Introduction to Proofs IAP 2015 In-class problems for day 5

Problem 8. Let $(A_i : i \ge 1)$ be a sequence of countable sets. Show that

 $\bigcup_{i\in\mathbb{N}\backslash\{0\}}A_i$

is also countable.

Proof.

Problem 9. Let $f: (0,1) \to \mathbb{R}$ be given and suppose that $x \mapsto f(x)$ has a limit as $x \to c$ for some $c \in (0,1)$. Show that the limit is unique – that is, suppose that a, b are limits of f as $x \to c$ and show that a = b.

 ${\it Proof.}$

Problem 10. Define $f : \mathbb{R} \to \mathbb{R}$ by the conditions

$$f(x) = 1 \text{ for } x \in \mathbb{Q}$$

and

$$f(x) = -1$$
 for $x \in \mathbb{R} \setminus \mathbb{Q}$.

Show that, for every $x_0 \in \mathbb{R}$, f(x) does not have a limit as $x \to x_0$. (In other words, given $x_0 \in \mathbb{R}$ and $\lambda \in \mathbb{R}$, show that the condition

$$\lim_{x \to x_0} f(x) = \lambda$$

is not valid. You may use the fact that for any $z \in \mathbb{R}$ and $\epsilon > 0$ there exists $q \in \mathbb{Q}$ with $|z - q| < \epsilon$.)

Proof.

 $\mathbf{2}$

Problem 11. Let $f : (0,1) \to (0,1)$ be a surjective function which is strictly increasing in the sense that for every $x, y \in (0,1)$ with x < y we have f(x) < f(y). Show that f is continuous.

(Recall that f surjective (alternatively, onto) means that for every $y \in (0, 1)$ there exists $x \in (0, 1)$ with f(x) = y).

Proof.