Introduction to Proofs IAP 2015 In-class problems for day 8

We say that a set $A\subset\mathbb{R}$ has measure zero if for every $\epsilon>0$ there exists a sequence of pairs of real numbers

$$((a_n, b_n))_{n \ge 1}$$
 with $(a_n, b_n) \in \mathbb{R}^2$ and $a_n < b_n$ for all $n \ge 1$,

such that

$$A \subset \bigcup_{n \ge 1} [a_n, b_n]$$

and

$$\sum_{n\geq 1} b_n - a_n < \epsilon.$$

Problem 13. Suppose that $A \subset \mathbb{R}$ is a countable set. Then A has measure zero. *Proof.*

Problem 14. Suppose that $(A_i : i \ge 1)$ is a sequence of subsets of \mathbb{R} such that each A_i has measure zero. Then

$$\bigcup_{i\geq 1} A_i$$

also has measure zero.

Proof.

Problem 15. In this problem, we will construct the **Cantor set**, an uncountable set which has measure zero.

The construction will be based on a recursively defined sequence of sets, each of which consists of a union of intervals. Begin by setting

$$C_0 = [0, 1]$$

Suppose now that the set C_n for some $n \ge 0$ can be written as

$$C_n = I_1 \cup I_2 \cup \dots \cup I_m$$

for some $m \in \mathbb{N}$, where each I_j , $j = 1, \dots, m$, is a closed interval [a, b] $(a, b \in \mathbb{R}, a < b)$.

For each $I = [a, b] \subset \mathbb{R}$, define

$$R_3(I) = \left[a, a + \left(\frac{b-a}{3}\right)\right] \cup \left[b - \left(\frac{b-a}{3}\right), b\right].$$

We now set

$$C_{n+1} = \bigcup_{j=1}^m R_3(I_j).$$

This defines the sequence (C_n) recursively. The Cantor set is then

$$C := \bigcap_{n \ge 1} C_n.$$

(1) Draw a series of diagrams to visualize the construction of the sequence $(C_n : n \ge 1)$.

(2) Show that ${\cal C}$ has measure zero.

Proof.

(3) It can be shown that C is equal to the set $\{\sum_{n\geq 1} a_n 3^{-n} : a_n \in \{0,2\}\}$ consisting of "base 3 expansions." Use this to show that C is uncountable (hint: mimic our proof of uncountability of the interval $(0,1) \subset \mathbb{R}$).

Proof.

3