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CHAPTER 1

MULTILINEAR ALGEBRA

1.1 Background

We will list below some definitions and theorems that are part of
the curriculum of a standard theory-based sophomore level course
in linear algebra. (Such a course is a prerequisite for reading these
notes.) A vector space is a set, V , the elements of which we will refer
to as vectors. It is equipped with two vector space operations:
Vector space addition. Given two vectors, v1 and v2, one can add
them to get a third vector, v1 + v2.
Scalar multiplication. Given a vector, v, and a real number, λ, one
can multiply v by λ to get a vector, λv.

These operations satisfy a number of standard rules: associativ-
ity, commutativity, distributive laws, etc. which we assume you’re
familiar with. (See exercise 1 below.) In addition we’ll assume you’re
familiar with the following definitions and theorems.

1. The zero vector. This vector has the property that for every
vector, v, v+ 0 = 0+ v = v and λv = 0 if λ is the real number, zero.

2. Linear independence. A collection of vectors, vi, i = 1, . . . , k, is
linearly independent if the map

(1.1.1) R
k → V , (c1, . . . , ck) → c1v1 + · · · + ckvk

is 1 − 1.

3. The spanning property. A collection of vectors, vi, i = 1, . . . , k,
spans V if the map (1.1.1) is onto.

4. The notion of basis. The vectors, vi, in items 2 and 3 are a basis
of V if they span V and are linearly independent; in other words, if
the map (1.1.1) is bijective. This means that every vector, v, can be
written uniquely as a sum

(1.1.2) v =
∑

civi .
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5. The dimension of a vector space. If V possesses a basis, vi,
i = 1, . . . , k, V is said to be finite dimensional, and k is, by definition,
the dimension of V . (It is a theorem that this definition is legitimate:
every basis has to have the same number of vectors.) In this chapter
all the vector spaces we’ll encounter will be finite dimensional.

6. A subset, U , of V is a subspace if it’s vector space in its own
right, i.e., for v, v1 and v2 in U and λ in R, λv and v1 + v2 are in U .

7. Let V and W be vector spaces. A map, A : V → W is linear if,
for v, v1 and v2 in V and λ ∈ R

A(λv) = λAv(1.1.3)

and

A(v1 + v2) = Av1 +Av2 .(1.1.4)

8. The kernel of A. This is the set of vectors, v, in V which get
mapped by A into the zero vector in W . By (1.1.3) and (1.1.4) this
set is a subspace of V . We’ll denote it by “KerA”.

9. The image of A. By (1.1.3) and (1.1.4) the image of A, which
we’ll denote by “ImA”, is a subspace of W . The following is an
important rule for keeping track of the dimensions of KerA and
ImA.

(1.1.5) dimV = dim KerA+ dim ImA .

Example 1. The map (1.1.1) is a linear map. The vi’s span V if its
image is V and the vi’s are linearly independent if its kernel is just
the zero vector in R

k.

10. Linear mappings and matrices. Let v1, . . . , vn be a basis of V
and w1, . . . , wm a basis of W . Then by (1.1.2) Avj can be written
uniquely as a sum,

(1.1.6) Avj =

m∑

i=1

ci,jwi , ci,j ∈ R .

The m × n matrix of real numbers, [ci,j ], is the matrix associated
with A. Conversely, given such an m × n matrix, there is a unique
linear map, A, with the property (1.1.6).
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11. An inner product on a vector space is a map

B : V × V → R

having the three properties below.

(a) For vectors, v, v1, v2 and w and λ ∈ R

B(v1 + v2, w) = B(v1, w) +B(v2, w)

and

B(λv,w) = λB(v,w) .

(b) For vectors, v and w,

B(v,w) = B(w, v) .

(c) For every vector, v

B(v, v) ≥ 0 .

Moreover, if v 6= 0, B(v, v) is positive.

Notice that by property (b), property (a) is equivalent to

B(w, λv) = λB(w, v)

and

B(w, v1 + v2) = B(w, v1) +B(w, v2) .

The items on the list above are just a few of the topics in linear al-
gebra that we’re assuming our readers are familiar with. We’ve high-
lighted them because they’re easy to state. However, understanding
them requires a heavy dollop of that indefinable quality “mathe-
matical sophistication”, a quality which will be in heavy demand in
the next few sections of this chapter. We will also assume that our
readers are familiar with a number of more low-brow linear algebra
notions: matrix multiplication, row and column operations on matri-
ces, transposes of matrices, determinants of n×n matrices, inverses
of matrices, Cramer’s rule, recipes for solving systems of linear equa-
tions, etc. (See §1.1 and 1.2 of Munkres’ book for a quick review of
this material.)
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Exercises.

1. Our basic example of a vector space in this course is R
n equipped

with the vector addition operation

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

and the scalar multiplication operation

λ(a1, . . . , an) = (λa1, . . . , λan) .

Check that these operations satisfy the axioms below.

(a) Commutativity: v + w = w + v.

(b) Associativity: u+ (v + w) = (u+ v) + w.

(c) For the zero vector, 0 = (0, . . . , 0), v + 0 = 0 + v.

(d) v + (−1)v = 0.

(e) 1v = v.

(f) Associative law for scalar multiplication: (ab)v = a(bv).

(g) Distributive law for scalar addition: (a+ b)v = av + bv.

(h) Distributive law for vector addition: a(v + w) = av + aw.

2. Check that the standard basis vectors of R
n: e1 = (1, 0, . . . , 0),

e2 = (0, 1, 0, . . . , 0), etc. are a basis.

3. Check that the standard inner product on R
n

B((a1, . . . , an), (b1, . . . , bn)) =
n∑

i=1

aibi

is an inner product.

1.2 Quotient spaces and dual spaces

In this section we will discuss a couple of items which are frequently,
but not always, covered in linear algebra courses, but which we’ll
need for our treatment of multilinear algebra in §§1.1.3 – 1.1.8.
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The quotient spaces of a vector space

Let V be a vector space and W a vector subspace of V . A W -coset
is a set of the form

v +W = {v + w , w ∈W} .

It is easy to check that if v1 − v2 ∈ W , the cosets, v1 + W and
v2 + W , coincide while if v1 − v2 6∈ W , they are disjoint. Thus the
W -cosets decompose V into a disjoint collection of subsets of V . We
will denote this collection of sets by V/W .

One defines a vector addition operation on V/W by defining the
sum of two cosets, v1 +W and v2 +W to be the coset

(1.2.1) v1 + v2 +W

and one defines a scalar multiplication operation by defining the
scalar multiple of v +W by λ to be the coset

(1.2.2) λv +W .

It is easy to see that these operations are well defined. For instance,
suppose v1 + W = v′1 + W and v2 + W = v′2 + W . Then v1 − v′1
and v2 − v′2 are in W ; so (v1 + v2) − (v′1 + v′2) is in W and hence
v1 + v2 +W = v′1 + v′2 +W .

These operations make V/W into a vector space, and one calls
this space the quotient space of V by W .

We define a mapping

(1.2.3) π : V → V/W

by setting π(v) = v + W . It’s clear from (1.2.1) and (1.2.2) that
π is a linear mapping, and that it maps V to V/W . Moreover, for
every coset, v +W , π(v) = v +W ; so the mapping, π, is onto. Also
note that the zero vector in the vector space, V/W , is the zero coset,
0+W = W . Hence v is in the kernel of π if v+W = W , i.e., v ∈W .
In other words the kernel of π is W .

In the definition above, V and W don’t have to be finite dimen-
sional, but if they are, then

(1.2.4) dimV/W = dimV − dimW .

by (1.1.5).
The following, which is easy to prove, we’ll leave as an exercise.
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Proposition 1.2.1. Let U be a vector space and A : V → U a linear
map. If W ⊂ KerA there exists a unique linear map, A# : V/W → U
with property, A = A# ◦ π.

The dual space of a vector space

We’ll denote by V ∗ the set of all linear functions, ℓ : V → R. If ℓ1
and ℓ2 are linear functions, their sum, ℓ1 + ℓ2, is linear, and if ℓ is
a linear function and λ is a real number, the function, λℓ, is linear.
Hence V ∗ is a vector space. One calls this space the dual space of V .

Suppose V is n-dimensional, and let e1, . . . , en be a basis of V .
Then every vector, v ∈ V , can be written uniquely as a sum

v = c1e1 + · · · + cnen ci ∈ R .

Let

(1.2.5) e∗i (v) = ci .

If v = c1e1 + · · · + cnen and v′ = c′1e1 + · · · + c′nen then v + v′ =
(c1 + c′1)e1 + · · · + (cn + c′n)en, so

e∗i (v + v′) = ci + c′i = e∗i (v) + e∗i (v
′) .

This shows that e∗i (v) is a linear function of v and hence e∗i ∈ V ∗.

Claim: e∗i , i = 1, . . . , n is a basis of V ∗.

Proof. First of all note that by (1.2.5)

(1.2.6) e∗i (ej) =

{
1 , i = j
0 , i 6= j

.

If ℓ ∈ V ∗ let λi = ℓ(ei) and let ℓ′ =
∑
λie

∗
i . Then by (1.2.6)

(1.2.7) ℓ′(ej) =
∑

λie
∗
i (ej) = λj = ℓ(ej) ,

i.e., ℓ and ℓ′ take identical values on the basis vectors, ej. Hence
ℓ = ℓ′.

Suppose next that
∑
λie

∗
i = 0. Then by (1.2.6), λj = (

∑
λie

∗
i )(ej) =

0 for all j = 1, . . . , n. Hence the e∗j ’s are linearly independent.
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Let V and W be vector spaces and A : V → W , a linear map.
Given ℓ ∈ W ∗ the composition, ℓ ◦ A, of A with the linear map,
ℓ : W → R, is linear, and hence is an element of V ∗. We will denote
this element by A∗ℓ, and we will denote by

A∗ : W ∗ → V ∗

the map, ℓ→ A∗ℓ. It’s clear from the definition that

A∗(ℓ1 + ℓ2) = A∗ℓ1 +A∗ℓ2

and that

A∗λℓ = λA∗ℓ ,

i.e., that A∗ is linear.

Definition. A∗ is the transpose of the mapping A.

We will conclude this section by giving a matrix description of
A∗. Let e1, . . . , en be a basis of V and f1, . . . , fm a basis of W ; let
e∗1, . . . , e

∗
n and f∗1 , . . . , f

∗
m be the dual bases of V ∗ and W ∗. Suppose A

is defined in terms of e1, . . . , en and f1, . . . , fm by the m×n matrix,
[ai,j], i.e., suppose

Aej =
∑

ai,jfi .

Claim. A∗ is defined, in terms of f∗1 , . . . , f
∗
m and e∗1, . . . , e

∗
n by the

transpose matrix, [aj,i].

Proof. Let

A∗f∗i =
∑

cj,ie
∗
j .

Then

A∗f∗i (ej) =
∑

k

ck,ie
∗
k(ej) = cj,i

by (1.2.6). On the other hand

A∗f∗i (ej) = f∗i (Aej) = f∗i

(∑
ak,jfk

)
=
∑

k

ak,jf
∗
i (fk) = ai,j

so ai,j = cj,i.
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Exercises.

1. Let V be an n-dimensional vector space and W a k-dimensional
subspace. Show that there exists a basis, e1, . . . , en of V with the
property that e1, . . . , ek is a basis of W . Hint: Induction on n − k.
To start the induction suppose that n− k = 1. Let e1, . . . , en−1 be a
basis of W and en any vector in V −W .

2. In exercise 1 show that the vectors fi = π(ek+i), i = 1, . . . , n−k
are a basis of V/W .

3. In exercise 1 let U be the linear span of the vectors, ek+i, i =
1, . . . , n− k.

Show that the map

U → V/W , u→ π(u) ,

is a vector space isomorphism, i.e., show that it maps U bijectively
onto V/W .

4. Let U , V and W be vector spaces and let A : V → W and
B : U → V be linear mappings. Show that (AB)∗ = B∗A∗.

5. Let V = R
2 and let W be the x1-axis, i.e., the one-dimensional

subspace
{(x1, 0) ; x1 ∈ R}

of R
2.

(a) Show that the W -cosets are the lines, x2 = a, parallel to the
x1-axis.

(b) Show that the sum of the cosets, “x2 = a” and “x2 = b” is the
coset “x2 = a+ b”.

(c) Show that the scalar multiple of the coset, “x2 = c” by the
number, λ, is the coset, “x2 = λc”.

6. (a) Let (V ∗)∗ be the dual of the vector space, V ∗. For every
v ∈ V , let µv : V ∗ → R be the function, µv(ℓ) = ℓ(v). Show that
the µv is a linear function on V ∗, i.e., an element of (V ∗)∗, and show
that the map

(1.2.8) µ : V → (V ∗)∗ v → µv

is a linear map of V into (V ∗)∗.
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(b) Show that the map (1.2.8) is bijective. (Hint: dim(V ∗)∗ =
dimV ∗ = dimV , so by (1.1.5) it suffices to show that (1.2.8) is
injective.) Conclude that there is a natural identification of V with
(V ∗)∗, i.e., that V and (V ∗)∗ are two descriptions of the same object.

7. Let W be a vector subspace of V and let

W⊥ = {ℓ ∈ V ∗ , ℓ(w) = 0 if w ∈W} .

Show that W⊥ is a subspace of V ∗ and that its dimension is equal to
dimV −dimW . (Hint: By exercise 1 we can choose a basis, e1, . . . , en
of V such that e1, . . . ek is a basis of W . Show that e∗k+1, . . . , e

∗
n is a

basis of W⊥.) W⊥ is called the annihilator of W in V ∗.

8. Let V and V ′ be vector spaces and A : V → V ′ a linear map.
Show that if W is the kernel of A there exists a linear map, B :
V/W → V ′, with the property: A = B ◦ π, π being the map (1.2.3).
In addition show that this linear map is injective.

9. Let W be a subspace of a finite-dimensional vector space, V .
From the inclusion map, ι : W⊥ → V ∗, one gets a transpose map,

ι∗ : (V ∗)∗ → (W⊥)∗

and, by composing this with (1.2.8), a map

ι∗ ◦ µ : V → (W⊥)∗ .

Show that this map is onto and that its kernel is W . Conclude from
exercise 8 that there is a natural bijective linear map

ν : V/W → (W⊥)∗

with the property ν ◦π = ι∗ ◦µ. In other words, V/W and (W⊥)∗ are
two descriptions of the same object. (This shows that the “quotient
space” operation and the “dual space” operation are closely related.)

10. Let V1 and V2 be vector spaces and A : V1 → V2 a linear map.
Verify that for the transpose map: A∗ : V ∗

2 → V ∗
1

KerA∗ = (ImA)⊥

and

ImA∗ = (KerA)⊥ .
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11. (a) Let B : V × V → R be an inner product on V . For v ∈ V
let

ℓv : V → R

be the function: ℓv(w) = B(v,w). Show that ℓv is linear and show
that the map

(1.2.9) L : V → V ∗ , v → ℓv

is a linear mapping.

(b) Prove that this mapping is bijective. (Hint: Since dimV =
dimV ∗ it suffices by (1.1.5) to show that its kernel is zero. Now note
that if v 6= 0 ℓv(v) = B(v, v) is a positive number.) Conclude that if
V has an inner product one gets from it a natural identification of
V with V ∗.

12. Let V be an n-dimensional vector space and B : V × V → R

an inner product on V . A basis, e1, . . . , en of V is orthonormal is

(1.2.10) B(ei, ej) =

{
1 i = j
0 i 6= j

(a) Show that an orthonormal basis exists. Hint: By induction let
ei, i = 1, . . . , k be vectors with the property (1.2.10) and let v be a
vector which is not a linear combination of these vectors. Show that
the vector

w = v −
∑

B(ei, v)ei

is non-zero and is orthogonal to the ei’s. Now let ek+1 = λw, where

λ = B(w,w)−
1

2 .

(b) Let e1, . . . en and e′1, . . . e
′
n be two orthogonal bases of V and let

(1.2.11) e′j =
∑

ai,jei .

Show that

(1.2.12)
∑

ai,jai,k =

{
1 j = k
0 j 6= k

(c) Let A be the matrix [ai,j]. Show that (1.2.12) can be written
more compactly as the matrix identity

(1.2.13) AAt = I

where I is the identity matrix.
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(d) Let e1, . . . , en be an orthonormal basis of V and e∗1, . . . , e
∗
n the

dual basis of V ∗. Show that the mapping (1.2.9) is the mapping,
Lei = e∗i , i = 1, . . . n.
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1.3 Tensors

Let V be an n-dimensional vector space and let V k be the set of all
k-tuples, (v1, . . . , vk), vi ∈ V . A function

T : V k → R

is said to be linear in its ith variable if, when we fix vectors, v1, . . . , vi−1,
vi+1, . . . , vk, the map

(1.3.1) v ∈ V → T (v1, . . . , vi−1, v, vi+1, . . . , vk)

is linear in V . If T is linear in its ith variable for i = 1, . . . , k it is said
to be k-linear, or alternatively is said to be a k-tensor. We denote
the set of all k-tensors by Lk(V ). We will agree that 0-tensors are
just the real numbers, that is L0(V ) = R.

Let T1 and T2 be functions on V k. It is clear from (1.3.1) that if
T1 and T2 are k-linear, so is T1 + T2. Similarly if T is k-linear and λ
is a real number, λT is k-linear. Hence Lk(V ) is a vector space. Note
that for k = 1, “k-linear” just means “linear”, so L1(V ) = V ∗.

Let I = (i1, . . . ik) be a sequence of integers with 1 ≤ ir ≤ n,
r = 1, . . . , k. We will call such a sequence a multi-index of length k.
For instance the multi-indices of length 2 are the square arrays of
pairs of integers

(i, j) , 1 ≤ i, j ≤ n

and there are exactly n2 of them.

Exercise.

Show that there are exactly nk multi-indices of length k.

Now fix a basis, e1, . . . , en, of V and for T ∈ Lk(V ) let

(1.3.2) TI = T (ei1 , . . . , eik)

for every multi-index I of length k.

Proposition 1.3.1. The TI ’s determine T , i.e., if T and T ′ are
k-tensors and TI = T ′

I for all I, then T = T ′.
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Proof. By induction on n. For n = 1 we proved this result in § 1.1.
Let’s prove that if this assertion is true for n− 1, it’s true for n. For
each ei let Ti be the (k − 1)-tensor

(v1, . . . , vn−1) → T (v1, . . . , vn−1, ei) .

Then for v = c1e1 + · · · cnen

T (v1, . . . , vn−1, v) =
∑

ciTi(v1, . . . , vn−1) ,

so the Ti’s determine T . Now apply induction.

The tensor product operation

If T1 is a k-tensor and T2 is an ℓ-tensor, one can define a k+ℓ-tensor,
T1 ⊗ T2, by setting

(T1 ⊗ T2)(v1, . . . , vk+ℓ) = T1(v1, . . . , vk)T2(vk+1, . . . , vk+ℓ) .

This tensor is called the tensor product of T1 and T2. We note that
if T1 or T2 is a 0-tensor, i.e., scalar, then tensor product with it
is just scalar multiplication by it, that is a ⊗ T = T ⊗ a = aT
(a ∈ R , T ∈ Lk(V )).

Similarly, given a k-tensor, T1, an ℓ-tensor, T2 and an m-tensor,
T3, one can define a (k + ℓ+m)-tensor, T1 ⊗ T2 ⊗ T3 by setting

T1 ⊗ T2 ⊗ T3(v1, . . . , vk+ℓ+m)(1.3.3)

= T1(v1, . . . , vk)T2(vk+1, . . . , vk+ℓ)T3(vk+ℓ+1, . . . , vk+ℓ+m) .

Alternatively, one can define (1.3.3) by defining it to be the tensor
product of T1 ⊗ T2 and T3 or the tensor product of T1 and T2 ⊗ T3.
It’s easy to see that both these tensor products are identical with
(1.3.3):

(1.3.4) (T1 ⊗ T2) ⊗ T3 = T1 ⊗ (T2 ⊗ T3) = T1 ⊗ T2 ⊗ T3 .

We leave for you to check that if λ is a real number

(1.3.5) λ(T1 ⊗ T2) = (λT1) ⊗ T2 = T1 ⊗ (λT2)

and that the left and right distributive laws are valid: For k1 = k2,

(1.3.6) (T1 + T2) ⊗ T3 = T1 ⊗ T3 + T2 ⊗ T3
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and for k2 = k3

(1.3.7) T1 ⊗ (T2 + T3) = T1 ⊗ T2 + T1 ⊗ T3 .

A particularly interesting tensor product is the following. For i =
1, . . . , k let ℓi ∈ V ∗ and let

(1.3.8) T = ℓ1 ⊗ · · · ⊗ ℓk .

Thus, by definition,

(1.3.9) T (v1, . . . , vk) = ℓ1(v1) . . . ℓk(vk) .

A tensor of the form (1.3.9) is called a decomposable k-tensor. These
tensors, as we will see, play an important role in what follows. In
particular, let e1, . . . , en be a basis of V and e∗1, . . . , e

∗
n the dual basis

of V ∗. For every multi-index, I, of length k let

e∗I = e∗i1 ⊗ · · · ⊗ e∗ik .

Then if J is another multi-index of length k,

e∗I(ej1 , . . . , ejk
) =

{
1 , I = J
0 , I 6= J

(1.3.10)

by (1.2.6), (1.3.8) and (1.3.9). From (1.3.10) it’s easy to conclude

Theorem 1.3.2. The e∗I ’s are a basis of Lk(V ).

Proof. Given T ∈ Lk(V ), let

T ′ =
∑

TIe
∗
I

where the TI ’s are defined by (1.3.2). Then

(1.3.11) T ′(ej1 , . . . , ejk
) =

∑
TIe

∗
I(ej1 , . . . , ejk

) = TJ

by (1.3.10); however, by Proposition 1.3.1 the TJ ’s determine T , so
T ′ = T . This proves that the e∗I ’s are a spanning set of vectors for
Lk(V ). To prove they’re a basis, suppose

∑
CIe

∗
I = 0

for constants, CI ∈ R. Then by (1.3.11) with T ′ = 0, CJ = 0, so the
e∗I ’s are linearly independent.

As we noted above there are exactly nk multi-indices of length k
and hence nk basis vectors in the set, {e∗I}, so we’ve proved

Corollary. dimLk(V ) = nk.
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The pull-back operation

Let V and W be finite dimensional vector spaces and let A : V →W
be a linear mapping. If T ∈ Lk(W ), we define

A∗T : V k → R

to be the function

(1.3.12) A∗T (v1, . . . , vk) = T (Av1, . . . , Avk) .

It’s clear from the linearity of A that this function is linear in its
ith variable for all i, and hence is k-tensor. We will call A∗T the
pull-back of T by the map, A.

Proposition 1.3.3. The map

(1.3.13) A∗ : Lk(W ) → Lk(V ) , T → A∗T ,

is a linear mapping.

We leave this as an exercise. We also leave as an exercise the
identity

(1.3.14) A∗(T1 ⊗ T2) = A∗T1 ⊗A∗T2

for T1 ∈ Lk(W ) and T2 ∈ Lm(W ). Also, if U is a vector space and
B : U → V a linear mapping, we leave for you to check that

(1.3.15) (AB)∗T = B∗(A∗T )

for all T ∈ Lk(W ).

Exercises.

1. Verify that there are exactly nk multi-indices of length k.

2. Prove Proposition 1.3.3.

3. Verify (1.3.14).

4. Verify (1.3.15).
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5. Let A : V → W be a linear map. Show that if ℓi, i = 1, . . . , k
are elements of W ∗

A∗(ℓ1 ⊗ · · · ⊗ ℓk) = A∗ℓ1 ⊗ · · · ⊗A∗ℓk .

Conclude that A∗ maps decomposable k-tensors to decomposable
k-tensors.

6. Let V be an n-dimensional vector space and ℓi, i = 1, 2, ele-
ments of V ∗. Show that ℓ1 ⊗ ℓ2 = ℓ2 ⊗ ℓ1 if and only if ℓ1 and ℓ2
are linearly dependent. (Hint: Show that if ℓ1 and ℓ2 are linearly
independent there exist vectors, vi, i =, 1, 2 in V with property

ℓi(vj) =

{
1, i = j
0, i 6= j

.

Now compare (ℓ1⊗ ℓ2)(v1, v2) and (ℓ2 ⊗ ℓ1)(v1, v2).) Conclude that if
dimV ≥ 2 the tensor product operation isn’t commutative, i.e., it’s
usually not true that ℓ1 ⊗ ℓ2 = ℓ2 ⊗ ℓ1.

7. Let T be a k-tensor and v a vector. Define Tv : V k−1 → R to
be the map

(1.3.16) Tv(v1, . . . , vk−1) = T (v, v1, . . . , vk−1) .

Show that Tv is a (k − 1)-tensor.

8. Show that if T1 is an r-tensor and T2 is an s-tensor, then if
r > 0,

(T1 ⊗ T2)v = (T1)v ⊗ T2 .

9. Let A : V → W be a linear map mapping v ∈ V to w ∈ W .
Show that for T ∈ Lk(W ), A∗(Tw) = (A∗T )v.
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1.4 Alternating k-tensors

We will discuss in this section a class of k-tensors which play an
important role in multivariable calculus. In this discussion we will
need some standard facts about the “permutation group”. For those
of you who are already familiar with this object (and I suspect most
of you are) you can regard the paragraph below as a chance to re-
familiarize yourselves with these facts.

Permutations

Let
∑

k be the k-element set: {1, 2, . . . , k}. A permutation of order k
is a bijective map, σ :

∑
k →

∑
k. Given two permutations, σ1 and

σ2, their product, σ1σ2, is the composition of σ1 and σ2, i.e., the map,

i→ σ1(σ2(i)) ,

and for every permutation, σ, one denotes by σ−1 the inverse per-
mutation:

σ(i) = j ⇔ σ−1(j) = i .

Let Sk be the set of all permutations of order k. One calls Sk the
permutation group of

∑
k or, alternatively, the symmetric group on

k letters.

Check:

There are k! elements in Sk.

For every 1 ≤ i < j ≤ k, let τ = τi,j be the permutation

τ(i) = j

τ(j) = i(1.4.1)

τ(ℓ) = ℓ , ℓ 6= i, j .

τ is called a transposition, and if j = i+ 1, τ is called an elementary
transposition.

Theorem 1.4.1. Every permutation can be written as a product of
finite number of transpositions.
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Proof. Induction on k: “k = 2” is obvious. The induction step: “k−1”
implies “k”: Given σ ∈ Sk, σ(k) = i⇔ τikσ(k) = k. Thus τikσ is, in
effect, a permutation of

∑
k−1. By induction, τikσ can be written as

a product of transpositions, so

σ = τik(τikσ)

can be written as a product of transpositions.

Theorem 1.4.2. Every transposition can be written as a product of
elementary transpositions.

Proof. Let τ = τij , i < j. With i fixed, argue by induction on j.
Note that for j > i+ 1

τij = τj−1,jτi,j−1τj−1,j .

Now apply induction to τi,j−1.

Corollary. Every permutation can be written as a product of ele-
mentary transpositions.

The sign of a permutation

Let x1, . . . , xk be the coordinate functions on R
k. For σ ∈ Sk we

define

(1.4.2) (−1)σ =
∏

i<j

xσ(i) − xσ(j)

xi − xj
.

Notice that the numerator and denominator in this expression are
identical up to sign. Indeed, if p = σ(i) < σ(j) = q, the term, xp−xq

occurs once and just once in the numerator and one and just one
in the denominator; and if q = σ(i) > σ(j) = p, the term, xp − xq,
occurs once and just once in the numerator and its negative, xq −xp,
once and just once in the numerator. Thus

(1.4.3) (−1)σ = ±1 .
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Claim:

For σ, τ ∈ Sk

(1.4.4) (−1)στ = (−1)σ(−1)τ .

Proof. By definition,

(−1)στ =
∏

i<j

xστ(i) − xστ(j)

xi − xj
.

We write the right hand side as a product of

(1.4.5)
∏

i<j

xτ(i) − xτ(j)

xi − xj
= (−1)τ

and

(1.4.6)
∏

i<j

xστ(i) − xστ(j)

xτ(i) − xτ(j)

For i < j, let p = τ(i) and q = τ(j) when τ(i) < τ(j) and let p = τ(j)
and q = τ(i) when τ(j) < τ(i). Then

xστ(i) − xστ(j)

xτ(i) − xτ(j)
=
xσ(p) − xσ(q)

xp − xq

(i.e., if τ(i) < τ(j), the numerator and denominator on the right
equal the numerator and denominator on the left and, if τ(j) < τ(i)
are negatives of the numerator and denominator on the left). Thus
(1.4.6) becomes

∏

p<q

xσ(p) − xσ(q)

xp − xq
= (−1)σ .

We’ll leave for you to check that if τ is a transposition, (−1)τ = −1
and to conclude from this:

Proposition 1.4.3. If σ is the product of an odd number of trans-
positions, (−1)σ = −1 and if σ is the product of an even number of
transpositions (−1)σ = +1.
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Alternation

Let V be an n-dimensional vector space and T ∈ L∗(v) a k-tensor.
If σ ∈ Sk, let T σ ∈ L∗(V ) be the k-tensor

(1.4.7) T σ(v1, . . . , vk) = T (vσ−1(1), . . . , vσ−1(k)) .

Proposition 1.4.4. 1. If T = ℓ1 ⊗ · · · ⊗ ℓk, ℓi ∈ V ∗, then T σ =
ℓσ(1) ⊗ · · · ⊗ ℓσ(k).

2. The map, T ∈ Lk(V ) → T σ ∈ Lk(V ) is a linear map.

3. T στ = (T τ )σ.

Proof. To prove 1, we note that by (1.4.7)

(ℓ1 ⊗ · · · ⊗ ℓk)
σ(v1, . . . , vk)

= ℓ1(vσ−1(1)) · · · ℓk(vσ−1(k)) .

Setting σ−1(i) = q, the ith term in this product is ℓσ(q)(vq); so the
product can be rewritten as

ℓσ(1)(v1) . . . ℓσ(k)(vk)

or

(ℓσ(1) ⊗ · · · ⊗ ℓσ(k))(v1, . . . , vk) .

The proof of 2 we’ll leave as an exercise.

Proof of 3: By item 2, it suffices to check 3 for decomposable
tensors. However, by 1

(ℓ1 ⊗ · · · ⊗ ℓk)
στ = ℓστ(1) ⊗ · · · ⊗ ℓστ(k)

= (ℓτ(1) ⊗ · · · ⊗ ℓτ(k))
σ

= ((ℓ1 ⊗ · · · ⊗ ℓ)τ )σ .

Definition 1.4.5. T ∈ Lk(V ) is alternating if T σ = (−1)σT for all
σ ∈ Sk.

We will denote by Ak(V ) the set of all alternating k-tensors in
Lk(V ). By item 2 of Proposition 1.4.4 this set is a vector subspace
of Lk(V ).
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It is not easy to write down simple examples of alternating k-
tensors; however, there is a method, called the alternation operation,
for constructing such tensors: Given T ∈ L∗(V ) let

(1.4.8) AltT =
∑

τ∈Sk

(−1)τT τ .

We claim

Proposition 1.4.6. For T ∈ Lk(V ) and σ ∈ Sk,

1. (Alt T )σ = (−1)σAltT

2. if T ∈ Ak(V ) , AltT = k!T .

3. AltT σ = (Alt T )σ

4. the map

Alt : Lk(V ) → Lk(V ) , T → Alt (T )

is linear.

Proof. To prove 1 we note that by Proposition (1.4.4):

(Alt T )σ =
∑

(−1)τ (T στ )

= (−1)σ
∑

(−1)στT στ .

But as τ runs over Sk, στ runs over Sk, and hence the right hand
side is (−1)σAlt (T ).

Proof of 2. If T ∈ Ak

AltT =
∑

(−1)τT τ

=
∑

(−1)τ (−1)τT

= k!T .

Proof of 3.

AltT σ =
∑

(−1)τT τσ = (−1)σ
∑

(−1)τσT τσ

= (−1)σAltT = (AltT )σ .
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Finally, item 4 is an easy corollary of item 2 of Proposition 1.4.4.

We will use this alternation operation to construct a basis for
Ak(V ). First, however, we require some notation:

Let I = (i1, . . . , ik) be a multi-index of length k.

Definition 1.4.7. 1. I is repeating if ir = is for some r 6= s.

2. I is strictly increasing if i1 < i2 < · · · < ir.

3. For σ ∈ Sk, I
σ = (iσ(1), . . . , iσ(k)) .

Remark: If I is non-repeating there is a unique σ ∈ Sk so that Iσ

is strictly increasing.
Let e1, . . . , en be a basis of V and let

e∗I = e∗i1 ⊗ · · · ⊗ e∗ik

and

ψI = Alt (e∗I) .

Proposition 1.4.8. 1. ψIσ = (−1)σψI .

2. If I is repeating, ψI = 0.

3. If I and J are strictly increasing,

ψI(ej1 , . . . , ejk
) =

{
1 I = J
0 I 6= J

.

Proof. To prove 1 we note that (e∗I)
σ = e∗Iσ ; so

Alt (e∗Iσ) = Alt (e∗I)
σ = (−1)σAlt (e∗I) .

Proof of 2: Suppose I = (i1, . . . , ik) with ir = is for r 6= s. Then if
τ = τir ,is , e

∗
I = e∗Ir so

ψI = ψIr = (−1)τψI = −ψI .
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Proof of 3: By definition

ψI(ej1 , . . . , ejk
) =

∑
(−1)τe∗Iτ (ej1 , . . . , ejk

) .

But by (1.3.10)

e∗Iτ (ej1 , . . . , ejk
) =

{
1 if Iτ = J
0 if Iτ 6= J

.(1.4.9)

Thus if I and J are strictly increasing, Iτ is strictly increasing if and
only if Iτ = I, and (1.4.9) is non-zero if and only if I = J .

Now let T be in Ak. By Proposition 1.3.2,

T =
∑

aJe
∗
J , aJ ∈ R .

Since

k!T = Alt (T )

T =
1

k!

∑
aJAlt (e∗J) =

∑
bJψJ .

We can discard all repeating terms in this sum since they are zero;
and for every non-repeating term, J , we can write J = Iσ, where I
is strictly increasing, and hence ψJ = (−1)σψI .

Conclusion:

We can write T as a sum

(1.4.10) T =
∑

cIψI ,

with I’s strictly increasing.

Claim.

The cI ’s are unique.
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Proof. For J strictly increasing

(1.4.11) T (ej1 , . . . , ejk
) =

∑
cIψI(ej1 , . . . , ejk

) = cJ .

By (1.4.10) the ψI ’s, I strictly increasing, are a spanning set of vec-
tors for Ak(V ), and by (1.4.11) they are linearly independent, so
we’ve proved

Proposition 1.4.9. The alternating tensors, ψI , I strictly increas-
ing, are a basis for Ak(V ).

Thus dimAk(V ) is equal to the number of strictly increasing multi-
indices, I, of length k. We leave for you as an exercise to show that
this number is equal to

(1.4.12)

(
n

k

)
=

n!

(n− k)!k!
= “ n choose k”

if 1 ≤ k ≤ n.

Hint: Show that every strictly increasing multi-index of length k
determines a k element subset of {1, . . . , n} and vice-versa.

Note also that if k > n every multi-index

I = (i1, . . . , ik)

of length k has to be repeating: ir = is for some r 6= s since the ip’s
lie on the interval 1 ≤ i ≤ n. Thus by Proposition 1.4.6

ψI = 0

for all multi-indices of length k > 0 and

(1.4.13) Ak = {0} .

Exercises.

1. Show that there are exactly k! permutations of order k. Hint: In-
duction on k: Let σ ∈ Sk, and let σ(k) = i, 1 ≤ i ≤ k. Show that
τikσ leaves k fixed and hence is, in effect, a permutation of

∑
k−1.

2. Prove that if τ ∈ Sk is a transposition, (−1)τ = −1 and deduce
from this Proposition 1.4.3.
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3. Prove assertion 2 in Proposition 1.4.4.

4. Prove that dimAk(V ) is given by (1.4.12).

5. Verify that for i < j − 1

τi,j = τj−1,jτi,j−1, τj−1,j .

6. For k = 3 show that every one of the six elements of S3 is either
a transposition or can be written as a product of two transpositions.

7. Let σ ∈ Sk be the “cyclic” permutation

σ(i) = i+ 1 , i = 1, . . . , k − 1

and σ(k) = 1. Show explicitly how to write σ as a product of trans-
positions and compute (−1)σ. Hint: Same hint as in exercise 1.

8. In exercise 7 of Section 3 show that if T is in Ak, Tv is in Ak−1.
Show in addition that for v,w ∈ V and T ∈ Ak, (Tv)w = −(Tw)v.

9. Let A : V → W be a linear mapping. Show that if T is in
Ak(W ), A∗T is in Ak(V ).

10. In exercise 9 show that if T is in Lk(W ), Alt (A∗T ) = A∗(Alt (T )),
i.e., show that the “Alt ” operation commutes with the pull-back op-
eration.
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1.5 The space, Λk(V ∗)

In § 1.4 we showed that the image of the alternation operation, Alt :
Lk(V ) → Lk(V ) is Ak(V ). In this section we will compute the kernel
of Alt .

Definition 1.5.1. A decomposable k-tensor ℓ1 ⊗ · · · ⊗ ℓk, ℓi ∈ V ∗,
is redundant if for some index, i, ℓi = ℓi+1.

Let Ik be the linear span of the set of reductant k-tensors.
Note that for k = 1 the notion of redundant doesn’t really make

sense; a single vector ℓ ∈ L1(V ∗) can’t be “redundant” so we decree

I1(V ) = {0} .

Proposition 1.5.2. If T ∈ Ik, Alt (T ) = 0.

Proof. Let T = ℓk⊗· · ·⊗ℓk with ℓi = ℓi+1. Then if τ = τi,i+1, T
τ = T

and (−1)τ = −1. Hence Alt (T ) = Alt (T τ ) = Alt (T )τ = −Alt (T );
so Alt (T ) = 0.

To simplify notation let’s abbreviate Lk(V ), Ak(V ) and Ik(V ) to
Lk, Ak and Ik.

Proposition 1.5.3. If T ∈ Ir and T ′ ∈ Ls then T ⊗ T ′ and T ′ ⊗ T
are in Ir+s.

Proof. We can assume that T and T ′ are decomposable, i.e., T =
ℓ1⊗· · ·⊗ℓr and T ′ = ℓ′1⊗· · ·⊗ℓ′s and that T is redundant: ℓi = ℓi+1.
Then

T ⊗ T ′ = ℓ1 ⊗ · · · ℓi−1 ⊗ ℓi ⊗ ℓi ⊗ · · · ℓr ⊗ ℓ′1 ⊗ · · · ⊗ ℓ′s

is redundant and hence in Ir+s. The argument for T ′ ⊗ T is similar.

Proposition 1.5.4. If T ∈ Lk and σ ∈ Sk, then

(1.5.1) T σ = (−1)σT + S

where S is in Ik.
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Proof. We can assume T is decomposable, i.e., T = ℓ1 ⊗ · · · ⊗ ℓk.
Let’s first look at the simplest possible case: k = 2 and σ = τ1,2.
Then

T σ − (−)σT = ℓ1 ⊗ ℓ2 + ℓ2 ⊗ ℓ1

= ((ℓ1 + ℓ2) ⊗ (ℓ1 + ℓ2) − ℓ1 ⊗ ℓ1 − ℓ2 ⊗ ℓ2)/2 ,

and the terms on the right are redundant, and hence in I2. Next
let k be arbitrary and σ = τi,i+1. If T1 = ℓ1 ⊗ · · · ⊗ ℓi−2 and T2 =
ℓi+2 ⊗ · · · ⊗ ℓk. Then

T − (−1)σT = T1 ⊗ (ℓi ⊗ ℓi+1 + ℓi+1 ⊗ ℓi) ⊗ T2

is in Ik by Proposition 1.5.3 and the computation above.
The general case: By Theorem 1.4.2, σ can be written as a product
of m elementary transpositions, and we’ll prove (1.5.1) by induction
on m.

We’ve just dealt with the case m = 1.
The induction step: “m− 1” implies “m”. Let σ = τβ where β is a
product of m− 1 elementary transpositions and τ is an elementary
transposition. Then

T σ = (T β)τ = (−1)τT β + · · ·

= (−1)τ (−1)βT + · · ·

= (−1)σT + · · ·

where the “dots” are elements of Ik, and the induction hypothesis
was used in line 2.

Corollary. If T ∈ Lk, the

(1.5.2) Alt (T ) = k!T +W ,

where W is in Ik.

Proof. By definition Alt (T ) =
∑

(−1)σT σ, and by Proposition 1.5.4,
T σ = (−1)σT +Wσ, with Wσ ∈ Ik. Thus

Alt (T ) =
∑

(−1)σ(−1)σT +
∑

(−1)σWσ

= k!T +W

where W =
∑

(−1)σWσ.
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Corollary. Ik is the kernel of Alt .

Proof. We’ve already proved that if T ∈ Ik, Alt (T ) = 0. To prove
the converse assertion we note that if Alt (T ) = 0, then by (1.5.2)

T = − 1
k!W .

with W ∈ Ik .

Putting these results together we conclude:

Theorem 1.5.5. Every element, T , of Lk can be written uniquely
as a sum, T = T1 + T2 where T1 ∈ Ak and T2 ∈ Ik.

Proof. By (1.5.2), T = T1 + T2 with

T1 = 1
k!Alt (T )

and

T2 = − 1
k!W .

To prove that this decomposition is unique, suppose T1 + T2 = 0,
with T1 ∈ Ak and T2 ∈ Ik. Then

0 = Alt (T1 + T2) = k!T1

so T1 = 0, and hence T2 = 0.

Let

(1.5.3) Λk(V ∗) = Lk(V ∗)/Ik(V ∗) ,

i.e., let Λk = Λk(V ∗) be the quotient of the vector space Lk by the
subspace, Ik, of Lk. By (1.2.3) one has a linear map:

(1.5.4) π : Lk → Λk , T → T + Ik

which is onto and has Ik as kernel. We claim:

Theorem 1.5.6. The map, π, maps Ak bijectively onto Λk.

Proof. By Theorem 1.5.5 every Ik coset, T + Ik, contains a unique
element, T1, of Ak. Hence for every element of Λk there is a unique
element of Ak which gets mapped onto it by π.
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Remark. Since Λk and Ak are isomorphic as vector spaces many
treatments of multilinear algebra avoid mentioning Λk, reasoning
that Ak is a perfectly good substitute for it and that one should,
if possible, not make two different definitions for what is essentially
the same object. This is a justifiable point of view (and is the point
of view taken by Spivak and Munkres1). There are, however, some
advantages to distinguishing between Ak and Λk, as we’ll see in § 1.6.

Exercises.

1. A k-tensor, T , ∈ Lk(V ) is symmetric if T σ = T for all σ ∈ Sk.
Show that the set, Sk(V ), of symmetric k tensors is a vector subspace
of Lk(V ).

2. Let e1, . . . , en be a basis of V . Show that every symmetric 2-
tensor is of the form ∑

aije
∗
i ⊗ e∗j

where ai,j = aj,i and e∗1, . . . , e
∗
n are the dual basis vectors of V ∗.

3. Show that if T is a symmetric k-tensor, then for k ≥ 2, T is
in Ik. Hint: Let σ be a transposition and deduce from the identity,
T σ = T , that T has to be in the kernel of Alt .

4. Warning: In general Sk(V ) 6= Ik(V ). Show, however, that if
k = 2 these two spaces are equal.

5. Show that if ℓ ∈ V ∗ and T ∈ Ik−2, then ℓ⊗ T ⊗ ℓ is in Ik.

6. Show that if ℓ1 and ℓ2 are in V ∗ and T is in Ik−2, then ℓ1 ⊗
T ⊗ ℓ2 + ℓ2 ⊗ T ⊗ ℓ1 is in Ik.

7. Given a permutation σ ∈ Sk and T ∈ Ik, show that T σ ∈ Ik.

8. Let W be a subspace of Lk having the following two properties.

(a) For S ∈ S2(V ) and T ∈ Lk−2, S ⊗ T is in W.

(b) For T in W and σ ∈ Sk, T
σ is in W.

1and by the author of these notes in his book with Alan Pollack, “Differential Topol-
ogy”
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Show that W has to contain Ik and conclude that Ik is the small-
est subspace of Lk having properties a and b.

9. Show that there is a bijective linear map

α : Λk → Ak

with the property

(1.5.5) απ(T ) =
1

k!
Alt (T )

for all T ∈ Lk, and show that α is the inverse of the map of Ak onto
Λk described in Theorem 1.5.6 (Hint: §1.2, exercise 8).

10. Let V be an n-dimensional vector space. Compute the dimen-
sion of Sk(V ). Some hints:

(a) Introduce the following symmetrization operation on tensors
T ∈ Lk(V ):

Sym(T ) =
∑

τ∈Sk

T τ .

Prove that this operation has properties 2, 3 and 4 of Proposi-
tion 1.4.6 and, as a substitute for property 1, has the property:
(SymT )σ = SymT .

(b) Let ϕI = Sym(e∗I), e
∗
I = e∗i1 ⊗ · · · ⊗ e∗in . Prove that {ϕI , I

non-decreasing} form a basis of Sk(V ).

(c) Conclude from (b) that dimSk(V ) is equal to the number of
non-decreasing multi-indices of length k: 1 ≤ i1 ≤ i2 ≤ · · · ≤ ℓk ≤ n.

(d) Compute this number by noticing that

(i1, . . . , in) → (i1 + 0, i2 + 1, . . . , ik + k − 1)

is a bijection between the set of these non-decreasing multi-indices
and the set of increasing multi-indices 1 ≤ j1 < · · · < jk ≤ n+ k− 1.
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1.6 The wedge product

The tensor algebra operations on the spaces, Lk(V ), which we dis-
cussed in Sections 1.2 and 1.3, i.e., the “tensor product operation”
and the “pull-back” operation, give rise to similar operations on the
spaces, Λk. We will discuss in this section the analogue of the tensor
product operation. As in § 4 we’ll abbreviate Lk(V ) to Lk and Λk(V )
to Λk when it’s clear which “V ” is intended.

Given ωi ∈ Λki , i = 1, 2 we can, by (1.5.4), find a Ti ∈ Lki with
ωi = π(Ti). Then T1 ⊗ T2 ∈ Lk1+k2 . Let

(1.6.1) ω1 ∧ ω2 = π(T1 ⊗ T2) ∈ Λk1+k2 .

Claim.

This wedge product is well defined, i.e., doesn’t depend on our choices
of T1 and T2.

Proof. Let π(T1) = π(T ′
1) = ω1. Then T ′

1 = T1 +W1 for some W1 ∈
Ik1, so

T ′
1 ⊗ T2 = T1 ⊗ T2 +W1 ⊗ T2 .

But W1 ∈ Ik1 implies W1 ⊗ T2 ∈ Ik1+k2 and this implies:

π(T ′
1 ⊗ T2) = π(T1 ⊗ T2) .

A similar argument shows that (1.6.1) is well-defined independent of
the choice of T2.

More generally let ωi ∈ Λki , i = 1, 2, 3, and let ωi = π(Ti), Ti ∈
Lki . Define

ω1 ∧ ω2 ∧ ω3 ∈ Λk1+k2+k3

by setting
ω1 ∧ ω2 ∧ ω3 = π(T1 ⊗ T2 ⊗ T3) .

As above it’s easy to see that this is well-defined independent of the
choice of T1, T2 and T3. It is also easy to see that this triple wedge
product is just the wedge product of ω1∧ω2 with ω3 or, alternatively,
the wedge product of ω1 with ω2 ∧ ω3, i.e.,

(1.6.2) ω1 ∧ ω2 ∧ ω3 = (ω1 ∧ ω2) ∧ ω3 = ω1 ∧ (ω2 ∧ ω3).
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We leave for you to check:
For λ ∈ R

(1.6.3) λ(ω1 ∧ ω2) = (λω1) ∧ ω2 = ω1 ∧ (λω2)

and verify the two distributive laws:

(ω1 + ω2) ∧ ω3 = ω1 ∧ ω3 + ω2 ∧ ω3(1.6.4)

and

ω1 ∧ (ω2 + ω3) = ω1 ∧ ω2 + ω1 ∧ ω3 .(1.6.5)

As we noted in § 1.4, Ik = {0} for k = 1, i.e., there are no non-zero
“redundant” k tensors in degree k = 1. Thus

(1.6.6) Λ1(V ∗) = V ∗ = L1(V ∗).

A particularly interesting example of a wedge product is the fol-
lowing. Let ℓi ∈ V ∗ = Λ1(V ∗), i = 1, . . . , k. Then if T = ℓ1 ⊗ · · · ⊗ ℓk

(1.6.7) ℓ1 ∧ · · · ∧ ℓk = π(T ) ∈ Λk(V ∗) .

We will call (1.6.7) a decomposable element of Λk(V ∗).
We will prove that these elements satisfy the following wedge prod-

uct identity. For σ ∈ Sk:

(1.6.8) ℓσ(1) ∧ · · · ∧ ℓσ(k) = (−1)σℓ1 ∧ · · · ∧ ℓk .

Proof. For every T ∈ Lk, T = (−1)σT + W for some W ∈ Ik by
Proposition 1.5.4. Therefore since π(W ) = 0

(1.6.9) π(T σ) = (−1)σπ(T ) .

In particular, if T = ℓ1 ⊗ · · · ⊗ ℓk, T
σ = ℓσ(1) ⊗ · · · ⊗ ℓσ(k), so

π(T σ) = ℓσ(1) ∧ · · · ∧ ℓσ(k) = (−1)σπ(T )

= (−1)σℓ1 ∧ · · · ∧ ℓk .

In particular, for ℓ1 and ℓ2 ∈ V ∗

(1.6.10) ℓ1 ∧ ℓ2 = −ℓ2 ∧ ℓ1
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and for ℓ1, ℓ2 and ℓ3 ∈ V ∗

(1.6.11) ℓ1 ∧ ℓ2 ∧ ℓ3 = −ℓ2 ∧ ℓ1 ∧ ℓ3 = ℓ2 ∧ ℓ3 ∧ ℓ1 .

More generally, it’s easy to deduce from (1.6.8) the following result
(which we’ll leave as an exercise).

Theorem 1.6.1. If ω1 ∈ Λr and ω2 ∈ Λs then

(1.6.12) ω1 ∧ ω2 = (−1)rsω2 ∧ ω1 .

Hint: It suffices to prove this for decomposable elements i.e., for
ω1 = ℓ1 ∧ · · · ∧ ℓr and ω2 = ℓ′1 ∧ · · · ∧ ℓ′s. Now make rs applications
of (1.6.10).

Let e1, . . . , en be a basis of V and let e∗1, . . . , e
∗
n be the dual basis

of V ∗. For every multi-index, I, of length k,

(1.6.13) e∗i1 ∧ · · · e∗ik = π(e∗I) = π(e∗i1 ⊗ · · · ⊗ e∗ik) .

Theorem 1.6.2. The elements (1.6.13), with I strictly increasing,
are basis vectors of Λk.

Proof. The elements

ψI = Alt (e∗I) , I strictly increasing,

are basis vectors of Ak by Proposition 3.6; so their images, π(ψI),
are a basis of Λk. But

π(ψI) = π
∑

(−1)σ(e∗I)
σ

=
∑

(−1)σπ(e∗I)
σ

=
∑

(−1)σ(−1)σπ(e∗I)

= k!π(e∗I) .

Exercises:

1. Prove the assertions (1.6.3), (1.6.4) and (1.6.5).

2. Verify the multiplication law, (1.6.12) for wedge product.
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3. Given ω ∈ Λr let ωk be the k-fold wedge product of ω with
itself, i.e., let ω2 = ω ∧ ω, ω3 = ω ∧ ω ∧ ω, etc.

(a) Show that if r is odd then for k > 1, ωk = 0.

(b) Show that if ω is decomposable, then for k > 1, ωk = 0.

4. If ω and µ are in Λ2r prove:

(ω + µ)k =

k∑

ℓ=0

(
k

ℓ

)
ωℓ ∧ µk−ℓ .

Hint: As in freshman calculus prove this binomial theorem by induc-
tion using the identity:

(
k
ℓ

)
=
(
k−1
ℓ−1

)
+
(
k−1

ℓ

)
.

5. Let ω be an element of Λ2. By definition the rank of ω is k if
ωk 6= 0 and ωk+1 = 0. Show that if

ω = e1 ∧ f1 + · · · + ek ∧ fk

with ei, fi ∈ V ∗, then ω is of rank ≤ k. Hint: Show that

ωk = k!e1 ∧ f1 ∧ · · · ∧ ek ∧ fk .

6. Given ei ∈ V ∗, i = 1, . . . , k show that e1 ∧ · · · ∧ ek 6= 0 if and
only if the ei’s are linearly independent. Hint: Induction on k.
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1.7 The interior product

We’ll describe in this section another basic product operation on the
spaces, Λk(V ∗). As above we’ll begin by defining this operator on
the Lk(V )’s. Given T ∈ Lk(V ) and v ∈ V let ιvT be the be the
(k − 1)-tensor which takes the value
(1.7.1)

ιvT (v1, . . . , vk−1) =

k∑

r=1

(−1)r−1T (v1, . . . , vr−1, v, vr, . . . , vk−1)

on the k − 1-tuple of vectors, v1, . . . , vk−1, i.e., in the rth summand
on the right, v gets inserted between vr−1 and vr. (In particular
the first summand is T (v, v1, . . . , vk−1) and the last summand is
(−1)k−1T (v1, . . . , vk−1, v).) It’s clear from the definition that if v =
v1 + v2

ιvT = ιv1
T + ιv2

T ,(1.7.2)

and if T = T1 + T2

ιvT = ιvT1 + ιvT2 ,(1.7.3)

and we will leave for you to verify by inspection the following two
lemmas:

Lemma 1.7.1. If T is the decomposable k-tensor ℓ1 ⊗ · · · ⊗ ℓk then

(1.7.4) ιvT =
∑

(−1)r−1ℓr(v)ℓ1 ⊗ · · · ⊗ ℓ̂r ⊗ · · · ⊗ ℓk

where the “cap” over ℓr means that it’s deleted from the tensor prod-
uct ,

and

Lemma 1.7.2. If T1 ∈ Lp and T2 ∈ Lq

(1.7.5) ιv(T1 ⊗ T2) = ιvT1 ⊗ T2 + (−1)pT1 ⊗ ιvT2 .

We will next prove the important identity

(1.7.6) ιv(ιvT ) = 0 .

Proof. It suffices by linearity to prove this for decomposable tensors
and since (1.7.6) is trivially true for T ∈ L1, we can by induction
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assume (1.7.6) is true for decomposible tensors of degree k − 1. Let
ℓ1 ⊗ · · · ⊗ ℓk be a decomposable tensor of degree k. Setting T =
ℓ1 ⊗ · · · ⊗ ℓk−1 and ℓ = ℓk we have

ιv(ℓ1 ⊗ · · · ⊗ ℓk) = ιv(T ⊗ ℓ)

= ιvT ⊗ ℓ+ (−1)k−1ℓ(v)T

by (1.7.5). Hence

ιv(ιv(T ⊗ ℓ)) = ιv(ιvT ) ⊗ ℓ+ (−1)k−2ℓ(v)ιvT

+(−1)k−1ℓ(v)ιvT .

But by induction the first summand on the right is zero and the two
remaining summands cancel each other out.

From (1.7.6) we can deduce a slightly stronger result: For v1, v2 ∈
V

(1.7.7) ιv1
ιv2

= −ιv2
ιv1

.

Proof. Let v = v1 + v2. Then ιv = ιv1
+ ιv2

so

0 = ιvιv = (ιv1
+ ιv2

)(ιv1
+ ιv2

)

= ιv1
ιv1

+ ιv1
ιv2

+ ιv2
ιv1

+ ιv2
ιv2

= ιv1
ιv2

+ ιv2
ιv1

since the first and last summands are zero by (1.7.6).

We’ll now show how to define the operation, ιv, on Λk(V ∗). We’ll
first prove

Lemma 1.7.3. If T ∈ Lk is redundant then so is ιvT .

Proof. Let T = T1 ⊗ ℓ⊗ ℓ⊗ T2 where ℓ is in V ∗, T1 is in Lp and T2

is in Lq. Then by (1.7.5)

ιvT = ιvT1 ⊗ ℓ⊗ ℓ⊗ T2

+(−1)pT1 ⊗ ιv(ℓ⊗ ℓ) ⊗ T2

+(−1)p+2T1 ⊗ ℓ⊗ ℓ⊗ ιvT2 .
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However, the first and the third terms on the right are redundant
and

ιv(ℓ⊗ ℓ) = ℓ(v)ℓ− ℓ(v)ℓ

by (1.7.4).

Now let π be the projection (1.5.4) of Lk onto Λk and for ω =
π(T ) ∈ Λk define

(1.7.8) ιvω = π(ιvT ) .

To show that this definition is legitimate we note that if ω = π(T1) =
π(T2), then T1 −T2 ∈ Ik, so by Lemma 1.7.3 ιvT1 − ιvT2 ∈ Ik−1 and
hence

π(ιvT1) = π(ιvT2) .

Therefore, (1.7.8) doesn’t depend on the choice of T .
By definition ιv is a linear mapping of Λk(V ∗) into Λk−1(V ∗).

We will call this the interior product operation. From the identities
(1.7.2)–(1.7.8) one gets, for v, v1, v2 ∈ V ω ∈ Λk, ω1 ∈ Λp and
ω2 ∈ Λ2

ι(v1+v2)ω = ιv1
ω + ιv2

ω(1.7.9)

ιv(ω1 ∧ ω2) = ιvω1 ∧ ω2 + (−1)pω1 ∧ ιvω2(1.7.10)

ιv(ιvω) = 0(1.7.11)

and

ιv1
ιv2
ω = −ιv2

ιv1
ω .(1.7.12)

Moreover if ω = ℓ1 ∧ · · · ∧ ℓk is a decomposable element of Λk one
gets from (1.7.4)

(1.7.13) ιvω =
k∑

r=1

(−1)r−1ℓr(v)ℓ1 ∧ · · · ∧ ℓ̂r ∧ · · · ∧ ℓk .

In particular if e1, . . . , en is a basis of V , e∗1, . . . , e
∗
n the dual basis of

V ∗ and ωI = e∗i1 ∧ · · · ∧ e∗ik , 1 ≤ i1 < · · · < ik ≤ n, then ι(ej)ωI = 0
if j /∈ I and if j = ir

(1.7.14) ι(ej)ωI = (−1)r−1ωIr

where Ir = (i1, . . . , îr, . . . , ik) (i.e., Ir is obtained from the multi-
index I by deleting ir).
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Exercises:

1. Prove Lemma 1.7.1.

2. Prove Lemma 1.7.2.

3. Show that if T ∈ Ak, iv = kTv where Tv is the tensor (1.3.16).
In particular conclude that ivT ∈ Ak−1. (See §1.4, exercise 8.)

4. Assume the dimension of V is n and let Ω be a non-zero element
of the one dimensional vector space Λn. Show that the map

(1.7.15) ρ : V → Λn−1 , v → ιvΩ ,

is a bijective linear map. Hint: One can assume Ω = e∗1 ∧ · · · ∧ e∗n
where e1, . . . , en is a basis of V . Now use (1.7.14) to compute this
map on basis elements.

5. (The cross-product.) Let V be a 3-dimensional vector space, B
an inner product on V and Ω a non-zero element of Λ3. Define a map

V × V → V

by setting

(1.7.16) v1 × v2 = ρ−1(Lv1 ∧ Lv2)

where ρ is the map (1.7.15) and L : V → V ∗ the map (1.2.9). Show
that this map is linear in v1, with v2 fixed and linear in v2 with v1
fixed, and show that v1 × v2 = −v2 × v1.

6. For V = R
3 let e1, e2 and e3 be the standard basis vectors and

B the standard inner product. (See §1.1.) Show that if Ω = e∗1∧e
∗
2∧e

∗
3

the cross-product above is the standard cross-product:

e1 × e2 = e3

e2 × e3 = e1(1.7.17)

e3 × e1 = e2 .

Hint: If B is the standard inner product Lei = e∗i .

Remark 1.7.4. One can make this standard cross-product look even
more standard by using the calculus notation: e1 = î, e2 = ĵ and
e3 = k̂
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1.8 The pull-back operation on Λk

Let V and W be vector spaces and let A be a linear map of V into
W . Given a k-tensor, T ∈ Lk(W ), the pull-back, A∗T , is the k-tensor

(1.8.1) A∗T (v1, . . . , vk) = T (Av1, . . . , Avk)

in Lk(V ). (See § 1.3, equation 1.3.12.) In this section we’ll show how
to define a similar pull-back operation on Λk.

Lemma 1.8.1. If T ∈ Ik(W ), then A∗T ∈ Ik(V ).

Proof. It suffices to verify this when T is a redundant k-tensor, i.e., a
tensor of the form

T = ℓ1 ⊗ · · · ⊗ ℓk

where ℓr ∈W ∗ and ℓi = ℓi+1 for some index, i. But by (1.3.14)

A∗T = A∗ℓ1 ⊗ · · · ⊗A∗ℓk

and the tensor on the right is redundant since A∗ℓi = A∗ℓi+1.

Now let ω be an element of Λk(W ∗) and let ω = π(T ) where T is
in Lk(W ). We define

(1.8.2) A∗ω = π(A∗T ) .

Claim:

The left hand side of (1.8.2) is well-defined.

Proof. If ω = π(T ) = π(T ′), then T = T ′ + S for some S ∈ Ik(W ),
and A∗T ′ = A∗T +A∗S. But A∗S ∈ Ik(V ), so

π(A∗T ′) = π(A∗T ) .

Proposition 1.8.2. The map

A∗ : Λk(W ∗) → Λk(V ∗) ,

mapping ω to A∗ω is linear. Moreover,
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(i) If ωi ∈ Λki(W ), i = 1, 2, then

(1.8.3) A∗(ω1 ∧ ω2) = A∗ω1 ∧A
∗ω2 .

(ii) If U is a vector space and B : U → V a linear map, then
for ω ∈ Λk(W ∗),

(1.8.4) B∗A∗ω = (AB)∗ω .

We’ll leave the proof of these three assertions as exercises. Hint:
They follow immediately from the analogous assertions for the pull-
back operation on tensors. (See (1.3.14) and (1.3.15).)

As an application of the pull-back operation we’ll show how to
use it to define the notion of determinant for a linear mapping. Let
V be a n-dimensional vector space. Then dim Λn(V ∗) =

(n
n

)
= 1;

i.e., Λn(V ∗) is a one-dimensional vector space. Thus if A : V → V
is a linear mapping, the induced pull-back mapping:

A∗ : Λn(V ∗) → Λn(V ∗) ,

is just “multiplication by a constant”. We denote this constant by
det(A) and call it the determinant of A, Hence, by definition,

(1.8.5) A∗ω = det(A)ω

for all ω in Λn(V ∗). From (1.8.5) it’s easy to derive a number of basic
facts about determinants.

Proposition 1.8.3. If A and B are linear mappings of V into V ,
then

(1.8.6) det(AB) = det(A) det(B) .

Proof. By (1.8.4) and

(AB)∗ω = det(AB)ω

= B∗(A∗ω) = det(B)A∗ω

= det(B) det(A)ω ,

so, det(AB) = det(A) det(B).
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Proposition 1.8.4. If I : V → V is the identity map, Iv = v for
all v ∈ V , det(I) = 1.

We’ll leave the proof as an exercise. Hint: I∗ is the identity map
on Λn(V ∗).

Proposition 1.8.5. If A : V → V is not onto, det(A) = 0.

Proof. LetW be the image of A. Then if A is not onto, the dimension
of W is less than n, so Λn(W ∗) = {0}. Now let A = IWB where IW
is the inclusion map of W into V and B is the mapping, A, regarded
as a mapping from V to W . Thus if ω is in Λn(V ∗), then by (1.8.4)

A∗ω = B∗I∗Wω

and since I∗Wω is in Λn(W ) it is zero.

We will derive by wedge product arguments the familiar “matrix
formula” for the determinant. Let V and W be n-dimensional vector
spaces and let e1, . . . , en be a basis for V and f1, . . . , fn a basis for
W . From these bases we get dual bases, e∗1, . . . , e

∗
n and f∗1 , . . . , f

∗
n,

for V ∗ and W ∗. Moreover, if A is a linear map of V into W and
[ai,j] the n×n matrix describing A in terms of these bases, then the
transpose map, A∗ : W ∗ → V ∗, is described in terms of these dual
bases by the n× n transpose matrix, i.e., if

Aej =
∑

ai,jfi ,

then

A∗f∗j =
∑

aj,ie
∗
i .

(See § 2.) Consider now A∗(f∗1 ∧ · · · ∧ f∗n). By (1.8.3)

A∗(f∗1 ∧ · · · ∧ f∗n) = A∗f∗1 ∧ · · · ∧A∗f∗n

=
∑

(a1,k1
e∗k1

) ∧ · · · ∧ (an,kn
e∗kn

)

the sum being over all k1, . . . , kn, with 1 ≤ kr ≤ n. Thus,

A∗(f∗1 ∧ · · · ∧ f∗n) =
∑

a1,k1
. . . an,kn

e∗k1
∧ · · · ∧ e∗kn

.
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If the multi-index, k1, . . . , kn, is repeating, then e∗k1
∧· · ·∧e∗kn

is zero,
and if it’s not repeating then we can write

ki = σ(i) i = 1, . . . , n

for some permutation, σ, and hence we can rewrite A∗(f∗1 ∧ · · · ∧ f∗n)
as the sum over σ ∈ Sn of

∑
a1,σ(1) · · · an,σ(n) (e∗1 ∧ · · · ∧ e∗n)σ .

But
(e∗1 ∧ · · · ∧ e∗n)σ = (−1)σe∗1 ∧ · · · ∧ e∗n

so we get finally the formula

(1.8.7) A∗(f∗1 ∧ · · · ∧ f∗n) = det[ai,j]e
∗
1 ∧ · · · ∧ e∗n

where

(1.8.8) det[ai,j ] =
∑

(−1)σa1,σ(1) · · · an,σ(n)

summed over σ ∈ Sn. The sum on the right is (as most of you know)
the determinant of [ai,j].

Notice that if V = W and ei = fi, i = 1, . . . , n, then ω = e∗1∧· · ·∧
e∗n = f∗1 ∧ · · · ∧ f∗n, hence by (1.8.5) and (1.8.7),

(1.8.9) det(A) = det[ai,j] .

Exercises.

1. Verify the three assertions of Proposition 1.8.2.

2. Deduce from Proposition 1.8.5 a well-known fact about deter-
minants of n×n matrices: If two columns are equal, the determinant
is zero.

3. Deduce from Proposition 1.8.3 another well-known fact about
determinants of n × n matrices: If one interchanges two columns,
then one changes the sign of the determinant.

Hint: Let e1, . . . , en be a basis of V and let B : V → V be the
linear mapping: Bei = ej, Bej = ei and Beℓ = eℓ, ℓ 6= i, j. What is
B∗(e∗1 ∧ · · · ∧ e∗n)?
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4. Deduce from Propositions 1.8.3 and 1.8.4 another well-known
fact about determinants of n × n matrix. If [bi,j ] is the inverse of
[ai,j], its determinant is the inverse of the determinant of [ai,j ].

5. Extract from (1.8.8) a well-known formula for determinants of
2 × 2 matrices:

det

[
a11 , a12

a21 , a22

]
= a11a22 − a12a21 .

6. Show that if A = [ai,j ] is an n× n matrix and At = [aj,i] is its
transpose detA = detAt. Hint: You are required to show that the
sums

∑
(−1)σa1,σ(1) . . . an,σ(n) σ ∈ Sn

and

∑
(−1)σaσ(1),1 . . . aσ(n),n σ ∈ Sn

are the same. Show that the second sum is identical with
∑

(−1)τaτ(1),1 . . . aτ(n),n

summed over τ = σ−1 ∈ Sn.

7. Let A be an n× n matrix of the form

A =

[
B ∗
0 C

]

where B is a k × k matrix and C the ℓ × ℓ matrix and the bottom
ℓ× k block is zero. Show that

detA = detB detC .

Hint: Show that in (1.8.8) every non-zero term is of the form

(−1)στ b1,σ(1) . . . bk,σ(k)c1,τ(1) . . . cℓ,τ(ℓ)

where σ ∈ Sk and τ ∈ Sℓ.

8. Let V and W be vector spaces and let A : V → W be a linear
map. Show that if Av = w then for ω ∈ Λp(w∗),

A∗ι(w)ω = ι(v)A∗ω .

(Hint: By (1.7.10) and proposition 1.8.2 it suffices to prove this for
ω ∈ Λ1(W ∗), i.e., for ω ∈W ∗.)
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1.9 Orientations

We recall from freshman calculus that if ℓ ⊆ R
2 is a line through the

origin, then ℓ−{0} has two connected components and an orientation
of ℓ is a choice of one of these components (as in the figure below).

✡
✡

✡
✡✣

• 0

ℓ

More generally, if L is a one-dimensional vector space then L−{0}
consists of two components: namely if v is an element of L− [0}, then
these two components are

L1 = {λv λ > 0}

and

L2 = {λv, λ < 0} .

An orientation of L is a choice of one of these components. Usu-
ally the component chosen is denoted L+, and called the positive
component of L − {0} and the other component, L−, the negative
component of L − {0}.

Definition 1.9.1. A vector, v ∈ L, is positively oriented if v is in
L+.

More generally still let V be an n-dimensional vector space. Then
L = Λn(V ∗) is one-dimensional, and we define an orientation of V
to be an orientation of L. One important way of assigning an orien-
tation to V is to choose a basis, e1, . . . , en of V . Then, if e∗1, . . . , e

∗
n is

the dual basis, we can orient Λn(V ∗) by requiring that e∗1∧· · ·∧e∗n be
in the positive component of Λn(V ∗). If V has already been assigned
an orientation we will say that the basis, e1, . . . , en, is positively ori-
ented if the orientation we just described coincides with the given
orientation.

Suppose that e1, . . . , en and f1, . . . , fn are bases of V and that

(1.9.1) ej =
∑

ai,j,fi .
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Then by (1.7.7)

f∗1 ∧ · · · ∧ f∗n = det[ai,j ]e
∗
1 ∧ · · · ∧ e∗n

so we conclude:

Proposition 1.9.2. If e1, . . . , en is positively oriented, then f1, . . . , fn

is positively oriented if and only if det[ai,j ] is positive.

Corollary 1.9.3. If e1, . . . , en is a positively oriented basis of V , the
basis: e1, . . . , ei−1,−ei, ei+1, . . . , en is negatively oriented.

Now let V be a vector space of dimension n > 1 and W a sub-
space of dimension k < n. We will use the result above to prove the
following important theorem.

Theorem 1.9.4. Given orientations on V and V/W , one gets from
these orientations a natural orientation on W .

Remark What we mean by “natural’ will be explained in the course
of the proof.

Proof. Let r = n − k and let π be the projection of V onto V/W
. By exercises 1 and 2 of §2 we can choose a basis e1, . . . , en of V
such that er+1, . . . , en is a basis of W and π(e1), . . . , π(er) a basis
of V/W . Moreover, replacing e1 by −e1 if necessary we can assume
by Corollary 1.9.3 that π(e1), . . . , π(er) is a positively oriented basis
of V/W and replacing en by −en if necessary we can assume that
e1, . . . , en is a positively oriented basis of V . Now assign to W the
orientation associated with the basis er+1, . . . , en.

Let’s show that this assignment is “natural” (i.e., doesn’t depend
on our choice of e1, . . . , en). To see this let f1, . . . , fn be another
basis of V with the properties above and let A = [ai,j ] be the matrix
(1.9.1) expressing the vectors e1, . . . , en as linear combinations of the
vectors f1, . . . fn. This matrix has to have the form

(1.9.2) A =

[
B C
0 D

]

whereB is the r×rmatrix expressing the basis vectors π(e1), . . . , π(er)
of V/W as linear combinations of π(f1), . . . , π(fr) and D the k × k
matrix expressing the basis vectors er+1, . . . , en of W as linear com-
binations of fr+1, . . . , fn. Thus

det(A) = det(B) det(D) .
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However, by Proposition 1.9.2, detA and detB are positive, so detD
is positive, and hence if er+1, . . . , en is a positively oriented basis of
W so is fr+1, . . . , fn.

As a special case of this theorem suppose dimW = n − 1. Then
the choice of a vector v ∈ V − W gives one a basis vector, π(v),
for the one-dimensional space V/W and hence if V is oriented, the
choice of v gives one a natural orientation on W .

Next let Vi, i = 1, 2 be oriented n-dimensional vector spaces and
A : V1 → V2 a bijective linear map. A is orientation-preserving if,
for ω ∈ Λn(V ∗

2 )+, A∗ω is in Λn(V ∗
+)+. For example if V1 = V2 then

A∗ω = det(A)ω so A is orientation preserving if and only if det(A) >
0. The following proposition we’ll leave as an exercise.

Proposition 1.9.5. Let Vi, i = 1, 2, 3 be oriented n-dimensional
vector spaces and Ai : Vi → Vi+1, i = 1, 2 bijective linear maps.
Then if A1 and A2 are orientation preserving, so is A2 ◦ A1.

Exercises.

1. Prove Corollary 1.9.3.

2. Show that the argument in the proof of Theorem 1.9.4 can be
modified to prove that if V and W are oriented then these orienta-
tions induce a natural orientation on V/W .

3. Similarly show that if W and V/W are oriented these orienta-
tions induce a natural orientation on V .

4. Let V be an n-dimensional vector space and W ⊂ V a k-
dimensional subspace. Let U = V/W and let ι : W → V and
π : V → U be the inclusion and projection maps. Suppose V and U
are oriented. Let µ be in Λn−k(U∗)+ and let ω be in Λn(V ∗)+. Show
that there exists a ν in Λk(V ∗) such that π∗µ ∧ ν = ω. Moreover
show that ι∗ν is intrinsically defined (i.e., doesn’t depend on how
we choose ν) and sits in the positive part, Λk(W ∗)+, of Λk(W ).

5. Let e1, . . . , en be the standard basis vectors of R
n. The standard

orientation of R
n is, by definition, the orientation associated with

this basis. Show that if W is the subspace of R
n defined by the
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equation, x1 = 0, and v = e1 6∈W then the natural orientation of W
associated with v and the standard orientation of R

n coincide with
the orientation given by the basis vectors, e2, . . . , en of W .

6. Let V be an oriented n-dimensional vector space and W an
n−1-dimensional subspace. Show that if v and v′ are in V −W then
v′ = λv + w, where w is in W and λ ∈ R − {0}. Show that v and v′

give rise to the same orientation of W if and only if λ is positive.

7. Prove Proposition 1.9.5.

8. A key step in the proof of Theorem 1.9.4 was the assertion that
the matrix A expressing the vectors, ei, as linear combinations of the
vectors, fi, had to have the form (1.9.2). Why is this the case?

9. (a) Let V be a vector space, W a subspace of V and A : V →
V a bijective linear map which maps W onto W . Show that one gets
from A a bijective linear map

B : V/W → V/W

with property

πA = Bπ ,

π being the projection of V onto V/W .

(b) Assume that V , W and V/W are compatibly oriented. Show
that if A is orientation-preserving and its restriction to W is orien-
tation preserving then B is orientation preserving.

10. Let V be a oriented n-dimensional vector space, W an (n− 1)-
dimensional subspace of V and i : W → V the inclusion map. Given
ω ∈ Λb(V )+ and v ∈ V − W show that for the orientation of W
described in exercise 5, i∗(ιvω) ∈ Λn−1(W )+.

11. Let V be an n-dimensional vector space, B : V × V → R an
inner product and e1, . . . , en a basis of V which is positively oriented
and orthonormal. Show that the “volume element”

vol = e∗1 ∧ · · · ∧ e∗n ∈ Λn(V ∗)

is intrinsically defined, independent of the choice of this basis. Hint:
(1.2.13) and (1.8.7).
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12. (a) Let V be an oriented n-dimensional vector space and B an
inner product on V . Fix an oriented orthonormal basis, e1, . . . , en,
of V and let A : V → V be a linear map. Show that if

Aei = vi =
∑

aj,iej

and bi,j = B(vi, vj), the matrices A = [ai,j ] and B = [bi,j] are related
by: B = A+A.

(b) Show that if ν is the volume form, e∗1 ∧ · · · ∧ e∗n, and A is orien-
tation preserving

A∗ν = (detB)
1

2 ν .

(c) By Theorem 1.5.6 one has a bijective map

Λn(V ∗) ∼= An(V ) .

Show that the element, Ω, of An(V ) corresponding to the form, ν,
has the property

|Ω(v1, . . . , vn)|2 = det([bi,j ])

where v1, . . . , vn are any n-tuple of vectors in V and bi,j = B(vi, vj).
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CHAPTER 2

DIFFERENTIAL FORMS

2.1 Vector fields and one-forms

The goal of this chapter is to generalize to n dimensions the basic
operations of three dimensional vector calculus: div, curl and grad.
The “div”, and “grad” operations have fairly straight forward gener-
alizations, but the “curl” operation is more subtle. For vector fields
it doesn’t have any obvious generalization, however, if one replaces
vector fields by a closely related class of objects, differential forms,
then not only does it have a natural generalization but it turns out
that div, curl and grad are all special cases of a general operation on
differential forms called exterior differentiation.

In this section we will review some basic facts about vector fields
in n variables and introduce their dual objects: one-forms. We will
then take up in §2.2 the theory of k-forms for k greater than one.
We begin by fixing some notation.

Given p ∈ R
n we define the tangent space to R

n at p to be the set
of pairs

(2.1.1) TpR
n = {(p, v)} ; v ∈ R

n .

The identification

(2.1.2) TpR
n → R

n , (p, v) → v

makes TpR
n into a vector space. More explicitly, for v, v1 and v2 ∈ R

n

and λ ∈ R we define the addition and scalar multiplication operations
on TpR

n by the recipes

(p, v1) + (p, v2) = (p, v1 + v2)

and

λ(p, v) = (p, λv) .

Let U be an open subset of R
n and f : U → R

m a C1 map. We
recall that the derivative

Df(p) : R
n → R

m
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of f at p is the linear map associated with the m× n matrix
[
∂fi

∂xj
(p)

]
.

It will be useful to have a “base-pointed” version of this definition
as well. Namely, if q = f(p) we will define

dfp : TpR
n → TqR

m

to be the map

(2.1.3) dfp(p, v) = (q,Df(p)v) .

It’s clear from the way we’ve defined vector space structures on TpR
n

and TqR
m that this map is linear.

Suppose that the image of f is contained in an open set, V , and
suppose g : V → R

k is a C1 map. Then the “base-pointed”” version
of the chain rule asserts that

(2.1.4) dgq ◦ dfp = d(f ◦ g)p .

(This is just an alternative way of writing Dg(q)Df(p) = D(g ◦
f)(p).)

In 3-dimensional vector calculus a vector field is a function which
attaches to each point, p, of R

3 a base-pointed arrow, (p,~v). The
n-dimensional version of this definition is essentially the same.

Definition 2.1.1. Let U be an open subset of R
n. A vector field on

U is a function, v, which assigns to each point, p, of U a vector v(p)
in TpR

n.

Thus a vector field is a vector-valued function, but its value at p
is an element of a vector space, TpR

n that itself depends on p.
Some examples.

1. Given a fixed vector, v ∈ R
n, the function

(2.1.5) p ∈ R
n → (p, v)

is a vector field. Vector fields of this type are constant vector fields.

2. In particular let ei, i = 1, . . . , n, be the standard basis vectors
of R

n. If v = ei we will denote the vector field (2.1.5) by ∂/∂xi. (The
reason for this “derivation notation” will be explained below.)
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3. Given a vector field on U and a function, f : U → R we’ll
denote by fv the vector field

p ∈ U → f(p)v(p) .

4. Given vector fields v1 and v2 on U , we’ll denote by v1 + v2 the
vector field

p ∈ U → v1(p) + v2(p) .

5. The vectors, (p, ei), i = 1, . . . , n, are a basis of TpR
n, so if

v is a vector field on U , v(p) can be written uniquely as a linear
combination of these vectors with real numbers, gi(p), i = 1, . . . , n,
as coefficients. In other words, using the notation in example 2 above,
v can be written uniquely as a sum

(2.1.6) v =

n∑

i=1

gi
∂

∂xi

where gi : U → R is the function, p→ gi(p).

We’ll say that v is a C∞ vector field if the gi’s are in C∞(U).
A basic vector field operation is Lie differentiation. If f ∈ C1(U)

we define Lvf to be the function on U whose value at p is given by

(2.1.7) Df(p)v = Lvf(p)

where v(p) = (p, v). If v is the vector field (2.1.6) then

(2.1.8) Lvf =
∑

gi
∂

∂xi
f

(motivating our “derivation notation” for v).

Exercise.

Check that if fi ∈ C
1(U), i = 1, 2, then

(2.1.9) Lv(f1f2) = f1Lvf2 + f1Lvf2 .

Next we’ll generalize to n-variables the calculus notion of an “in-
tegral curve” of a vector field.
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Definition 2.1.2. A C1 curve γ : (a, b) → U is an integral curve of
v if for all a < t < b and p = γ(t)

(
p,
dγ

dt
(t)

)
= v(p)

i.e., if v is the vector field (2.1.6) and g : U → R
n is the function

(g1, . . . , gn) the condition for γ(t) to be an integral curve of v is that
it satisfy the system of differential equations

(2.1.10)
dγ

dt
(t) = g(γ(t)) .

We will quote without proof a number of basic facts about systems
of ordinary differential equations of the type (2.1.10). (A source for
these results that we highly recommend is Birkhoff–Rota, Ordinary
Differential Equations, Chapter 6.)

Theorem 2.1.3 (Existence). Given a point p0 ∈ U and a ∈ R, there
exists an interval I = (a− T, a+ T ), a neighborhood, U0, of p0 in U
and for every p ∈ U0 an integral curve, γp : I → U with γp(a) = p.

Theorem 2.1.4 (Uniqueness). Let γi : Ii → U , i = 1, 2, be integral
curves. If a ∈ I1 ∩ I2 and γ1(a) = γ2(a) then γ1 ≡ γ2 on I1 ∩ I2 and
the curve γ : I1 ∪ I2 → U defined by

γ(t) =

{
γ1(t) , t ∈ I1

γ2(t) , t ∈ I2

is an integral curve.

Theorem 2.1.5 (Smooth dependence on initial data). Let v be a
C∞-vector field, on an open subset, V , of U , I ⊆ R an open interval,
a ∈ I a point on this interval and h : V × I → U a mapping with the
properties:

(i) h(p, a) = p.

(ii) For all p ∈ V the curve

γp : I → U γp(t) = h(p, t)

is an integral curve of v.

Then the mapping, h, is C∞.
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One important feature of the system (2.1.11) is that it is an au-
tonomous system of differential equations: the function, g(x), is a
function of x alone, it doesn’t depend on t. One consequence of this
is the following:

Theorem 2.1.6. Let I = (a, b) and for c ∈ R let Ic = (a− c, b− c).
Then if γ : I → U is an integral curve, the reparametrized curve

(2.1.11) γc : Ic → U , γc(t) = γ(t+ c)

is an integral curve.

We recall that a C1-function ϕ : U → R is an integral of the system
(2.1.11) if for every integral curve γ(t), the function t → ϕ(γ(t)) is
constant. This is true if and only if for all t and p = γ(t)

0 =
d

dt
ϕ(γ(t)) = (Dϕ)p

(
dγ

dt

)
= (Dϕ)p(v)

where (p, v) = v(p). But by (2.1.6) the term on the right is Lvϕ(p).
Hence we conclude

Theorem 2.1.7. ϕ ∈ C1(U) is an integral of the system (2.1.11) if
and only if Lvϕ = 0.

We’ll now discuss a class of objects which are in some sense “dual
objects” to vector fields. For each p ∈ R

n let (TpR)∗ be the dual vec-
tor space to TpR

n, i.e., the space of all linear mappings, ℓ : TpR
n →

R.

Definition 2.1.8. Let U be an open subset of R
n. A one-form on U

is a function, ω, which assigns to each point, p, of U a vector, ωp,
in (TpR

n)∗.

Some examples:

1. Let f : U → R be a C1 function. Then for p ∈ U and
c = f(p) one has a linear map

(2.1.12) dfp : TpR
n → TcR

and by making the identification,

TcR = {c,R} = R
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dfp can be regarded as a linear map from TpR
n to R, i.e., as an

element of (TpR
n)∗. Hence the assignment

(2.1.13) p ∈ U → dfp ∈ (TpR
n)∗

defines a one-form on U which we’ll denote by df .

2. Given a one-form ω and a function, ϕ : U → R the product
of ϕ with ω is the one-form, p ∈ U → ϕ(p)ωp.

3. Given two one-forms ω1 and ω2 their sum, ω1 + ω2 is the
one-form, p ∈ U → ω1(p) + ω2(p).

4. The one-forms dx1, . . . , dxn play a particularly important
role. By (2.1.12)

(2.1.14) (dxi)

(
∂

∂xj

)

p

= δij

i.e., is equal to 1 if i = j and zero if i 6= j. Thus (dx1)p, . . . , (dxn)p
are the basis of (T ∗

p R
n)∗ dual to the basis (∂/∂xi)p. Therefore,

if ω is any one-form on U , ωp can be written uniquely as a sum

ωp =
∑

fi(p)(dxi)p , fi(p) ∈ R

and ω can be written uniquely as a sum

(2.1.15) ω =
∑

fi dxi

where fi : U → R is the function, p → fi(p). We’ll say that ω
is a C∞ one-form if the fi’s are C∞.

Exercise.

Check that if f : U → R is a C∞ function

(2.1.16) df =
∑ ∂f

∂xi
dxi .

Suppose now that v is a vector field and ω a one-form on U . Then
for every p ∈ U the vectors, vp ∈ TpR

n and ωp ∈ (TpR
n)∗ can be

paired to give a number, ι(vp)ωp ∈ R, and hence, as p varies, an
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R-valued function, ι(v)ω, which we will call the interior product of v
with ω. For instance if v is the vector field (2.1.6) and ω the one-form
(2.1.15) then

(2.1.17) ι(v)ω =
∑

figi .

Thus if v and ω are C∞ so is the function ι(v)ω. Also notice that if
ϕ ∈ C∞(U), then as we observed above

dϕ =
∑ ∂ϕ

∂xi

∂

∂xi

so if v is the vector field (2.1.6)

(2.1.18) ι(v) dϕ =
∑

gi
∂ϕ

∂xi
= Lvϕ .

Coming back to the theory of integral curves, let U be an open
subset of R

n and v a vector field on U . We’ll say that v is complete
if, for every p ∈ U , there exists an integral curve, γ : R → U with
γ(0) = p, i.e., for every p there exists an integral curve that starts
at p and exists for all time. To see what “completeness” involves, we
recall that an integral curve

γ : [0, b) → U ,

with γ(0) = p, is called maximal if it can’t be extended to an interval
[0, b′), b′ > b. (See for instance Birkhoff–Rota, §6.11.) For such curves
it’s known that either

i. b = +∞
or

ii. |γ(t)| → +∞ as t→ b
or

iii. the limit set of

{γ(t) , 0 ≤ t, b}

contains points on the boundary of U .

Hence if we can exclude ii. and iii. we’ll have shown that an integral
curve with γ(0) = p exists for all positive time. A simple criterion
for excluding ii. and iii. is the following.
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Lemma 2.1.9. The scenarios ii. and iii. can’t happen if there exists
a proper C1-function, ϕ : U → R with Lvϕ = 0.

Proof. Lvϕ = 0 implies that ϕ is constant on γ(t), but if ϕ(p) = c
this implies that the curve, γ(t), lies on the compact subset, ϕ−1(c),
of U ; hence it can’t “run off to infinity” as in scenario ii. or “run off
the boundary” as in scenario iii.

Applying a similar argument to the interval (−b, 0] we conclude:

Theorem 2.1.10. Suppose there exists a proper C1-function, ϕ :
U → R with the property Lvϕ = 0. Then v is complete.

Example.

Let U = R
2 and let v be the vector field

v = x3 ∂

∂y
− y

∂

∂x
.

Then ϕ(x, y) = 2y2+x4 is a proper function with the property above.
Another hypothesis on v which excludes ii. and iii. is the following.
We’ll define the support of v to be the set

supp v = q ∈ U , v(q) 6= 0} ,

and will say that v is compactly supported if this set is compact. We
will prove

Theorem 2.1.11. If v is compactly supported it is complete.

Proof. Notice first that if v(p) = 0, the constant curve, γ0(t) = p,
−∞ < t <∞, satisfies the equation

d

dt
γ0(t) = 0 = v(p) ,

so it is an integral curve of v. Hence if γ(t), −a < t < b, is any
integral curve of v with the property, γ(t0) = p, for some t0, it has
to coincide with γ0 on the interval, −a < t < a, and hence has to be
the constant curve, γ(t) = p, on this interval.

Now suppose the support, A, of v is compact. Then either γ(t) is
in A for all t or is in U − A for some t0. But if this happens, and
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p = γ(t0) then v(p) = 0, so γ(t) has to coincide with the constant
curve, γ0(t) = p, for all t. In neither case can it go off to ∞ or off to
the boundary of U as t→ b.

One useful application of this result is the following. Suppose v is
a vector field on U , and one wants to see what its integral curves
look like on some compact set, A ⊆ U . Let ρ ∈ C∞

0 (U) be a bump
function which is equal to one on a neighborhood of A. Then the
vector field, w = ρv, is compactly supported and hence complete,
but it is identical with v on A, so its integral curves on A coincide
with the integral curves of v.

If v is complete then for every p, one has an integral curve, γp :
R → U with γp(0) = p, so one can define a map

ft : U → U

by setting ft(p) = γp(t). If v is C∞, this mapping is C∞ by the
smooth dependence on initial data theorem, and by definition f0 is
the identity map, i.e., f0(p) = γp(0) = p. We claim that the ft’s also
have the property

(2.1.19) ft ◦ fa = ft+a .

Indeed if fa(p) = q, then by the reparametrization theorem, γq(t)
and γp(t + a) are both integral curves of v, and since q = γq(0) =
γp(a) = fa(p), they have the same initial point, so

γq(t) = ft(q) = (ft ◦ fa)(p)

= γp(t+ a) = ft+a(p)

for all t. Since f0 is the identity it follows from (2.1.19) that ft ◦ f−t

is the identity, i.e.,
f−t = f−1

t ,

so ft is a C∞ diffeomorphism. Hence if v is complete it generates a
“one-parameter group”, ft, −∞ < t <∞, of C∞-diffeomorphisms.

For v not complete there is an analogous result, but it’s trickier to
formulate precisely. Roughly speaking v generates a one-parameter
group of diffeomorphisms, ft, but these diffeomorphisms are not de-
fined on all of U nor for all values of t. Moreover, the identity (2.1.19)
only holds on the open subset of U where both sides are well-defined.
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We’ll devote the remainder of this section to discussing some “func-
torial” properties of vector fields and one-forms. Let U and W be
open subsets of R

n and R
m, respectively, and let f : U → W be a

C∞ map. If v is a C∞-vector field on U and w a C∞-vector field on
W we will say that v and w are “f -related” if, for all p ∈ U and
q = f(p)

(2.1.20) dfp(vp) = wq .

Writing

v =
n∑

i=1

vi
∂

∂xi
, vi ∈ C

k(U)

and

w =
m∑

j=1

wj
∂

∂yj
, wj ∈ Ck(V )

this equation reduces, in coordinates, to the equation

(2.1.21) wi(q) =
∑ ∂fi

∂xj
(p)vj(p) .

In particular, if m = n and f is a C∞ diffeomorphism, the formula
(3.2) defines a C∞-vector field on W , i.e.,

w =
n∑

j=1

wi
∂

∂yj

is the vector field defined by the equation

(2.1.22) wi =

n∑

j=1

(
∂fi

∂xj
vj

)
◦ f−1 .

Hence we’ve proved

Theorem 2.1.12. If f : U → W is a C∞ diffeomorphism and v a
C∞-vector field on U , there exists a unique C∞ vector field, w, on W
having the property that v and w are f -related.

We’ll denote this vector field by f∗v and call it the push-forward
of v by f .

I’ll leave the following assertions as easy exercises.
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Theorem 2.1.13. Let Ui, i = 1, 2, be open subsets of R
ni, vi a

vector field on Ui and f : U1 → U2 a C∞-map. If v1 and v2 are
f -related, every integral curve

γ : I → U1

of v1 gets mapped by f onto an integral curve, f ◦ γ : I → U2, of v2.

Corollary 2.1.14. Suppose v1 and v2 are complete. Let (fi)t : Ui →
Ui, −∞ < t < ∞, be the one-parameter group of diffeomorphisms
generated by vi. Then f ◦ (f1)t = (f2)t ◦ f .

Hints:

1. Theorem 4 follows from the chain rule: If p = γ(t) and q = f(p)

dfp

(
d

dt
γ(t)

)
=

d

dt
f(γ(t)) .

2. To deduce Corollary 5 from Theorem 4 note that for p ∈ U ,
(f1)t(p) is just the integral curve, γp(t) of v1 with initial point γp(0) =
p.

The notion of f -relatedness can be very succinctly expressed in
terms of the Lie differentiation operation. For ϕ ∈ C∞(U2) let f∗ϕ
be the composition, ϕ ◦ f , viewed as a C∞ function on U1, i.e., for
p ∈ U1 let f∗ϕ(p) = ϕ(f(p)). Then

(2.1.23) f∗Lv2
ϕ = Lv1

f∗ϕ .

(To see this note that if f(p) = q then at the point p the right hand
side is

(dϕ)q ◦ dfp(v1(p))

by the chain rule and by definition the left hand side is

dϕq(v2(q)) .

Moreover, by definition

v2(q) = dfp(v1(p))

so the two sides are the same.)

Another easy consequence of the chain rule is:
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Theorem 2.1.15. Let Ui, i = 1, 2, 3, be open subsets of R
ni, vi a

vector field on Ui and fi : Ui → Ui+1, i = 1, 2 a C∞-map. Suppose
that, for i = 1, 2, vi and vi+1 are fi-related. Then v1 and v3 are
f2 ◦ f1-related.

In particular, if f1 and f2 are diffeomorphisms and v = v1

(f2)∗(f1)∗v = (f2 ◦ f1)∗v .

The results we described above have “dual” analogues for one-
forms. Namely, let U and V be open subsets of R

n and R
m, respec-

tively, and let f : U → V be a C∞-map. Given a one-form, µ, on V
one can define a “pull-back” one-form, f∗µ, on U by the following
method. For p ∈ U let q = f(p). By definition µ(q) is a linear map

(2.1.24) µ(q) : TqR
m → R

and by composing this map with the linear map

dfp : TpR
n → TqR

n

we get a linear map

µq ◦ dfp : TpR
n → R ,

i.e., an element µq ◦ dfp of T ∗
p R

n.

Definition 2.1.16. The one-form f∗µ is the one-form defined by
the map

p ∈ U → (µq ◦ dfp) ∈ T ∗
p R

n

where q = f(p).

Note that if ϕ : V → R is a C∞-function and µ = dϕ then

µq ◦ dfp = dϕq ◦ dfp = d(ϕ ◦ f)p

i.e.,

(2.1.25) f∗µ = dϕ ◦ f .

In particular if µ is a one-form of the form, µ = dϕ, with ϕ ∈
C∞(V ), f∗µ is C∞. From this it is easy to deduce

Theorem 2.1.17. If µ is any C∞ one-form on V , its pull-back, f∗ω,
is C∞. (See exercise 1.)
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Notice also that the pull-back operation on one-forms and the
push-forward operation on vector fields are somewhat different in
character. The former is defined for all C∞ maps, but the latter is
only defined for diffeomorphisms.

Exercises.

1. Let U be an open subset of R
n, V an open subset of R

n and
f : U → V a Ck map.

(a) Show that for ϕ ∈ C∞(V ) (2.1.25) can be rewritten

f∗ dϕ = df∗ϕ .(2.1.25′)

(b) Let µ be the one-form

µ =
m∑

i=1

ϕi dxi ϕi ∈ C∞(V )

on V . Show that if f = (f1, . . . , fm) then

f∗µ =
m∑

i=1

f∗ϕi dfi .

(c) Show that if µ is C∞ and f is C∞, f∗µ is C∞.

2. Let v be a complete vector field on U and ft : U → U , the one
parameter group of diffeomorphisms generated by v. Show that if
ϕ ∈ C1(U)

Lvϕ =

(
d

dt
f∗t ϕ

)

t=0

.

3. (a) Let U = R
2 and let v be the vector field, x1∂/∂x2 −

x2∂/∂x1. Show that the curve

t ∈ R → (r cos(t+ θ) , r sin(t+ θ))

is the unique integral curve of v passing through the point, (r cos θ, r sin θ),
at t = 0.
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(b) Let U = R
n and let v be the constant vector field:

∑
ci∂/∂xi.

Show that the curve

t ∈ R → a+ t(c1, . . . , cn)

is the unique integral curve of v passing through a ∈ R
n at t = 0.

(c) Let U = R
n and let v be the vector field,

∑
xi∂/∂xi. Show that

the curve

t ∈ R → et(a1, . . . , an)

is the unique integral curve of v passing through a at t = 0.

4. Show that the following are one-parameter groups of diffeomor-
phisms:

(a) ft : R → R , ft(x) = x+ t

(b) ft : R → R , ft(x) = etx

(c) ft : R
2 → R

2 , ft(x, y) = (cos t x− sin t y , sin t x+ cos t y)

5. Let A : R
n → R

n be a linear mapping. Show that the series

exp tA = I + tA+
t2

2!
A2 +

t3

3!
A3 + · · ·

converges and defines a one-parameter group of diffeomorphisms of
R

n.

6. (a) What are the infinitesimal generators of the one-parameter
groups in exercise 13?

(b) Show that the infinitesimal generator of the one-parameter group
in exercise 14 is the vector field

∑
ai,jxj

∂

∂xi

where [ai,j ] is the defining matrix of A.

7. Let v be the vector field on R, x2 d
dx Show that the curve

x(t) =
a

a− at
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is an integral curve of v with initial point x(0) = a. Conclude that
for a > 0 the curve

x(t) =
a

1 − at
, 0 < t <

1

a

is a maximal integral curve. (In particular, conclude that v isn’t
complete.)

8. Let U be an open subset of R
n and v1 and v2 vector fields on U .

Show that there is a unique vector field, w, on U with the property

Lwϕ = Lv1
(Lv2

ϕ) − Lv2
(Lv1

ϕ)

for all ϕ ∈ C∞(U).

9. The vector field w in exercise 8 is called the Lie bracket of
the vector fields v1 and v2 and is denoted [v1, v2]. Verify that “Lie
bracket” satisfies the identities

[v1, v2] = −[v2, v1]

and
[v1[v2, v3]] + [v2, [v3, v1]] + [v3, [v1, v2]] = 0 .

Hint: Prove analogous identities for Lv1
, Lv2

and Lv3
.

10. Let v1 = ∂/∂xi and v2 =
∑
gj∂/∂xj . Show that

[v1, v2] =
∑ ∂

∂xi
gi

∂

∂xj
.

11. Let v1 and v2 be vector fields and f a C∞ function. Show that

[v1, fv2] = Lv1
fv2 + f [v1, v2] .

12. Let U and V be open subsets of R
n and f : U → V a diffeo-

morphism. If w is a vector field on V , define the pull-back, f∗w of
w to U to be the vector field

f∗w = (f−1
∗ w) .

Show that if ϕ is a C∞ function on V

f∗Lwϕ = Lf∗wf
∗ϕ .

Hint: (2.1.26).
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13. Let U be an open subset of R
n and v and w vector fields on U .

Suppose v is the infinitesimal generator of a one-parameter group of
diffeomorphisms

ft : U → U , −∞ < t <∞ .

Let wt = f∗t w. Show that for ϕ ∈ C∞(U)

L[v,w]ϕ = L ·

w
ϕ

where

·
w =

d

dt
f∗t w |t=0 .

Hint: Differentiate the identity

f∗t Lwϕ = Lwt
f∗t ϕ

with respect to t and show that at t = 0 the derivative of the left
hand side is

LvLwϕ

by exercise 2 and the derivative of the right hand side is

L ·

w
+ Lw(Lvϕ) .

14. Conclude from exercise 13 that

(2.1.26) [v,w] =
d

dt
f∗t w |t=0 .

15. Let U be an open subset of R
n and let γ : [a, b] → U , t →

(γ1(t), . . . , γn(t)) be a C1 curve. Given ω =
∑
fi dxi ∈ Ω1(U), define

the line integral of ω over γ to be the integral

∫

γ
ω =

n∑

i=1

∫ b

a
fi(γ(t))

dγi

dt
dt .

Show that if ω = df for some f ∈ C∞(U)
∫

γ
ω = f(γ(b)) − f(γ(a)) .

In particular conclude that if γ is a closed curve, i.e., γ(a) = γ(b),
this integral is zero.
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16. Let

ω =
x1 dx2 − x2 dx1

x2
1 + x2

2

∈ Ω1(R2 − {0}) ,

and let γ : [0, 2π] → R
2 − {0} be the closed curve, t → (cos t, sin t).

Compute the line integral,
∫
γ ω, and show that it’s not zero. Conclude

that ω can’t be “d” of a function, f ∈ C∞(R2 − {0}).

17. Let f be the function

f(x1, x2) =





arctan x2

x1
, x1 > 0

π
2 , x1 = 0 , x2 > 0

arctan x2

x1
+ π , x1 < 0

where, we recall: −π
2 < arctan t < π

2 . Show that this function is C∞

and that df is the 1-form, ω, in the previous exercise. Why doesn’t
this contradict what you proved in exercise 16?

2.2 k-forms

One-forms are the bottom tier in a pyramid of objects whose kth tier
is the space of k-forms. More explicitly, given p ∈ R

n we can, as in
§1.5, form the kth exterior powers

(2.2.1) Λk(T ∗
p R

n) , k = 1, 2, 3, . . . , n

of the vector space, T ∗
p R

n, and since

(2.2.2) Λ1(T ∗
p R

n) = T ∗
p R

n

one can think of a one-form as a function which takes its value at p
in the space (2.2.2). This leads to an obvious generalization.

Definition 2.2.1. Let U be an open subset of R
n. A k-form, ω, on

U is a function which assigns to each point, p, in U an element ω(p)
of the space (2.2.1) .

The wedge product operation gives us a way to construct lots of
examples of such objects.

Example 1.
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Let ωi, i = 1, . . . , k be one-forms. Then ω1 ∧ · · · ∧ωk is the k-form
whose value at p is the wedge product

(2.2.3) ω1(p) ∧ · · · ∧ ωk(p) .

Notice that since ωi(p) is in Λ1(T ∗
p R

n) the wedge product (2.2.3)

makes sense and is an element of Λk(T ∗
p R

n).

Example 2.

Let fi, i = 1, . . . , k be a real-valued C∞ function on U . Letting
ωi = dfi we get from (2.2.3) a k-form

(2.2.4) df1 ∧ · · · ∧ dfk

whose value at p is the wedge product

(2.2.5) (df1)p ∧ · · · ∧ (dfk)p .

Since (dx1)p, . . . , (dxn)p are a basis of T ∗
p R

n, the wedge products

(2.2.6) (dxi1)p ∧ · · · ∧ (dx1k
)p , 1 ≤ i1 < · · · < ik ≤ n

are a basis of Λk(T ∗
p ). To keep our multi-index notation from getting

out of hand, we’ll denote these basis vectors by (dxI)p, where I =
(i1, . . . , ik) and the I’s range over multi-indices of length k which
are strictly increasing. Since these wedge products are a basis of
Λk(T ∗

p R
n) every element of Λk(T ∗

p R
n) can be written uniquely as a

sum ∑
cI(dxI)p , cI ∈ R

and every k-form, ω, on U can be written uniquely as a sum

(2.2.7) ω =
∑

fI dxI

where dxI is the k-form, dxi1 ∧ · · · ∧ dxik , and fI is a real-valued
function,

fI : U → R .

Definition 2.2.2. The k-form (2.2.7) is of class Cr if each of the
fI ’s is in Cr(U).

Henceforth we’ll assume, unless otherwise stated, that all the k-
forms we consider are of class C∞, and we’ll denote the space of
these k-forms by Ωk(U).

We will conclude this section by discussing a few simple operations
on k-forms.
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1. Given a function, f ∈ C∞(U) and a k-form ω ∈ Ωk(U) we define
fω ∈ Ωk(U) to be the k-form

p ∈ U → f(p)ωp ∈ Λk(T ∗
p R

n) .

2. Given ωi ∈ Ωk(U), i = 1, 2 we define ω1 + ω2 ∈ Ωk(U) to be
the k-form

p ∈ U → (ω1)p + (ω2)p ∈ Λk(T ∗
p R

n) .

(Notice that this sum makes sense since each summand is in Λk(T ∗
p R

n).)

3. Given ω1 ∈ Ωk1(U) and ω2 ∈ Ωk2(U) we define their wedge
product, ω1 ∧ ω2 ∈ Ωk1+k2(u) to be the (k1 + k2)-form

p ∈ U → (ω1)p ∧ (ω2)p ∈ Λk1+k2(T ∗
p R

n) .

We recall that Λ0(T ∗
p R

n) = R, so a zero-form is an R-valued function
and a zero form of class C∞ is a C∞ function, i.e.,

Ω0(U) = C∞(U) .

A fundamental operation on forms is the “d-operation” which as-
sociates to a function f ∈ C∞(U) the 1-form df . It’s clear from the
identity (2.1.10) that df is a 1-form of class C∞, so the d-operation
can be viewed as a map

(2.2.8) d : Ω0(U) → Ω1(U) .

We will show in the next section that an analogue of this map exists
for every Ωk(U).

Exercises.

1. Let ω ∈ Ω2(R4) be the 2-form, dx1 ∧ dx2 + dx3 ∧ dx4. Compute
ω ∧ ω.

2. Let ωi ∈ Ω1(R3), i = 1, 2, 3 be the 1-forms

ω1 = x2 dx3 − x3 dx2

ω2 = x3 dx1 − x1 dx3

and

ω3 = x1 dx2 − x2 dx1 .

Compute
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(a) ω1 ∧ ω2.

(b) ω2 ∧ ω3.

(c) ω3 ∧ ω1.

(d) ω1 ∧ ω2 ∧ ω3.

3. Let U be an open subset of R
n and fi ∈ C∞(U), i = 1, . . . , n.

Show that

df1 ∧ · · · ∧ dfn = det

[
∂fi

∂xj

]
dx1 ∧ · · · ∧ dxn .

4. Let U be an open subset of R
n. Show that every (n− 1)-form,

ω ∈ Ωn−1(U), can be written uniquely as a sum

n∑

i=1

fi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

where fi ∈ C∞(U) and the “cap” over dxi means that dxi is to be
deleted from the product, dx1 ∧ · · · ∧ dxn.

5. Let µ =

n∑

i=1

xidxi. Show that there exists an (n− 1)-form, ω ∈

Ωn−1(Rn − {0}) with the property

µ ∧ ω = dx1 ∧ · · · ∧ dxn .

6. Let J be the multi-index (j1, . . . , jk) and let dxJ = dxj1 ∧ · · · ∧
dxjk

. Show that dxJ = 0 if jr = js for some r 6= s and show that if
the jr’s are all distinct

dxJ = (−1)σ dxI

where I = (i1, . . . , ik) is the strictly increasing rearrangement of
(j1, . . . , jk) and σ is the permutation

j1 → i1, . . . , jk → ik .

7. Let I be a strictly increasing multi-index of length k and J a
strictly increasing multi-index of length ℓ. What can one say about
the wedge product dxI ∧ dxJ?
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2.3 Exterior differentiation

Let U be an open subset of R
n. In this section we are going to define

an operation

(2.3.1) d : Ωk(U) → Ωk+1(U) .

This operation is called exterior differentiation and is the fundamen-
tal operation in n-dimensional vector calculus.

For k = 0 we already defined the operation (2.3.1) in §2.1. Before
defining it for the higher k’s we list some properties that we will
require to this operation to satisfy.

Property I. For ω1 and ω2 in Ωk(U), d(ω1 + ω2) = dω1 + dω2.

Property II. For ω1 ∈ Ωk(U) and ω2 ∈ Ωℓ(U)

(2.3.2) d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)kω1 ∧ dω2 .

Property III. For ω ∈ Ωk(U)

(2.3.3) d(dω) = 0 .

Let’s point out a few consequences of these properties. First note
that by Property III

(2.3.4) d(df) = 0

for every function, f ∈ C∞(U). More generally, given k functions,
fi ∈ C∞(U), i = 1, . . . , k, then by combining (2.3.4) with (2.3.2) we
get by induction on k:

(2.3.5) d(df1 ∧ · · · ∧ dfk) = 0 .

Proof. Let µ = df2 ∧ · · · ∧ dfk. Then by induction on k, dµ = 0; and
hence by (2.3.2) and (2.3.4)

d(df1 ∧ µ) = d(d1f) ∧ µ+ (−1) df1 ∧ dµ = 0 ,

as claimed.)
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In particular, given a multi-index, I = (i1, . . . , ik) with 1 ≤ ir ≤ n

(2.3.6) d(dxI) = d(dxi1 ∧ · · · ∧ dxik) = 0 .

Recall now that every k-form, ω ∈ Ωk(U), can be written uniquely
as a sum

ω =
∑

fI dxI , fI ∈ C∞(U)

where the multi-indices, I, are strictly increasing. Thus by (2.3.2)
and (2.3.6)

(2.3.7) dω =
∑

dfI ∧ dxI .

This shows that if there exists a “d” with properties I—III, it has to
be given by the formula (2.3.7). Hence all we have to show is that
the operator defined by this formula has these properties. Property I
is obvious. To verify Property II we first note that for I strictly
increasing (2.3.6) is a special case of (2.3.7). (Take fI = 1 and fJ =
0 for J 6= I.) Moreover, if I is not strictly increasing it is either
repeating, in which case dxI = 0, or non-repeating in which case Iσ

is strictly increasing for some permutation, σ ∈ Sk, and

(2.3.8) dxI = (−1)σ dxIσ .

Hence (2.3.7) implies (2.3.6) for all multi-indices I. The same argu-
ment shows that for any sum over indices, I, for length k

∑
fIdxI

one has the identity:

(2.3.9) d(
∑

fI dxI) =
∑

dfI ∧ dxI .

(As above we can ignore the repeating I’s, since for these I’s, dxI =
0, and by (2.3.8) we can make the non-repeating I’s strictly increas-
ing.)

Suppose now that ω1 ∈ Ωk(U) and ω2 ∈ Ωℓ(U). Writing

ω1 =
∑

fI dxI

and

ω2 =
∑

gJ dxJ
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with fI and gJ in C∞(U) we get for the wedge product

ω1 ∧ ω2 =
∑

fIgJ dxI ∧ dxJ(2.3.10)

and by (2.3.9)

d(ω1 ∧ ω2) =
∑

d(fIgJ) ∧ dxI ∧ dxJ .(2.3.11)

(Notice that if I = (i1, · · · , ik) and J = (ji, . . . , iℓ), dxI ∧ dxJ =
dxK , K being the multi-index, (i1, . . . , ik, j1, . . . , jℓ). Even if I and
J are strictly increasing, K won’t necessarily be strictly increasing.
However in deducing (2.3.11) from (2.3.10) we’ve observed that this
doesn’t matter .) Now note that by (2.1.11)

d(fIgJ ) = gJ dfI + fI dgJ ,

and by the wedge product identities of §(1.6),

dgJ ∧ dxI = dgJ ∧ dxi1 ∧ · · · ∧ dxik

= (−1)k dxI ∧ dgJ ,

so the sum (2.3.11) can be rewritten:

∑
dfI ∧ dxI ∧ gJ dxJ + (−1)k

∑
fI dxI ∧ dgJ ∧ dxJ ,

or
(∑

dfI ∧ dxI

)
∧
(∑

gJ dxJ

)
+ (−1)k

(∑
dgJ ∧ dxJ

)
,

or finally:
dω1 ∧ ω2 + (−1)kω1 ∧ dω2 .

Thus the “d” defined by (2.3.7) has Property II. Let’s now check that
it has Property III. If ω =

∑
fI dxI , fI ∈ C∞(U), then by definition,

dω =
∑

dfI ∧ dxI and by (2.3.6) and (2.3.2)

d(dω) =
∑

d(dfI) ∧ dxI ,

so it suffices to check that d(dfI) = 0, i.e., it suffices to check (2.3.4)
for zero forms, f ∈ C∞(U). However, by (2.1.9)

df =

n∑

j=1

∂f

∂xj
dxj
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so by (2.3.7)

d(df) =
n∑

j=1

d

(
∂f

∂xj

)
dxj

=

n∑

j=1

(
n∑

i=1

∂2f

∂xi∂xj
dxi

)
∧ dxj

=
∑

i,j

∂2f

∂xi∂xj
dxi ∧ dxj .

Notice, however, that in this sum, dxi ∧ dxj = −dxj ∧ dxi and

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

so the (i, j) term cancels the (j, i) term, and the total sum is zero.

A form, ω ∈ Ωk(U), is said to be closed if dω = 0 and is said to be
exact if ω = dµ for some µ ∈ Ωk−1(U). By Property III every exact
form is closed, but the converse is not true even for 1-forms. (See
§2.1, exercise 8). In fact it’s a very interesting (and hard) question
to determine if an open set, U , has the property: “For k > 0 every
closed k-form is exact.”1

Some examples of sets with this property are described in the
exercises at the end of §2.5. We will also sketch below a proof of the
following result (and ask you to fill in the details).

Lemma 2.3.1 (Poincaré’s Lemma.). If ω is a closed form on U of
degree k > 0, then for every point, p ∈ U , there exists a neighborhood
of p on which ω is exact.

(See exercises 5 and 6 below.)

Exercises:

1. Compute the exterior derivatives of the forms below.

1For k = 0, df = 0 doesn’t imply that f is exact. In fact “exactness” doesn’t make
much sense for zero forms since there aren’t any “−1” forms. However, if f ∈ C∞(U)
and df = 0 then f is constant on connected components of U . (See § 2.1, exercise 2.)
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(a) x1 dx2 ∧ dx3

(b) x1 dx2 − x2 dx1

(c) e−f df where f =
∑n

i=1 x
2
i

(d)
∑n

i=1 xi dxi

(e)
∑n

i=1(−1)ixi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

2. Solve the equation: dµ = ω for µ ∈ Ω1(R3), where ω is the
2-form

(a) dx2 ∧ dx3

(b) x2 dx2 ∧ dx3

(c) (x2
1 + x2

2) dx1 ∧ dx2

(d) cos x1 dx1 ∧ dx3

3. Let U be an open subset of R
n.

(a) Show that if µ ∈ Ωk(U) is exact and ω ∈ Ωℓ(U) is closed then
µ ∧ ω is exact. Hint: The formula (2.3.2).

(b) In particular, dx1 is exact, so if ω ∈ Ωℓ(U) is closed dx1 ∧ ω =
dµ. What is µ?

4. Let Q be the rectangle, (a1, b1) × · · · × (an, bn). Show that if ω
is in Ωn(Q), then ω is exact.

Hint: Let ω = f dx1 ∧ · · · ∧ dxn with f ∈ C∞(Q) and let g be the
function

g(x1, . . . , xn) =

∫ x1

a1

f(t, x2, . . . , xn) dt .

Show that ω = d(g dx2 ∧ · · · ∧ dxn).

5. Let U be an open subset of R
n−1, A ⊆ R an open interval

and (x, t) product coordinates on U × A. We will say that a form,
µ ∈ Ωℓ(U ×A) is reduced if it can be written as a sum

(2.3.12) µ =
∑

fI(x, t) dxI ,

(i.e., no terms involving dt).



74 Chapter 2. Differential forms

(a) Show that every form, ω ∈ Ωk(U ×A) can be written uniquely
as a sum:

(2.3.13) ω = dt ∧ α+ β

where α and β are reduced.

(b) Let µ be the reduced form (2.3.12) and let

dµ

dt
=
∑ d

dt
fI(x, t) dxI

and

dUµ =
∑

I

(
n∑

i=1

∂

∂xi
fI(x, t) dxi

)
∧ dxI .

Show that

dµ = dt ∧
dµ

dt
+ dUµ .

(c) Let ω be the form (2.3.13). Show that

dω = dt ∧ dUα+ dt ∧
dβ

dt
+ dUβ

and conclude that ω is closed if and only if

dβ

dt
= dUα(2.3.14)

dβU = 0 .

(d) Let α be a reduced (k − 1)-form. Show that there exists a re-
duced (k − 1)-form, ν, such that

(2.3.15)
dν

dt
= α .

Hint: Let α =
∑
fI(x, t) dxI and ν =

∑
gI(x, t) dxI . The equa-

tion (2.3.15) reduces to the system of equations

(2.3.16)
d

dt
gI(x, t) = fI(x, t) .

Let c be a point on the interval, A, and using freshman calculus show
that (2.3.16) has a unique solution, gI(x, t), with gI(x, c) = 0.
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(e) Show that if ω is the form (2.3.13) and ν a solution of (2.3.15)
then the form

(2.3.17) ω − dν

is reduced.

(f) Let

γ =
∑

hI(x, t) dx)I

be a reduced k-form. Deduce from (2.3.14) that if γ is closed then
dγ

dt
= 0 and dUγ = 0. Conclude that hI(x, t) = hI(x) and that

γ =
∑

hI(x) dxI

is effectively a closed k-form on U . Now prove: If every closed k-form
on U is exact, then every closed k-form on U ×A is exact. Hint: Let
ω be a closed k-form on U ×A and let γ be the form (2.3.17).

6. Let Q ⊆ R
n be an open rectangle. Show that every closed form

on Q of degree k > 0 is exact. Hint: Let Q = (a1, b1)× · · ·× (an, bn).
Prove this assertion by induction, at the nth stage of the induction
letting U = (a1, b1) × · · · × (an−1, bn−1) and A = (an, bn).

2.4 The interior product operation

In §2.1 we explained how to pair a one-form, ω, and a vector field,
v, to get a function, ι(v)ω. This pairing operation generalizes: If one
is given a k-form, ω, and a vector field, v, both defined on an open
subset, U , one can define a (k − 1)-form on U by defining its value
at p ∈ U to be the interior product

(2.4.1) ι(v(p))ω(p) .

Note that v(p) is in TpR
n and ω(p) in Λk(T ∗

p R
n), so by definition

of interior product (see §1.7), the expression (2.4.1) is an element of
Λk−1(T ∗

p R
n). We will denote by ι(v)ω the (k− 1)−form on U whose

value at p is (2.4.1). From the properties of interior product on vector
spaces which we discussed in §1.7, one gets analogous properties for
this interior product on forms. We will list these properties, leaving
their verification as an exercise. Let v and ω be vector fields, and ω1
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and ω2 k-forms, ω a k-form and µ an ℓ-form. Then ι(v)ω is linear in
ω:

(2.4.2) ι(v)(ω1 + ω2) = ι(v)ω1 + ι(v)ω2 ,

linear in v:

(2.4.3) ι(v + w)ω = ι(v)ω + z(w)ω ,

has the derivation property:

(2.4.4) ι(v)(ω ∧ µ) = ι(v)ω ∧ µ+ (−1)kω ∧ ι(v)µ

satisfies the identity

(2.4.5) ι(v)(ι(w)ω) = −ι(w)(ι(v)ω)

and, as a special case of (2.4.5), the identity,

(2.4.6) ι(v)(ι(v)ω) = 0 .

Moreover, if ω is “decomposable” i.e., is a wedge product of one-
forms

ω = µ1 ∧ · · · ∧ µk ,(2.4.7)

then

ι(v)ω =
k∑

r=1

(−1)r−1(ι(v)µr)µ1 ∧ · · · µ̂r · · · ∧ µk .(2.4.8)

We will also leave for you to prove the following two assertions, both
of which are special cases of (2.4.8). If v = ∂/∂xr and ω = dxI =
dxi1 ∧ · · · ∧ dxik then

ι(v)ω =

k∑

r=1

(−1)rδi
ir dxIr

(2.4.9)

where

δi
ir =

{
1 i = ir

0 , i 6= ir
.
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and Ir = (i1, . . . , îr, . . . , ik) and if v =
∑
fi ∂/∂xi and ω = dx1 ∧

· · · ∧ dxn then

(2.4.10) ι(v)ω =
∑

(−1)r−1fr dx1 ∧ · · · d̂xr · · · ∧ dxn .

By combining exterior differentiation with the interior product op-
eration one gets another basic operation of vector fields on forms: the
Lie differentiation operation. For zero-forms, i.e., for C∞ functions,
ϕ, we defined this operation by the formula (2.1.14). For k-forms
we’ll define it by the slightly more complicated formula

(2.4.11) Lvω = ι(v) dω + dι(v)ω .

(Notice that for zero-forms the second summand is zero, so (2.4.11)
and (2.1.14) agree.) If ω is a k-form the right hand side of (2.4.11)
is as well, so Lv takes k-forms to k-forms. It also has the property

(2.4.12) dLvω = Lv dω

i.e., it “commutes” with d, and the property

(2.4.13) Lv(ω ∧ µ) = Lvω ∧ µ+ ω ∧ Lvµ

and from these properties it is fairly easy to get an explicit formula
for Lvω. Namely let ω be the k-form

ω =
∑

fI dxI , fI ∈ C∞(U)

and v the vector field
∑

gi ∂/∂xi , gi ∈ C∞(U) .

By (2.4.13)

Lv(fI dxI) = (LvfI) dxI + fI(Lv dxI)

and

Lv dxI =

k∑

r=1

dxi1 ∧ · · · ∧ Lv dxir ∧ · · · ∧ dxik ,

and by (2.4.12)
Lv dxir = dLvxir
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so to compute Lvω one is reduced to computing Lvxir and LvfI .
However by (2.4.13)

Lvxir = gir

and

LvfI =
∑

gi
∂fI

∂xi
.

We will leave the verification of (2.4.12) and (2.4.13) as exercises,
and also ask you to prove (by the method of computation that we’ve
just sketched) the divergence formula

(2.4.14) Lv(dx1 ∧ · · · ∧ dxn) =
∑(

∂gi

∂xi

)
dx1 ∧ · · · ∧ dxn .

Exercises:

1. Verify the assertions (2.4.2)—(2.4.7).

2. Show that if ω is the k-form, dxI and v the vector field, ∂/∂xr,
then ι(v)ω is given by (2.4.9).

3. Show that if ω is the n-form, dx1 ∧ · · · ∧ dxn, and v the vector
field,

∑
fi ∂/∂xi, ι(v)ω is given by (2.4.10).

4. Let U be an open subset of R
n and v a C∞ vector field on U .

Show that for ω ∈ Ωk(U)

dLvω = Lv dω

and

ιvLvω = Lvιvω .

Hint: Deduce the first of these identities from the identity d(dω) = 0
and the second from the identity ι(v)(ι(v)ω) = 0 .)

5. Given ωi ∈ Ωki(U), i = 1, 2, show that

Lv(ω1 ∧ ω2) = Lvω1 ∧ ω2 + ω1 ∧ Lvω2 .

Hint: Plug ω = ω1 ∧ ω2 into (2.4.11) and use (2.3.2) and (2.4.4)to
evaluate the resulting expression.
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6. Let v1 and v2 be vector fields on U and let w be their Lie
bracket. Show that for ω ∈ Ωk(U)

Lwω = Lv1
(Lv2

ω) − Lv2
(Lv1

ω) .

Hint: By definition this is true for zero-forms and by (2.4.12) for
exact one-forms. Now use the fact that every form is a sum of wedge
products of zero-forms and one-forms and the fact that Lv satisfies
the product identity (2.4.13).

7. Prove the divergence formula (2.4.14).

8. (a) Let ω = Ωk(Rn) be the form

ω =
∑

fI(x1, . . . , xn) dxI

and v the vector field, ∂/∂xn. Show that

Lvω =
∑ ∂

∂xn
fI(x1, . . . , xn) dxI .

(b) Suppose ι(v)ω = Lvω = 0. Show that ω only depends on
x1, . . . , xk−1 and dx1, . . . , dxk−1, i.e., is effectively a k-form on R

n−1.

(c) Suppose ι(v)ω = dω = 0. Show that ω is effectively a closed
k-form on R

n−1.

(d) Use these results to give another proof of the Poincaré lemma
for R

n. Prove by induction on n that every closed form on R
n is

exact.

Hints:

i. Let ω be the form in part (a) and let

gI(x1, . . . , xn) =

∫ xn

0
fI(x1, . . . , xn−1, t) dt .

Show that if ν =
∑
gI dxI , then Lvν = ω.

ii. Conclude that

(*) ω − dι(v)ν = ι(v) dν .

iii. Suppose dω = 0. Conclude from (*) and from the formula (2.4.6)
that the form β = ι(v) dν satisfies dβ = ι(v)β = 0.

iv. By part c, β is effectively a closed form on R
n−1, and by induc-

tion, β = dα. Thus by (*)

ω = dι(v)ν + dα .
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2.5 The pull-back operation on forms

Let U be an open subset of R
n, V an open subset of R

m and f :
U → V a C∞ map. Then for p ∈ U and q = f(p), the derivative of f
at p

dfp : TpR
n → TqR

m

is a linear map, so (as explained in §7 of Chapter 1) one gets from
it a pull-back map

(2.5.1) df∗p : Λk(T ∗
q R

m) → Λk(T ∗
p R

n) .

In particular, let ω be a k-form on V . Then at q ∈ V , ω takes the
value

ωq ∈ Λk(T ∗
q R

m) ,

so we can apply to it the operation (2.5.1), and this gives us an
element:

(2.5.2) df∗pωq ∈ Λk(T ∗
p R

n) .

In fact we can do this for every point p ∈ U , so this gives us a
function,

(2.5.3) p ∈ U → (dfp)
∗ωq , q = f(p) .

By the definition of k-form such a function is a k-form on U . We will
denote this k-form by f∗ω and define it to be the pull-back of ω by
the map f . A few of its basic properties are described below.

1. Let ϕ be a zero-form, i.e., a function, ϕ ∈ C∞(V ). Since

Λ0(T ∗
p ) = Λ0(T ∗

q ) = R

the map (2.5.1) is just the identity map of R onto R when k is equal
to zero. Hence for zero-forms

(2.5.4) (f∗ϕ)(p) = ϕ(q) ,

i.e., f∗ϕ is just the composite function, ϕ ◦ f ∈ C∞(U).

2. Let µ ∈ Ω1(V ) be the 1-form, µ = dϕ. By the chain rule (2.5.2)
unwinds to:

(2.5.5) (dfp)
∗dϕq = (dϕ)q ◦ dfp = d(ϕ ◦ f)p

and hence by (2.5.4)

(2.5.6) f∗ dϕ = df∗ϕ .
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3. If ω1 and ω2 are in Ωk(V ) we get from (2.5.2)

(dfp)
∗(ω1 + ω2)q = (dfp)

∗(ω1)q + (dfp)
∗(ω2)q ,

and hence by (2.5.3)

f∗(ω1 + ω2) = f∗ω1 + f∗ω2 .

4. We observed in § 1.7 that the operation (2.5.1) commutes with
wedge-product, hence if ω1 is in Ωk(V ) and ω2 is in Ωℓ(V )

df∗p (ω1)q ∧ (ω2)q = df∗p (ω1)q ∧ df
∗
p (ω2)q .

In other words

(2.5.7) f∗ω1 ∧ ω2 = f∗ω1 ∧ f
∗ω2 .

5. Let W be an open subset of R
k and g : V → W a C∞ map.

Given a point p ∈ U , let q = f(p) and w = g(q). Then the composi-
tion of the map

(dfp)
∗ : Λk(T ∗

q ) → Λk(T ∗
p )

and the map
(dgq)

∗ : Λk(T ∗
w) → Λk(T ∗

q )

is the map
(dgq ◦ dfp)

∗ : Λk(T ∗
w) → Λk(T ∗

p )

by formula (1.7.4) of Chapter 1. However, by the chain rule

(dgq) ◦ (df)p = d(g ◦ f)p

so this composition is the map

d(g ◦ f)∗p : Λk(T ∗
w) → Λk(T ∗

p ) .

Thus if ω is in Ωk(W )

(2.5.8) f∗(g∗ω) = (g ◦ f)∗ω .

Let’s see what the pull-back operation looks like in coordinates.
Using multi-index notation we can express every k-form, ω ∈ Ωk(V )
as a sum over multi-indices of length k

(2.5.9) ω =
∑

ϕI dxI ,
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the coefficient, ϕI , of dxI being in C∞(V ). Hence by (2.5.4)

f∗ω =
∑

f∗ϕIf
∗(dxI)

where f∗ϕI is the function of ϕ ◦ f . What about f∗ dxI? If I is the
multi-index, (i1, . . . , ik), then by definition

dxI = dxi1 ∧ · · · ∧ dxik

so

d∗ dxI = f∗ dxi ∧ · · · ∧ f∗ dxik

by (2.5.7), and by (2.5.6)

f∗ dxi = df∗xi = dfi

where fi is the ith coordinate function of the map f . Thus, setting

dfI = dfi1 ∧ · · · ∧ dfik ,

we get for each multi-index, I,

(2.5.10) f∗ dxI = dfI

and for the pull-back of the form (2.5.9)

(2.5.11) f∗ω =
∑

f∗ϕI dfI .

We will use this formula to prove that pull-back commutes with
exterior differentiation:

(2.5.12) d f∗ω = f∗ dω .

To prove this we recall that by (2.2.5), d( dfI) = 0, hence by (2.2.2)
and (2.5.10)

d f∗ω =
∑

d f∗ϕI ∧ dfI

=
∑

f∗ dϕI ∧ df∗ dxI

= f∗
∑

dϕI ∧ dxI

= f∗ dω .
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A special case of formula (2.5.10) will be needed in Chapter 4: Let
U and V be open subsets of R

n and let ω = dx1 ∧ · · · ∧ dxn. Then
by (2.5.10)

f∗ωp = (df1)p ∧ · · · ∧ (dfn)p

for all p ∈ U . However,

(dfi)p =
∑ ∂fi

∂xj
(p)(dxj)p

and hence by formula (1.7.7) of Chapter 1

f∗ωp = det

[
∂fi

∂xj
(p)

]
(dx1 ∧ · · · ∧ dxn)p .

In other words

(2.5.13) f∗ dx1 ∧ · · · ∧ dxn = det

[
∂fi

∂xj

]
dx1 ∧ · · · ∧ dxn .

We will outline in exercises 4 and 5 below the proof of an important
topological property of the pull-back operation. Let U be an open
subset of R

n, V an open subset of R
m, A ⊆ R an open interval

containing 0 and 1 and fi : U → V , i = 0, 1, a C∞ map.

Definition 2.5.1. A C∞ map, F : U × A → V , is a homotopy
between f0 and f1 if F (x, 0) = f0(x) and F (x, 1) = f1(x).

Thus, intuitively, f0 and f1 are homotopic if there exists a family
of C∞ maps, ft : U → V , ft(x) = F (x, t), which “smoothly deform
f0 into f1”. In the exercises mentioned above you will be asked to
verify that for f0 and f1 to be homotopic they have to satisfy the
following criteria.

Theorem 2.5.2. If f0 and f1 are homotopic then for every closed
form, ω ∈ Ωk(V ), f∗1ω − f∗0ω is exact.

This theorem is closely related to the Poincaré lemma, and, in fact,
one gets from it a slightly stronger version of the Poincaré lemma
than that described in exercises 5–6 in §2.2.

Definition 2.5.3. An open subset, U , of R
n is contractable if, for

some point p0 ∈ U , the identity map

f1 : U → U , f(p) = p ,
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is homotopic to the constant map

f0 : U → U , f0(p) = p0 .

From the theorem above it’s easy to see that the Poincaré lemma
holds for contractable open subsets of R

n. If U is contractable every
closed k-form on U of degree k > 0 is exact. (Proof: Let ω be such a
form. Then for the identity map f∗0ω = ω and for the constant map,
f∗0ω = 0.)

Exercises.

1. Let f : R
3 → R

3 be the map

f(x1, x2, x3) = (x1x2, x2x
2
3, x

3
3) .

Compute the pull-back, f∗ω for

(a) ω = x2 dx3

(b) ω = x1 dx1 ∧ dx3

(c) ω = x1 dx1 ∧ dx2 ∧ dx3

2. Let f : R
2 → R

3 be the map

f(x1, x2) = (x2
1, x

2
2, x1x2) .

Complete the pull-back, f∗ω, for

(a) ω = x2 dx2 + x3 dx3

(b) ω = x1 dx2 ∧ dx3

(c) ω = dx1 ∧ dx2 ∧ dx3

3. Let U be an open subset of R
n, V an open subset of R

m, f :
U → V a C∞ map and γ : [a, b] → U a C∞ curve. Show that for
ω ∈ Ω1(V ) ∫

γ
f∗ω =

∫

γ1

ω

where γ1 : [a, b] → V is the curve, γ1(t) = f(γ(t)). (See § 2.1,
exercise 7.)
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4. Let U be an open subset of R
n, A ⊆ R an open interval con-

taining the points, 0 and 1, and (x, t) product coordinates on U ×A.
Recall (§ 2.2, exercise 5) that a form, µ ∈ Ωℓ(U ×A) is reduced if it
can be written as a sum

(2.5.14) µ =
∑

fI(x, t) dxI

(i.e., none of the summands involve “dt”). For a reduced form, µ, let
Qµ ∈ Ωℓ(U) be the form

(2.5.15) Qµ =

(∑∫ 1

0
fI(x, t) dt

)
dxI

and let µi ∈ Ωℓ(U), i = 0, 1 be the forms

µ0 =
∑

fI(x, 0) dxI(2.5.16)

and

µ1 =
∑

fI(x, 1) dxI .(2.5.17)

Now recall that every form, ω ∈ Ωk(U ×A) can be written uniquely
as a sum

(2.5.18) ω = dt ∧ α+ β

where α and β are reduced. (See exercise 5 of § 2.3, part a.)

(a) Prove

Theorem 2.5.4. If the form (2.5.18) is closed then

(2.5.19) β0 − β1 = dQα .

Hint: Formula (2.3.14).

(b) Let ι0 and ι1 be the maps of U into U × A defined by ι0(x) =
(x, 0) and ι1(x) = (x, 1). Show that (2.5.19) can be rewritten

(2.5.20) ι∗0ω − ι∗1ω = dQα .

5. Let V be an open subset of R
m and fi : U → V , i = 0, 1, C∞

maps. Suppose f0 and f1 are homotopic. Show that for every closed
form, µ ∈ Ωk(V ), f∗1µ− f∗0µ is exact. Hint: Let F : U ×A→ V be a
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homotopy between f0 and f1 and let ω = F ∗µ. Show that ω is closed
and that f∗0µ = ι∗0ω and f∗1µ = ι∗1ω. Conclude from (2.5.20) that

(2.5.21) f∗0µ− f∗1µ = dQα

where ω = dt ∧ α+ β and α and β are reduced.

6. Show that if U ⊆ R
n is a contractable open set, then the

Poincaré lemma holds: every closed form of degree k > 0 is exact.

7. An open subset, U , of R
n is said to be star-shaped if there exists

a point p0 ∈ U , with the property that for every point p ∈ U , the
line segment,

tp+ (1 − t)p0 , 0 ≤ t ≤ 1 ,

joining p to p0 is contained in U . Show that if U is star-shaped it is
contractable.

8. Show that the following open sets are star-shaped:

(a) The open unit ball

{x ∈ R
n , ‖x‖ < 1} .

(b) The open rectangle, I1 × · · · × In, where each Ik is an open
subinterval of R.

(c) R
n itself.

(d) Product sets

U1 × U2 ⊆ R
n = R

n1 × R
n2

where Ui is a star-shaped open set in R
ni .

9. Let U be an open subset of R
n, ft : U → U , t ∈ R, a one-

parameter group of diffeomorphisms and v its infinitesimal generator.
Given ω ∈ Ωk(U) show that at t = 0

(2.5.22)
d

dt
f∗t ω = Lvω .

Here is a sketch of a proof:
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(a) Let γ(t) be the curve, γ(t) = ft(p), and let ϕ be a zero-form,
i.e., an element of C∞(U). Show that

f∗t ϕ(p) = ϕ(γ(t))

and by differentiating this identity at t = 0 conclude that (2.4.40)
holds for zero-forms.

(b) Show that if (2.4.40) holds for ω it holds for dω. Hint: Differ-
entiate the identity

f∗t dω = df∗t ω

at t = 0.

(c) Show that if (2.4.40) holds for ω1 and ω2 it holds for ω1 ∧ ω2.
Hint: Differentiate the identity

f∗t (ω1 ∧ ω2) = f∗t ω1 ∧ f
∗
t ω2

at t = 0.

(d) Deduce (2.4.40) from a, b and c. Hint: Every k-form is a sum
of wedge products of zero-forms and exact one-forms.

10. In exercise 9 show that for all t

(2.5.23)
d

dt
f∗t ω = f∗t Lvω = Lvf

∗
t ω .

Hint: By the definition of “one-parameter group”, fs+t = fs ◦ ft =
fr ◦ fs, hence:

f∗s+tω = f∗t (f∗sω) = f∗s (f∗t ω) .

Prove the first assertion by differentiating the first of these identities
with respect to s and then setting s = 0, and prove the second
assertion by doing the same for the second of these identities.

In particular conclude that

(2.5.24) f∗t Lvω = Lvf
∗
t ω .

11. (a) By massaging the result above show that

d

dt
f∗t ω = dQtω +Qt dω(2.5.25)

where

Qtω = f∗t ι(v)ω .(2.5.26)

Hint: Formula (2.4.11).
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(b) Let

Qω =

∫ 1

0
f∗t ι(v)ω dt .

Prove the homotopy indentity

(2.5.27) f∗1ω − f∗0ω = dQω +Qdω .

12. Let U be an open subset of R
n, V an open subset of R

m, v a
vector field on U , w a vector field on V and f : U → V a C∞ map.
Show that if v and w are f -related

ι(v)f∗ω = f∗ι(w)ω .

Hint: Chapter 1, §1.7, exercise 8.

2.6 Div, curl and grad

The basic operations in 3-dimensional vector calculus: grad, curl and
div are, by definition, operations on vector fields. As we’ll see below
these operations are closely related to the operations

(2.6.1) d : Ωk(R3) → Ωk+1(R3)

in degrees k = 0, 1, 2. However, only two of these operations: grad
and div, generalize to n dimensions. (They are essentially the d-
operations in degrees zero and n − 1.) And, unfortunately, there is
no simple description in terms of vector fields for the other n− 2 d-
operations. This is one of the main reasons why an adequate theory
of vector calculus in n-dimensions forces on one the differential form
approach that we’ve developed in this chapter. Even in three dimen-
sions, however, there is a good reason for replacing grad, div and curl
by the three operations, (2.6.1). A problem that physicists spend a
lot of time worrying about is the problem of general covariance: for-
mulating the laws of physics in such a way that they admit as large
a set of symmetries as possible, and frequently these formulations
involve differential forms. An example is Maxwell’s equations, the
fundamental laws of electromagnetism. These are usually expressed
as identities involving div and curl. However, as we’ll explain below,
there is an alternative formulation of Maxwell’s equations based on
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the operations (2.6.1), and from the point of view of general covari-
ance, this formulation is much more satisfactory: the only symmetries
of R

3 which preserve div and curl are translations and rotations,
whereas the operations (2.6.1) admit all diffeomorphisms of R

3 as
symmetries.

To describe how grad, div and curl are related to the opera-
tions (2.6.1) we first note that there are two ways of converting vector
fields into forms. The first makes use of the natural inner product,
B(v,w) =

∑
viwi, on R

n. From this inner product one gets by § 1.2,
exercise 9 a bijective linear map:

(2.6.2) L : R
n → (Rn)∗

with the defining property: L(v) = ℓ ⇔ ℓ(w) = B(v,w). Via the
identification (2.1.2) B and L can be transferred to TpR

n, giving one
an inner product, Bp, on TpR

n and a bijective linear map

(2.6.3) Lp : TpR
n → T ∗

p R
n .

Hence if we’re given a vector field, v, on U we can convert it into a
1-form, v

♯, by setting

(2.6.4) v
♯(p) = Lpv(p)

and this sets up a one–one correspondence between vector fields and
1-forms. For instance

(2.6.5) v =
∂

∂xi
⇔ v

♯ = dxi ,

(see exercise 3 below) and, more generally,

(2.6.6) v =
∑

fi
∂

∂xi
⇔ v

♯ =
∑

fi dxi .

In particular if f is a C∞ function on U the vector field “grad f” is
by definition

(2.6.7)
∑ ∂f

∂xi

∂

∂xi

and this gets converted by (2.6.8) into the 1-form, df . Thus the
“grad” operation in vector calculus is basically just the operation,
d : Ω0(U) → Ω1(U).
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The second way of converting vector fields into forms is via the
interior product operation. Namely let Ω be the n-form, dx1 ∧ · · · ∧
dxn. Given an open subset, U of R

n and a C∞ vector field,

(2.6.8) v =
∑

fi
∂

∂xi

on U the interior product of v with Ω is the (n− 1)-form

(2.6.9) ι(v)Ω =
∑

(−1)r−1frdx1 ∧ · · · ∧ d̂xr · · · ∧ dxn .

Moreover, every (n−1)-form can be written uniquely as such a sum,
so (2.6.8) and (2.6.9) set up a one-one correspondence between vector
fields and (n− 1)-forms. Under this correspondence the d-operation
gets converted into an operation on vector fields

(2.6.10) v → dι(v)Ω .

Moreover, by (2.4.11)
dι(v)Ω = LvΩ

and by (2.4.14)
LvΩ = div(v)Ω

where

(2.6.11) div(v) =
n∑

i=1

∂fi

∂xi
.

In other words, this correspondence between (n−1)-forms and vector
fields converts the d-operation into the divergence operation (2.6.11)
on vector fields.

Notice that “div” and “grad” are well-defined as vector calculus
operations in n-dimensions even though one usually thinks of them
as operations in 3-dimensional vector calculus. The “curl” operation,
however, is intrinsically a 3-dimensional vector calculus operation.
To define it we note that by (2.6.9) every 2-form, µ, can be written
uniquely as an interior product,

(2.6.12) µ = ι(w) dx1 ∧ dx2 ∧ dx3 ,

for some vector field w, and the left-hand side of this formula de-
termines w uniquely. Now let U be an open subset of R

3 and v a
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vector field on U . From v we get by (2.6.6) a 1-form, v
♯, and hence

by (2.6.12) a vector field, w, satisfying

(2.6.13) dv♯ = ι(w) dx1 ∧ dx2 ∧ dx3 .

The “curl” of v is defined to be this vector field, in other words,

(2.6.14) curl v = w ,

where v and w are related by (2.6.13).
We’ll leave for you to check that this definition coincides with the

definition one finds in calculus books. More explicitly we’ll leave for
you to check that if v is the vector field

v = f1
∂

∂x1
+ f2

∂

∂x2
+ f3

∂

∂x3
(2.6.15)

then

curl v = g1
∂

∂x1
+ g2

∂

∂x2
+ g3

∂

∂x3
(2.6.16)

where

g1 =
∂f2

∂x3
−
∂f3

∂x2

g2 =
∂f3

∂x1
−
∂f1

∂x3
(2.6.17)

g3 =
∂f1

∂x2
−
∂f2

∂x1
.

To summarize: the grad, curl and div operations in 3-dimensions
are basically just the three operations (2.6.1). The “grad” operation
is the operation (2.6.1) in degree zero, “curl” is the operation (2.6.1)
in degree one and “div” is the operation (2.6.1) in degree two. How-
ever, to define “grad” we had to assign an inner product, Bp, to the
next tangent space, TpR

n, for each p in U ; to define “div” we had to
equip U with the 3-form, Ω, and to define “curl”, the most compli-
cated of these three operations, we needed the Bp’s and Ω. This is
why diffeomorphisms preserve the three operations (2.6.1) but don’t
preserve grad, curl and div. The additional structures which one
needs to define grad, curl and div are only preserved by translations
and rotations.



92 Chapter 2. Differential forms

We will conclude this section by showing how Maxwell’s equa-
tions, which are usually formulated in terms of div and curl, can be
reset into “form” language. (The paragraph below is an abbreviated
version of Guillemin–Sternberg, Symplectic Techniques in Physics,
§1.20.)

Maxwell’s equations assert:

div vE = q(2.6.18)

curlvE = −
∂

∂t
vM(2.6.19)

div vM = 0(2.6.20)

c2curl vM = w +
∂

∂t
vE(2.6.21)

where vE and vM are the electric and magnetic fields, q is the scalar
charge density, w is the current density and c is the velocity of light.
(To simplify (2.6.25) slightly we’ll assume that our units of space–
time are chosen so that c = 1.) As above let Ω = dx1 ∧ dx2 ∧ dx3

and let

µE = ι(vE)Ω(2.6.22)

and

µM = ι(vM )Ω .(2.6.23)

We can then rewrite equations (2.6.18) and (2.6.20) in the form

(2.6.18′) dµE = qΩ

and

(2.6.20′) dµM = 0 .

What about (2.6.19) and (2.6.21)? We will leave the following
“form” versions of these equations as an exercise.

(2.6.19′) dv♯
E = −

∂

∂t
µM

and

(2.6.21′) dv♯
M = ι(w)Ω +

∂

∂t
µE
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where the 1-forms, v
♯
E and v

♯
M , are obtained from vE and vM by

the operation, (2.6.4).
These equations can be written more compactly as differential

form identities in 3 + 1 dimensions. Let ωM and ωE be the 2-forms

ωM = µM − v
♯
E ∧ dt(2.6.24)

and

ωE = µE − v
♯
M ∧ dt(2.6.25)

and let Λ be the 3-form

(2.6.26) Λ = qΩ + ι(w)Ω ∧ dt .

We will leave for you to show that the four equations (2.6.18) —
(2.6.21) are equivalent to two elegant and compact (3+1)-dimensional
identities

dωM = 0(2.6.27)

and

dωE = Λ .(2.6.28)

Exercises.

1. Verify that the “curl” operation is given in coordinates by the
formula (2.6.17).

2. Verify that the Maxwell’s equations, (2.6.18) and (2.6.19) be-
come the equations (2.6.20) and (2.6.21) when rewritten in differen-
tial form notation.

3. Show that in (3 + 1)-dimensions Maxwell’s equations take the
form (2.6.17)–(2.6.18).

4. Let U be an open subset of R
3 and v a vector field on U . Show

that if v is the gradient of a function, its curl has to be zero.

5. If U is simply connected prove the converse: If the curl of v
vanishes, v is the gradient of a function.
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6. Let w = curl v. Show that the divergence of w is zero.

7. Is the converse statment true? Suppose the divergence of w is
zero. Is w = curl v for some vector field v?

2.7 Symplectic geometry and classical mechanics

In this section we’ll describe some other applications of the theory
of differential forms to physics. Before describing these applications,
however, we’ll say a few words about the geometric ideas that are
involved. Let x1, . . . , x2n be the standard coordinate functions on
R

2n and for i = 1, . . . , n let yi = xi+n. The two-form

(2.7.1) ω =
n∑

i=1

dxi ∧ jyi

is known as the Darboux form. From the identity

(2.7.2) ω = −d
(∑

yi dxi

)
.

it follows that ω is exact. Moreover computing the n-fold wedge
product of ω with itself we get

ωn =

(
n∑

ii=1

dxi1 ∧ dyi1

)
∧ · · · ∧

(
n∑

in=1

dxin ∧ dyin

)

=
∑

i1,...,in

dxi1 ∧ dyi1 ∧ · · · ∧ dxin ∧ dyin .

We can simplify this sum by noting that if the multi-index, I =
i1, . . . , in, is repeating the wedge product

(2.7.3) dxi1 ∧ dyi1 ∧ · · · ∧ dxin ∧ dxin

involves two repeating dxi1 ’s and hence is zero, and if I is non-
repeating we can permute the factors and rewrite (2.7.3) in the form

dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn .

(See §1.6, exercise 5.) Hence since these are exactly n! non-repeating
multi-indices

ωn = n! dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn



2.7 Symplectic geometry and classical mechanics 95

i.e.,

1

n!
ωn = Ω(2.7.4)

where

Ω = dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn(2.7.5)

is the symplectic volume form on R
2n.

Let U and V be open subsets of R
2n. A diffeomorphism f : U → V

is said to be a symplectic diffeomorphism (or symplectomorphism for
short) if f∗ω = ω. In particular let

(2.7.6) ft : U → U , −∞ < t <∞

be a one-parameter group of diffeomorphisms and let v be the vector
field generating (2.7.6). We will say that v is a symplectic vector field
if the diffeomorphisms, (2.7.6) are symplectomorphisms, i.e., for all t,

(2.7.7) f∗t ω = ω .

Let’s see what such vector fields have to look like. Note that by
(2.5.23)

(2.7.8)
d

dt
f∗t ω = f∗t Lvω ,

hence if f∗t ω = ω for all t, the left hand side of (2.7.8) is zero, so

f∗t Lvω = 0 .

In particular, for t = 0, ft is the identity map so f∗t Lvω = Lvω = 0.
Conversely, if Lvω = 0, then f∗t Lvω = 0 so by (2.7.8) f∗t ω doesn’t
depend on t. However, since f∗t ω = ω for t = 0 we conclude that
f∗t ω = ω for all t. Thus to summarize we’ve proved

Theorem 2.7.1. Let ft : U → U be a one-parameter group of dif-
feomorphisms and v the infinitesmal generator of this group. Then v
is symplectic of and only if Lvω = 0.

There is an equivalent formulation of this result in terms of the
interior product, ι(v)ω. By (2.4.11)

Lvω = dι(v)ω + ι(v) dω .
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But by (2.7.2) dω = 0 so

Lvω = dι(v)ω .

Thus we’ve shown

Theorem 2.7.2. The vector field v is symplectic if and only if ι(v)ω
is closed.

If ι(v)ω is not only closed but is exact we’ll say that v is a Hamil-
tonian vector field. In other words v is Hamiltonian if

(2.7.9) ι(v)ω = dH

for some C∞ functions, H ∈ C∞(U).
Let’s see what this condition looks like in coordinates. Let

(2.7.10) v =
∑

fi
∂

∂xi
+ gi

∂

∂yi
.

Then

ι(v)ω =
∑

i,j

fiι

(
∂

∂xi

)
dxj ∧ dyj

+
∑

i,j

giι

(
∂

∂yi

)
dxj ∧ dyi .

But

ι

(
∂

∂xi

)
dxj =

{
1 i = i

0 i 6= j

and

ι

(
∂

∂xi

)
dyj = 0

so the first summand above is

∑
fi dyi

and a similar argument shows that the second summand is

−
∑

gi dxi .
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Hence if v is the vector field (2.7.10)

(2.7.11) ι(v)ω =
∑

fi dyi − gi dxi .

Thus since

dH =
∑ ∂H

∂xi
dxi +

∂H

∂yi
dyi

we get from (2.7.9)–(2.7.11)

(2.7.12) fi =
∂H

∂yi
and gi = −

∂H

∂xi

so v has the form:

(2.7.13) v =
∑ ∂H

∂yi

∂

∂xi
−
∂H

∂xi

∂

∂yi
.

In particular if γ(t) = (x(t) , y(t)) is an integral curve of v it has
to satisfy the system of differential equations

dxi

dt
=

∂H

∂yi
(x(t) , y(t))(2.7.14)

dyi

dt
= −

∂H

∂xi
(x(t) , y(t)) .

The formulas (2.7.10) and (2.7.11) exhibit an important property of
the Darboux form, ω. Every one-form on U can be written uniquely
as a sum ∑

fi dyi − gi dxi

with fi and gi in C∞(U) and hence (2.7.10) and (2.7.11) imply

Theorem 2.7.3. The map, v → ι(v)ω, sets up a one-one correspon-
dence between vector field and one-forms.

In particular for every C∞ function, H, we get by correspondence
a unique vector field, v = vH , with the property (2.7.9).

We next note that by (1.7.6)

LvH = ι(v) dH = ι(v)(ι(v)ω) = 0 .

Thus

(2.7.15) LvH = 0
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i.e., H is an integral of motion of the vector field, v. In particular
if the function, H : U → R, is proper, then by Theorem 2.1.10 the
vector field, v, is complete and hence by Theorem 2.7.1 generates a
one-parameter group of symplectomorphisms.

One last comment before we discuss the applications of these re-
sults to classical mechanics. If the one-parameter group (2.7.6) is a
group of symplectomorphisms then f∗t ω

n = f∗t ω ∧ · · · ∧ f∗t ω = ωn so
by (2.7.4)

(2.7.16) f∗t Ω = Ω

where Ω is the symplectic volume form (2.7.5).
The application we want to make of these ideas concerns the de-

scription, in Newtonian mechanics, of a physical system consisting of
N interacting point-masses. The configuration space of such a system
is

R
n = R

3 × · · · × R
3 (N copies)

with position coordinates, x1, . . . , xn and the phase space is R
2n

with position coordinates x1, . . . , xn and momentum coordinates,
y1, . . . , yn. The kinetic energy of this system is a quadratic function
of the momentum coordinates

(2.7.17)
1

2

∑ 1

mi
y2

i ,

and for simplicity we’ll assume that the potential energy is a func-
tion, V (x1, . . . , xn), of the position coordinates alone, i.e., it doesn’t
depend on the momenta and is time-independent as well. Let

(2.7.18) H =
1

2

∑ 1

mi
y2

i + V (x1, . . . , xn)

be the total energy of the system. We’ll show below that Newton’s
second law of motion in classical mechanics reduces to the assertion:
the trajectories in phase space of the system above are just the integral
curves of the Hamiltonian vector field, vH .

Proof. For the function (2.7.18) the equations (2.7.14) become

dxi

dt
=

1

mi
yi(2.7.19)

dyi

dt
= −

∂V

∂xi
.



2.7 Symplectic geometry and classical mechanics 99

The first set of equation are essentially just the definitions of mo-
menta, however, if we plug them into the second set of equations we
get

(2.7.20) mi
d2xi

dt2
= −

∂V

∂xi

and interpreting the term on the right as the force exerted on the ith

point-mass and the term on the left as mass times acceleration this
equation becomes Newton’s second law.

In classical mechanics the equations (2.7.14) are known as the
Hamilton–Jacobi equations. For a more detailed account of their role
in classical mechanics we highly recommend Arnold’s book, Mathe-
matical Methods of Classical Mechanics. Historically these equations
came up for the first time, not in Newtonian mechanics, but in gemo-
metric optics and a brief description of their origins there and of their
relation to Maxwell’s equations can be found in the bookl we cited
above, Symplectic Techniques in Physics.

We’ll conclude this chapter by mentioning a few implications of
the Hamiltonian description (2.7.14) of Newton’s equations (2.7.20).

1. Conservation of energy. By (2.7.15) the energy function (2.7.18)
is constant along the integral curves of v, hence the energy of the
system (2.7.14) doesn’t change in time.

2. Noether’s principle. Let γt : R
2n → R

2n be a one-parameter
group of diffeomorphisms of phase space and w its infinitesmal gen-
erator. The γt’s are called a symmetry of the system above if

(a) They preserve the function (2.7.18)

and

(b) the vector field w is Hamiltonian.

The condition (b) means that

(2.7.21) ι(w)ω = dG

for some C∞ function, G, and what Noether’s principle asserts is that
this function is an integral of motion of the system (2.7.14), i.e., sat-
isfies LvG = 0. In other words stated more succinctly: symmetries
of the system (2.7.14) give rise to integrals of motion.
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3. Poincaré recurrence. An important theorem of Poincaré asserts
that if the function H : R

2n → R defined by (2.7.18) is proper then
every trajectory of the system (2.7.14) returns arbitrarily close to
its initial position at some positive time, t0, and, in fact, does this
not just once but does so infinitely often. We’ll sketch a proof of this
theorem, using (2.7.16), in the next chapter.

Exercises.

1. Let vH be the vector field (2.7.13). Prove that div(vH) = 0.

2. Let U be an open subset of R
m, ft : U → U a one-parameter

group of diffeomorphisms of U and v the infinitesmal generator of
this group. Show that if α is a k-form on U then f∗t α = α for all t if
and only if Lvα = 0 (i.e., generalize to arbitrary k-forms the result
we proved above for the Darboux form).

3. The harmonic oscillator. Let H be the function
∑n

i=1mi(x
2
i +

y2
i ) where the mi’s are positive constants.

(a) Compute the integral curves of vH .

(b) Poincaré recurrence. Show that if (x(t), y(t)) is an integral curve
with initial point (x0, y0) = (x(0), y(0)) and U an arbitrarily small
neighborhood of (x0, y0), then for every c > 0 there exists a t > c
such that (x(t), y(t)) ∈ U .

4. Let U be an open subset of R
2n and let Hi, i = 1, 2, be in

C∞(U)i. Show that

[vH1
, vH2

] = vH(2.7.22)

where

H =
n∑

i=1

∂H1

∂xi

∂H2

∂yi
−
∂H2

∂xi

∂H1

∂yi
.(2.7.23)

5. The expression (2.7.23) is known as the Poisson bracket of H1

and H2 and is denoted by {H1,H2}. Show that it is anti-symmetric

{H1,H2} = −{H2,H1}
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and satisfies Jacobi’s identity

0 = {H1, {H2,H3}} + {H2, {H3,H1}} + {H3, {H1,H2}} .

6. Show that

(2.7.24) {H1,H2} = LvH1
H2 = −LvH2

H1 .

7. Prove that the following three properties are equivalent.

(a) {H1,H2} = 0.

(b) H1 is an integral of motion of v2.

(c) H2 is an integral of motion of v1.

8. Verify Noether’s principle.

9. Conservation of linear momentum. Suppose the potential, V in
(2.7.18) is invariant under the one-parameter group of translations

Tt(x1, . . . , xn) = (x1 + t, . . . , xn + t) .

(a) Show that the function (2.7.18) is invariant under the group of
diffeomorphisms

γt(x, y) = (Ttx, y) .

(b) Show that the infinitesmal generator of this group is the Hamil-
tonian vector field vG where G =

∑n
i=1 yi.

(c) Conclude from Noether’s principle that this function is an in-
tegral of the vector field vH , i.e., that “total linear moment” is con-
served.

(d) Show that “total linear momentum” is conserved if V is the
Coulomb potential ∑

i6=j

mi

|xi − xj |
.

10. Let Ri
t : R

2n → R
2n be the rotation which fixes the variables,

(xk, yk), k 6= i and rotates (xi, yi) by the angle, t:

Ri
t(xi, yi) = (cos t xi + sin t yi , − sin t xi + cos t yi) .
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(a) Show that Ri
t, −∞ < t < ∞, is a one-parameter group of

symplectomorphisms.

(b) Show that its generator is the Hamiltonian vector field, vHi
,

where Hi = (x2
i + y2

i )/2.

(c) Let H be the “harmonic oscillator” Hamiltonian in exercise 3.
Show that the Rj

t ’s preserve H.

(d) What does Noether’s principle tell one about the classical me-
chanical system with energy function H?

11. Show that if U is an open subset of R
2n and v is a symplec-

tic vector field on U then for every point, p0 ∈ U , there exists a
neighborhood, U0, of p0 on which v is Hamiltonian.

12. Deduce from exercises 4 and 11 that if v1 and v2 are symplectic
vector fields on an open subset, U , of R

2n their Lie bracket, [v1, v2],
is a Hamiltonian vector field.

13. Let α be the one-form,
∑n

i=1 yi dxi.

(a) Show that ω = − dα.

(b) Show that if α1 is any one-form on R
2n with the property,

ω = −dα1, then
α = α1 + F

for some C∞ function F .

(c) Show that α = ι(w)ω where w is the vector field

−
∑

yi
∂

∂yi
.

14. Let U be an open subset of R
2n and v a vector field on U . Show

that v has the property, Lvα = 0, if and only if

(2.7.25) ι(v)ω = dι(v)α .

In particular conclude that if Lvα = 0 then v is Hamiltonian. Hint: (2.7.2).

15. Let H be the function

(2.7.26) H(x, y) =
∑

fi(x)yi ,

where the fi’s are C∞ functions on R
n. Show that

(2.7.27) LvH
α = 0 .
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16. Conversely show that if H is any C∞ function on R
2n satisfying

(2.7.27) it has to be a function of the form (2.7.26). Hints:

(a) Let v be a vector field on R
2n satisfying Lvα = 0. By the

previous exercise v = vH , where H = ι(v)α.

(b) Show that H has to satisfy the equation

n∑

i=1

yi
∂H

∂yi
= H .

(c) Conclude that if Hr = ∂H
∂yr

then Hr has to satisfy the equation

n∑

i=1

yi
∂

∂yi
Hr = 0 .

(d) Conclude that Hr has to be constant along the rays (x, ty),
0 ≤ t <∞.

(e) Conclude finally thatHr has to be a function of x alone, i.e., doesn’t
depend on y.

17. Show that if vRn is a vector field

∑
fi(x)

∂

∂xi

on configuration space there is a unique lift of vRn to phase space

v =
∑

fi(x)
∂

∂xi
+ gi(x, y)

∂

∂yi

satisfying Lvα = 0.
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CHAPTER 3

INTEGRATION OF FORMS

3.1 Introduction

The change of variables formula asserts that if U and V are open
subsets of R

n and f : U → V a C1 diffeomorphism then, for every
continuous function, ϕ : V → R the integral

∫

V
ϕ(y) dy

exists if and only if the integral

∫

U
ϕ ◦ f(x)|detDf(x)| dx

exists, and if these integrals exist they are equal. Proofs of this can
be found in [?], [?] or [?]. This chapter contains an alternative proof
of this result. This proof is due to Peter Lax. Our version of his
proof in §3.5 below makes use of the theory of differential forms;
but, as Lax shows in the article [?] (which we strongly recommend as
collateral reading for this course), references to differential forms can
be avoided, and the proof described in§3.5 can be couched entirely
in the language of elementary multivariable calculus.

The virtue of Lax’s proof is that is allows one to prove a version
of the change of variables theorem for other mappings besides dif-
feomorphisms, and involves a topological invariant, the degree of a
mapping, which is itself quite interesting. Some properties of this in-
variant, and some topological applications of the change of variables
formula will be discussed in §3.6 of these notes.

Remark 3.1.1. The proof we are about to describe is somewhat
simpler and more transparent if we assume that f is a C∞ diffeo-
morphism. We’ll henceforth make this assumption.
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3.2 The Poincaré lemma for compactly supported forms

on rectangles

Let ν be a k-form on R
n. We define the support of ν to be the closure

of the set

{x ∈ R
n , νx 6= 0}

and we say that ν is compactly supported if supp ν is compact. We
will denote by Ωk

c (R
n) the set of all C∞ k-forms which are compactly

supported, and if U is an open subset of R
n, we will denote by

Ωk
c (U) the set of all compactly supported k-forms whose support is

contained in U .
Let ω = f dx1 ∧ · · · ∧ dxn be a compactly supported n-form with

f ∈ C∞
0 (Rn). We will define the integral of ω over R

n:

∫

Rn

ω

to be the usual integral of f over R
n

∫

Rn

f dx .

(Since f is C∞ and compactly supported this integral is well-defined.)
Now let Q be the rectangle

[a1, b1] × · · · × [an, bn] .

The Poincaré lemma for rectangles asserts:

Theorem 3.2.1. Let ω be a compactly supported n-form, with suppω ⊆
IntQ. Then the following assertions are equivalent:

a.
∫
ω = 0.

b. There exists a compactly supported (n−1)-form, µ, with suppµ ⊆
IntQ satisfying dµ = ω.

We will first prove that (b)⇒( a). Let

µ =

n∑

i=1

fi dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn ,
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(the “hat” over the dxi meaning that dxi has to be omitted from the
wedge product). Then

dµ =

n∑

i=1

(−1)i−1 ∂fi

∂xi
dx1 ∧ . . . ∧ dxn ,

and to show that the integral of dµ is zero it suffices to show that
each of the integrals

(2.1)i

∫

Rn

∂f

∂xi
dx

is zero. By Fubini we can compute (2.1)i by first integrating with
respect to the variable, xi, and then with respect to the remaining
variables. But ∫

∂f

∂xi
dxi = f(x)

∣∣∣∣
xi=bi

xi=ai

= 0

since fi is supported on U .
We will prove that (a) ⇒ (b) by proving a somewhat stronger

result. Let U be an open subset of R
m. We’ll say that U has property

P if every form, ω ∈ Ωm
c (U) whose integral is zero in dΩm−1

c (U).
We will prove

Theorem 3.2.2. Let U be an open subset of R
n−1 and A ⊆ R an

open interval. Then if U has property P , U ×A does as well.

Remark 3.2.3. It’s very easy to see that the open interval A itself
has property P . (See exercise 1 below.) Hence it follows by induction
from Theorem 3.2.2 that

IntQ = A1 × · · · ×An, Ai = (ai, bi)

has property P , and this proves “(a) ⇒ (b)”.

To prove Theorem 3.2.2 let (x, t) = (x1, . . . , xn−1, t) be product
coordinates on U × A. Given ω ∈ Ωn

c (U × A) we can express ω
as a wedge product, dt ∧ α with α = f(x, t) dx1 ∧ · · · ∧ dxn−1 and
f ∈ C∞

0 (U ×A). Let θ ∈ Ωn−1
c (U) be the form

(3.2.1) θ =

(∫

A
f(x, t) dt

)
dx1 ∧ · · · ∧ dxn−1 .

Then ∫

Rn−1

θ =

∫

Rn

f(x, t) dx dt =

∫

Rn

ω
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so if the integral of ω is zero, the integral of θ is zero. Hence since U
has property P , β = dν for some ν ∈ Ωn−1

c (U). Let ρ ∈ C∞(R) be a
bump function which is supported on A and whose integral over A
is one. Setting

κ = −ρ(t) dt ∧ ν

we have
dκ = ρ(t) dt ∧ dν = ρ(t) dt ∧ θ ,

and hence

ω − dκ = dt ∧ (α − ρ(t)θ) = dt ∧ u(x, t) dx1 ∧ · · · ∧ dxn−1

where

u(x, t) = f(x, t) − ρ(t)

∫

A
f(x, t) dt

by (3.2.1). Thus

(3.2.2)

∫
u(x, t) dt = 0 .

Let a and b be the end points of A and let

(3.2.3) v(x, t) =

∫ t

a
i(x, s) ds .

By (3.2.2) v(a, x) = v(b, x) = 0, so v is in C∞
0 (U ×A) and by (3.2.3),

∂v/∂t = u. Hence if we let γ be the form, v(x, t) dx1 ∧ · · · ∧ dxn−1,
we have:

dγ = u(x, t) dx ∧ · · · ∧ dxn−1 = ω − dκ

and

ω = d(γ + κ) .

Since γ and κ are both in Ωn−1
c (U × A) this proves that ω is in

dΩn−1
c (U ×A) and hence that U ×A has property P .

Exercises for §3.2.

1. Let f : R → R be a compactly supported function of class
Cr with support on the interval, (a, b). Show that the following are
equivalent.
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(a)
∫ b
a f(x) dx = 0.

(b) There exists a function, g : R → R of class Cr+1 with support
on (a, b) with dg

dx = f .

Hint: Show that the function

g(x) =

∫ x

a
f(s) ds

is compactly supported.

2. Let f = f(x, y) be a compactly supported function on R
k ×R

ℓ

with the property that the partial derivatives

∂f

∂xi
(x, y) , i = 1, . . . , k ,

and are continuous as functions of x and y. Prove the following “dif-
ferentiation under the integral sign” theorem (which we implicitly
used in our proof of Theorem 3.2.2).

Theorem 3.2.4. The function

g(x) =

∫
f(x, y) dy

is of class C1 and

∂g

∂xi
(x) =

∫
∂f

∂xi
(x, y) dy .

Hints: For y fixed and h ∈ R
k,

fi(x+ h, y) − fi(x, y) = Dxfi(c)h

for some point, c, on the line segment joining x to x+ c. Using the
fact that Dxf is continuous as a function of x and y and compactly
supported, conclude:

Lemma 3.2.5. Given ǫ > 0 there exists a δ > 0 such that for |h| ≤ δ

|f(x+ h, y) − f(x, y) −Dxf(x, c)h| ≤ ǫ|h| .
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Now let Q ⊆ R
ℓ be a rectangle with supp f ⊆ R

k × Q and show
that

|g(x + h) − g(x) −

(∫
Dxf(x, y) dy

)
h| ≤ ǫ vol (Q)|h| .

Conclude that g is differentiable at x and that its derivative is
∫
Dxf(x, y) dy .

3. Let f : R
k × R

ℓ → R be a compactly supported continuous
function. Prove

Theorem 3.2.6. If all the partial derivatives of f(x, y) with respect
to x of order ≤ r exist and are continuous as functions of x and y
the function

g(x) =

∫
f(x, y) dy

is of class Cr.

4. Let U be an open subset of R
n−1, A ⊆ R an open interval

and (x, t) product coordinates on U × A. Recall (§2.2) exercise 5)
that every form, ω ∈ Ωk(U ×A), can be written uniquely as a sum,
ω = dt∧α+β where α and β are reduced, i.e., don’t contain a factor
of dt.

(a) Show that if ω is compactly supported on U ×A then so are
α and β.

(b) Let α =
∑

I

fI(x, t) dxI . Show that the form

(3.2.4) θ =
∑

I

(∫

A
fI(x, t) dt

)
dxI

is in Ωk−1
c (U).

(c) Show that if dω = 0, then dθ = 0. Hint: By (3.2.4)

dθ =
∑

I,i

(∫

A

∂fI

∂xi
(x, t) dt

)
dxi ∧ dxI

=

∫

A
(dUα) dt

and by (??) dUα =
dβ

dt
.
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5. In exercise 4 show that if θ is in dΩk−1(U) then ω is in dΩk
c (U).

Hints:

(a) Let θ = dν, with ν = Ωk−2
c (U) and let ρ ∈ C∞(R) be a bump

function which is supported on A and whose integral over A is
one. Setting k = −ρ(t) dt ∧ ν show that

ω − dκ = dt ∧ (α− ρ(t)θ) + β

= dt ∧ (
∑

I

uI(x, t) dxI) + β

where

uI(x, t) = fI(x, t) − ρ(t)

∫

A
fI(x, t) dt .

(b) Let a and b be the end points of A and let

vI(x, t) =

∫ t

a
uI(x, t) dt .

Show that the form
∑
vI(x, t) dxI is in Ωk−1

c (U ×A) and that

dγ = ω − dκ− β − dUγ .

(c) Conclude that the form ω − d(κ+ γ) is reduced.

(d) Prove: If λ ∈ Ωk
c (U ×A) is reduced and dλ = 0 then λ = 0.

Hint: Let λ =
∑
gI(x, t) dxI . Show that dλ = 0 ⇒

∂

∂t
gI(x, t) = 0

and exploit the fact that for fixed x, gI(x, t) is compactly sup-
ported in t.

6. Let U be an open subset of R
m. We’ll say that U has property

Pk, for k < n, if every closed k-form, ω ∈ Ωk
c (U), is in dΩk−1

c (U).
Prove that if the open set U ⊆ R

n−1 in exercise 3 has property Pk

then so does U ×A.

7. Show that if Q is the rectangle [a1, b1] × · · · × [an, bn] and U =
IntQ then u has property Pk.

8. Let H
n be the half-space

(3.2.5) {(x1, . . . , xn) ; x1 ≤ 0}
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and let ω ∈ Ωn
c (R) be the n-form, f dx1∧· · ·∧ dxn with f ∈ C∞

0 (Rn).
Define:

(3.2.6)

∫

Hn

ω =

∫

Hn

f(x1, . . . , xn) dx1 · · · dxn

where the right hand side is the usual Riemann integral of f over
H

n. (This integral makes sense since f is compactly supported.) Show
that if ω = dµ for some µ ∈ Ωn−1

c (Rn) then

(3.2.7)

∫

Hn

ω =

∫

Rn−1

ι∗µ

where ι : R
n−1 → R

n is the inclusion map

(x2, . . . , xn) → (0, x2, . . . , xn) .

Hint: Let µ =
∑

i fi dx1 ∧ · · · d̂xi · · · ∧ dxn. Mimicking the “(b) ⇒
(a)” part of the proof of Theorem 3.2.1 show that the integral (3.2.6)
is the integral over R

n−1 of the function

∫ 0

−∞

∂f1

∂x1
(x1, x2, . . . , xn) dx1 .

3.3 The Poincaré lemma for compactly supported forms

on open subsets of Rn

In this section we will generalize Theorem 3.2.1 to arbitrary con-
nected open subsets of R

n.

Theorem 3.3.1. Let U be a connected open subset of R
n and let ω

be a compactly supported n-form with suppω ⊂ U . The the following
assertions are equivalent,

a.
∫
ω = 0.

b. There exists a compactly supported (n−1)-form, µ, with suppµ ⊆
U and ω = dµ.

Proof that (b) ⇒ (a). The support of µ is contained in a large
rectangle, so the integral of dµ is zero by Theorem 3.2.1.
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Proof that (a) ⇒ (b): Let ω1 and ω2 be compactly supported n-
forms with support in U . We will write

ω1 ∼ ω2

as shorthand notation for the statement: “There exists a compactly
supported (n−1)-form, µ, with support in U and with ω1−ω2 = dµ.”,
We will prove that (a) ⇒ (b) by proving an equivalent statement:
Fix a rectangle, Q0 ⊂ U and an n-form, ω0, with suppω0 ⊆ Q0 and
integral equal to one.

Theorem 3.3.2. If ω is a compactly supported n-form with suppω ⊆
U and c =

∫
ω then ω ∼ cω0.

Thus in particular if c = 0, Theorem 3.3.2 says that ω ∼ 0 proving
that (a) ⇒ (b).

To prove Theorem 3.3.2 let Qi ⊆ U , i = 1, 2, 3, . . ., be a collection
of rectangles with U = ∪IntQi and let ϕi be a partition of unity
with suppϕi ⊆ IntQi. Replacing ω by the finite sum

∑m
i=1 ϕiω, m

large, it suffices to prove Theorem 3.3.2 for each of the summands
ϕiω. In other words we can assume that suppω is contained in one
of the open rectangles, IntQi. Denote this rectangle by Q. We claim
that one can join Q0 to Q by a sequence of rectangles as in the figure
below.

Q
0

Q

Lemma 3.3.3. There exists a sequence of rectangles, Ri, i = 0, . . . ,
N + 1 such that R0 = Q0, RN+1 = Q and IntRi ∩ IntRi+1 is non-
empty.

Proof. Denote by A the set of points, x ∈ U , for which there exists a
sequence of rectangles, Ri, i = 0, . . . , N + 1 with R0 = Q0, with x ∈
IntRN+1 and with IntRi ∩ IntRi+1 non-empty. It is clear that this
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set is open and that its complement is open; so, by the connectivity
of U , U = A.

To prove Theorem 3.3.2 with suppω ⊆ Q, select, for each i, a
compactly supported n-form, νi, with supp νi ⊆ IntRi ∩ IntRi+1

and with
∫
νi = 1. The difference, νi − νi+1 is supported in IntRi+1,

and its integral is zero; so by Theorem 3.2.1, νi ∼ νi+1. Similarly,
ω0 ∼ ν1 and, if c =

∫
ω, ω ∼ cνN . Thus

cω0 ∼ cν0 ∼ · · · ∼ cνN = ω

proving the theorem.

3.4 The degree of a differentiable mapping

Let U and V be open subsets of R
n and R

k. A continuous mapping,
f : U → V , is proper if, for every compact subset, B, of V , f−1(B) is
compact. Proper mappings have a number of nice properties which
will be investigated in the exercises below. One obvious property
is that if f is a C∞ mapping and ω is a compactly supported k-
form with support on V , f∗ω is a compactly supported k-form with
support on U . Our goal in this section is to show that if U and V
are connected open subsets of R

n and f : U → V is a proper C∞

mapping then there exists a topological invariant of f , which we
will call its degree (and denote by deg(f)), such that the “change of
variables” formula:

(3.4.1)

∫

U
f∗ω = deg(f)

∫

V
ω

holds for all ω ∈ Ωn
c (V ).

Before we prove this assertion let’s see what this formula says in
coordinates. If

ω = ϕ(y) dy1 ∧ · · · ∧ dyn

then at x ∈ U

f∗ω = (ϕ ◦ f)(x) det(Df(x)) dx1 ∧ · · · ∧ dxn ;

so, in coordinates, (3.4.1) takes the form

(3.4.2)

∫

V
ϕ(y) dy = deg(f)

∫

U
ϕ ◦ f(x) det(Df(x)) dx .
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Proof of 3.4.1. Let ω0 be an n-form of compact support with suppω0

⊂ V and with
∫
ω0 = 1. If we set deg f =

∫
U f

∗ω0 then (3.4.1) clearly
holds for ω0. We will prove that (3.4.1) holds for every compactly
supported n-form, ω, with suppω ⊆ V . Let c =

∫
V ω. Then by

Theorem 3.1 ω−cω0 = dµ, where µ is a completely supported (n−1)-
form with suppµ ⊆ V . Hence

f∗ω − cf∗ω0 = f∗ dµ = d f∗µ ,

and by part (a) of Theorem 3.1
∫

U
f∗ω = c

∫
f∗ω0 = deg(f)

∫

V
ω .

We will show in § 3.6 that the degree of f is always an integer
and explain why it is a “topological” invariant of f . For the moment,
however, we’ll content ourselves with pointing out a simple but useful
property of this invariant. Let U , V andW be connected open subsets
of R

n and f : U → V and g : V →W proper C∞ mappings. Then

(3.4.3) deg(g ◦ f) = deg(g) deg(f) .

Proof. Let ω be a compactly supported n-form with support on W .
Then

(g ◦ f)∗ω = g∗f∗ω ;

so
∫

U
(g ◦ f)∗ω =

∫

U
g∗(f∗ω) = deg(g)

∫

V
f∗ω

= deg(g) deg(f)

∫

W
ω .

From this multiplicative property it is easy to deduce the following
result (which we will need in the next section).

Theorem 3.4.1. Let A be a non-singular n × n matrix and fA :
R

n → R
n the linear mapping associated with A. Then deg(fA) = +1

if detA is positive and −1 if detA is negative.

A proof of this result is outlined in exercises 5–9 below.
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Exercises for §3.4.

1. Let U be an open subset of R
n and ϕi, i = 1, 2, 3, . . ., a partition

of unity on U . Show that the mapping, f : U → R defined by

f =

∞∑

k=1

kϕk

is a proper C∞ mapping.

2. Let U and V be open subsets of R
n and R

k and let f : U → V
be a proper continuous mapping. Prove:

Theorem 3.4.2. If B is a compact subset of V and A = f−1(B)
then for every open subset, U0, with A ⊆ U0 ⊆ U , there exists an
open subset, V0, with B ⊆ V0 ⊆ V and f−1(V0) ⊆ U0.

Hint: Let C be a compact subset of V with B ⊆ IntC. Then the
set, W = f−1(C) − U0 is compact; so its image, f(W ), is compact.
Show that f(W ) and B are disjoint and let

V0 = IntC − f(W ) .

3. Show that if f : U → V is a proper continuous mapping and X
is a closed subset of U , f(X) is closed.

Hint: Let U0 = U −X. Show that if p is in V − f(X), f−1(p) is
contained in U0 and conclude from the previous exercise that there
exists a neighborhood, V0, of p such that f−1(V0) is contained in U0.
Conclude that V0 and f(X) are disjoint.

4. Let f : R
n → R

n be the translation, f(x) = x + a. Show that
deg(f) = 1.

Hint: Let ψ : R → R be a compactly supported C∞ function. For
a ∈ R, the identity

(3.4.4)

∫
ψ(t) dt =

∫
ψ(t− a) dt

is easy to prove by elementary calculus, and this identity proves the
assertion above in dimension one. Now let

(3.4.5) ϕ(x) = ψ(x1) . . . ϕ(xn)

and compute the right and left sides of (3.4.2) by Fubini’s theorem.
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5. Let σ be a permutation of the numbers, 1, . . . , n and let fσ :
R

n → R
n be the diffeomorphism, fσ(x1, . . . , xn) = (xσ(1), . . . , xσ(n)).

Prove that deg fσ = sgn(σ).

Hint: Let ϕ be the function (3.4.5). Show that if ω is equal to
ϕ(x) dx1 ∧ · · · ∧ dxn, f∗ω = (sgn σ)ω.

6. Let f : R
n → R

n be the mapping

f(x1, . . . , xn) = (x1 + λx2, x2, . . . , xn).

Prove that deg(f) = 1.

Hint: Let ω = ϕ(x1, . . . , xn) dx1 ∧ . . . ∧ dxn where ϕ : R
n → R is

compactly supported and of class C∞. Show that
∫
f∗ω =

∫
ϕ(x1 + λx2, x2, . . . , xn) dx1 . . . dxn

and evaluate the integral on the right by Fubini’s theorem; i.e., by
first integrating with respect to the x1 variable and then with respect
to the remaining variables. Note that by (3.4.4)

∫
f(x1 + λx2, x2, . . . , xn) dx1 =

∫
f(x1, x2, . . . , xn) dx1 .

7. Let f : R
n → R

n be the mapping

f(x1, . . . , xn) = (λx1, x2, . . . , xn)

with λ 6= 0. Show that deg f = +1 if λ is positive and −1 if λ is
negative.

Hint: In dimension 1 this is easy to prove by elementary calculus
techniques. Prove it in d-dimensions by the same trick as in the
previous exercise.

8. (a) Let e1, . . . , en be the standard basis vectors of R
n and A,

B and C the linear mappings

Ae1 = e, Aei =
∑

j

aj,iej , i > 1

Bei = ei , i > 1 , Be1 =

n∑

j=1

bjej(3.4.6)

Ce1 = e1 , Cei = ei + cie1 , i > 1 .
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Show that

BACe1 =
∑

bjej

and

BACei =
n∑

j

= (aj,i + cibj)ej + cib1e1

for i > 1.

(b)

(3.4.7) Lei =
n∑

j=1

ℓj,iej , i = 1, . . . , n .

Show that if ℓ1,1 6= 0 one can write L as a product, L = BAC, where
A, B and C are linear mappings of the form (3.4.6).

Hint: First solve the equations

ℓj,1 = bj

for j = 1, . . . , n, then the equations

ℓ1,i = b1ci

for i > 1, then the equations

ℓj,i = aj,i + cibj

for i, j > 1.

(c) SupposeL is invertible. Conclude thatA,B and C are invertible
and verify that Theorem 3.4.1 holds for B and C using the previous
exercises in this section.

(d) Show by an inductive argument that Theorem 3.4.1 holds for
A and conclude from (3.4.3) that it holds for L.

9. To show that Theorem 3.4.1 holds for an arbitrary linear map-
ping, L, of the form (3.4.7) we’ll need to eliminate the assumption:
ℓ1,1 6= 0. Show that for some j, ℓj,1 is non-zero, and show how to
eliminate this assumption by considering fσ ◦L where σ is the trans-
position, 1 ↔ j.
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10. Here is an alternative proof of Theorem 4.3.1 which is shorter
than the proof outlined in exercise 9 but uses some slightly more
sophisticated linear algebra.

(a) Prove Theorem 3.4.1 for linear mappings which are orthogonal,
i.e., satisfy LtL = I.

Hints:

i. Show that L∗(x2
1 + · · · + x2

n) = x2
1 + · · · + x2

n.

ii. Show that L∗(dx1 ∧ · · · ∧ dxn) is equal to dx1 ∧ · · · ∧ dxn or
−dx1 ∧ · · · ∧ dxn depending on whether L is orientation preserving
or orinetation reversing. (See § 1.2, exercise 10.)

iii. Let ψ be as in exercise 4 and let ω be the form

ω = ψ(x2
1 + · · · + x2

n) dx1 ∧ · · · ∧ dxn .

Show that L∗ω = ω if L is orientation preserving and L∗ω = −ω if
L is orientation reversing.

(b) Prove Theorem 3.4.1 for linear mappings which are self-adjoint
(satisfy Lt = L). Hint: A self-adjoint linear mapping is diagonizable:
there exists an intervertible linear mapping, M : R

n → R
n such that

(3.4.8) M−1LMei = λiei , i = 1, . . . , n .

(c) Prove that every invertible linear mapping, L, can be written
as a product, L = BC where B is orthogonal and C is self-adjoint.

Hints:

i. Show that the mapping, A = LtL, is self-adjoint and that it’s
eigenvalues, the λi’s in 3.4.8, are positive.

ii. Show that there exists an invertible self-adjoint linear mapping,
C, such that A = C2 and AC = CA.

iii. Show that the mapping B = LC−1 is orthogonal.

3.5 The change of variables formula

Let U and V be connected open subsets of R
n. If f : U → V is a

diffeomorphism, the determinant of Df(x) at x ∈ U is non-zero, and
hence, since it is a continuous function of x, its sign is the same at
every point. We will say that f is orientation preserving if this sign
is positive and orientation reversing if it is negative. We will prove
below:
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Theorem 3.5.1. The degree of f is +1 if f is orientation preserving
and −1 if f is orientation reversing.

We will then use this result to prove the following change of vari-
ables formula for diffeomorphisms.

Theorem 3.5.2. Let ϕ : V → R be a compactly supported continu-
ous function. Then

(3.5.1)

∫

U
ϕ ◦ f(x)|det(Df)(x)| =

∫

V
ϕ(y) dy .

Proof of Theorem 3.5.1. Given a point, a1 ∈ U , let a2 = −f(a1) and
for i = 1, 2, let gi : R

n → R
n be the translation, gi(x) = x + ai. By

(3.4.1) and exercise 4 of § 4 the composite diffeomorphism

(3.5.2) g2 ◦ f ◦ g1

has the same degree as f , so it suffices to prove the theorem for this
mapping. Notice however that this mapping maps the origin onto
the origin. Hence, replacing f by this mapping, we can, without loss
of generality, assume that 0 is in the domain of f and that f(0) = 0.

Next notice that if A : R
n → R

n is a bijective linear mapping the
theorem is true for A (by exercise 9 of § 3.4), and hence if we can
prove the theorem for A−1 ◦ f , (3.4.1) will tell us that the theorem
is true for f . In particular, letting A = Df(0), we have

D(A−1 ◦ f)(0) = A−1Df(0) = I

where I is the identity mapping. Therefore, replacing f by A−1f ,
we can assume that the mapping, f , for which we are attempting to
prove Theorem 3.5.1 has the properties: f(0) = 0 and Df(0) = I.
Let g(x) = f(x)− x. Then these properties imply that g(0) = 0 and
Dg(0) = 0.

Lemma 3.5.3. There exists a δ > 0 such that |g(x)| ≤ 1
2 |x| for

|x| ≤ δ.

Proof. Let g(x) = (g1(x), . . . , gn(x)). Then

∂gi

∂xj
(0) = 0 ;
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so there exists a δ > 0 such that
∣∣∣∣
∂gi

∂xj
(x)

∣∣∣∣ ≤
1

2

for |x| ≤ δ. However, by the mean value theorem,

gi(x) =
∑ ∂gi

∂xj
(c)xj

for c = t0x, 0 < t0 < 1. Thus, for |x| < δ,

|gi(x)| ≤
1

2
sup |xi| =

1

2
|x| ,

so

|g(x)| = sup |gi(x)| ≤
1

2
|x| .

Let ρ be a compactly supported C∞ function with 0 ≤ ρ ≤ 1
and with ρ(x) = 0 for |x| ≥ δ and ρ(x) = 1 for |x| ≤ δ

2 and let

f̃ : R
n → R

n be the mapping

(3.5.3) f̃(x) = x+ ρ(x)g(x) .

It’s clear that

(3.5.4) f̃(x) = x for |x| ≥ δ

and, since f(x) = x+ g(x),

(3.5.5) f̃(x) = f(x) for |x| ≤
δ

2
.

In addition, for all x ∈ R
n:

(3.5.6) |f̃(x)| ≥
1

2
|x| .

Indeed, by (3.5.4), |f̃(x)| ≥ |x| for |x| ≥ δ, and for |x| ≤ δ

|f̃(x)| ≥ |x| − ρ(x)|g(x)|

≥ |x| − |g(x)| ≥ |x| −
1

2
|x| =

1

2
|x|
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by Lemma 3.5.3.
Now let Qr be the cube, {x ∈ R

n , |x| ≤ r}, and let Qc
r = R

n−Qr.
From (3.5.6) we easily deduce that

(3.5.7) f̃−1(Qr) ⊆ Q2r

for all r, and hence that f̃ is proper. Also notice that for x ∈ Qδ,

|f̃(x)| ≤ |x| + |g(x)| ≤
3

2
|x|

by Lemma 3.5.3 and hence

(3.5.8) f̃−1(Qc
3

2
δ
) ⊆ Qc

δ .

We will now prove Theorem 3.5.1. Since f is a diffeomorphism
mapping 0 to 0, it maps a neighborhood, U0, of 0 in U diffeomor-
phically onto a neighborhood, V0, of 0 in V , and by shrinking U0 if
necessary we can assume that U0 is contained in Qδ/2 and V0 con-
tained in Qδ/4. Let ω be an n-form with support in V0 whose integral
over R

n is equal to one. Then f∗ω is supported in U0 and hence in
Qδ/2. Also by (3.5.7) f̃∗ω is supported in Qδ/2. Thus both of these

forms are zero outside Qδ/2. However, on Qδ/2, f̃ = f by (3.5.5), so
these forms are equal everywhere, and hence

deg(f) =

∫
f∗ω =

∫
f̃∗ω = deg(f̃) .

Next let ω be a compactly supported n-form with support in Qc
3δ/2

and with integral equal to one. Then f̃∗ω is supported in Qc
δ by

(3.5.8), and hence since f(x) = x on Qc
δ f̃

∗ω = ω. Thus

deg(f̃) =

∫
f∗ω =

∫
ω = 1 .

Putting these two identities together we conclude that deg(f) = 1.
Q.E.D.

If the function, ϕ, in Theorem 3.5.2 is a C∞ function, the iden-
tity (3.5.1) is an immediate consequence of the result above and the
identity (3.4.2). If ϕ is not C∞, but is just continuous, we will deduce
Theorem 3.5.2 from the following result.
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Theorem 3.5.4. Let V be an open subset of R
n. If ϕ : R

n → R is
a continuous function of compact support with suppϕ ⊆ V ; then for
every ǫ > 0 there exists a C∞ function of compact support, ψ : R

n →
R with suppψ ⊆ V and

sup |ψ(x) − ϕ(x)| < ǫ .

Proof. Let A be the support of ϕ and let d be the distance in the
sup norm from A to the complement of V . Since ϕ is continuous and
compactly supported it is uniformly continuous; so for every ǫ > 0
there exists a δ > 0 with δ < d

2 such that |ϕ(x) − ϕ(y)| < ǫ when
|x− y| ≤ δ. Now let Q be the cube: |x| < δ and let ρ : R

n → R be a
non-negative C∞ function with supp ρ ⊆ Q and

(3.5.9)

∫
ρ(y) dy = 1 .

Set

ψ(x) =

∫
ρ(y − x)ϕ(y) dy .

By Theorem 3.2.5 ψ is a C∞ function. Moreover, if Aδ is the set of
points in R

d whose distance in the sup norm from A is ≤ δ then for
x /∈ Aδ and y ∈ A , |x − y| > δ and hence ρ(y − x) = 0. Thus for
x /∈ Aδ

∫
ρ(y − x)ϕ(y) dy =

∫

A
ρ(y − x)ϕ(y) dy = 0 ,

so ψ is supported on the compact set Aδ. Moreover, since δ < d
2 ,

suppψ is contained in V . Finally note that by (3.5.9) and exercise 4
of §3.4:

(3.5.10)

∫
ρ(y − x) dy =

∫
ρ(y) dy = 1

and hence

ϕ(x) =

∫
ϕ(x)ρ(y − x) dy

so

ϕ(x) − ψ(x) =

∫
(ϕ(x) − ϕ(y))ρ(y − x) dy

and
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|ϕ(x) − ψ(x)| ≤

∫
|ϕ(x) − ϕ(y)| ρ(y − x) dy .

But ρ(y−x) = 0 for |x−y| ≥ δ; and |ϕ(x)−ϕ(y)| < ǫ for |x−y| ≤ δ,
so the integrand on the right is less than

ǫ

∫
ρ(y − x) dy ,

and hence by (3.5.10)

|ϕ(x) − ψ(x)| ≤ ǫ .

To prove the identity (3.5.1), let γ : R
n → R be a C∞ cut-off

function which is one on a neighborhood, V1, of the support of ϕ, is
non-negative, and is compactly supported with suppγ ⊆ V , and let

c =

∫
γ(y) dy .

By Theorem 3.5.4 there exists, for every ǫ > 0, a C∞ function ψ,
with support on V1 satisfying

(3.5.11) |ϕ− ψ| ≤ ǫ
2c .

Thus

∣∣∣
∫

V
(ϕ− ψ)(y) dy

∣∣∣ ≤

∫

V
|ϕ− ψ|(y) dy

≤

∫

V
γ|ϕ − ψ|(xy) dy

≤ ǫ
2c

∫
γ(y) dy ≤ ǫ

2

so

(3.5.12)
∣∣∣
∫

V
ϕ(y) dy −

∫

V
ψ(y) dy

∣∣∣ ≤ ǫ
2 .

Similarly, the expression

∣∣∣
∫

U
(ϕ− ψ) ◦ f(x)|detDf(x)| dx

∣∣∣
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is less than or equal to the integral

∫

U
γ ◦ f(x)|(ϕ− ψ) ◦ f(x)| |detDf(x)| dx

and by (3.5.11), |(ϕ−ψ) ◦ f(x)| ≤ ǫ
2c , so this integral is less than or

equal to

ǫ
2c

∫
γ ◦ f(x)|detDf(x)| dx

and hence by (3.5.1) is less than or equal to ǫ
2 . Thus

(3.5.13)
∣∣∣
∫

U
ϕ ◦ f(x) |detDf(x)|dx−

∫

U
ψ ◦ f(x)|detDf(x)| dx

∣∣∣∣∣ ≤
ǫ
2 .

Combining (3.5.12), (3.5.13) and the identity

∫

V
ψ(y) dy =

∫
ψ ◦ f(x)|detDf(x)| dx

we get, for all ǫ > 0,

∣∣∣
∫

V
ϕ(y) dy −

∫

U
ϕ ◦ f(x)|detDf(x)| dx

∣∣∣ ≤ ǫ

and hence
∫
ϕ(y) dy =

∫
ϕ ◦ f(x)|detDf(x)| dx .

Exercises for §3.5

1. Let h : V → R be a non-negative continuous function. Show
that if the improper integral

∫

V
h(y) dy

is well-defined, then the improper integral

∫

U
h ◦ f(x)|detDf(x)| dx

is well-defined and these two integrals are equal.
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Hint: If ϕi, i = 1, 2, 3, . . . is a partition of unity on V then ψi =
ϕi ◦ f is a partition of unity on U and

∫
ϕihdy =

∫
ψi(h ◦ f(x))|detDf(x)| dx .

Now sum both sides of this identity over i.

2. Show that the result above is true without the assumption that
h is non-negative.

Hint: h = h+ − h−, where h+ = max(h, 0) and h− = max(−h, 0).

3. Show that, in the formula (3.4.2), one can allow the function,
ϕ, to be a continuous compactly supported function rather than a
C∞ compactly supported function.

4. Let H
n be the half-space (??) and U and V open subsets of

R
n. Suppose f : U → V is an orientation preserving diffeomorphism

mapping U ∩ H
n onto V ∩ H

n. Show that for ω ∈ Ωn
c (V )

(3.5.14)

∫

U∩Hn

f∗ω =

∫

V ∩Hn

ω .

Hint: Interpret the left and right hand sides of this formula as im-
proper integrals over U ∩ Int H

n and V ∩ Int H
n.

5. The boundary of H
n is the set

bHn = {(0, x2, . . . , xn) , (x2, . . . , xn) ∈ R
n}

so the map

ι : R
n−1 → H

n , (x2, . . . , xn) → (0, x2, . . . , xn)

in exercise 9 in §3.2 maps R
n−1 bijectively onto bHn.

(a) Show that the map f : U → V in exercise 4 maps U ∩ bHn

onto V ∩ bHn.

(b) Let U ′ = ι−1(U) and V ′ = ι−1(V ). Conclude from part (a)
that the restriction of f to U ∩ bHn gives one a diffeomorphism

g : U ′ → V ′

satisfying:

(3.5.15) ι · g = f · ι .
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(c) Let µ be in Ωn−1
c (V ). Conclude from (3.2.7) and (3.5.14):

(3.5.16)

∫

U ′

g∗ι∗µ =

∫

V ′

ι∗µ

and in particular show that the diffeomorphism, g : U ′ → V ′,
is orientation preserving.

3.6 Techniques for computing the degree of a mapping

Let U and V be open subsets of R
n and f : U → V a proper C∞

mapping. In this section we will show how to compute the degree
of f and, in particular, show that it is always an integer. From this
fact we will be able to conclude that the degree of f is a topological
invariant of f : if we deform f smoothly, its degree doesn’t change.

Definition 3.6.1. A point, x ∈ U , is a critical point of f if the
derivative

Df(x) : R
n → R

n

fails to be bijective, i.e., if det(Df(x)) = 0.

We will denote the set of critical points of f by Cf . It’s clear from
the definition that this set is a closed subset of U and hence, by
exercise 3 in §3.4, f(Cf ) is a closed subset of V . We will call this
image the set of critical values of f and the complement of this image
the set of regular values of f . Notice that V − f(U) is contained in
f − f(Cf ), so if a point, g ∈ V is not in the image of f , it’s a
regular value of f “by default”, i.e., it contains no points of U in
the pre-image and hence, a fortiori, contains no critical points in its
pre-image. Notice also that Cf can be quite large. For instance, if c is
a point in V and f : U → V is the constant map which maps all of U
onto c, then Cf = U . However, in this example, f(Cf ) = {c}, so the
set of regular values of f is V − {c}, and hence (in this example) is
an open dense subset of V . We will show that this is true in general.

Theorem 3.6.2. (Sard’s theorem.)
If U and V are open subsets of R

n and f : U → V a proper C∞

map, the set of regular values of f is an open dense subset of V .

We will defer the proof of this to Section 3.7 and, in this section,
explore some of its implications. Picking a regular value, q, of f we
will prove:
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Theorem 3.6.3. The set, f−1(q) is a finite set. Moreover, if f−1(q) =
{p1, . . . , pn} there exist connected open neighborhoods, Ui, of pi in Y
and an open neighborhood, W , of q in V such that:

i. for i 6= j Ui and Uj are disjoint;

ii. f−1(W ) =
⋃
Ui,

iii. f maps Ui diffeomorphically onto W .

Proof. If p ∈ f−1(q) then, since q is a regular value, p /∈ Cf ; so

Df(p) : R
n → R

n

is bijective. Hence by the inverse function theorem, f maps a neigh-
borhood, Up of p diffeomorphically onto a neighborhood of q. The
open sets

{Up , p ∈ f−1(q)}

are a covering of f−1(q); and, since f is proper, f−1(q) is compact;
so we can extract a finite subcovering

{Upi
, i = 1, . . . , N}

and since pi is the only point in Upi
which maps onto q, f−1(q) =

{p1, . . . , pN}.
Without loss of generality we can assume that the Upi

’s are disjoint
from each other; for, if not, we can replace them by smaller neighbor-
hoods of the pi’s which have this property. By Theorem 3.4.2 there
exists a connected open neighborhood, W , of q in V for which

f−1(W ) ⊂
⋃
Upi

.

To conclude the proof let Ui = f−1(W ) ∩ Upi
.

The main result of this section is a recipe for computing the de-
gree of f by counting the number of pi’s above, keeping track of
orientation.

Theorem 3.6.4. For each pi ∈ f−1(q) let σpi
= +1 if f : Ui →W is

orientation preserving and −1 if f : Ui →W is orientation reversing.
Then

(3.6.1) deg(f) =

N∑

i=1

σpi
.
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Proof. Let ω be a compactly supported n-form on W whose integral
is one. Then

deg(f) =

∫

U
f∗ω =

N∑

i=1

∫

Ui

f∗ω .

Since f : Ui →W is a diffeomorphism

∫

Ui

f∗ω = ±

∫

W
ω = +1 or − 1

depending on whether f : Ui → W is orientation preserving or not.
Thus deg(f) is equal to the sum (3.6.1).

As we pointed out above, a point, q ∈ V can qualify as a regular
value of f “by default”, i.e., by not being in the image of f . In this
case the recipe (3.6.1) for computing the degree gives “by default”
the answer zero. Let’s corroborate this directly.

Theorem 3.6.5. If f : U → V isn’t onto, deg(f) = 0.

Proof. By exercise 3 of §3.4, V − f(U) is open; so if it is non-empty,
there exists a compactly supported n-form, ω, with support in V −
f(U) and with integral equal to one. Since ω = 0 on the image of f ,
f∗ω = 0; so

0 =

∫

U
f∗ω = deg(f)

∫

V
ω = deg(f) .

Remark: In applications the contrapositive of this theorem is much
more useful than the theorem itself.

Theorem 3.6.6. If deg(f) 6= 0 f maps U onto V .

In other words if deg(f) 6= 0 the equation

(3.6.2) f(x) = y

has a solution, x ∈ U for every y ∈ V .
We will now show that the degree of f is a topological invariant of

f : if we deform f by a “homotopy” we don’t change its degree. To
make this assertion precise, let’s recall what we mean by a homotopy
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between a pair of C∞ maps. Let U be an open subset of R
m, V an

open subset of R
n, A an open subinterval of R containing 0 and 1, and

fi : U → V , i = 0, 1, C∞ maps. Then a C∞ map F : U ×A→ V is a
homotopy between f0 and f1 if F (x, 0) = f0(x) and F (x, 1) = f1(x).
(See Definition ??.) Suppose now that f0 and f1 are proper.

Definition 3.6.7. F is a proper homotopy between f0 and f1 if the
map

(3.6.3) F ♯ : U ×A→ V ×A

mapping (x, t) to (F (x, t), t) is proper.

Note that if F is a proper homotopy between f0 and f1, then for
every t between 0 and 1, the map

ft : U → V , ft(x) = Ft(x)

is proper.
Now let U and V be open subsets of R

n.

Theorem 3.6.8. If f0 and f1 are properly homotopic, their degrees
are the same.

Proof. Let

ω = ϕ(y) d y1 ∧ · · · ∧ d yn

be a compactly supported n-form on X whose integral over V is 1.
The the degree of ft is equal to

(3.6.4)

∫

U
ϕ(F1(x, t), . . . , Fn(x, t)) detDxF (x, t) dx .

The integrand in (3.6.4) is continuous and for 0 ≤ t ≤ 1 is supported
on a compact subset of U × [0, 1], hence (3.6.4) is continuous as a
function of t. However, as we’ve just proved, deg(ft) is integer valued
so this function is a constant.

(For an alternative proof of this result see exercise 9 below.) We’ll
conclude this account of degree theory by describing a couple appli-
cations.

Application 1. The Brouwer fixed point theorem
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Let Bn be the closed unit ball in R
n:

{x ∈ R
n , ‖x‖ ≤ 1} .

Theorem 3.6.9. If f : Bn → Bn is a continuous mapping then f
has a fixed point, i.e., maps some point, x0 ∈ Bn onto itself.

The idea of the proof will be to assume that there isn’t a fixed
point and show that this leads to a contradiction. Suppose that for
every point, x ∈ Bn f(x) 6= x. Consider the ray through f(x) in the
direction of x:

f(x) + s(x− f(x)) , 0 ≤ s <∞ .

This intersects the boundary, Sn−1, of Bn in a unique point, γ(x),
(see figure 1 below); and one of the exercises at the end of this section
will be to show that the mapping γ : Bn → Sn−1, x → γ(x), is a
continuous mapping. Also it is clear from figure 1 that γ(x) = x if
x ∈ Sn−1, so we can extend γ to a continuous mapping of R

n into
R

n by letting γ be the identity for ‖x‖ ≥ 1. Note that this extended
mapping has the property

(3.6.5) ‖γ(x)‖ ≥ 1

for all x ∈ R
n and

(3.6.6) γ(x) = x

for all ‖x‖ ≥ 1. To get a contradiction we’ll show that γ can be
approximated by a C∞ map which has similar properties. For this
we will need the following corollary of Theorem 3.5.4.

Lemma 3.6.10. Let U be an open subset of R
n, C a compact subset

of U and ϕ : U → R a continuous function which is C∞ on the
complement of C. Then for every ǫ > 0, there exists a C∞ function,
ψ : U → R, such that ϕ− ψ has compact support and |ϕ− ψ| < ǫ.

Proof. Let ρ be a bump function which is in C∞
0 (U) and is equal to

1 on a neighborhood of C. By Theorem 3.5.4 there exists a function,
ψ0 ∈ C∞

0 (U) such that |ρϕ − ψ0| < ǫ. Let ψ = (1 − ρ)ϕ + ψ0, and
note that

ϕ− ψ = (1 − ρ)ϕ+ ρϕ− (1 − ρ)ϕ− ψ0

= ρϕ− ψ0 .
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By applying this lemma to each of the coordinates of the map, γ,
one obtains a C∞ map, g : R

n → R
n such that

(3.6.7) ‖g − γ‖ < ǫ < 1

and such that g = γ on the complement of a compact set. How-
ever, by (3.6.6), this means that g is equal to the identity on the
complement of a compact set and hence (see exercise 9) that g is
proper and has degree one. On the other hand by (3.6.8) and (3.6.6)
‖g(x)‖ > 1−ǫ for all x ∈ R

n, so 0 /∈ Im g and hence by Theorem 3.6.4,
deg(g) = 0. Contradiction.

x
f(x)

(x)

Figure 3.6.1.

Application 2. The fundamental theorem of algebra

Let p(z) = zn+an−1z
n−1+ · · ·+a1z+a0 be a polynomial of degree

n with complex coefficients. If we identify the complex plane

C = {z = x+ iy ; x, y ∈ R}

with R
2 via the map, (x, y) ∈ R

2 → z = x+ iy, we can think of p as
defining a mapping

p : R
2 → R

2 , z → p(z) .
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We will prove

Theorem 3.6.11. The mapping, p, is proper and deg(p) = n.

Proof. For t ∈ R

pt(z) = (1 − t)zn + tp(z)

= zn + t
n−1∑

i=0

aiz
i .

We will show that the mapping

g : R × R
2 → R

2 , z → pt(z)

is a proper homotopy. Let

C = sup{|ai| , i = 0, . . . , n− 1} .

Then for |z| ≥ 1

|a0 + · · · + an−1z
n−1| ≤ |a0| + |a1||z| + · · · + |an−1| |z|

n−1

≤ C|z|n−1 ,

and hence, for |t| ≤ a and |z| ≥ 2aC,

|pt(z)| ≥ |z|n − aC|z|n−1

≥ aC|z|n−1 .

If A is a compact subset of C then for some R > 0, A is contained
in the disk, |w| ≤ R and hence the set

{z ∈ C , (pt(z), t) ∈ A× [−a, a]}

is contained in the compact set

{z ∈ C , aC|z|n−1 ≤ R} ,

and this shows that g is a proper homotopy. Thus each of the map-
pings,

pt : C → C ,

is proper and deg pt = deg p1 = deg p = deg p0. However, p0 : C → C

is just the mapping, z → zn and an elementary computation (see
exercises 5 and 6 below) shows that the degree of this mapping is n.
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In particular for n > 0 the degree of p is non-zero; so by Theo-
rem 3.6.4 we conclude that p : C → C is surjective and hence has
zero in its image.

Theorem 3.6.12. (fundamental theorem of algebra)
Every polynomial,

p(z) = zn + an−1z
n−1 + · · · + a0 ,

with complex coefficients has a complex root, p(z0) = 0, for some
z0 ∈ C.

Exercises for §3.6

1. Let W be a subset of R
n and let a(x), b(x) and c(x) be real-

valued functions on W of class Cr. Suppose that for every x ∈ W
the quadratic polynomial

(*) a(x)s2 + b(x)s + c(x)

has two distinct real roots, s+(x) and s−(x), with s+(x) > s−(x).
Prove that s+ and s− are functions of class Cr.

Hint: What are the roots of the quadratic polynomial: as2+bs+c?

2. Show that the function, γ(x), defined in figure 1 is a continuous
mapping of Bn onto S2n−1. Hint: γ(x) lies on the ray,

f(x) + s(x− f(x)) , 0 ≤ s <∞

and satisfies ‖γ(x)‖ = 1; so γ(x) is equal to

f(x) + s0(x− f(x))

where s0 is a non-negative root of the quadratic polynomial

‖f(x) + s(x− f(x))‖2 − 1 .

Argue from figure 1 that this polynomial has to have two distinct
real roots.
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3. Show that the Brouwer fixed point theorem isn’t true if one
replaces the closed unit ball by the open unit ball. Hint: Let U be
the open unit ball (i.e., the interior of Bn). Show that the map

h : U → R
n , h(x) =

x

1 − ‖x‖2

is a diffeomorphism of U onto R
n, and show that there are lots of

mappings of R
n onto R

n which don’t have fixed points.

4. Show that the fixed point in the Brouwer theorem doesn’t have
to be an interior point of Bn, i.e., show that it can lie on the bound-
ary.

5. If we identify C with R
2 via the mapping: (x, y) → z = x+ iy,

we can think of a C-linear mapping of C into itself, i.e., a mapping
of the form

z → cz , c ∈ C

as being an R-linear mapping of R
2 into itself. Show that the deter-

minant of this mapping is |c|2.

6. (a) Let f : C → C be the mapping, f(z) = zn. Show that

Df(z) = nzn−1 .

Hint: Argue from first principles. Show that for h ∈ C = R
2

(z + h)n − zn − nzn−1h

|h|

tends to zero as |h| → 0.

(b) Conclude from the previous exercise that

detDf(z) = n2|z|2n−2 .

(c) Show that at every point z ∈ C−0, f is orientation preserving.

(d) Show that every point, w ∈ C − 0 is a regular value of f and
that

f−1(w) = {z1, . . . , zn}

with σzi
= +1.

(e) Conclude that the degree of f is n.
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7. Prove that the map, f , in exercise 6 has degree n by deducing
this directly from the definition of degree. Some hints:

(a) Show that in polar coordinates, f is the map, (r, θ) → (rn, nθ).

(b) Let ω be the two-form, g(x2+y2) dx∧ dy, where g(t) is a com-
pactly supported C∞ function of t. Show that in polar coordinates,
ω = g(r2)r dr ∧ dθ, and compute the degree of f by computing the
integrals of ω and f∗ω, in polar coordinates and comparing them.

8. Let U be an open subset of R
n, V an open subset of R

m, A an
open subinterval of R containing 0 and 1, fi : U → V i = 0, 1, a pair
of C∞ mappings and F : U ×A→ V a homotopy between f0 and f1.

(a) In §2.3, exercise 4 you proved that if µ is in Ωk(V ) and dµ = 0,
then

(3.6.8) f∗0µ− f∗1µ = dν

where ν is the (k − 1)-form, Qα, in formula (??). Show (by careful
inspection of the definition of Qα) that if F is a proper homotopy
and µ ∈ Ωk

c (V ) then ν ∈ Ωk−1
c (U).

(b) Suppose in particular that U and V are open subsets of R
n

and µ is in Ωn
c (V ). Deduce from (3.6.8) that

∫
f∗0µ =

∫
f∗1µ

and deduce directly from the definition of degree that degree is a
proper homotopy invariant.

9. Let U be an open connected subset of R
n and f : U → U

a proper C∞ map. Prove that if f is equal to the identity on the
complement of a compact set, C, then f is proper and its degree is
equal to 1. Hints:

(a) Show that for every subset, A, of U , f−1(A) ⊆ A ∪ C, and
conclude from this that f is proper.

(b) Let C ′ = f(C). Use the recipe (1.6.1) to compute deg(f) with
q ∈ U − C ′.

10. Let [ai,j] be an n × n matrix and A : R
n → R

n the linear
mapping associated with this matrix. Frobenius’ theorem asserts: If
the ai,j’s are non-negative then A has a non-negative eigenvalue. In
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other words there exists a v ∈ R
n and a λ ∈ R, λ ≥ 0, such that

Av = λv. Deduce this linear algebra result from the Brouwer fixed
point theorem. Hints:

(a) We can assume that A is bijective, otherwise 0 is an eigenvalue.
Let Sn−1 be the (n − 1)-sphere, |x| = 1, and f : Sn−1 → Sn−1 the
map,

f(x) =
Ax

‖Ax‖
.

Show that f maps the set

Q = {(x1, . . . , xn) ∈ Sn−1 ; xi ≥ 0}

into itself.

(b) It’s easy to prove that Q is homeomorphic to the unit ball
Bn−1, i.e., that there exists a continuous map, g : Q→ Bn−1 which is
invertible and has a continuous inverse. Without bothering to prove
this fact deduce from it Frobenius’ theorem.

3.7 Appendix: Sard’s theorem

The version of Sard’s theorem stated in §3.5 is a corollary of the
following more general result.

Theorem 3.7.1. Let U be an open subset of R
n and f : U → R

n a
C∞ map. Then R

n − f(Cf ) is dense in R
n.

Before undertaking to prove this we will make a few general com-
ments about this result.

Remark 3.7.2. If On, n = 1, 2, are open dense subsets of R
n, the

intersection ⋂

n

On

is dense in R
n. (See [?], pg. 200 or exercise 4 below.)

Remark 3.7.3. If An, n = 1, 2, . . . are a covering of U by compact
sets, On = R

n−f(Cf ∩An) is open, so if we can prove that it’s dense
then by Remark 3.7.2 we will have proved Sard’s theorem. Hence
since we can always cover U by a countable collection of closed cubes,
it suffices to prove: for every closed cube, A ⊆ U , R

n − f(Cf ∩A) is
dense in R

n.
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Remark 3.7.4. Let g : W → U be a diffeomorphism and let h =
f ◦ g. Then

(3.7.1) f(Cf ) = h(Ch)

so Sard’s theorem for g implies Sard’s theorem for f .

We will first prove Sard’s theorem for the set of super-critical
points of f , the set:

(3.7.2) C♯
f = {p ∈ U , Df(p) = 0} .

Proposition 3.7.5. Let A ⊆ U be a closed cube. Then the open set
R

n − f(A ∩ C♯
f ) is a dense subset of R

n.

We’ll deduce this from the lemma below.

Lemma 3.7.6. Given ǫ > 0 one can cover f(A ∩ C♯
f ) by a finite

number of cubes of total volume less than ǫ.

Proof. Let the length of each of the sides of A be ℓ. Given δ > 0 one

can subdivide A into Nn cubes, each of volume,

(
ℓ

N

)n

, such that

if x and y are points of any one of these subcubes

(3.7.3)

∣∣∣∣
∂fi

∂xj
(x) −

∂fi

∂xj
(y)

∣∣∣∣ < δ .

Let A1, . . . , Am be the cubes in this collection which intersect C♯
f .

Then for z0 ∈ Ai ∩ C
♯
f ,

∂fi

∂xj
(z0) = 0, so for z ∈ Ai

(3.7.4)

∣∣∣∣
∂fi

∂xj
(z)

∣∣∣∣ < δ

by (3.7.3). If x and y are points of Ai then by the mean value theorem
there exists a point z on the line segment joining x to y such that

fi(x) − fi(y) =
∑ ∂fi

∂xj
(z)(xj − yj)

and hence by (3.7.4)

(3.7.5) |fi(x) − fi(y)| ≤ δ
∑

|xi − yi| ≤ nδ
ℓ

N
.
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Thus f(Cf ∩Ai) is contained in a cube, Bi, of volume

(
n
δℓ

N

)n

, and

f(Cf ∩A) is contained in a union of cubes, Bi, of total volume less
that

Nnnn δ
nℓn

Nn
= nnδnℓn

so if w choose δnℓn < ǫ, we’re done.

Proof. To prove Proposition 3.7.5 we have to show that for every
point p ∈ R

n and neighborhood, W , of p, W − f(C♯
f ∩ A) is non-

empty. Suppose

(3.7.6) W ⊆ f(C♯
f ∩A) .

Without loss of generality we can assume W is a cube of volume ǫ,
but the lemma tells us that f(C♯

f ∩ A) can be covered by a finite
number of cubes whose total volume is less than ǫ, and hence by
(3.7.6) W can be covered by a finite number of cubes of total volume
less than ǫ, so its volume is less than ǫ. This contradiction proves
that the inclusion (3.7.6) can’t hold.

To prove Theorem 3.7.1 let Ui,j be the subset of U where
∂fi

∂xj
6= 0.

Then

U =
⋃
Ui,j ∪ C

♯
f ,

so to prove the theorem it suffices to show that R
n − f(Ui,j ∩Cf ) is

dense in R
n, i.e., it suffices to prove the theorem with U replaced by

Ui,j. Let σi : R
n × R

n be the involution which interchanges x1 and
xi and leaves the remaining xk’s fixed. Letting fnew = σifoldσj and
Unew = σjUold, we have, for f = fnew and U = Unew

(3.7.7)
∂f1

∂x1
(p) 6= 0 for all p ∈ U}

so we’re reduced to proving Theorem 3.7.1 for maps f : U → R
n

having the property (3.7.6). Let g : U → R
n be defined by

(3.7.8) g(x1, . . . , xn) = (f1(x), x2, . . . , xn) .
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Then

g∗x1 = f∗x1 = f1(x1, . . . , xn)(3.7.9)

and

det(Dg) =
∂f1

∂x1
6= 0 .(3.7.10)

Thus, by the inverse function theorem, g is locally a diffeomorphism
at every point, p ∈ U . This means that if A is a compact subset of
U we can cover A by a finite number of open subsets, Ui ⊂ U such
that g maps Ui diffeomorphically onto an open subset Wi in R

n. To
conclude the proof of the theorem we’ll show that R

n−f(Cf∩Ui∩A)
is a dense subset of R

n. Let h : Wi → R
n be the map h = f ◦ g−1.

To prove this assertion it suffices by Remark 3.7.4 to prove that the
set

R
n − h(Ch)

is dense in R
n. This we will do by induction on n. First note that for

n = 1, Cf = C♯
f , so we’ve already proved Theorem 3.7.1 in dimension

one. Now note that by (3.7.8), h∗x1 = x1, i.e., h is a mapping of the
form

(3.7.11) h(x1, . . . , xn) = (x1, h2(x), . . . , hn(x)) .

Thus if we let Wc be the set

(3.7.12) {(x2, . . . , xn) ∈ R
n−1 ; (c, x2, . . . , xn) ∈Wi}

and let hc : Wc → R
n−1 be the map

(3.7.13) hc(x2, . . . , xn) = (h2(c, x2, . . . , xn), . . . , hn(c, x2, . . . , xn)) .

Then

(3.7.14) det(Dhc)(x2, . . . , xn) = det(Dh)(c, x2, . . . , xn)

and hence

(3.7.15) (c, x) ∈Wi ∩ Ch ⇔ x ∈ Chc
.

Now let p0 = (c, x0) be a point in R
n. We have to show that every

neighborhood, V , of p0 contains a point p ∈ R
n − h(Ch). Let Vc ⊆

R
n−1 be the set of points, x, for which (c, x) ∈ V . By induction Vc

contains a point, x ∈ R
n−1 −hc(Chc

) and hence p = (c, x) is in V by
definition and in R

n − h(Cn) by (3.7.15).
Q.E.D.
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Exercises for §3.7

1. (a) Let f : R → R be the map f(x) = (x2 − 1)2. What is the
set of critical points of f? What is its image?

(b) Same questions for the map f(x) = sinx+ x.

(c) Same questions for the map

f(x) =

{
0, x ≤ 0

e−
1

x , x > 0
.

2. Let f : R
n → R

n be an affine map, i.e., a map of the form

f(x) = A(x) + x0

where A : R
n → R

n is a linear map. Prove Sard’s theorem for f .

3. Let ρ : R → R be a C∞ function which is supported in the
interval

(
−1

2 ,
1
2

)
and has a maximum at the origin. Let r1, r2, . . . ,

be an enumeration of the rational numbers, and let f : R → R be
the map

f(x) =

∞∑

i=1

riρ(x− i) .

Show that f is a C∞ map and show that the image of Cf is dense in
R. (The moral of this example: Sard’s theorem says that the com-
plement of Cf is dense in R, but Cf can be dense as well.)

4. Prove the assertion made in Remark 3.7.2. Hint: You need to
show that for every point p ∈ R

n and every neighborhood, V , of p,⋂
On ∩ V is non-empty. Construct, by induction, a family of closed

balls, Bk, such that

(a) Bk ⊆ V

(b) Bk+1 ⊆ Bk

(c) Bk ⊆
⋂

n≤k

On

(d) radius Bk <
1
k

and show that the intersection of the Bk’s is non-empty.

5. Verify (3.7.1).


