
18.S097 Introduction to Proofs
IAP 2015

Solution to Homework 5

Instructions: Choose and complete one of the following problems (you only have
to do one!):

Problem 1. Show that a function f : R→ R is continuous if and only if for every
open set U ⊂ R, the set

f−1(U) = {x ∈ R : f(x) ∈ U}

is also open.

Solution:

We begin by showing that f : R → R continuous implies that f−1(U) is open
for all U ⊂ R open. Let f be a given continuous function on R, and let U ⊂ R be a
given open set. We want to show that f−1(U) is open; for this, let x ∈ f−1(U) be
given. We then have f(x) ∈ U , and thus, since is U open, we can find δ1 > 0 such
that B(f(x); δ1) ⊂ U . By the continuity of f , we can then find δ2 > 0 such that
for every x ∈ R, the condition

|y − x| < δ2 (1)

implies

|f(y)− f(x)| < δ1. (2)

Set δ = δ2. We will show the inclusion B(x; δ) ⊂ f−1(U). Let y ∈ B(x; δ) be
given. By the definition of the set B(x; δ), this means that (1) holds, so that (2)
holds as well (by the choice of δ2). However, this condition can be rewritten as
f(y) ∈ B(f(x); δ1) ⊂ U . Thus y ∈ f−1(U), and the desired inclusion holds. Since
x ∈ f−1(U) was arbitrary, we have shown that f−1(U) is open, as desired.

We now show the converse implication, that the condition

f−1(U) is open for all open U ⊂ R (3)

implies f is continuous. Let f : R → R be a given function, and suppose that (3)
holds. Let x ∈ R and ε > 0 be given. Since B(f(x); ε) is an open set (recall that
we showed in class that every open interval (a, b) is an open set; recall also that
B(f(x); ε) is equal to the interval (f(x)− ε, f(x) + ε)),

f−1(B(f(x); ε))

is also open. Since x ∈ f−1(B(f(x); ε)), we can find δ > 0 such that

B(x; δ) ⊂ f−1(B(f(x); ε)).

It remains to show that this δ satisfies the requirements for the epsilon-delta defini-
tion of continuity. Let y ∈ R be given with |y − x| < δ. We then have y ∈ B(x; δ),
so that y also belongs to the set f−1(B(f(x); ε)), and thus

f(y) ∈ B(f(x); ε).

This latter condition can be written as |f(y) − f(x)| < ε. Since x ∈ R and ε > 0
were arbitrary, f is continuous as desired.
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Problem 2. Let (qn)n≥1 be an enumeration of Q ∩ (0, 1) (so that qn ∈ Q ∩ (0, 1)
for each n ≥ 1, and {qn : n ≥ 1} = Q ∩ (0, 1)). Define

A :=
⋃
n≥1

(
qn −

1

2n+2
, qn +

1

2n+2

)
.

Show that Ac := (0, 1) \A is not a set of measure zero.

Solution: (sketch)

Let A be as stated. Suppose that Ac has measure zero; then, for each ε > 0, we
can find a collection of closed intervals ([am, bm])m≥1 such that Ac ⊂ ∪m≥1[am, bm]
and

∑
m≥1 bm − am < ε. We apply this condition with ε = 1

4 to choose such a

sequence ([am, bm]).

It now follows from (0, 1) = A ∪Ac that (0, 1) is contained in the set

X =

∞⋃
`=1

I` :=
⋃
n≥1

[qn −
1

2n+2
, qn +

1

2n+2
] ∪

⋃
m≥1

[am, bm],

where each I` is an interval appearing in the union on the right side of the last line.

We now obtain the desired contradiction. Define

σ := inf

{ ∞∑
k=1

dk − ck : ([ck, dk])k≥1 is s.t. X ⊂
⋃
k≥1

[ck, dk]

}
.

(We note that the real number σ defined here corresponds to a more general con-
struction – in particular, it is the Lebesgue outer measure of the set X.) It can be
shown (using the notion of compactness) that (0, 1) ⊂ X implies σ ≥ 1 (since we
did not discuss this notion in the course, we will not go into further detail – see
Chapter 5 in [1] for treatment of this material in the context of several topics we
talked about in the course).

On the other hand, the collection (I`)`≥1 is an admissible collection of intervals
for the infimum used to define σ; we therefore obtain

σ ≤
∞∑

n=1

2−(n+1) +

∞∑
m=1

bm − am ≤
1

2
+

1

4
< 1.

We have therefore shown both σ ≥ 1 and σ < 1, which gives the desired contradic-
tion. 1

References

[1] G. Edgar. Measure, Topology, and Fractal Geometry. Springer UTM 2008, 2nd ed.

1We remark that the tools used here are particular instances of more general mathematical

machinery – in particular, they are special cases of (i) the notion of compactness (which allows
one to reduce the analysis of certain countable collections of open sets to the analysis of a finite

subcollection), and (ii) properties of the outer measure.
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