth(D) $\leq k \leq n$.
What other branching algebras are associated with Hibi cones?

The double Pieri algebra $\mathcal{L}_{(n,p),(k,q)}$ for $\text{GL}_n \times \text{GL}_k$

It describes

$$\left\{ \rho_D \otimes \left(\bigotimes_{i=1}^{p} \rho_n^{(\alpha_i)} \right) \right\} \otimes \left\{ \rho_D \otimes \left(\bigotimes_{j=1}^{q} \rho_k^{(\alpha_j)} \right) \right\}$$

with $\text{depth}(D) \leq k \leq n$.

The iterated Pieri algebra $\mathcal{A}_{n,k,p}$ for O_n where $2(k + p) < n$.

It describes

$$\sigma_D \otimes \left(\bigotimes_{i=1}^{\ell} \sigma_n^{(\alpha_i)} \right)$$

where σ_D is the irreducible representation of O_n labelled by D and $\text{depth}(D) \leq k$.

72
The iterated Pieri algebra $Q_{n,k,p}$ for Sp_{2n} where $k + p < n$.

It describes

$$\tau_{2n}^{D} \otimes \left(\bigotimes_{i=1}^{\ell} \tau_{2n}^{(\alpha_i)} \right)$$

where τ_{2n}^{D} is the irreducible representation of Sp_{2n} labelled by D and $\text{depth}(D) \leq k$.
The iterated Pieri algebra $Q_{n,k,p}$ for Sp_{2n} where $k + p < n$. It describes

$$
\tau_{2n}^D \otimes \left(\bigotimes_{i=1}^\ell \tau_{2n}^{(\alpha_i)} \right)
$$

where τ_{2n}^D is the irreducible representation of Sp_{2n} labelled by D and $\text{depth}(D) \leq k$.

It turns out that $Q_{n,k,p} \simeq \mathcal{A}_{2n,k,p}$ for $k + p < n$.
The (more general) iterated Pieri algebra $\mathcal{A}_{n,k,\ell,p,q}$ for GL_n where $k + p + \ell + q) \leq n$.

It describes

$$\rho_n^{D,E} \otimes \left(\bigotimes_{i=1}^{p} \rho_n^{(\alpha_i)} \right) \otimes \left(\bigotimes_{j=1}^{q} \rho_n^{(\alpha_i)^*} \right)$$

where $\text{depth}(D) \leq k$ and $\text{depth}(E) \leq \ell$.
The (more general) iterated Pieri algebra $\mathcal{A}_{n,k,\ell,p,q}$ for GL_n where $k + p + \ell + q \leq n$.

It describes

$$\rho_{D,E} \otimes \left(\bigotimes_{i=1}^{p} \rho_{n}(\alpha_i) \right) \otimes \left(\bigotimes_{j=1}^{q} \rho_{n}(\alpha_i)^* \right)$$

where $\text{depth}(D) \leq k$ and $\text{depth}(E) \leq \ell$.

It turns out that double Pieri algebras can be regarded as a common structure shared by the iterated Pieri algebras.

Theorem. We have the isomorphism of graded algebras

$$\mathcal{A}_{n,k,p} \cong \mathcal{L}(n,p),(k,p) \otimes \mathcal{P}(\wedge^2(\mathbb{C}^p)),$$

$$\mathcal{A}_{n,k,\ell,p,q} \cong \mathcal{L}(n,p),(k,q) \otimes \mathcal{L}(n,q),(\ell,p) \otimes \mathcal{P}(\mathbb{M}_{pq}).$$
Can the stable range condition be removed?
Can the stable range condition be removed?

Antirow Pieri algebra for GLₙ (without stable range condition)

\[\mathcal{R}_{n,p,q} := \mathcal{P}(M_{np}) \otimes \left(\bigotimes_{i=1}^{q} \mathcal{P}(\mathbb{C}^{n*}_{i}) \right) \cong \left(\bigoplus_{D} \rho_{n}^{D} \otimes \rho_{p}^{D} \right) \otimes \left(\bigotimes_{i=1}^{q} \rho_{n}^{(\beta_{i})*} \right) \]

\[\cong \bigoplus_{F,\alpha} \left\{ \rho_{n}^{D} \otimes \left(\bigotimes_{i=1}^{q} \rho_{n}^{(\beta_{i})*} \right) \right\} \otimes \rho_{p}^{F}. \]
Can the stable range condition be removed?

Antirow Pieri algebra for GL_n (without stable range condition)

\[
R_{n,p,q} := \mathcal{P}(M_{np}) \otimes \left(\bigotimes_{i=1}^{q} \mathcal{P}(C_{i}^{n*}) \right) \simeq \left(\bigoplus_{D} \rho_{n}^{D} \otimes \rho_{p}^{D} \right) \otimes \left(\bigotimes_{i=1}^{q} \rho_{n}^{(\beta_{i})*} \right) \\
\simeq \bigoplus_{F,\alpha} \left\{ \rho_{n}^{D} \otimes \left(\bigotimes_{i=1}^{q} \rho_{n}^{(\beta_{i})*} \right) \right\} \otimes \rho_{p}^{F}.
\]

Extract $GL_n \times GL_p$ highest weight vectors:

\[
R_{U_{n},U_{p}}^{U_{n} \times U_{p}} \simeq \bigoplus_{F,\alpha} \left\{ \rho_{n}^{D} \otimes \left(\bigotimes_{i=1}^{q} \rho_{n}^{(\beta_{i})*} \right) \right\} U_{n} \otimes \left(\rho_{p}^{F} \right) U_{p}.
\]
Can the stable range condition be removed?

Antirow Pieri algebra for GL\(_n\) (without stable range condition)

\[
\mathcal{R}_{n,p,q} := \mathcal{P}(M_{np}) \otimes \left(\bigotimes_{i=1}^{q} \mathcal{P}(\mathbb{C}^{n^*}) \right) \simeq \left(\bigoplus_{D} \rho_n^D \otimes \rho_p^D \right) \otimes \left(\bigotimes_{i=1}^{q} \rho_n^{(\beta_i)^*} \right) \\
\simeq \bigoplus_{F,\alpha} \left\{ \rho_n^D \otimes \left(\bigotimes_{i=1}^{q} \rho_n^{(\beta_i)^*} \right) \right\} \otimes \rho_p^F.
\]

Extract \(\text{GL}_n \times \text{GL}_p \times A_q\) highest weight vectors:

\[
\mathcal{R}_{n,p,q}^{U_n \times U_p} \simeq \bigoplus_{F,\alpha} \left\{ \rho_n^D \otimes \left(\bigotimes_{i=1}^{q} \rho_n^{(\beta_i)^*} \right) \right\} \otimes (\rho_p^F)^{U_p}. \\
\]

So the algebra \(\mathcal{R}_{n,p,q}^{U_n \times U_p}\) describes \(\rho_n^D \otimes \left(\bigotimes_{i=1}^{q} \rho_n^{(\beta_i)^*} \right)\).
Multiplicities in $\rho_n^D \otimes \left(\bigotimes_{i=1}^{q} \rho_n^{(\beta_i)^*} \right)$ are counted by patterns of the form

$$\nu = \begin{array}{cccc}
\nu_{10} & \nu_{20} & \cdots & \nu_{n0} \\
\nu_{11} & \nu_{21} & \cdots & \nu_{n1} \\
\nu & \cdots & \cdots & \cdots \\
\nu_{1q} & \nu_{2q} & \cdots & \nu_{nq}
\end{array}$$

with $D = (\nu_{10}, \nu_{20}, \cdots, \nu_{n0})$.
Multiplicities in $\rho_n^D \otimes \left(\bigotimes_{i=1}^{q} \rho_n^{(\beta_i)^*} \right)$ are counted by patterns of the form

$$\nu = \begin{bmatrix} \nu_{10} & \nu_{20} & \cdots & \nu_{n0} \\ \nu_{11} & \nu_{21} & \cdots & \nu_{n1} \\ \vdots & \vdots & \ddots & \vdots \\ \nu_{1q} & \nu_{2q} & \cdots & \nu_{nq} \end{bmatrix}$$

with $D = (\nu_{10}, \nu_{20}, \cdots, \nu_{n0})$.

Some of the entries ν_{ij} can be negative. The associated semigroup can be identified with a set of order preserving functions $f : \Gamma \to \mathbb{Z}$, and is called a signed Hibi cone.
Multiplicities in $\rho_n^D \otimes \left(\bigotimes_{i=1}^{q} \rho_n^{(\beta_i)^*} \right)$ are counted by patterns of the form

$$\nu = \begin{array}{cccc}
\nu_{10} & \nu_{20} & \cdots & \nu_{n0} \\
\nu_{11} & \nu_{21} & & \nu_{n1} \\
& & \ddots & \\
& & & \nu_{1q} & \nu_{2q} & \cdots & \nu_{nq}
\end{array}$$

with $D = (\nu_{10}, \nu_{20}, \cdots, \nu_{n0})$.

Some of the entries ν_{ij} can be negative. The associated semigroup can be identified with a set of order preserving functions $f : \Gamma \to \mathbb{Z}$, and is called a **signed Hibi cone**.

The structure of the signed Hibi cone and the algebra were determined in Yi Wang’s thesis (2013).
Thank you.