CHAPTER 1

MULTILINEAR ALGEBRA

1.1 Background

We will list below some definitions and theorems that are part of the curriculum of a standard theory-based sophomore level course in linear algebra. (Such a course is a prerequisite for reading these notes.) A vector space is a set, V, the elements of which we will refer to as vectors. It is equipped with two vector space operations:
Vector space addition. Given two vectors, v_{1} and v_{2}, one can add them to get a third vector, $v_{1}+v_{2}$.
Scalar multiplication. Given a vector, v, and a real number, λ, one can multiply v by λ to get a vector, λv.

These operations satisfy a number of standard rules: associativity, commutativity, distributive laws, etc. which we assume you're familiar with. (See exercise 1 below.) In addition we'll assume you're familiar with the following definitions and theorems.

1. The zero vector. This vector has the property that for every vector, $v, v+0=0+v=v$ and $\lambda v=0$ if λ is the real number, zero.
2. Linear independence. A collection of vectors, $v_{i}, i=1, \ldots, k$, is linearly independent if the map

$$
\begin{equation*}
\mathbb{R}^{k} \rightarrow V, \quad\left(c_{1}, \ldots, c_{k}\right) \rightarrow c_{1} v_{1}+\cdots+c_{k} v_{k} \tag{1.1.1}
\end{equation*}
$$

is $1-1$.
3. The spanning property. A collection of vectors, $v_{i}, i=1, \ldots, k$, spans V if the map (1.1.1) is onto.
4. The notion of basis. The vectors, v_{i}, in items 2 and 3 are a basis of V if they span V and are linearly independent; in other words, if the map (1.1.1) is bijective. This means that every vector, v, can be written uniquely as a sum

$$
\begin{equation*}
v=\sum c_{i} v_{i} \tag{1.1.2}
\end{equation*}
$$

5. The dimension of a vector space. If V possesses a basis, v_{i}, $i=1, \ldots, k, V$ is said to be finite dimensional, and k is, by definition, the dimension of V. (It is a theorem that this definition is legitimate: every basis has to have the same number of vectors.) In this chapter all the vector spaces we'll encounter will be finite dimensional.
6. A subset, U, of V is a subspace if it's vector space in its own right, i.e., for v, v_{1} and v_{2} in U and λ in $\mathbb{R}, \lambda v$ and $v_{1}+v_{2}$ are in U.
7. Let V and W be vector spaces. A map, $A: V \rightarrow W$ is linear if, for v, v_{1} and v_{2} in V and $\lambda \in \mathbb{R}$

$$
\begin{equation*}
A(\lambda v)=\lambda A v \tag{1.1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
A\left(v_{1}+v_{2}\right)=A v_{1}+A v_{2} . \tag{1.1.4}
\end{equation*}
$$

8. The kernel of A. This is the set of vectors, v, in V which get mapped by A into the zero vector in W. By (1.1.3) and (1.1.4) this set is a subspace of V. We'll denote it by "Ker A ".
9. The image of A. By (1.1.3) and (1.1.4) the image of A, which we'll denote by " $\operatorname{Im} A$ ", is a subspace of W. The following is an important rule for keeping track of the dimensions of $\operatorname{Ker} A$ and $\operatorname{Im} A$.

$$
\begin{equation*}
\operatorname{dim} V=\operatorname{dim} \operatorname{Ker} A+\operatorname{dim} \operatorname{Im} A \tag{1.1.5}
\end{equation*}
$$

Example 1. The map (1.1.1) is a linear map. The v_{i} 's span V if its image is V and the v_{i} 's are linearly independent if its kernel is just the zero vector in \mathbb{R}^{k}.
10. Linear mappings and matrices. Let v_{1}, \ldots, v_{n} be a basis of V and w_{1}, \ldots, w_{m} a basis of W. Then by (1.1.2) $A v_{j}$ can be written uniquely as a sum,

$$
\begin{equation*}
A v_{j}=\sum_{i=1}^{m} c_{i, j} w_{i}, \quad c_{i, j} \in \mathbb{R} \tag{1.1.6}
\end{equation*}
$$

The $m \times n$ matrix of real numbers, $\left[c_{i, j}\right]$, is the matrix associated with A. Conversely, given such an $m \times n$ matrix, there is a unique linear map, A, with the property (1.1.6).
11. An inner product on a vector space is a map

$$
B: V \times V \rightarrow \mathbb{R}
$$

having the three properties below.
(a) For vectors, v, v_{1}, v_{2} and w and $\lambda \in \mathbb{R}$

$$
B\left(v_{1}+v_{2}, w\right)=B\left(v_{1}, w\right)+B\left(v_{2}, w\right)
$$

and

$$
B(\lambda v, w)=\lambda B(v, w)
$$

(b) For vectors, v and w,

$$
B(v, w)=B(w, v) .
$$

(c) For every vector, v

$$
B(v, v) \geq 0
$$

Moreover, if $v \neq 0, B(v, v)$ is positive.
Notice that by property (b), property (a) is equivalent to

$$
B(w, \lambda v)=\lambda B(w, v)
$$

and

$$
B\left(w, v_{1}+v_{2}\right)=B\left(w, v_{1}\right)+B\left(w, v_{2}\right)
$$

The items on the list above are just a few of the topics in linear algebra that we're assuming our readers are familiar with. We've highlighted them because they're easy to state. However, understanding them requires a heavy dollop of that indefinable quality "mathematical sophistication", a quality which will be in heavy demand in the next few sections of this chapter. We will also assume that our readers are familiar with a number of more low-brow linear algebra notions: matrix multiplication, row and column operations on matrices, transposes of matrices, determinants of $n \times n$ matrices, inverses of matrices, Cramer's rule, recipes for solving systems of linear equations, etc. (See $\S 1.1$ and 1.2 of Munkres' book for a quick review of this material.)

Exercises.

1. Our basic example of a vector space in this course is \mathbb{R}^{n} equipped with the vector addition operation

$$
\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right)
$$

and the scalar multiplication operation

$$
\lambda\left(a_{1}, \ldots, a_{n}\right)=\left(\lambda a_{1}, \ldots, \lambda a_{n}\right) .
$$

Check that these operations satisfy the axioms below.
(a) Commutativity: $v+w=w+v$.
(b) Associativity: $u+(v+w)=(u+v)+w$.
(c) For the zero vector, $0=(0, \ldots, 0), v+0=0+v$.
(d) $v+(-1) v=0$.
(e) $1 v=v$.
(f) Associative law for scalar multiplication: $(a b) v=a(b v)$.
(g) Distributive law for scalar addition: $(a+b) v=a v+b v$.
(h) Distributive law for vector addition: $a(v+w)=a v+a w$.
2. Check that the standard basis vectors of $\mathbb{R}^{n}: e_{1}=(1,0, \ldots, 0)$, $e_{2}=(0,1,0, \ldots, 0)$, etc. are a basis.
3. Check that the standard inner product on \mathbb{R}^{n}

$$
B\left(\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)\right)=\sum_{i=1}^{n} a_{i} b_{i}
$$

is an inner product.

1.2 Quotient spaces and dual spaces

In this section we will discuss a couple of items which are frequently, but not always, covered in linear algebra courses, but which we'll need for our treatment of multilinear algebra in $\S \S 1.1 .3$ - 1.1.8.

The quotient spaces of a vector space

Let V be a vector space and W a vector subspace of V. A W-coset is a set of the form

$$
v+W=\{v+w, w \in W\}
$$

It is easy to check that if $v_{1}-v_{2} \in W$, the cosets, $v_{1}+W$ and $v_{2}+W$, coincide while if $v_{1}-v_{2} \notin W$, they are disjoint. Thus the W-cosets decompose V into a disjoint collection of subsets of V. We will denote this collection of sets by V / W.

One defines a vector addition operation on V / W by defining the sum of two cosets, $v_{1}+W$ and $v_{2}+W$ to be the coset

$$
\begin{equation*}
v_{1}+v_{2}+W \tag{1.2.1}
\end{equation*}
$$

and one defines a scalar multiplication operation by defining the scalar multiple of $v+W$ by λ to be the coset

$$
\begin{equation*}
\lambda v+W \tag{1.2.2}
\end{equation*}
$$

It is easy to see that these operations are well defined. For instance, suppose $v_{1}+W=v_{1}^{\prime}+W$ and $v_{2}+W=v_{2}^{\prime}+W$. Then $v_{1}-v_{1}^{\prime}$ and $v_{2}-v_{2}^{\prime}$ are in W; so $\left(v_{1}+v_{2}\right)-\left(v_{1}^{\prime}+v_{2}^{\prime}\right)$ is in W and hence $v_{1}+v_{2}+W=v_{1}^{\prime}+v_{2}^{\prime}+W$.

These operations make V / W into a vector space, and one calls this space the quotient space of V by W.

We define a mapping

$$
\begin{equation*}
\pi: V \rightarrow V / W \tag{1.2.3}
\end{equation*}
$$

by setting $\pi(v)=v+W$. It's clear from (1.2.1) and (1.2.2) that π is a linear mapping, and that it maps V to V / W. Moreover, for every coset, $v+W, \pi(v)=v+W$; so the mapping, π, is onto. Also note that the zero vector in the vector space, V / W, is the zero coset, $0+W=W$. Hence v is in the kernel of π if $v+W=W$, i.e., $v \in W$. In other words the kernel of π is W.

In the definition above, V and W don't have to be finite dimensional, but if they are, then

$$
\begin{equation*}
\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W \tag{1.2.4}
\end{equation*}
$$

by (1.1.5).
The following, which is easy to prove, we'll leave as an exercise.

Proposition 1.2.1. Let U be a vector space and $A: V \rightarrow U$ a linear map. If $W \subset$ Ker A there exists a unique linear map, $A^{\#}: V / W \rightarrow U$ with property, $A=A^{\#} \circ \pi$.

The dual space of a vector space

We'll denote by V^{*} the set of all linear functions, $\ell: V \rightarrow \mathbb{R}$. If ℓ_{1} and ℓ_{2} are linear functions, their sum, $\ell_{1}+\ell_{2}$, is linear, and if ℓ is a linear function and λ is a real number, the function, $\lambda \ell$, is linear. Hence V^{*} is a vector space. One calls this space the dual space of V.

Suppose V is n-dimensional, and let e_{1}, \ldots, e_{n} be a basis of V. Then every vector, $v \in V$, can be written uniquely as a sum

$$
v=c_{1} e_{1}+\cdots+c_{n} e_{n} \quad c_{i} \in \mathbb{R}
$$

Let

$$
\begin{equation*}
e_{i}^{*}(v)=c_{i} \tag{1.2.5}
\end{equation*}
$$

If $v=c_{1} e_{1}+\cdots+c_{n} e_{n}$ and $v^{\prime}=c_{1}^{\prime} e_{1}+\cdots+c_{n}^{\prime} e_{n}$ then $v+v^{\prime}=$ $\left(c_{1}+c_{1}^{\prime}\right) e_{1}+\cdots+\left(c_{n}+c_{n}^{\prime}\right) e_{n}$, so

$$
e_{i}^{*}\left(v+v^{\prime}\right)=c_{i}+c_{i}^{\prime}=e_{i}^{*}(v)+e_{i}^{*}\left(v^{\prime}\right)
$$

This shows that $e_{i}^{*}(v)$ is a linear function of v and hence $e_{i}^{*} \in V^{*}$.
Claim: $e_{i}^{*}, i=1, \ldots, n$ is a basis of V^{*}.
Proof. First of all note that by (1.2.5)

$$
e_{i}^{*}\left(e_{j}\right)=\left\{\begin{array}{ll}
1, & i=j \tag{1.2.6}\\
0, & i \neq j
\end{array} .\right.
$$

If $\ell \in V^{*}$ let $\lambda_{i}=\ell\left(e_{i}\right)$ and let $\ell^{\prime}=\sum \lambda_{i} e_{i}^{*}$. Then by (1.2.6)

$$
\begin{equation*}
\ell^{\prime}\left(e_{j}\right)=\sum \lambda_{i} e_{i}^{*}\left(e_{j}\right)=\lambda_{j}=\ell\left(e_{j}\right) \tag{1.2.7}
\end{equation*}
$$

i.e., ℓ and ℓ^{\prime} take identical values on the basis vectors, e_{j}. Hence $\ell=\ell^{\prime}$.

Suppose next that $\sum \lambda_{i} e_{i}^{*}=0$. Then by (1.2.6), $\lambda_{j}=\left(\sum \lambda_{i} e_{i}^{*}\right)\left(e_{j}\right)=$ 0 for all $j=1, \ldots, n$. Hence the e_{j}^{*} 's are linearly independent.

Let V and W be vector spaces and $A: V \rightarrow W$, a linear map. Given $\ell \in W^{*}$ the composition, $\ell \circ A$, of A with the linear map, $\ell: W \rightarrow \mathbb{R}$, is linear, and hence is an element of V^{*}. We will denote this element by $A^{*} \ell$, and we will denote by

$$
A^{*}: W^{*} \rightarrow V^{*}
$$

the map, $\ell \rightarrow A^{*} \ell$. It's clear from the definition that

$$
A^{*}\left(\ell_{1}+\ell_{2}\right)=A^{*} \ell_{1}+A^{*} \ell_{2}
$$

and that

$$
A^{*} \lambda \ell=\lambda A^{*} \ell
$$

i.e., that A^{*} is linear.

Definition. A^{*} is the transpose of the mapping A.
We will conclude this section by giving a matrix description of A^{*}. Let e_{1}, \ldots, e_{n} be a basis of V and f_{1}, \ldots, f_{m} a basis of W; let $e_{1}^{*}, \ldots, e_{n}^{*}$ and $f_{1}^{*}, \ldots, f_{m}^{*}$ be the dual bases of V^{*} and W^{*}. Suppose A is defined in terms of e_{1}, \ldots, e_{n} and f_{1}, \ldots, f_{m} by the $m \times n$ matrix, $\left[a_{i, j}\right]$, i.e., suppose

$$
A e_{j}=\sum a_{i, j} f_{i}
$$

Claim. $\quad A^{*}$ is defined, in terms of $f_{1}^{*}, \ldots, f_{m}^{*}$ and $e_{1}^{*}, \ldots, e_{n}^{*}$ by the transpose matrix, $\left[a_{j, i}\right]$.

Proof. Let

$$
A^{*} f_{i}^{*}=\sum c_{j, i} e_{j}^{*} .
$$

Then

$$
A^{*} f_{i}^{*}\left(e_{j}\right)=\sum_{k} c_{k, i} i_{k}^{*}\left(e_{j}\right)=c_{j, i}
$$

by (1.2.6). On the other hand

$$
A^{*} f_{i}^{*}\left(e_{j}\right)=f_{i}^{*}\left(A e_{j}\right)=f_{i}^{*}\left(\sum a_{k, j} f_{k}\right)=\sum_{k} a_{k, j} f_{i}^{*}\left(f_{k}\right)=a_{i, j}
$$

so $a_{i, j}=c_{j, i}$.

Exercises.

1. Let V be an n-dimensional vector space and W a k-dimensional subspace. Show that there exists a basis, e_{1}, \ldots, e_{n} of V with the property that e_{1}, \ldots, e_{k} is a basis of W. Hint: Induction on $n-k$. To start the induction suppose that $n-k=1$. Let e_{1}, \ldots, e_{n-1} be a basis of W and e_{n} any vector in $V-W$.
2. In exercise 1 show that the vectors $f_{i}=\pi\left(e_{k+i}\right), i=1, \ldots, n-k$ are a basis of V / W.
3. In exercise 1 let U be the linear span of the vectors, $e_{k+i}, i=$ $1, \ldots, n-k$.
Show that the map

$$
U \rightarrow V / W, \quad u \rightarrow \pi(u)
$$

is a vector space isomorphism, i.e., show that it maps U bijectively onto V / W.
4. Let U, V and W be vector spaces and let $A: V \rightarrow W$ and $B: U \rightarrow V$ be linear mappings. Show that $(A B)^{*}=B^{*} A^{*}$.
5. Let $V=\mathbb{R}^{2}$ and let W be the x_{1}-axis, i.e., the one-dimensional subspace

$$
\left\{\left(x_{1}, 0\right) ; x_{1} \in \mathbb{R}\right\}
$$

of \mathbb{R}^{2}.
(a) Show that the W-cosets are the lines, $x_{2}=a$, parallel to the x_{1}-axis.
(b) Show that the sum of the cosets, " $x_{2}=a$ " and " $x_{2}=b$ " is the coset " $x_{2}=a+b$ ".
(c) Show that the scalar multiple of the coset, " $x_{2}=c$ " by the number, λ, is the coset, " $x_{2}=\lambda c$ ".
6. (a) Let $\left(V^{*}\right)^{*}$ be the dual of the vector space, V^{*}. For every $v \in V$, let $\mu_{v}: V^{*} \rightarrow \mathbb{R}$ be the function, $\mu_{v}(\ell)=\ell(v)$. Show that the μ_{v} is a linear function on V^{*}, i.e., an element of $\left(V^{*}\right)^{*}$, and show that the map

$$
\begin{equation*}
\mu: V \rightarrow\left(V^{*}\right)^{*} \quad v \rightarrow \mu_{v} \tag{1.2.8}
\end{equation*}
$$

is a linear map of V into $\left(V^{*}\right)^{*}$.
(b) Show that the map (1.2.8) is bijective. (Hint: $\operatorname{dim}\left(V^{*}\right)^{*}=$ $\operatorname{dim} V^{*}=\operatorname{dim} V$, so by (1.1.5) it suffices to show that (1.2.8) is injective.) Conclude that there is a natural identification of V with $\left(V^{*}\right)^{*}$, i.e., that V and $\left(V^{*}\right)^{*}$ are two descriptions of the same object.
7. Let W be a vector subspace of V and let

$$
W^{\perp}=\left\{\ell \in V^{*}, \ell(w)=0 \text { if } w \in W\right\}
$$

Show that W^{\perp} is a subspace of V^{*} and that its dimension is equal to $\operatorname{dim} V-\operatorname{dim} W$. (Hint: By exercise 1 we can choose a basis, e_{1}, \ldots, e_{n} of V such that $e_{1}, \ldots e_{k}$ is a basis of W. Show that $e_{k+1}^{*}, \ldots, e_{n}^{*}$ is a basis of W^{\perp}.) W^{\perp} is called the annihilator of W in V^{*}.
8. Let V and V^{\prime} be vector spaces and $A: V \rightarrow V^{\prime}$ a linear map. Show that if W is the kernel of A there exists a linear map, B : $V / W \rightarrow V^{\prime}$, with the property: $A=B \circ \pi, \pi$ being the map (1.2.3). In addition show that this linear map is injective.
9. Let W be a subspace of a finite-dimensional vector space, V. From the inclusion map, $\iota: W^{\perp} \rightarrow V^{*}$, one gets a transpose map,

$$
\iota^{*}:\left(V^{*}\right)^{*} \rightarrow\left(W^{\perp}\right)^{*}
$$

and, by composing this with (1.2.8), a map

$$
\iota^{*} \circ \mu: V \rightarrow\left(W^{\perp}\right)^{*}
$$

Show that this map is onto and that its kernel is W. Conclude from exercise 8 that there is a natural bijective linear map

$$
\nu: V / W \rightarrow\left(W^{\perp}\right)^{*}
$$

with the property $\nu \circ \pi=\iota^{*} \circ \mu$. In other words, V / W and $\left(W^{\perp}\right)^{*}$ are two descriptions of the same object. (This shows that the "quotient space" operation and the "dual space" operation are closely related.)
10. Let V_{1} and V_{2} be vector spaces and $A: V_{1} \rightarrow V_{2}$ a linear map. Verify that for the transpose map: $A^{*}: V_{2}^{*} \rightarrow V_{1}^{*}$

$$
\operatorname{Ker} A^{*}=(\operatorname{Im} A)^{\perp}
$$

and

$$
\operatorname{Im} A^{*}=(\operatorname{Ker} A)^{\perp}
$$

11. (a) Let $B: V \times V \rightarrow \mathbb{R}$ be an inner product on V. For $v \in V$ let

$$
\ell_{v}: V \rightarrow \mathbb{R}
$$

be the function: $\ell_{v}(w)=B(v, w)$. Show that ℓ_{v} is linear and show that the map

$$
\begin{equation*}
L: V \rightarrow V^{*}, \quad v \rightarrow \ell_{v} \tag{1.2.9}
\end{equation*}
$$

is a linear mapping.
(b) Prove that this mapping is bijective. (Hint: Since $\operatorname{dim} V=$ $\operatorname{dim} V^{*}$ it suffices by (1.1.5) to show that its kernel is zero. Now note that if $v \neq 0 \ell_{v}(v)=B(v, v)$ is a positive number.) Conclude that if V has an inner product one gets from it a natural identification of V with V^{*}.
12. Let V be an n-dimensional vector space and $B: V \times V \rightarrow \mathbb{R}$ an inner product on V. A basis, e_{1}, \ldots, e_{n} of V is orthonormal is

$$
B\left(e_{i}, e_{j}\right)= \begin{cases}1 & i=j \tag{1.2.10}\\ 0 & i \neq j\end{cases}
$$

(a) Show that an orthonormal basis exists. Hint: By induction let $e_{i}, i=1, \ldots, k$ be vectors with the property (1.2.10) and let v be a vector which is not a linear combination of these vectors. Show that the vector

$$
w=v-\sum B\left(e_{i}, v\right) e_{i}
$$

is non-zero and is orthogonal to the e_{i} 's. Now let $e_{k+1}=\lambda w$, where $\lambda=B(w, w)^{-\frac{1}{2}}$.
(b) Let $e_{1}, \ldots e_{n}$ and $e_{1}^{\prime}, \ldots e_{n}^{\prime}$ be two orthogonal bases of V and let

$$
\begin{equation*}
e_{j}^{\prime}=\sum a_{i, j} e_{i} . \tag{1.2.11}
\end{equation*}
$$

Show that

$$
\sum a_{i, j} a_{i, k}= \begin{cases}1 & j=k \tag{1.2.12}\\ 0 & j \neq k\end{cases}
$$

(c) Let A be the matrix $\left[a_{i, j}\right]$. Show that (1.2.12) can be written more compactly as the matrix identity

$$
\begin{equation*}
A A^{t}=I \tag{1.2.13}
\end{equation*}
$$

where I is the identity matrix.
(d) Let e_{1}, \ldots, e_{n} be an orthonormal basis of V and $e_{1}^{*}, \ldots, e_{n}^{*}$ the dual basis of V^{*}. Show that the mapping (1.2.9) is the mapping, $L e_{i}=e_{i}^{*}, i=1, \ldots n$.

1.3 Tensors

Let V be an n-dimensional vector space and let V^{k} be the set of all k-tuples, $\left(v_{1}, \ldots, v_{k}\right), v_{i} \in V$. A function

$$
T: V^{k} \rightarrow \mathbb{R}
$$

is said to be linear in its $i^{\text {th }}$ variable if, when we fix vectors, v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{k}, the map

$$
\begin{equation*}
v \in V \rightarrow T\left(v_{1}, \ldots, v_{i-1}, v, v_{i+1}, \ldots, v_{k}\right) \tag{1.3.1}
\end{equation*}
$$

is linear in V. If T is linear in its $i^{\text {th }}$ variable for $i=1, \ldots, k$ it is said to be k-linear, or alternatively is said to be a k-tensor. We denote the set of all k-tensors by $\mathcal{L}^{k}(V)$. We will agree that 0 -tensors are just the real numbers, that is $\mathcal{L}^{0}(V)=\mathbb{R}$.

Let T_{1} and T_{2} be functions on V^{k}. It is clear from (1.3.1) that if T_{1} and T_{2} are k-linear, so is $T_{1}+T_{2}$. Similarly if T is k-linear and λ is a real number, λT is k-linear. Hence $\mathcal{L}^{k}(V)$ is a vector space. Note that for $k=1$, " k-linear" just means "linear", so $\mathcal{L}^{1}(V)=V^{*}$.

Let $I=\left(i_{1}, \ldots i_{k}\right)$ be a sequence of integers with $1 \leq i_{r} \leq n$, $r=1, \ldots, k$. We will call such a sequence a multi-index of length k. For instance the multi-indices of length 2 are the square arrays of pairs of integers

$$
(i, j), 1 \leq i, j \leq n
$$

and there are exactly n^{2} of them.

Exercise.

Show that there are exactly n^{k} multi-indices of length k.
Now fix a basis, e_{1}, \ldots, e_{n}, of V and for $T \in \mathcal{L}^{k}(V)$ let

$$
\begin{equation*}
T_{I}=T\left(e_{i_{1}}, \ldots, e_{i_{k}}\right) \tag{1.3.2}
\end{equation*}
$$

for every multi-index I of length k.
Proposition 1.3.1. The T_{I} 's determine T, i.e., if T and T^{\prime} are k-tensors and $T_{I}=T_{I}^{\prime}$ for all I, then $T=T^{\prime}$.

Proof. By induction on n. For $n=1$ we proved this result in $\S 1.1$. Let's prove that if this assertion is true for $n-1$, it's true for n. For each e_{i} let T_{i} be the ($k-1$)-tensor

$$
\left(v_{1}, \ldots, v_{n-1}\right) \rightarrow T\left(v_{1}, \ldots, v_{n-1}, e_{i}\right) .
$$

Then for $v=c_{1} e_{1}+\cdots c_{n} e_{n}$

$$
T\left(v_{1}, \ldots, v_{n-1}, v\right)=\sum c_{i} T_{i}\left(v_{1}, \ldots, v_{n-1}\right),
$$

so the T_{i} 's determine T. Now apply induction.

The tensor product operation

If T_{1} is a k-tensor and T_{2} is an ℓ-tensor, one can define a $k+\ell$-tensor, $T_{1} \otimes T_{2}$, by setting

$$
\left(T_{1} \otimes T_{2}\right)\left(v_{1}, \ldots, v_{k+\ell}\right)=T_{1}\left(v_{1}, \ldots, v_{k}\right) T_{2}\left(v_{k+1}, \ldots, v_{k+\ell}\right) .
$$

This tensor is called the tensor product of T_{1} and T_{2}. We note that if T_{1} or T_{2} is a 0 -tensor, i.e., scalar, then tensor product with it is just scalar multiplication by $i t$, that is $a \otimes T=T \otimes a=a T$ $\left(a \in \mathbb{R}, T \in \mathcal{L}^{k}(V)\right)$.

Similarly, given a k-tensor, T_{1}, an ℓ-tensor, T_{2} and an m-tensor, T_{3}, one can define a $(k+\ell+m)$-tensor, $T_{1} \otimes T_{2} \otimes T_{3}$ by setting

$$
\begin{align*}
& \quad T_{1} \otimes T_{2} \otimes T_{3}\left(v_{1}, \ldots, v_{k+\ell+m}\right) \tag{1.3.3}\\
& =T_{1}\left(v_{1}, \ldots, v_{k}\right) T_{2}\left(v_{k+1}, \ldots, v_{k+\ell}\right) T_{3}\left(v_{k+\ell+1}, \ldots, v_{k+\ell+m}\right) .
\end{align*}
$$

Alternatively, one can define (1.3.3) by defining it to be the tensor product of $T_{1} \otimes T_{2}$ and T_{3} or the tensor product of T_{1} and $T_{2} \otimes T_{3}$. It's easy to see that both these tensor products are identical with (1.3.3):

$$
\begin{equation*}
\left(T_{1} \otimes T_{2}\right) \otimes T_{3}=T_{1} \otimes\left(T_{2} \otimes T_{3}\right)=T_{1} \otimes T_{2} \otimes T_{3} . \tag{1.3.4}
\end{equation*}
$$

We leave for you to check that if λ is a real number

$$
\begin{equation*}
\lambda\left(T_{1} \otimes T_{2}\right)=\left(\lambda T_{1}\right) \otimes T_{2}=T_{1} \otimes\left(\lambda T_{2}\right) \tag{1.3.5}
\end{equation*}
$$

and that the left and right distributive laws are valid: For $k_{1}=k_{2}$,

$$
\begin{equation*}
\left(T_{1}+T_{2}\right) \otimes T_{3}=T_{1} \otimes T_{3}+T_{2} \otimes T_{3} \tag{1.3.6}
\end{equation*}
$$

and for $k_{2}=k_{3}$

$$
\begin{equation*}
T_{1} \otimes\left(T_{2}+T_{3}\right)=T_{1} \otimes T_{2}+T_{1} \otimes T_{3} . \tag{1.3.7}
\end{equation*}
$$

A particularly interesting tensor product is the following. For $i=$ $1, \ldots, k$ let $\ell_{i} \in V^{*}$ and let

$$
\begin{equation*}
T=\ell_{1} \otimes \cdots \otimes \ell_{k} . \tag{1.3.8}
\end{equation*}
$$

Thus, by definition,

$$
\begin{equation*}
T\left(v_{1}, \ldots, v_{k}\right)=\ell_{1}\left(v_{1}\right) \ldots \ell_{k}\left(v_{k}\right) . \tag{1.3.9}
\end{equation*}
$$

A tensor of the form (1.3.9) is called a decomposable k-tensor. These tensors, as we will see, play an important role in what follows. In particular, let e_{1}, \ldots, e_{n} be a basis of V and $e_{1}^{*}, \ldots, e_{n}^{*}$ the dual basis of V^{*}. For every multi-index, I, of length k let

$$
e_{I}^{*}=e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{k}}^{*} .
$$

Then if J is another multi-index of length k,

$$
e_{I}^{*}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)= \begin{cases}1, & I=J \tag{1.3.10}\\ 0, & I \neq J\end{cases}
$$

by (1.2.6), (1.3.8) and (1.3.9). From (1.3.10) it's easy to conclude
Theorem 1.3.2. The e_{I}^{*} 's are a basis of $\mathcal{L}^{k}(V)$.
Proof. Given $T \in \mathcal{L}^{k}(V)$, let

$$
T^{\prime}=\sum T_{I} e_{I}^{*}
$$

where the T_{I} 's are defined by (1.3.2). Then

$$
\begin{equation*}
T^{\prime}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)=\sum T_{I} e_{I}^{*}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)=T_{J} \tag{1.3.11}
\end{equation*}
$$

by (1.3.10); however, by Proposition 1.3.1 the T_{J} 's determine T, so $T^{\prime}=T$. This proves that the e_{I}^{*} 's are a spanning set of vectors for $\mathcal{L}^{k}(V)$. To prove they're a basis, suppose

$$
\sum C_{I} e_{I}^{*}=0
$$

for constants, $C_{I} \in \mathbb{R}$. Then by (1.3.11) with $T^{\prime}=0, C_{J}=0$, so the e_{I}^{*} 's are linearly independent.

As we noted above there are exactly n^{k} multi-indices of length k and hence n^{k} basis vectors in the set, $\left\{e_{I}^{*}\right\}$, so we've proved
Corollary. $\operatorname{dim} \mathcal{L}^{k}(V)=n^{k}$.

The pull-back operation

Let V and W be finite dimensional vector spaces and let $A: V \rightarrow W$ be a linear mapping. If $T \in \mathcal{L}^{k}(W)$, we define

$$
A^{*} T: V^{k} \rightarrow \mathbb{R}
$$

to be the function

$$
\begin{equation*}
A^{*} T\left(v_{1}, \ldots, v_{k}\right)=T\left(A v_{1}, \ldots, A v_{k}\right) \tag{1.3.12}
\end{equation*}
$$

It's clear from the linearity of A that this function is linear in its $i^{\text {th }}$ variable for all i, and hence is k-tensor. We will call $A^{*} T$ the pull-back of T by the map, A.
Proposition 1.3.3. The map

$$
\begin{equation*}
A^{*}: \mathcal{L}^{k}(W) \rightarrow \mathcal{L}^{k}(V), \quad T \rightarrow A^{*} T \tag{1.3.13}
\end{equation*}
$$

is a linear mapping.
We leave this as an exercise. We also leave as an exercise the identity

$$
\begin{equation*}
A^{*}\left(T_{1} \otimes T_{2}\right)=A^{*} T_{1} \otimes A^{*} T_{2} \tag{1.3.14}
\end{equation*}
$$

for $T_{1} \in \mathcal{L}^{k}(W)$ and $T_{2} \in \mathcal{L}^{m}(W)$. Also, if U is a vector space and $B: U \rightarrow V$ a linear mapping, we leave for you to check that

$$
\begin{equation*}
(A B)^{*} T=B^{*}\left(A^{*} T\right) \tag{1.3.15}
\end{equation*}
$$

for all $T \in \mathcal{L}^{k}(W)$.

Exercises.

1. Verify that there are exactly n^{k} multi-indices of length k.
2. Prove Proposition 1.3.3.
3. Verify (1.3.14).
4. Verify (1.3.15).
5. Let $A: V \rightarrow W$ be a linear map. Show that if $\ell_{i}, i=1, \ldots, k$ are elements of W^{*}

$$
A^{*}\left(\ell_{1} \otimes \cdots \otimes \ell_{k}\right)=A^{*} \ell_{1} \otimes \cdots \otimes A^{*} \ell_{k}
$$

Conclude that A^{*} maps decomposable k-tensors to decomposable k-tensors.
6. Let V be an n-dimensional vector space and $\ell_{i}, i=1,2$, elements of V^{*}. Show that $\ell_{1} \otimes \ell_{2}=\ell_{2} \otimes \ell_{1}$ if and only if ℓ_{1} and ℓ_{2} are linearly dependent. (Hint: Show that if ℓ_{1} and ℓ_{2} are linearly independent there exist vectors, $v_{i}, i=, 1,2$ in V with property

$$
\ell_{i}\left(v_{j}\right)=\left\{\begin{array}{ll}
1, & i=j \\
0, & i \neq j
\end{array} .\right.
$$

Now compare $\left(\ell_{1} \otimes \ell_{2}\right)\left(v_{1}, v_{2}\right)$ and $\left(\ell_{2} \otimes \ell_{1}\right)\left(v_{1}, v_{2}\right)$.) Conclude that if $\operatorname{dim} V \geq 2$ the tensor product operation isn't commutative, i.e., it's usually not true that $\ell_{1} \otimes \ell_{2}=\ell_{2} \otimes \ell_{1}$.
7. Let T be a k-tensor and v a vector. Define $T_{v}: V^{k-1} \rightarrow \mathbb{R}$ to be the map

$$
\begin{equation*}
T_{v}\left(v_{1}, \ldots, v_{k-1}\right)=T\left(v, v_{1}, \ldots, v_{k-1}\right) . \tag{1.3.16}
\end{equation*}
$$

Show that T_{v} is a $(k-1)$-tensor.
8. Show that if T_{1} is an r-tensor and T_{2} is an s-tensor, then if $r>0$,

$$
\left(T_{1} \otimes T_{2}\right)_{v}=\left(T_{1}\right)_{v} \otimes T_{2} .
$$

9. Let $A: V \rightarrow W$ be a linear map mapping $v \in V$ to $w \in W$. Show that for $T \in \mathcal{L}^{k}(W), A^{*}\left(T_{w}\right)=\left(A^{*} T\right)_{v}$.

1.4 Alternating k-tensors

We will discuss in this section a class of k-tensors which play an important role in multivariable calculus. In this discussion we will need some standard facts about the "permutation group". For those of you who are already familiar with this object (and I suspect most of you are) you can regard the paragraph below as a chance to refamiliarize yourselves with these facts.

Permutations

Let \sum_{k} be the k-element set: $\{1,2, \ldots, k\}$. A permutation of order k is a bijective map, $\sigma: \sum_{k} \rightarrow \sum_{k}$. Given two permutations, σ_{1} and σ_{2}, their product, $\sigma_{1} \sigma_{2}$, is the composition of σ_{1} and σ_{2}, i.e., the map,

$$
i \rightarrow \sigma_{1}\left(\sigma_{2}(i)\right)
$$

and for every permutation, σ, one denotes by σ^{-1} the inverse permutation:

$$
\sigma(i)=j \Leftrightarrow \sigma^{-1}(j)=i .
$$

Let S_{k} be the set of all permutations of order k. One calls S_{k} the permutation group of \sum_{k} or, alternatively, the symmetric group on k letters.

Check:

There are k ! elements in S_{k}.
For every $1 \leq i<j \leq k$, let $\tau=\tau_{i, j}$ be the permutation

$$
\begin{align*}
\tau(i) & =j \\
\tau(j) & =i \tag{1.4.1}\\
\tau(\ell) & =\ell, \quad \ell \neq i, j .
\end{align*}
$$

τ is called a transposition, and if $j=i+1, \tau$ is called an elementary transposition.

Theorem 1.4.1. Every permutation can be written as a product of finite number of transpositions.

Proof. Induction on k : " $k=2$ " is obvious. The induction step: " $k-1$ " implies " k ": Given $\sigma \in S_{k}, \sigma(k)=i \Leftrightarrow \tau_{i k} \sigma(k)=k$. Thus $\tau_{i k} \sigma$ is, in effect, a permutation of \sum_{k-1}. By induction, $\tau_{i k} \sigma$ can be written as a product of transpositions, so

$$
\sigma=\tau_{i k}\left(\tau_{i k} \sigma\right)
$$

can be written as a product of transpositions.

Theorem 1.4.2. Every transposition can be written as a product of elementary transpositions.

Proof. Let $\tau=\tau_{i j}, i<j$. With i fixed, argue by induction on j. Note that for $j>i+1$

$$
\tau_{i j}=\tau_{j-1, j} \tau_{i, j-1} \tau_{j-1, j}
$$

Now apply induction to $\tau_{i, j-1}$.

Corollary. Every permutation can be written as a product of elementary transpositions.

The sign of a permutation

Let x_{1}, \ldots, x_{k} be the coordinate functions on \mathbb{R}^{k}. For $\sigma \in S_{k}$ we define

$$
\begin{equation*}
(-1)^{\sigma}=\prod_{i<j} \frac{x_{\sigma(i)}-x_{\sigma(j)}}{x_{i}-x_{j}} . \tag{1.4.2}
\end{equation*}
$$

Notice that the numerator and denominator in this expression are identical up to sign. Indeed, if $p=\sigma(i)<\sigma(j)=q$, the term, $x_{p}-x_{q}$ occurs once and just once in the numerator and one and just one in the denominator; and if $q=\sigma(i)>\sigma(j)=p$, the term, $x_{p}-x_{q}$, occurs once and just once in the numerator and its negative, $x_{q}-x_{p}$, once and just once in the numerator. Thus

$$
\begin{equation*}
(-1)^{\sigma}= \pm 1 \tag{1.4.3}
\end{equation*}
$$

Claim:

For $\sigma, \tau \in S_{k}$

$$
\begin{equation*}
(-1)^{\sigma \tau}=(-1)^{\sigma}(-1)^{\tau} \tag{1.4.4}
\end{equation*}
$$

Proof. By definition,

$$
(-1)^{\sigma \tau}=\prod_{i<j} \frac{x_{\sigma \tau(i)}-x_{\sigma \tau(j)}}{x_{i}-x_{j}} .
$$

We write the right hand side as a product of

$$
\begin{equation*}
\prod_{i<j} \frac{x_{\tau(i)}-x_{\tau(j)}}{x_{i}-x_{j}}=(-1)^{\tau} \tag{1.4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{i<j} \frac{x_{\sigma \tau(i)}-x_{\sigma \tau(j)}}{x_{\tau(i)}-x_{\tau(j)}} \tag{1.4.6}
\end{equation*}
$$

For $i<j$, let $p=\tau(i)$ and $q=\tau(j)$ when $\tau(i)<\tau(j)$ and let $p=\tau(j)$ and $q=\tau(i)$ when $\tau(j)<\tau(i)$. Then

$$
\frac{x_{\sigma \tau(i)}-x_{\sigma \tau(j)}}{x_{\tau(i)}-x_{\tau(j)}}=\frac{x_{\sigma(p)}-x_{\sigma(q)}}{x_{p}-x_{q}}
$$

(i.e., if $\tau(i)<\tau(j)$, the numerator and denominator on the right equal the numerator and denominator on the left and, if $\tau(j)<\tau(i)$ are negatives of the numerator and denominator on the left). Thus (1.4.6) becomes

$$
\prod_{p<q} \frac{x_{\sigma(p)}-x_{\sigma(q)}}{x_{p}-x_{q}}=(-1)^{\sigma} .
$$

We'll leave for you to check that if τ is a transposition, $(-1)^{\tau}=-1$ and to conclude from this:

Proposition 1.4.3. If σ is the product of an odd number of transpositions, $(-1)^{\sigma}=-1$ and if σ is the product of an even number of transpositions $(-1)^{\sigma}=+1$.

Alternation

Let V be an n-dimensional vector space and $T \in \mathcal{L}^{*}(v)$ a k-tensor. If $\sigma \in S_{k}$, let $T^{\sigma} \in \mathcal{L}^{*}(V)$ be the k-tensor

$$
\begin{equation*}
T^{\sigma}\left(v_{1}, \ldots, v_{k}\right)=T\left(v_{\sigma^{-1}(1)}, \ldots, v_{\sigma^{-1}(k)}\right) . \tag{1.4.7}
\end{equation*}
$$

Proposition 1.4.4. 1. If $T=\ell_{1} \otimes \cdots \otimes \ell_{k}, \ell_{i} \in V^{*}$, then $T^{\sigma}=$ $\ell_{\sigma(1)} \otimes \cdots \otimes \ell_{\sigma(k)}$.
2. The map, $T \in \mathcal{L}^{k}(V) \rightarrow T^{\sigma} \in \mathcal{L}^{k}(V)$ is a linear map.
3. $T^{\sigma \tau}=\left(T^{\tau}\right)^{\sigma}$.

Proof. To prove 1, we note that by (1.4.7)

$$
\begin{aligned}
& \left(\ell_{1} \otimes \cdots \otimes \ell_{k}\right)^{\sigma}\left(v_{1}, \ldots, v_{k}\right) \\
= & \ell_{1}\left(v_{\sigma^{-1}(1)}\right) \cdots \ell_{k}\left(v_{\sigma^{-1}(k)}\right) .
\end{aligned}
$$

Setting $\sigma^{-1}(i)=q$, the $i^{\text {th }}$ term in this product is $\ell_{\sigma(q)}\left(v_{q}\right)$; so the product can be rewritten as

$$
\ell_{\sigma(1)}\left(v_{1}\right) \ldots \ell_{\sigma(k)}\left(v_{k}\right)
$$

or

$$
\left(\ell_{\sigma(1)} \otimes \cdots \otimes \ell_{\sigma(k)}\right)\left(v_{1}, \ldots, v_{k}\right) .
$$

The proof of 2 we'll leave as an exercise.
Proof of 3: By item 2, it suffices to check 3 for decomposable tensors. However, by 1

$$
\begin{aligned}
\left(\ell_{1} \otimes \cdots \otimes \ell_{k}\right)^{\sigma \tau} & =\ell_{\sigma \tau(1)} \otimes \cdots \otimes \ell_{\sigma \tau(k)} \\
& =\left(\ell_{\tau(1)} \otimes \cdots \otimes \ell_{\tau(k)}\right)^{\sigma} \\
& =\left(\left(\ell_{1} \otimes \cdots \otimes \ell\right)^{\tau}\right)^{\sigma} .
\end{aligned}
$$

Definition 1.4.5. $T \in \mathcal{L}^{k}(V)$ is alternating if $T^{\sigma}=(-1)^{\sigma} T$ for all $\sigma \in S_{k}$.

We will denote by $\mathcal{A}^{k}(V)$ the set of all alternating k-tensors in $\mathcal{L}^{k}(V)$. By item 2 of Proposition 1.4.4 this set is a vector subspace of $\mathcal{L}^{k}(V)$.

It is not easy to write down simple examples of alternating k tensors; however, there is a method, called the alternation operation, for constructing such tensors: Given $T \in \mathcal{L}^{*}(V)$ let

$$
\begin{equation*}
\operatorname{Alt} T=\sum_{\tau \in S_{k}}(-1)^{\tau} T^{\tau} \tag{1.4.8}
\end{equation*}
$$

We claim
Proposition 1.4.6. For $T \in \mathcal{L}^{k}(V)$ and $\sigma \in S_{k}$,

1. $(\operatorname{Alt} T)^{\sigma}=(-1)^{\sigma} \operatorname{Alt} T$
2. if $T \in \mathcal{A}^{k}(V), \operatorname{Alt} T=k!T$.
3. $\quad \operatorname{Alt} T^{\sigma}=(\operatorname{Alt} T)^{\sigma}$
4. the map

$$
\text { Alt }: \mathcal{L}^{k}(V) \rightarrow \mathcal{L}^{k}(V), T \rightarrow \operatorname{Alt}(T)
$$

is linear.
Proof. To prove 1 we note that by Proposition (1.4.4):

$$
\begin{aligned}
(\operatorname{Alt} T)^{\sigma} & =\sum(-1)^{\tau}\left(T^{\sigma \tau}\right) \\
& =(-1)^{\sigma} \sum(-1)^{\sigma \tau} T^{\sigma \tau}
\end{aligned}
$$

But as τ runs over $S_{k}, \sigma \tau$ runs over S_{k}, and hence the right hand side is $(-1)^{\sigma}$ Alt (T).

Proof of 2. If $T \in \mathcal{A}^{k}$

$$
\begin{aligned}
\operatorname{Alt} T & =\sum(-1)^{\tau} T^{\tau} \\
& =\sum(-1)^{\tau}(-1)^{\tau} T \\
& =k!T
\end{aligned}
$$

Proof of 3.

$$
\begin{aligned}
\operatorname{Alt} T^{\sigma} & =\sum(-1)^{\tau} T^{\tau \sigma}=(-1)^{\sigma} \sum(-1)^{\tau \sigma} T^{\tau \sigma} \\
& =(-1)^{\sigma} \operatorname{Alt} T=(\operatorname{Alt} T)^{\sigma}
\end{aligned}
$$

Finally, item 4 is an easy corollary of item 2 of Proposition 1.4.4.

We will use this alternation operation to construct a basis for $\mathcal{A}^{k}(V)$. First, however, we require some notation:

Let $I=\left(i_{1}, \ldots, i_{k}\right)$ be a multi-index of length k.
Definition 1.4.7. 1. I is repeating if $i_{r}=i_{s}$ for some $r \neq s$.
2. I is strictly increasing if $i_{1}<i_{2}<\cdots<i_{r}$.
3. For $\sigma \in S_{k}, I^{\sigma}=\left(i_{\sigma(1)}, \ldots, i_{\sigma(k)}\right)$.

Remark: If I is non-repeating there is a unique $\sigma \in S_{k}$ so that I^{σ} is strictly increasing.

Let e_{1}, \ldots, e_{n} be a basis of V and let

$$
e_{I}^{*}=e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{k}}^{*}
$$

and

$$
\psi_{I}=\operatorname{Alt}\left(e_{I}^{*}\right)
$$

Proposition 1.4.8. 1. $\quad \psi_{I^{\sigma}}=(-1)^{\sigma} \psi_{I}$.
2. If I is repeating, $\psi_{I}=0$.
3. If I and J are strictly increasing,

$$
\psi_{I}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)=\left\{\begin{array}{ll}
1 & I=J \\
0 & I \neq J
\end{array} .\right.
$$

Proof. To prove 1 we note that $\left(e_{I}^{*}\right)^{\sigma}=e_{I^{\sigma}}^{*}$; so

$$
\operatorname{Alt}\left(e_{I^{\sigma}}^{*}\right)=\operatorname{Alt}\left(e_{I}^{*}\right)^{\sigma}=(-1)^{\sigma} \operatorname{Alt}\left(e_{I}^{*}\right)
$$

Proof of 2: Suppose $I=\left(i_{1}, \ldots, i_{k}\right)$ with $i_{r}=i_{s}$ for $r \neq s$. Then if $\tau=\tau_{i_{r}, i_{s}}, e_{I}^{*}=e_{I^{r}}^{*}$ so

$$
\psi_{I}=\psi_{I^{r}}=(-1)^{\tau} \psi_{I}=-\psi_{I}
$$

Proof of 3: By definition

$$
\psi_{I}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)=\sum(-1)^{\tau} e_{I^{\tau}}^{*}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right) .
$$

But by (1.3.10)

$$
e_{I^{\tau}}^{*}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)=\left\{\begin{array}{l}
1 \text { if } I^{\tau}=J \tag{1.4.9}\\
0 \text { if } I^{\tau} \neq J
\end{array} .\right.
$$

Thus if I and J are strictly increasing, I^{τ} is strictly increasing if and only if $I^{\tau}=I$, and (1.4.9) is non-zero if and only if $I=J$.

Now let T be in \mathcal{A}^{k}. By Proposition 1.3.2,

$$
T=\sum a_{J} e_{J}^{*}, \quad a_{J} \in \mathbb{R} .
$$

Since

$$
\begin{aligned}
k!T & =\operatorname{Alt}(T) \\
T & =\frac{1}{k!} \sum a_{J} \operatorname{Alt}\left(e_{J}^{*}\right)=\sum b_{J} \psi_{J} .
\end{aligned}
$$

We can discard all repeating terms in this sum since they are zero; and for every non-repeating term, J, we can write $J=I^{\sigma}$, where I is strictly increasing, and hence $\psi_{J}=(-1)^{\sigma} \psi_{I}$.

Conclusion:

We can write T as a sum

$$
\begin{equation*}
T=\sum c_{I} \psi_{I} \tag{1.4.10}
\end{equation*}
$$

with I 's strictly increasing.

Claim.

The c_{I} 's are unique.

Proof. For J strictly increasing

$$
\begin{equation*}
T\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)=\sum c_{I} \psi_{I}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)=c_{J} . \tag{1.4.11}
\end{equation*}
$$

By (1.4.10) the ψ_{I} 's, I strictly increasing, are a spanning set of vectors for $\mathcal{A}^{k}(V)$, and by (1.4.11) they are linearly independent, so we've proved
Proposition 1.4.9. The alternating tensors, ψ_{I}, I strictly increasing, are a basis for $\mathcal{A}^{k}(V)$.

Thus $\operatorname{dim} \mathcal{A}^{k}(V)$ is equal to the number of strictly increasing multiindices, I, of length k. We leave for you as an exercise to show that this number is equal to

$$
\begin{equation*}
\binom{n}{k}=\frac{n!}{(n-k)!k!}=" n \text { choose } k " \tag{1.4.12}
\end{equation*}
$$

if $1 \leq k \leq n$.

Hint: Show that every strictly increasing multi-index of length k determines a k element subset of $\{1, \ldots, n\}$ and vice-versa.

Note also that if $k>n$ every multi-index

$$
I=\left(i_{1}, \ldots, i_{k}\right)
$$

of length k has to be repeating: $i_{r}=i_{s}$ for some $r \neq s$ since the i_{p} 's lie on the interval $1 \leq i \leq n$. Thus by Proposition 1.4.6

$$
\psi_{I}=0
$$

for all multi-indices of length $k>0$ and

$$
\begin{equation*}
\mathcal{A}^{k}=\{0\} . \tag{1.4.13}
\end{equation*}
$$

Exercises.

1. Show that there are exactly k ! permutations of order k. Hint: Induction on k : Let $\sigma \in S_{k}$, and let $\sigma(k)=i, 1 \leq i \leq k$. Show that $\tau_{i k} \sigma$ leaves k fixed and hence is, in effect, a permutation of \sum_{k-1}.
2. Prove that if $\tau \in S_{k}$ is a transposition, $(-1)^{\tau}=-1$ and deduce from this Proposition 1.4.3.
3. Prove assertion 2 in Proposition 1.4.4.
4. Prove that $\operatorname{dim} \mathcal{A}^{k}(V)$ is given by (1.4.12).
5. Verify that for $i<j-1$

$$
\tau_{i, j}=\tau_{j-1, j} \tau_{i, j-1}, \tau_{j-1, j} .
$$

6. For $k=3$ show that every one of the six elements of S_{3} is either a transposition or can be written as a product of two transpositions.
7. Let $\sigma \in S_{k}$ be the "cyclic" permutation

$$
\sigma(i)=i+1, \quad i=1, \ldots, k-1
$$

and $\sigma(k)=1$. Show explicitly how to write σ as a product of transpositions and compute $(-1)^{\sigma}$. Hint: Same hint as in exercise 1.
8. In exercise 7 of Section 3 show that if T is in \mathcal{A}^{k}, T_{v} is in \mathcal{A}^{k-1}. Show in addition that for $v, w \in V$ and $T \in \mathcal{A}^{k},\left(T_{v}\right)_{w}=-\left(T_{w}\right)_{v}$.
9. Let $A: V \rightarrow W$ be a linear mapping. Show that if T is in $\mathcal{A}^{k}(W), A^{*} T$ is in $\mathcal{A}^{k}(V)$.
10. In exercise 9 show that if T is in $\mathcal{L}^{k}(W)$, $\operatorname{Alt}\left(A^{*} T\right)=A^{*}(\operatorname{Alt}(T))$, i.e., show that the "Alt" operation commutes with the pull-back operation.

1.5 The space, $\Lambda^{k}\left(V^{*}\right)$

In $\S 1.4$ we showed that the image of the alternation operation, Alt : $\mathcal{L}^{k}(V) \rightarrow \mathcal{L}^{k}(V)$ is $\mathcal{A}^{k}(V)$. In this section we will compute the kernel of Alt.

Definition 1.5.1. A decomposable k-tensor $\ell_{1} \otimes \cdots \otimes \ell_{k}, \ell_{i} \in V^{*}$, is redundant if for some index, $i, \ell_{i}=\ell_{i+1}$.

Let \mathcal{I}^{k} be the linear span of the set of reductant k-tensors.
Note that for $k=1$ the notion of redundant doesn't really make sense; a single vector $\ell \in \mathcal{L}^{1}\left(V^{*}\right)$ can't be "redundant" so we decree

$$
\mathcal{I}^{1}(V)=\{0\} .
$$

Proposition 1.5.2. If $T \in \mathcal{I}^{k}, \operatorname{Alt}(T)=0$.
Proof. Let $T=\ell_{k} \otimes \cdots \otimes \ell_{k}$ with $\ell_{i}=\ell_{i+1}$. Then if $\tau=\tau_{i, i+1}, T^{\tau}=T$ and $(-1)^{\tau}=-1$. Hence $\operatorname{Alt}(T)=\operatorname{Alt}\left(T^{\tau}\right)=\operatorname{Alt}(T)^{\tau}=-\operatorname{Alt}(T)$; so $\operatorname{Alt}(T)=0$.

To simplify notation let's abbreviate $\mathcal{L}^{k}(V), \mathcal{A}^{k}(V)$ and $\mathcal{I}^{k}(V)$ to $\mathcal{L}^{k}, \mathcal{A}^{k}$ and \mathcal{I}^{k}.

Proposition 1.5.3. If $T \in \mathcal{I}^{r}$ and $T^{\prime} \in \mathcal{L}^{s}$ then $T \otimes T^{\prime}$ and $T^{\prime} \otimes T$ are in \mathcal{I}^{r+s}.

Proof. We can assume that T and T^{\prime} are decomposable, i.e., $T=$ $\ell_{1} \otimes \cdots \otimes \ell_{r}$ and $T^{\prime}=\ell_{1}^{\prime} \otimes \cdots \otimes \ell_{s}^{\prime}$ and that T is redundant: $\ell_{i}=\ell_{i+1}$. Then

$$
T \otimes T^{\prime}=\ell_{1} \otimes \cdots \ell_{i-1} \otimes \ell_{i} \otimes \ell_{i} \otimes \cdots \ell_{r} \otimes \ell_{1}^{\prime} \otimes \cdots \otimes \ell_{s}^{\prime}
$$

is redundant and hence in \mathcal{I}^{r+s}. The argument for $T^{\prime} \otimes T$ is similar.

Proposition 1.5.4. If $T \in \mathcal{L}^{k}$ and $\sigma \in S_{k}$, then

$$
\begin{equation*}
T^{\sigma}=(-1)^{\sigma} T+S \tag{1.5.1}
\end{equation*}
$$

where S is in \mathcal{I}^{k}.

Proof. We can assume T is decomposable, i.e., $T=\ell_{1} \otimes \cdots \otimes \ell_{k}$. Let's first look at the simplest possible case: $k=2$ and $\sigma=\tau_{1,2}$. Then

$$
\begin{aligned}
T^{\sigma}-(-)^{\sigma} T & =\ell_{1} \otimes \ell_{2}+\ell_{2} \otimes \ell_{1} \\
& =\left(\left(\ell_{1}+\ell_{2}\right) \otimes\left(\ell_{1}+\ell_{2}\right)-\ell_{1} \otimes \ell_{1}-\ell_{2} \otimes \ell_{2}\right) / 2
\end{aligned}
$$

and the terms on the right are redundant, and hence in \mathcal{I}^{2}. Next let k be arbitrary and $\sigma=\tau_{i, i+1}$. If $T_{1}=\ell_{1} \otimes \cdots \otimes \ell_{i-2}$ and $T_{2}=$ $\ell_{i+2} \otimes \cdots \otimes \ell_{k}$. Then

$$
T-(-1)^{\sigma} T=T_{1} \otimes\left(\ell_{i} \otimes \ell_{i+1}+\ell_{i+1} \otimes \ell_{i}\right) \otimes T_{2}
$$

is in \mathcal{I}^{k} by Proposition 1.5.3 and the computation above.
The general case: By Theorem 1.4.2, σ can be written as a product of m elementary transpositions, and we'll prove (1.5.1) by induction on m.

We've just dealt with the case $m=1$.
The induction step: " $m-1$ " implies " m ". Let $\sigma=\tau \beta$ where β is a product of $m-1$ elementary transpositions and τ is an elementary transposition. Then

$$
\begin{aligned}
T^{\sigma}=\left(T^{\beta}\right)^{\tau} & =(-1)^{\tau} T^{\beta}+\cdots \\
& =(-1)^{\tau}(-1)^{\beta} T+\cdots \\
& =(-1)^{\sigma} T+\cdots
\end{aligned}
$$

where the "dots" are elements of \mathcal{I}^{k}, and the induction hypothesis was used in line 2.

Corollary. If $T \in \mathcal{L}^{k}$, the

$$
\begin{equation*}
\operatorname{Alt}(T)=k!T+W \tag{1.5.2}
\end{equation*}
$$

where W is in \mathcal{I}^{k}.
Proof. By definition $\operatorname{Alt}(T)=\sum(-1)^{\sigma} T^{\sigma}$, and by Proposition 1.5.4, $T^{\sigma}=(-1)^{\sigma} T+W_{\sigma}$, with $W_{\sigma} \in \mathcal{I}^{k}$. Thus

$$
\begin{aligned}
\operatorname{Alt}(T) & =\sum(-1)^{\sigma}(-1)^{\sigma} T+\sum(-1)^{\sigma} W_{\sigma} \\
& =k!T+W
\end{aligned}
$$

where $W=\sum(-1)^{\sigma} W_{\sigma}$.

Corollary. \mathcal{I}^{k} is the kernel of Alt.
Proof. We've already proved that if $T \in \mathcal{I}^{k}$, Alt $(T)=0$. To prove the converse assertion we note that if $\operatorname{Alt}(T)=0$, then by (1.5.2)

$$
T=-\frac{1}{k!} W
$$

with $W \in \mathcal{I}^{k}$.
Putting these results together we conclude:
Theorem 1.5.5. Every element, T, of \mathcal{L}^{k} can be written uniquely as a sum, $T=T_{1}+T_{2}$ where $T_{1} \in \mathcal{A}^{k}$ and $T_{2} \in \mathcal{I}^{k}$.

Proof. By (1.5.2), $T=T_{1}+T_{2}$ with

$$
T_{1}=\frac{1}{k!} \operatorname{Alt}(T)
$$

and

$$
T_{2}=-\frac{1}{k!} W
$$

To prove that this decomposition is unique, suppose $T_{1}+T_{2}=0$, with $T_{1} \in \mathcal{A}^{k}$ and $T_{2} \in \mathcal{I}^{k}$. Then

$$
0=\operatorname{Alt}\left(T_{1}+T_{2}\right)=k!T_{1}
$$

so $T_{1}=0$, and hence $T_{2}=0$.

Let

$$
\begin{equation*}
\Lambda^{k}\left(V^{*}\right)=\mathcal{L}^{k}\left(V^{*}\right) / \mathcal{I}^{k}\left(V^{*}\right) \tag{1.5.3}
\end{equation*}
$$

i.e., let $\Lambda^{k}=\Lambda^{k}\left(V^{*}\right)$ be the quotient of the vector space \mathcal{L}^{k} by the subspace, \mathcal{I}^{k}, of \mathcal{L}^{k}. By (1.2.3) one has a linear map:

$$
\begin{equation*}
\pi: \mathcal{L}^{k} \rightarrow \Lambda^{k}, \quad T \rightarrow T+\mathcal{I}^{k} \tag{1.5.4}
\end{equation*}
$$

which is onto and has \mathcal{I}^{k} as kernel. We claim:
Theorem 1.5.6. The map, π, maps \mathcal{A}^{k} bijectively onto Λ^{k}.
Proof. By Theorem 1.5.5 every \mathcal{I}^{k} coset, $T+\mathcal{I}^{k}$, contains a unique element, T_{1}, of \mathcal{A}^{k}. Hence for every element of Λ^{k} there is a unique element of \mathcal{A}^{k} which gets mapped onto it by π.

Remark. Since Λ^{k} and \mathcal{A}^{k} are isomorphic as vector spaces many treatments of multilinear algebra avoid mentioning Λ^{k}, reasoning that \mathcal{A}^{k} is a perfectly good substitute for it and that one should, if possible, not make two different definitions for what is essentially the same object. This is a justifiable point of view (and is the point of view taken by Spivak and Munkres ${ }^{1}$). There are, however, some advantages to distinguishing between A^{k} and Λ^{k}, as we'll see in § 1.6.

Exercises.

1. A k-tensor, $T, \in \mathcal{L}^{k}(V)$ is symmetric if $T^{\sigma}=T$ for all $\sigma \in S_{k}$. Show that the set, $\mathcal{S}^{k}(V)$, of symmetric k tensors is a vector subspace of $\mathcal{L}^{k}(V)$.
2. Let e_{1}, \ldots, e_{n} be a basis of V. Show that every symmetric 2tensor is of the form

$$
\sum a_{i j} e_{i}^{*} \otimes e_{j}^{*}
$$

where $a_{i, j}=a_{j, i}$ and $e_{1}^{*}, \ldots, e_{n}^{*}$ are the dual basis vectors of V^{*}.
3. Show that if T is a symmetric k-tensor, then for $k \geq 2, T$ is in \mathcal{I}^{k}. Hint: Let σ be a transposition and deduce from the identity, $T^{\sigma}=T$, that T has to be in the kernel of Alt.
4. Warning: In general $\mathcal{S}^{k}(V) \neq \mathcal{I}^{k}(V)$. Show, however, that if $k=2$ these two spaces are equal.
5. Show that if $\ell \in V^{*}$ and $T \in \mathcal{I}^{k-2}$, then $\ell \otimes T \otimes \ell$ is in \mathcal{I}^{k}.
6. Show that if ℓ_{1} and ℓ_{2} are in V^{*} and T is in \mathcal{I}^{k-2}, then $\ell_{1} \otimes$ $T \otimes \ell_{2}+\ell_{2} \otimes T \otimes \ell_{1}$ is in \mathcal{I}^{k}.
7. Given a permutation $\sigma \in S_{k}$ and $T \in \mathcal{I}^{k}$, show that $T^{\sigma} \in \mathcal{I}^{k}$.
8. Let \mathcal{W} be a subspace of \mathcal{L}^{k} having the following two properties.
(a) For $S \in \mathcal{S}^{2}(V)$ and $T \in \mathcal{L}^{k-2}, S \otimes T$ is in \mathcal{W}.
(b) For T in \mathcal{W} and $\sigma \in S_{k}, T^{\sigma}$ is in \mathcal{W}.

[^0]Show that \mathcal{W} has to contain \mathcal{I}^{k} and conclude that \mathcal{I}^{k} is the smallest subspace of \mathcal{L}^{k} having properties a and b.
9. Show that there is a bijective linear map

$$
\alpha: \Lambda^{k} \rightarrow \mathcal{A}^{k}
$$

with the property

$$
\begin{equation*}
\alpha \pi(T)=\frac{1}{k!} \operatorname{Alt}(T) \tag{1.5.5}
\end{equation*}
$$

for all $T \in \mathcal{L}^{k}$, and show that α is the inverse of the map of \mathcal{A}^{k} onto Λ^{k} described in Theorem 1.5.6 (Hint: §1.2, exercise 8).
10. Let V be an n-dimensional vector space. Compute the dimension of $S^{k}(V)$. Some hints:
(a) Introduce the following symmetrization operation on tensors $T \in \mathcal{L}^{k}(V)$:

$$
\operatorname{Sym}(T)=\sum_{\tau \in S_{k}} T^{\tau}
$$

Prove that this operation has properties 2, 3 and 4 of Proposition 1.4.6 and, as a substitute for property 1 , has the property: $(\operatorname{Sym} T)^{\sigma}=\operatorname{Sym} T$.
(b) Let $\varphi_{I}=\operatorname{Sym}\left(e_{I}^{*}\right), e_{I}^{*}=e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{n}}^{*}$. Prove that $\left\{\varphi_{I}, I\right.$ non-decreasing\} form a basis of $S^{k}(V)$.
(c) Conclude from (b) that $\operatorname{dim} S^{k}(V)$ is equal to the number of non-decreasing multi-indices of length $k: 1 \leq i_{1} \leq i_{2} \leq \cdots \leq \ell_{k} \leq n$.
(d) Compute this number by noticing that

$$
\left(i_{1}, \ldots, i_{n}\right) \rightarrow\left(i_{1}+0, i_{2}+1, \ldots, i_{k}+k-1\right)
$$

is a bijection between the set of these non-decreasing multi-indices and the set of increasing multi-indices $1 \leq j_{1}<\cdots<j_{k} \leq n+k-1$.

1.6 The wedge product

The tensor algebra operations on the spaces, $\mathcal{L}^{k}(V)$, which we discussed in Sections 1.2 and 1.3, i.e., the "tensor product operation" and the "pull-back" operation, give rise to similar operations on the spaces, Λ^{k}. We will discuss in this section the analogue of the tensor product operation. As in $\S 4$ we'll abbreviate $\mathcal{L}^{k}(V)$ to \mathcal{L}^{k} and $\Lambda^{k}(V)$ to Λ^{k} when it's clear which " V " is intended.

Given $\omega_{i} \in \Lambda^{k_{i}}, i=1,2$ we can, by (1.5.4), find a $T_{i} \in \mathcal{L}^{k_{i}}$ with $\omega_{i}=\pi\left(T_{i}\right)$. Then $T_{1} \otimes T_{2} \in \mathcal{L}^{k_{1}+k_{2}}$. Let

$$
\begin{equation*}
\omega_{1} \wedge \omega_{2}=\pi\left(T_{1} \otimes T_{2}\right) \in \Lambda^{k_{1}+k_{2}} . \tag{1.6.1}
\end{equation*}
$$

Claim.

This wedge product is well defined, i.e., doesn't depend on our choices of T_{1} and T_{2}.

Proof. Let $\pi\left(T_{1}\right)=\pi\left(T_{1}^{\prime}\right)=\omega_{1}$. Then $T_{1}^{\prime}=T_{1}+W_{1}$ for some $W_{1} \in$ $\mathcal{I}^{k_{1}}$, so

$$
T_{1}^{\prime} \otimes T_{2}=T_{1} \otimes T_{2}+W_{1} \otimes T_{2}
$$

But $W_{1} \in \mathcal{I}^{k_{1}}$ implies $W_{1} \otimes T_{2} \in \mathcal{I}^{k_{1}+k_{2}}$ and this implies:

$$
\pi\left(T_{1}^{\prime} \otimes T_{2}\right)=\pi\left(T_{1} \otimes T_{2}\right)
$$

A similar argument shows that (1.6.1) is well-defined independent of the choice of T_{2}.

More generally let $\omega_{i} \in \Lambda^{k_{i}}, i=1,2,3$, and let $\omega_{i}=\pi\left(T_{i}\right), T_{i} \in$ $\mathcal{L}^{k_{i}}$. Define

$$
\omega_{1} \wedge \omega_{2} \wedge \omega_{3} \in \Lambda^{k_{1}+k_{2}+k_{3}}
$$

by setting

$$
\omega_{1} \wedge \omega_{2} \wedge \omega_{3}=\pi\left(T_{1} \otimes T_{2} \otimes T_{3}\right)
$$

As above it's easy to see that this is well-defined independent of the choice of T_{1}, T_{2} and T_{3}. It is also easy to see that this triple wedge product is just the wedge product of $\omega_{1} \wedge \omega_{2}$ with ω_{3} or, alternatively, the wedge product of ω_{1} with $\omega_{2} \wedge \omega_{3}$, i.e.,

$$
\begin{equation*}
\omega_{1} \wedge \omega_{2} \wedge \omega_{3}=\left(\omega_{1} \wedge \omega_{2}\right) \wedge \omega_{3}=\omega_{1} \wedge\left(\omega_{2} \wedge \omega_{3}\right) \tag{1.6.2}
\end{equation*}
$$

We leave for you to check:
For $\lambda \in \mathbb{R}$

$$
\begin{equation*}
\lambda\left(\omega_{1} \wedge \omega_{2}\right)=\left(\lambda \omega_{1}\right) \wedge \omega_{2}=\omega_{1} \wedge\left(\lambda \omega_{2}\right) \tag{1.6.3}
\end{equation*}
$$

and verify the two distributive laws:

$$
\begin{equation*}
\left(\omega_{1}+\omega_{2}\right) \wedge \omega_{3}=\omega_{1} \wedge \omega_{3}+\omega_{2} \wedge \omega_{3} \tag{1.6.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{1} \wedge\left(\omega_{2}+\omega_{3}\right)=\omega_{1} \wedge \omega_{2}+\omega_{1} \wedge \omega_{3} . \tag{1.6.5}
\end{equation*}
$$

As we noted in $\S 1.4, \mathcal{I}^{k}=\{0\}$ for $k=1$, i.e., there are no non-zero "redundant" k tensors in degree $k=1$. Thus

$$
\begin{equation*}
\Lambda^{1}\left(V^{*}\right)=V^{*}=\mathcal{L}^{1}\left(V^{*}\right) . \tag{1.6.6}
\end{equation*}
$$

A particularly interesting example of a wedge product is the following. Let $\ell_{i} \in V^{*}=\Lambda^{1}\left(V^{*}\right), i=1, \ldots, k$. Then if $T=\ell_{1} \otimes \cdots \otimes \ell_{k}$

$$
\begin{equation*}
\ell_{1} \wedge \cdots \wedge \ell_{k}=\pi(T) \in \Lambda^{k}\left(V^{*}\right) . \tag{1.6.7}
\end{equation*}
$$

We will call (1.6.7) a decomposable element of $\Lambda^{k}\left(V^{*}\right)$.
We will prove that these elements satisfy the following wedge product identity. For $\sigma \in S_{k}$:

$$
\begin{equation*}
\ell_{\sigma(1)} \wedge \cdots \wedge \ell_{\sigma(k)}=(-1)^{\sigma} \ell_{1} \wedge \cdots \wedge \ell_{k} . \tag{1.6.8}
\end{equation*}
$$

Proof. For every $T \in \mathcal{L}^{k}, T=(-1)^{\sigma} T+W$ for some $W \in I^{k}$ by Proposition 1.5.4. Therefore since $\pi(W)=0$

$$
\begin{equation*}
\pi\left(T^{\sigma}\right)=(-1)^{\sigma} \pi(T) \tag{1.6.9}
\end{equation*}
$$

In particular, if $T=\ell_{1} \otimes \cdots \otimes \ell_{k}, T^{\sigma}=\ell_{\sigma(1)} \otimes \cdots \otimes \ell_{\sigma(k)}$, so

$$
\begin{aligned}
\pi\left(T^{\sigma}\right) & =\ell_{\sigma(1)} \wedge \cdots \wedge \ell_{\sigma(k)}=(-1)^{\sigma} \pi(T) \\
& =(-1)^{\sigma} \ell_{1} \wedge \cdots \wedge \ell_{k}
\end{aligned}
$$

In particular, for ℓ_{1} and $\ell_{2} \in V^{*}$

$$
\begin{equation*}
\ell_{1} \wedge \ell_{2}=-\ell_{2} \wedge \ell_{1} \tag{1.6.10}
\end{equation*}
$$

and for ℓ_{1}, ℓ_{2} and $\ell_{3} \in V^{*}$

$$
\begin{equation*}
\ell_{1} \wedge \ell_{2} \wedge \ell_{3}=-\ell_{2} \wedge \ell_{1} \wedge \ell_{3}=\ell_{2} \wedge \ell_{3} \wedge \ell_{1} \tag{1.6.11}
\end{equation*}
$$

More generally, it's easy to deduce from (1.6.8) the following result (which we'll leave as an exercise).
Theorem 1.6.1. If $\omega_{1} \in \Lambda^{r}$ and $\omega_{2} \in \Lambda^{s}$ then

$$
\begin{equation*}
\omega_{1} \wedge \omega_{2}=(-1)^{r s} \omega_{2} \wedge \omega_{1} \tag{1.6.12}
\end{equation*}
$$

Hint: It suffices to prove this for decomposable elements i.e., for $\omega_{1}=\ell_{1} \wedge \cdots \wedge \ell_{r}$ and $\omega_{2}=\ell_{1}^{\prime} \wedge \cdots \wedge \ell_{s}^{\prime}$. Now make rs applications of (1.6.10).

Let e_{1}, \ldots, e_{n} be a basis of V and let $e_{1}^{*}, \ldots, e_{n}^{*}$ be the dual basis of V^{*}. For every multi-index, I, of length k,

$$
\begin{equation*}
e_{i_{1}}^{*} \wedge \cdots e_{i_{k}}^{*}=\pi\left(e_{I}^{*}\right)=\pi\left(e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{k}}^{*}\right) . \tag{1.6.13}
\end{equation*}
$$

Theorem 1.6.2. The elements (1.6.13), with I strictly increasing, are basis vectors of Λ^{k}.

Proof. The elements

$$
\psi_{I}=\operatorname{Alt}\left(e_{I}^{*}\right), I \text { strictly increasing }
$$

are basis vectors of \mathcal{A}^{k} by Proposition 3.6; so their images, $\pi\left(\psi_{I}\right)$, are a basis of Λ^{k}. But

$$
\begin{aligned}
\pi\left(\psi_{I}\right) & =\pi \sum(-1)^{\sigma}\left(e_{I}^{*}\right)^{\sigma} \\
& =\sum(-1)^{\sigma} \pi\left(e_{I}^{*}\right)^{\sigma} \\
& =\sum(-1)^{\sigma}(-1)^{\sigma} \pi\left(e_{I}^{*}\right) \\
& =k!\pi\left(e_{I}^{*}\right) .
\end{aligned}
$$

Exercises:

1. Prove the assertions (1.6.3), (1.6.4) and (1.6.5).
2. Verify the multiplication law, (1.6.12) for wedge product.
3. Given $\omega \in \Lambda^{r}$ let ω^{k} be the k-fold wedge product of ω with itself, i.e., let $\omega^{2}=\omega \wedge \omega, \omega^{3}=\omega \wedge \omega \wedge \omega$, etc.
(a) Show that if r is odd then for $k>1, \omega^{k}=0$.
(b) Show that if ω is decomposable, then for $k>1, \omega^{k}=0$.
4. If ω and μ are in $\Lambda^{2 r}$ prove:

$$
(\omega+\mu)^{k}=\sum_{\ell=0}^{k}\binom{k}{\ell} \omega^{\ell} \wedge \mu^{k-\ell} .
$$

Hint: As in freshman calculus prove this binomial theorem by induction using the identity: $\binom{k}{\ell}=\binom{k-1}{\ell-1}+\binom{k-1}{\ell}$.
5. Let ω be an element of Λ^{2}. By definition the rank of ω is k if $\omega^{k} \neq 0$ and $\omega^{k+1}=0$. Show that if

$$
\omega=e_{1} \wedge f_{1}+\cdots+e_{k} \wedge f_{k}
$$

with $e_{i}, f_{i} \in V^{*}$, then ω is of rank $\leq k$. Hint: Show that

$$
\omega^{k}=k!e_{1} \wedge f_{1} \wedge \cdots \wedge e_{k} \wedge f_{k}
$$

6. Given $e_{i} \in V^{*}, i=1, \ldots, k$ show that $e_{1} \wedge \cdots \wedge e_{k} \neq 0$ if and only if the e_{i} 's are linearly independent. Hint: Induction on k.

1.7 The interior product

We'll describe in this section another basic product operation on the spaces, $\Lambda^{k}\left(V^{*}\right)$. As above we'll begin by defining this operator on the $\mathcal{L}^{k}(V)$'s. Given $T \in \mathcal{L}^{k}(V)$ and $\mathrm{v} \in V$ let $\iota_{\mathrm{v}} T$ be the be the ($k-1$)-tensor which takes the value

$$
\begin{equation*}
\iota_{\mathrm{v}} T\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{k-1}\right)=\sum_{r=1}^{k}(-1)^{r-1} T\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{r-1}, \mathrm{v}, \mathrm{v}_{r}, \ldots, \mathrm{v}_{k-1}\right) \tag{1.7.1}
\end{equation*}
$$

on the $k-1$-tuple of vectors, $\mathrm{v}_{1}, \ldots, \mathrm{v}_{k-1}$, i.e., in the $r^{\text {th }}$ summand on the right, v gets inserted between v_{r-1} and v_{r}. (In particular the first summand is $T\left(\mathrm{v}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{k-1}\right)$ and the last summand is $(-1)^{k-1} T\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{k-1}, \mathrm{v}\right)$.) It's clear from the definition that if $\mathrm{v}=$ $\mathrm{v}_{1}+\mathrm{v}_{2}$

$$
\begin{equation*}
\iota_{\mathrm{v}} T=\iota_{\mathrm{v}_{1}} T+\iota_{\mathrm{v}_{2}} T \tag{1.7.2}
\end{equation*}
$$

and if $T=T_{1}+T_{2}$

$$
\begin{equation*}
\iota_{\mathrm{v}} T=\iota_{\mathrm{v}} T_{1}+\iota_{\mathrm{v}} T_{2}, \tag{1.7.3}
\end{equation*}
$$

and we will leave for you to verify by inspection the following two lemmas:
Lemma 1.7.1. If T is the decomposable k-tensor $\ell_{1} \otimes \cdots \otimes \ell_{k}$ then

$$
\begin{equation*}
\iota_{\mathrm{v}} T=\sum(-1)^{r-1} \ell_{r}(\mathrm{v}) \ell_{1} \otimes \cdots \otimes \hat{\ell}_{r} \otimes \cdots \otimes \ell_{k} \tag{1.7.4}
\end{equation*}
$$

where the "cap" over ℓ_{r} means that it's deleted from the tensor product ,
and
Lemma 1.7.2. If $T_{1} \in \mathcal{L}^{p}$ and $T_{2} \in \mathcal{L}^{q}$

$$
\begin{equation*}
\iota_{\mathrm{v}}\left(T_{1} \otimes T_{2}\right)=\iota_{\mathrm{v}} T_{1} \otimes T_{2}+(-1)^{p} T_{1} \otimes \iota_{\mathrm{v}} T_{2} . \tag{1.7.5}
\end{equation*}
$$

We will next prove the important identity

$$
\begin{equation*}
\iota_{\mathrm{v}}\left(\iota_{\mathrm{v}} T\right)=0 . \tag{1.7.6}
\end{equation*}
$$

Proof. It suffices by linearity to prove this for decomposable tensors and since (1.7.6) is trivially true for $T \in \mathcal{L}^{1}$, we can by induction
assume (1.7.6) is true for decomposible tensors of degree $k-1$. Let $\ell_{1} \otimes \cdots \otimes \ell_{k}$ be a decomposable tensor of degree k. Setting $T=$ $\ell_{1} \otimes \cdots \otimes \ell_{k-1}$ and $\ell=\ell_{k}$ we have

$$
\begin{aligned}
\iota_{\mathrm{v}}\left(\ell_{1} \otimes \cdots \otimes \ell_{k}\right) & =\iota_{\mathrm{v}}(T \otimes \ell) \\
& =\iota_{\mathrm{v}} T \otimes \ell+(-1)^{k-1} \ell(v) T
\end{aligned}
$$

by (1.7.5). Hence

$$
\begin{aligned}
\iota_{\mathrm{v}}\left(\iota_{\mathrm{v}}(T \otimes \ell)\right)= & \iota_{\mathrm{v}}\left(\iota_{\mathrm{v}} T\right) \otimes \ell+(-1)^{k-2} \ell(\mathrm{v}) \iota_{\mathrm{v}} T \\
& +(-1)^{k-1} \ell(v) \iota_{\mathrm{v}} T
\end{aligned}
$$

But by induction the first summand on the right is zero and the two remaining summands cancel each other out.

From (1.7.6) we can deduce a slightly stronger result: For $\mathrm{v}_{1}, \mathrm{v}_{2} \in$ V

$$
\begin{equation*}
\iota_{\mathrm{v}_{1}} \iota_{\mathrm{v}_{2}}=-\iota_{\mathrm{v}_{2}} \iota_{\mathrm{v}_{1}} . \tag{1.7.7}
\end{equation*}
$$

Proof. Let $\mathrm{v}=\mathrm{v}_{1}+\mathrm{v}_{2}$. Then $\iota_{\mathrm{v}}=\iota_{\mathrm{v}_{1}}+\iota_{\mathrm{v}_{2}}$ so

$$
\begin{aligned}
0=\iota_{\mathrm{v}} \iota_{\mathrm{v}} & =\left(\iota_{\mathrm{v}_{1}}+\iota_{\mathrm{v}_{2}}\right)\left(\iota_{\mathrm{v}_{1}}+\iota_{\mathrm{v}_{2}}\right) \\
& =\iota_{\mathrm{v}_{1}} \iota_{\mathrm{v}_{1}}+\iota_{\mathrm{v}_{1}} \iota_{\mathrm{v}_{2}}+\iota_{\mathrm{v}_{2}} \iota_{\mathrm{v}_{1}}+\iota_{\mathrm{v}_{2}} \iota_{\mathrm{v}_{2}} \\
& =\iota_{\mathrm{v}_{1}} \iota_{\mathrm{v}_{2}}+\iota_{\mathrm{v}_{2}} \iota_{\mathrm{v}_{1}}
\end{aligned}
$$

since the first and last summands are zero by (1.7.6).

We'll now show how to define the operation, ι_{v}, on $\Lambda^{k}\left(V^{*}\right)$. We'll first prove

Lemma 1.7.3. If $T \in \mathcal{L}^{k}$ is redundant then so is $\iota_{\mathrm{v}} T$.
Proof. Let $T=T_{1} \otimes \ell \otimes \ell \otimes T_{2}$ where ℓ is in V^{*}, T_{1} is in \mathcal{L}^{p} and T_{2} is in \mathcal{L}^{q}. Then by (1.7.5)

$$
\begin{aligned}
\iota_{\mathrm{v}} T= & \iota_{\mathrm{v}} T_{1} \otimes \ell \otimes \ell \otimes T_{2} \\
& +(-1)^{p} T_{1} \otimes \iota_{\mathrm{v}}(\ell \otimes \ell) \otimes T_{2} \\
& +(-1)^{p+2} T_{1} \otimes \ell \otimes \ell \otimes \iota_{\mathrm{v}} T_{2} .
\end{aligned}
$$

However, the first and the third terms on the right are redundant and

$$
\iota_{\mathrm{v}}(\ell \otimes \ell)=\ell(\mathrm{v}) \ell-\ell(\mathrm{v}) \ell
$$

by (1.7.4).
Now let π be the projection (1.5.4) of \mathcal{L}^{k} onto Λ^{k} and for $\omega=$ $\pi(T) \in \Lambda^{k}$ define

$$
\begin{equation*}
\iota_{\mathrm{v}} \omega=\pi\left(\iota_{\mathrm{v}} T\right) . \tag{1.7.8}
\end{equation*}
$$

To show that this definition is legitimate we note that if $\omega=\pi\left(T_{1}\right)=$ $\pi\left(T_{2}\right)$, then $T_{1}-T_{2} \in \mathcal{I}^{k}$, so by Lemma 1.7.3 $\iota_{\mathrm{v}} T_{1}-\iota_{\mathrm{v}} T_{2} \in \mathcal{I}^{k-1}$ and hence

$$
\pi\left(\iota_{\mathrm{v}} T_{1}\right)=\pi\left(\iota_{\mathrm{v}} T_{2}\right)
$$

Therefore, (1.7.8) doesn't depend on the choice of T.
By definition ι_{v} is a linear mapping of $\Lambda^{k}\left(V^{*}\right)$ into $\Lambda^{k-1}\left(V^{*}\right)$. We will call this the interior product operation. From the identities (1.7.2)-(1.7.8) one gets, for $\mathrm{v}, \mathrm{v}_{1}, \mathrm{v}_{2} \in V \omega \in \Lambda^{k}, \omega_{1} \in \Lambda^{p}$ and $\omega_{2} \in \Lambda^{2}$

$$
\begin{align*}
\iota_{\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)} \omega & =\iota_{\mathrm{v}_{1}} \omega+\iota_{\mathrm{v}_{2}} \omega \tag{1.7.9}\\
\iota_{\mathrm{v}}\left(\omega_{1} \wedge \omega_{2}\right) & =\iota_{\mathrm{v}} \omega_{1} \wedge \omega_{2}+(-1)^{p} \omega_{1} \wedge \iota_{\mathrm{v}} \omega_{2} \tag{1.7.10}\\
\iota_{\mathrm{v}}\left(\iota_{\mathrm{v}} \omega\right)=0 & \tag{1.7.11}
\end{align*}
$$

and

$$
\begin{equation*}
\iota_{\mathrm{v}_{1}} \iota_{\mathrm{v}_{2}} \omega=-\iota_{\mathrm{v}_{2}} \iota_{\mathrm{v}_{1}} \omega \text {. } \tag{1.7.12}
\end{equation*}
$$

Moreover if $\omega=\ell_{1} \wedge \cdots \wedge \ell_{k}$ is a decomposable element of Λ^{k} one gets from (1.7.4)

$$
\begin{equation*}
\iota_{\mathrm{v}} \omega=\sum_{r=1}^{k}(-1)^{r-1} \ell_{r}(\mathrm{v}) \ell_{1} \wedge \cdots \wedge \widehat{\ell}_{r} \wedge \cdots \wedge \ell_{k} \tag{1.7.13}
\end{equation*}
$$

In particular if e_{1}, \ldots, e_{n} is a basis of $V, e_{1}^{*}, \ldots, e_{n}^{*}$ the dual basis of V^{*} and $\omega_{I}=e_{i_{1}}^{*} \wedge \cdots \wedge e_{i_{k}}^{*}, 1 \leq i_{1}<\cdots<i_{k} \leq n$, then $\iota\left(e_{j}\right) \omega_{I}=0$ if $j \notin I$ and if $j=i_{r}$

$$
\begin{equation*}
\iota\left(e_{j}\right) \omega_{I}=(-1)^{r-1} \omega_{I_{r}} \tag{1.7.14}
\end{equation*}
$$

where $I_{r}=\left(i_{1}, \ldots, \widehat{i}_{r}, \ldots, i_{k}\right)$ (i.e., I_{r} is obtained from the multiindex I by deleting i_{r}).

Exercises:

1. Prove Lemma 1.7.1.
2. Prove Lemma 1.7.2.
3. Show that if $T \in \mathcal{A}^{k}, i_{v}=k T_{v}$ where T_{v} is the tensor (1.3.16). In particular conclude that $i_{v} T \in \mathcal{A}^{k-1}$. (See $\S 1.4$, exercise 8.)
4. Assume the dimension of V is n and let Ω be a non-zero element of the one dimensional vector space Λ^{n}. Show that the map

$$
\begin{equation*}
\rho: V \rightarrow \Lambda^{n-1}, \quad v \rightarrow \iota_{v} \Omega, \tag{1.7.15}
\end{equation*}
$$

is a bijective linear map. Hint: One can assume $\Omega=e_{1}^{*} \wedge \cdots \wedge e_{n}^{*}$ where e_{1}, \ldots, e_{n} is a basis of V. Now use (1.7.14) to compute this map on basis elements.
5. (The cross-product.) Let V be a 3 -dimensional vector space, B an inner product on V and Ω a non-zero element of Λ^{3}. Define a map

$$
V \times V \rightarrow V
$$

by setting

$$
\begin{equation*}
v_{1} \times v_{2}=\rho^{-1}\left(L v_{1} \wedge L v_{2}\right) \tag{1.7.16}
\end{equation*}
$$

where ρ is the map (1.7.15) and $L: V \rightarrow V^{*}$ the map (1.2.9). Show that this map is linear in v_{1}, with v_{2} fixed and linear in v_{2} with v_{1} fixed, and show that $v_{1} \times v_{2}=-v_{2} \times v_{1}$.
6. For $V=\mathbb{R}^{3}$ let e_{1}, e_{2} and e_{3} be the standard basis vectors and B the standard inner product. (See §1.1.) Show that if $\Omega=e_{1}^{*} \wedge e_{2}^{*} \wedge e_{3}^{*}$ the cross-product above is the standard cross-product:

$$
\begin{align*}
& e_{1} \times e_{2}=e_{3} \\
& e_{2} \times e_{3}=e_{1} \tag{1.7.17}\\
& e_{3} \times e_{1}=e_{2} .
\end{align*}
$$

Hint: If B is the standard inner product $L e_{i}=e_{i}^{*}$.
Remark 1.7.4. One can make this standard cross-product look even more standard by using the calculus notation: $e_{1}=\widehat{i}, e_{2}=\widehat{j}$ and $e_{3}=\widehat{k}$

1.8 The pull-back operation on Λ^{k}

Let V and W be vector spaces and let A be a linear map of V into W. Given a k-tensor, $T \in \mathcal{L}^{k}(W)$, the pull-back, $A^{*} T$, is the k-tensor

$$
\begin{equation*}
A^{*} T\left(v_{1}, \ldots, v_{k}\right)=T\left(A v_{1}, \ldots, A v_{k}\right) \tag{1.8.1}
\end{equation*}
$$

in $\mathcal{L}^{k}(V)$. (See $\S 1.3$, equation 1.3 .12 .) In this section we'll show how to define a similar pull-back operation on Λ^{k}.

Lemma 1.8.1. If $T \in \mathcal{I}^{k}(W)$, then $A^{*} T \in \mathcal{I}^{k}(V)$.
Proof. It suffices to verify this when T is a redundant k-tensor, i.e., a tensor of the form

$$
T=\ell_{1} \otimes \cdots \otimes \ell_{k}
$$

where $\ell_{r} \in W^{*}$ and $\ell_{i}=\ell_{i+1}$ for some index, i. But by (1.3.14)

$$
A^{*} T=A^{*} \ell_{1} \otimes \cdots \otimes A^{*} \ell_{k}
$$

and the tensor on the right is redundant since $A^{*} \ell_{i}=A^{*} \ell_{i+1}$.

Now let ω be an element of $\Lambda^{k}\left(W^{*}\right)$ and let $\omega=\pi(T)$ where T is in $\mathcal{L}^{k}(W)$. We define

$$
\begin{equation*}
A^{*} \omega=\pi\left(A^{*} T\right) \tag{1.8.2}
\end{equation*}
$$

Claim:

The left hand side of (1.8.2) is well-defined.
Proof. If $\omega=\pi(T)=\pi\left(T^{\prime}\right)$, then $T=T^{\prime}+S$ for some $S \in \mathcal{I}^{k}(W)$, and $A^{*} T^{\prime}=A^{*} T+A^{*} S$. But $A^{*} S \in \mathcal{I}^{k}(V)$, so

$$
\pi\left(A^{*} T^{\prime}\right)=\pi\left(A^{*} T\right)
$$

Proposition 1.8.2. The map

$$
A^{*}: \Lambda^{k}\left(W^{*}\right) \rightarrow \Lambda^{k}\left(V^{*}\right)
$$

mapping ω to $A^{*} \omega$ is linear. Moreover,
(i) If $\omega_{i} \in \Lambda^{k_{i}}(W), i=1,2$, then

$$
\begin{equation*}
A^{*}\left(\omega_{1} \wedge \omega_{2}\right)=A^{*} \omega_{1} \wedge A^{*} \omega_{2} \tag{1.8.3}
\end{equation*}
$$

(ii) If U is a vector space and $B: U \rightarrow V$ a linear map, then for $\omega \in \Lambda^{k}\left(W^{*}\right)$,

$$
\begin{equation*}
B^{*} A^{*} \omega=(A B)^{*} \omega \tag{1.8.4}
\end{equation*}
$$

We'll leave the proof of these three assertions as exercises. Hint: They follow immediately from the analogous assertions for the pullback operation on tensors. (See (1.3.14) and (1.3.15).)

As an application of the pull-back operation we'll show how to use it to define the notion of determinant for a linear mapping. Let V be a n-dimensional vector space. Then $\operatorname{dim} \Lambda^{n}\left(V^{*}\right)=\binom{n}{n}=1$; i.e., $\Lambda^{n}\left(V^{*}\right)$ is a one-dimensional vector space. Thus if $A: V \rightarrow V$ is a linear mapping, the induced pull-back mapping:

$$
A^{*}: \Lambda^{n}\left(V^{*}\right) \rightarrow \Lambda^{n}\left(V^{*}\right),
$$

is just "multiplication by a constant". We denote this constant by $\operatorname{det}(A)$ and call it the determinant of A, Hence, by definition,

$$
\begin{equation*}
A^{*} \omega=\operatorname{det}(A) \omega \tag{1.8.5}
\end{equation*}
$$

for all ω in $\Lambda^{n}\left(V^{*}\right)$. From (1.8.5) it's easy to derive a number of basic facts about determinants.

Proposition 1.8.3. If A and B are linear mappings of V into V, then

$$
\begin{equation*}
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \tag{1.8.6}
\end{equation*}
$$

Proof. By (1.8.4) and

$$
\begin{aligned}
(A B)^{*} \omega & =\operatorname{det}(A B) \omega \\
& =B^{*}\left(A^{*} \omega\right)=\operatorname{det}(B) A^{*} \omega \\
& =\operatorname{det}(B) \operatorname{det}(A) \omega,
\end{aligned}
$$

so, $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Proposition 1.8.4. If $I: V \rightarrow V$ is the identity map, $I v=v$ for all $v \in V, \operatorname{det}(I)=1$.

We'll leave the proof as an exercise. Hint: I^{*} is the identity map on $\Lambda^{n}\left(V^{*}\right)$.

Proposition 1.8.5. If $A: V \rightarrow V$ is not onto, $\operatorname{det}(A)=0$.
Proof. Let W be the image of A. Then if A is not onto, the dimension of W is less than n, so $\Lambda^{n}\left(W^{*}\right)=\{0\}$. Now let $A=I_{W} B$ where I_{W} is the inclusion map of W into V and B is the mapping, A, regarded as a mapping from V to W. Thus if ω is in $\Lambda^{n}\left(V^{*}\right)$, then by (1.8.4)

$$
A^{*} \omega=B^{*} I_{W}^{*} \omega
$$

and since $I_{W}^{*} \omega$ is in $\Lambda^{n}(W)$ it is zero.

We will derive by wedge product arguments the familiar "matrix formula" for the determinant. Let V and W be n-dimensional vector spaces and let e_{1}, \ldots, e_{n} be a basis for V and f_{1}, \ldots, f_{n} a basis for W. From these bases we get dual bases, $e_{1}^{*}, \ldots, e_{n}^{*}$ and $f_{1}^{*}, \ldots, f_{n}^{*}$, for V^{*} and W^{*}. Moreover, if A is a linear map of V into W and $\left[a_{i, j}\right]$ the $n \times n$ matrix describing A in terms of these bases, then the transpose map, $A^{*}: W^{*} \rightarrow V^{*}$, is described in terms of these dual bases by the $n \times n$ transpose matrix, i.e., if

$$
A e_{j}=\sum a_{i, j} f_{i}
$$

then

$$
A^{*} f_{j}^{*}=\sum a_{j, i} e_{i}^{*} .
$$

(See § 2.) Consider now $A^{*}\left(f_{1}^{*} \wedge \cdots \wedge f_{n}^{*}\right)$. By (1.8.3)

$$
\begin{aligned}
A^{*}\left(f_{1}^{*} \wedge \cdots \wedge f_{n}^{*}\right) & =A^{*} f_{1}^{*} \wedge \cdots \wedge A^{*} f_{n}^{*} \\
& =\sum\left(a_{1, k_{1}} e_{k_{1}}^{*}\right) \wedge \cdots \wedge\left(a_{n, k_{n}} e_{k_{n}}^{*}\right)
\end{aligned}
$$

the sum being over all k_{1}, \ldots, k_{n}, with $1 \leq k_{r} \leq n$. Thus,

$$
A^{*}\left(f_{1}^{*} \wedge \cdots \wedge f_{n}^{*}\right)=\sum a_{1, k_{1}} \ldots a_{n, k_{n}} e_{k_{1}}^{*} \wedge \cdots \wedge e_{k_{n}}^{*} .
$$

If the multi-index, k_{1}, \ldots, k_{n}, is repeating, then $e_{k_{1}}^{*} \wedge \cdots \wedge e_{k_{n}}^{*}$ is zero, and if it's not repeating then we can write

$$
k_{i}=\sigma(i) \quad i=1, \ldots, n
$$

for some permutation, σ, and hence we can rewrite $A^{*}\left(f_{1}^{*} \wedge \cdots \wedge f_{n}^{*}\right)$ as the sum over $\sigma \in S_{n}$ of

$$
\sum a_{1, \sigma(1)} \cdots a_{n, \sigma(n)}\left(e_{1}^{*} \wedge \cdots \wedge e_{n}^{*}\right)^{\sigma} .
$$

But

$$
\left(e_{1}^{*} \wedge \cdots \wedge e_{n}^{*}\right)^{\sigma}=(-1)^{\sigma} e_{1}^{*} \wedge \cdots \wedge e_{n}^{*}
$$

so we get finally the formula

$$
\begin{equation*}
A^{*}\left(f_{1}^{*} \wedge \cdots \wedge f_{n}^{*}\right)=\operatorname{det}\left[a_{i, j}\right] e_{1}^{*} \wedge \cdots \wedge e_{n}^{*} \tag{1.8.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{det}\left[a_{i, j}\right]=\sum(-1)^{\sigma} a_{1, \sigma(1)} \cdots a_{n, \sigma(n)} \tag{1.8.8}
\end{equation*}
$$

summed over $\sigma \in S_{n}$. The sum on the right is (as most of you know) the determinant of $\left[a_{i, j}\right]$.

Notice that if $V=W$ and $e_{i}=f_{i}, i=1, \ldots, n$, then $\omega=e_{1}^{*} \wedge \cdots \wedge$ $e_{n}^{*}=f_{1}^{*} \wedge \cdots \wedge f_{n}^{*}$, hence by (1.8.5) and (1.8.7),

$$
\begin{equation*}
\operatorname{det}(A)=\operatorname{det}\left[a_{i, j}\right] . \tag{1.8.9}
\end{equation*}
$$

Exercises.

1. Verify the three assertions of Proposition 1.8.2.
2. Deduce from Proposition 1.8.5 a well-known fact about determinants of $n \times n$ matrices: If two columns are equal, the determinant is zero.
3. Deduce from Proposition 1.8.3 another well-known fact about determinants of $n \times n$ matrices: If one interchanges two columns, then one changes the sign of the determinant.

Hint: Let e_{1}, \ldots, e_{n} be a basis of V and let $B: V \rightarrow V$ be the linear mapping: $B e_{i}=e_{j}, B e_{j}=e_{i}$ and $B e_{\ell}=e_{\ell}, \ell \neq i, j$. What is $B^{*}\left(e_{1}^{*} \wedge \cdots \wedge e_{n}^{*}\right)$?
4. Deduce from Propositions 1.8.3 and 1.8.4 another well-known fact about determinants of $n \times n$ matrix. If $\left[b_{i, j}\right]$ is the inverse of $\left[a_{i, j}\right]$, its determinant is the inverse of the determinant of $\left[a_{i, j}\right]$.
5. Extract from (1.8.8) a well-known formula for determinants of 2×2 matrices:

$$
\operatorname{det}\left[\begin{array}{ll}
a_{11}, & a_{12} \\
a_{21}, & a_{22}
\end{array}\right]=a_{11} a_{22}-a_{12} a_{21}
$$

6. Show that if $A=\left[a_{i, j}\right]$ is an $n \times n$ matrix and $A^{t}=\left[a_{j, i}\right]$ is its transpose $\operatorname{det} A=\operatorname{det} A^{t}$. Hint: You are required to show that the sums

$$
\sum(-1)^{\sigma} a_{1, \sigma(1)} \ldots a_{n, \sigma(n)} \quad \sigma \in S_{n}
$$

and

$$
\sum(-1)^{\sigma} a_{\sigma(1), 1} \ldots a_{\sigma(n), n} \quad \sigma \in S_{n}
$$

are the same. Show that the second sum is identical with

$$
\sum(-1)^{\tau} a_{\tau(1), 1} \ldots a_{\tau(n), n}
$$

summed over $\tau=\sigma^{-1} \in S_{n}$.
7. Let A be an $n \times n$ matrix of the form

$$
A=\left[\begin{array}{ll}
B & * \\
0 & C
\end{array}\right]
$$

where B is a $k \times k$ matrix and C the $\ell \times \ell$ matrix and the bottom $\ell \times k$ block is zero. Show that

$$
\operatorname{det} A=\operatorname{det} B \operatorname{det} C .
$$

Hint: Show that in (1.8.8) every non-zero term is of the form

$$
(-1)^{\sigma \tau} b_{1, \sigma(1)} \ldots b_{k, \sigma(k)} c_{1, \tau(1)} \ldots c_{\ell, \tau(\ell)}
$$

where $\sigma \in S_{k}$ and $\tau \in S_{\ell}$.
8. Let V and W be vector spaces and let $A: V \rightarrow W$ be a linear map. Show that if $A v=w$ then for $\omega \in \Lambda^{p}\left(w^{*}\right)$,

$$
A^{*} \iota(w) \omega=\iota(v) A^{*} \omega .
$$

(Hint: By (1.7.10) and proposition 1.8.2 it suffices to prove this for $\omega \in \Lambda^{1}\left(W^{*}\right)$, i.e., for $\omega \in W^{*}$.)

1.9 Orientations

We recall from freshman calculus that if $\ell \subseteq \mathbb{R}^{2}$ is a line through the origin, then $\ell-\{0\}$ has two connected components and an orientation of ℓ is a choice of one of these components (as in the figure below).

More generally, if \mathbb{L} is a one-dimensional vector space then $\mathbb{L}-\{0\}$ consists of two components: namely if v is an element of $\mathbb{L}-[0\}$, then these two components are

$$
\mathbb{L}_{1}=\{\lambda v \lambda>0\}
$$

and

$$
\mathbb{L}_{2}=\{\lambda v, \lambda<0\} .
$$

An orientation of \mathbb{L} is a choice of one of these components. Usually the component chosen is denoted \mathbb{L}_{+}, and called the positive component of $\mathbb{L}-\{0\}$ and the other component, \mathbb{L}_{-}, the negative component of $\mathbb{L}-\{0\}$.

Definition 1.9.1. A vector, $v \in \mathbb{L}$, is positively oriented if v is in \mathbb{L}_{+}.

More generally still let V be an n-dimensional vector space. Then $\mathbb{L}=\Lambda^{n}\left(V^{*}\right)$ is one-dimensional, and we define an orientation of V to be an orientation of \mathbb{L}. One important way of assigning an orientation to V is to choose a basis, e_{1}, \ldots, e_{n} of V. Then, if $e_{1}^{*}, \ldots, e_{n}^{*}$ is the dual basis, we can orient $\Lambda^{n}\left(V^{*}\right)$ by requiring that $e_{1}^{*} \wedge \cdots \wedge e_{n}^{*}$ be in the positive component of $\Lambda^{n}\left(V^{*}\right)$. If V has already been assigned an orientation we will say that the basis, e_{1}, \ldots, e_{n}, is positively oriented if the orientation we just described coincides with the given orientation.

Suppose that e_{1}, \ldots, e_{n} and f_{1}, \ldots, f_{n} are bases of V and that

$$
\begin{equation*}
e_{j}=\sum a_{i, j,} f_{i} \tag{1.9.1}
\end{equation*}
$$

Then by (1.7.7)

$$
f_{1}^{*} \wedge \cdots \wedge f_{n}^{*}=\operatorname{det}\left[a_{i, j}\right] e_{1}^{*} \wedge \cdots \wedge e_{n}^{*}
$$

so we conclude:
Proposition 1.9.2. If e_{1}, \ldots, e_{n} is positively oriented, then f_{1}, \ldots, f_{n} is positively oriented if and only if $\operatorname{det}\left[a_{i, j}\right]$ is positive.

Corollary 1.9.3. If e_{1}, \ldots, e_{n} is a positively oriented basis of V, the basis: $e_{1}, \ldots, e_{i-1},-e_{i}, e_{i+1}, \ldots, e_{n}$ is negatively oriented.

Now let V be a vector space of dimension $n>1$ and W a subspace of dimension $k<n$. We will use the result above to prove the following important theorem.
Theorem 1.9.4. Given orientations on V and V / W, one gets from these orientations a natural orientation on W.

Remark What we mean by "natural' will be explained in the course of the proof.

Proof. Let $r=n-k$ and let π be the projection of V onto V / W . By exercises 1 and 2 of $\S 2$ we can choose a basis e_{1}, \ldots, e_{n} of V such that e_{r+1}, \ldots, e_{n} is a basis of W and $\pi\left(e_{1}\right), \ldots, \pi\left(e_{r}\right)$ a basis of V / W. Moreover, replacing e_{1} by $-e_{1}$ if necessary we can assume by Corollary 1.9.3 that $\pi\left(e_{1}\right), \ldots, \pi\left(e_{r}\right)$ is a positively oriented basis of V / W and replacing e_{n} by $-e_{n}$ if necessary we can assume that e_{1}, \ldots, e_{n} is a positively oriented basis of V. Now assign to W the orientation associated with the basis e_{r+1}, \ldots, e_{n}.

Let's show that this assignment is "natural" (i.e., doesn't depend on our choice of $\left.e_{1}, \ldots, e_{n}\right)$. To see this let f_{1}, \ldots, f_{n} be another basis of V with the properties above and let $A=\left[a_{i, j}\right]$ be the matrix (1.9.1) expressing the vectors e_{1}, \ldots, e_{n} as linear combinations of the vectors $f_{1}, \ldots f_{n}$. This matrix has to have the form

$$
A=\left[\begin{array}{ll}
B & C \tag{1.9.2}\\
0 & D
\end{array}\right]
$$

where B is the $r \times r$ matrix expressing the basis vectors $\pi\left(e_{1}\right), \ldots, \pi\left(e_{r}\right)$ of V / W as linear combinations of $\pi\left(f_{1}\right), \ldots, \pi\left(f_{r}\right)$ and D the $k \times k$ matrix expressing the basis vectors e_{r+1}, \ldots, e_{n} of W as linear combinations of f_{r+1}, \ldots, f_{n}. Thus

$$
\operatorname{det}(A)=\operatorname{det}(B) \operatorname{det}(D)
$$

However, by Proposition 1.9.2, $\operatorname{det} A$ and $\operatorname{det} B$ are positive, so $\operatorname{det} D$ is positive, and hence if e_{r+1}, \ldots, e_{n} is a positively oriented basis of W so is f_{r+1}, \ldots, f_{n}.

As a special case of this theorem suppose $\operatorname{dim} W=n-1$. Then the choice of a vector $v \in V-W$ gives one a basis vector, $\pi(v)$, for the one-dimensional space V / W and hence if V is oriented, the choice of v gives one a natural orientation on W.

Next let $V_{i}, i=1,2$ be oriented n-dimensional vector spaces and $A: V_{1} \rightarrow V_{2}$ a bijective linear map. A is orientation-preserving if, for $\omega \in \Lambda^{n}\left(V_{2}^{*}\right)_{+}, A^{*} \omega$ is in $\Lambda^{n}\left(V_{+}^{*}\right)_{+}$. For example if $V_{1}=V_{2}$ then $A^{*} \omega=\operatorname{det}(A) \omega$ so A is orientation preserving if and only if $\operatorname{det}(A)>$ 0 . The following proposition we'll leave as an exercise.
Proposition 1.9.5. Let $V_{i}, i=1,2,3$ be oriented n-dimensional vector spaces and $A_{i}: V_{i} \rightarrow V_{i+1}, i=1,2$ bijective linear maps. Then if A_{1} and A_{2} are orientation preserving, so is $A_{2} \circ A_{1}$.

Exercises.

1. Prove Corollary 1.9.3.
2. Show that the argument in the proof of Theorem 1.9.4 can be modified to prove that if V and W are oriented then these orientations induce a natural orientation on V / W.
3. Similarly show that if W and V / W are oriented these orientations induce a natural orientation on V.
4. Let V be an n-dimensional vector space and $W \subset V$ a k dimensional subspace. Let $U=V / W$ and let $\iota: W \rightarrow V$ and $\pi: V \rightarrow U$ be the inclusion and projection maps. Suppose V and U are oriented. Let μ be in $\Lambda^{n-k}\left(U^{*}\right)_{+}$and let ω be in $\Lambda^{n}\left(V^{*}\right)_{+}$. Show that there exists a ν in $\Lambda^{k}\left(V^{*}\right)$ such that $\pi^{*} \mu \wedge \nu=\omega$. Moreover show that $\iota^{*} \nu$ is intrinsically defined (i.e., doesn't depend on how we choose ν) and sits in the positive part, $\Lambda^{k}\left(W^{*}\right)_{+}$, of $\Lambda^{k}(W)$.
5. Let e_{1}, \ldots, e_{n} be the standard basis vectors of \mathbb{R}^{n}. The standard orientation of \mathbb{R}^{n} is, by definition, the orientation associated with this basis. Show that if W is the subspace of \mathbb{R}^{n} defined by the
equation, $x_{1}=0$, and $v=e_{1} \notin W$ then the natural orientation of W associated with v and the standard orientation of \mathbb{R}^{n} coincide with the orientation given by the basis vectors, e_{2}, \ldots, e_{n} of W.
6. Let V be an oriented n-dimensional vector space and W an $n-1$-dimensional subspace. Show that if v and v^{\prime} are in $V-W$ then $v^{\prime}=\lambda v+w$, where w is in W and $\lambda \in \mathbb{R}-\{0\}$. Show that v and v^{\prime} give rise to the same orientation of W if and only if λ is positive.
7. Prove Proposition 1.9.5.
8. A key step in the proof of Theorem 1.9.4 was the assertion that the matrix A expressing the vectors, e_{i}, as linear combinations of the vectors, f_{i}, had to have the form (1.9.2). Why is this the case?
9. (a) Let V be a vector space, W a subspace of V and $A: V \rightarrow$ V a bijective linear map which maps W onto W. Show that one gets from A a bijective linear map

$$
B: V / W \rightarrow V / W
$$

with property

$$
\pi A=B \pi,
$$

π being the projection of V onto V / W.
(b) Assume that V, W and V / W are compatibly oriented. Show that if A is orientation-preserving and its restriction to W is orientation preserving then B is orientation preserving.
10. Let V be a oriented n-dimensional vector space, W an $(n-1)$ dimensional subspace of V and $i: W \rightarrow V$ the inclusion map. Given $\omega \in \Lambda^{b}(V)_{+}$and $v \in V-W$ show that for the orientation of W described in exercise $5, i^{*}\left(\iota_{v} \omega\right) \in \Lambda^{n-1}(W)_{+}$.
11. Let V be an n-dimensional vector space, $B: V \times V \rightarrow \mathbb{R}$ an inner product and e_{1}, \ldots, e_{n} a basis of V which is positively oriented and orthonormal. Show that the "volume element"

$$
\operatorname{vol}=e_{1}^{*} \wedge \cdots \wedge e_{n}^{*} \in \Lambda^{n}\left(V^{*}\right)
$$

is intrinsically defined, independent of the choice of this basis. Hint: (1.2.13) and (1.8.7).
12. (a) Let V be an oriented n-dimensional vector space and B an inner product on V. Fix an oriented orthonormal basis, e_{1}, \ldots, e_{n}, of V and let $A: V \rightarrow V$ be a linear map. Show that if

$$
A e_{i}=\mathrm{v}_{i}=\sum a_{j, i} e_{j}
$$

and $b_{i, j}=B\left(\mathrm{v}_{i}, \mathrm{v}_{j}\right)$, the matrices $\mathcal{A}=\left[a_{i, j}\right]$ and $\mathcal{B}=\left[b_{i, j}\right]$ are related by: $\mathcal{B}=\mathcal{A}^{+} \mathcal{A}$.
(b) Show that if ν is the volume form, $e_{1}^{*} \wedge \cdots \wedge e_{n}^{*}$, and A is orientation preserving

$$
A^{*} \nu=(\operatorname{det} \mathcal{B})^{\frac{1}{2}} \nu
$$

(c) By Theorem 1.5.6 one has a bijective map

$$
\Lambda^{n}\left(V^{*}\right) \cong A^{n}(V)
$$

Show that the element, Ω, of $A^{n}(V)$ corresponding to the form, ν, has the property

$$
\left|\Omega\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{n}\right)\right|^{2}=\operatorname{det}\left(\left[b_{i, j}\right]\right)
$$

where $\mathrm{v}_{1}, \ldots, \mathrm{v}_{n}$ are any n-tuple of vectors in V and $b_{i, j}=B\left(\mathrm{v}_{i}, \mathrm{v}_{j}\right)$.

CHAPTER 2

DIFFERENTIAL FORMS

2.1 Vector fields and one-forms

The goal of this chapter is to generalize to n dimensions the basic operations of three dimensional vector calculus: div, curl and grad. The "div", and "grad" operations have fairly straight forward generalizations, but the "curl" operation is more subtle. For vector fields it doesn't have any obvious generalization, however, if one replaces vector fields by a closely related class of objects, differential forms, then not only does it have a natural generalization but it turns out that div, curl and grad are all special cases of a general operation on differential forms called exterior differentiation.

In this section we will review some basic facts about vector fields in n variables and introduce their dual objects: one-forms. We will then take up in $\S 2.2$ the theory of k-forms for k greater than one. We begin by fixing some notation.

Given $p \in \mathbb{R}^{n}$ we define the tangent space to \mathbb{R}^{n} at p to be the set of pairs

$$
\begin{equation*}
T_{p} \mathbb{R}^{n}=\{(p, \mathrm{v})\} ; \quad \mathrm{v} \in \mathbb{R}^{n} . \tag{2.1.1}
\end{equation*}
$$

The identification

$$
\begin{equation*}
T_{p} \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad(p, \mathrm{v}) \rightarrow \mathrm{v} \tag{2.1.2}
\end{equation*}
$$

makes $T_{p} \mathbb{R}^{n}$ into a vector space. More explicitly, for $\mathrm{v}, \mathrm{v}_{1}$ and $\mathrm{v}_{2} \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$ we define the addition and scalar multiplication operations on $T_{p} \mathbb{R}^{n}$ by the recipes

$$
\left(p, \mathrm{v}_{1}\right)+\left(p, \mathrm{v}_{2}\right)=\left(p, \mathrm{v}_{1}+\mathrm{v}_{2}\right)
$$

and

$$
\lambda(p, \mathrm{v})=(p, \lambda \mathrm{v})
$$

Let U be an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}^{m}$ a C^{1} map. We recall that the derivative

$$
D f(p): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

of f at p is the linear map associated with the $m \times n$ matrix

$$
\left[\frac{\partial f_{i}}{\partial x_{j}}(p)\right]
$$

It will be useful to have a "base-pointed" version of this definition as well. Namely, if $q=f(p)$ we will define

$$
d f_{p}: T_{p} \mathbb{R}^{n} \rightarrow T_{q} \mathbb{R}^{m}
$$

to be the map

$$
\begin{equation*}
d f_{p}(p, \mathrm{v})=(q, D f(p) \mathrm{v}) \tag{2.1.3}
\end{equation*}
$$

It's clear from the way we've defined vector space structures on $T_{p} \mathbb{R}^{n}$ and $T_{q} \mathbb{R}^{m}$ that this map is linear.

Suppose that the image of f is contained in an open set, V, and suppose $g: V \rightarrow \mathbb{R}^{k}$ is a C^{1} map. Then the "base-pointed"" version of the chain rule asserts that

$$
\begin{equation*}
d g_{q} \circ d f_{p}=d(f \circ g)_{p} \tag{2.1.4}
\end{equation*}
$$

(This is just an alternative way of writing $D g(q) D f(p)=D(g \circ$ $f)(p)$.)

In 3-dimensional vector calculus a vector field is a function which attaches to each point, p, of \mathbb{R}^{3} a base-pointed arrow, (p, \vec{v}). The n-dimensional version of this definition is essentially the same.

Definition 2.1.1. Let U be an open subset of \mathbb{R}^{n}. A vector field on U is a function, v, which assigns to each point, p, of U a vector $v(p)$ in $T_{p} \mathbb{R}^{n}$.

Thus a vector field is a vector-valued function, but its value at p is an element of a vector space, $T_{p} \mathbb{R}^{n}$ that itself depends on p.

Some examples.

1. Given a fixed vector, $\mathrm{v} \in \mathbb{R}^{n}$, the function

$$
\begin{equation*}
p \in \mathbb{R}^{n} \rightarrow(p, \mathrm{v}) \tag{2.1.5}
\end{equation*}
$$

is a vector field. Vector fields of this type are constant vector fields.
2. In particular let $e_{i}, i=1, \ldots, n$, be the standard basis vectors of \mathbb{R}^{n}. If $\mathrm{v}=e_{i}$ we will denote the vector field (2.1.5) by $\partial / \partial x_{i}$. (The reason for this "derivation notation" will be explained below.)
3. Given a vector field on U and a function, $f: U \rightarrow \mathbb{R}$ we'll denote by $f v$ the vector field

$$
p \in U \rightarrow f(p) v(p)
$$

4. Given vector fields v_{1} and v_{2} on U, we'll denote by $v_{1}+v_{2}$ the vector field

$$
p \in U \rightarrow v_{1}(p)+v_{2}(p) .
$$

5. The vectors, $\left(p, e_{i}\right), i=1, \ldots, n$, are a basis of $T_{p} \mathbb{R}^{n}$, so if v is a vector field on $U, v(p)$ can be written uniquely as a linear combination of these vectors with real numbers, $g_{i}(p), i=1, \ldots, n$, as coefficients. In other words, using the notation in example 2 above, v can be written uniquely as a sum

$$
\begin{equation*}
v=\sum_{i=1}^{n} g_{i} \frac{\partial}{\partial x_{i}} \tag{2.1.6}
\end{equation*}
$$

where $g_{i}: U \rightarrow \mathbb{R}$ is the function, $p \rightarrow g_{i}(p)$.
We'll say that v is a \mathcal{C}^{∞} vector field if the g_{i} 's are in $\mathcal{C}^{\infty}(U)$.
A basic vector field operation is Lie differentiation. If $f \in C^{1}(U)$ we define $L_{v} f$ to be the function on U whose value at p is given by

$$
\begin{equation*}
D f(p) \mathrm{v}=L_{v} f(p) \tag{2.1.7}
\end{equation*}
$$

where $v(p)=(p, \mathrm{v})$. If v is the vector field (2.1.6) then

$$
\begin{equation*}
L_{v} f=\sum g_{i} \frac{\partial}{\partial x_{i}} f \tag{2.1.8}
\end{equation*}
$$

(motivating our "derivation notation" for v).

Exercise.

Check that if $f_{i} \in C^{1}(U), i=1,2$, then

$$
\begin{equation*}
L_{v}\left(f_{1} f_{2}\right)=f_{1} L_{v} f_{2}+f_{1} L_{v} f_{2} . \tag{2.1.9}
\end{equation*}
$$

Next we'll generalize to n-variables the calculus notion of an "integral curve" of a vector field.

Definition 2.1.2. A C^{1} curve $\gamma:(a, b) \rightarrow U$ is an integral curve of v if for all $a<t<b$ and $p=\gamma(t)$

$$
\left(p, \frac{d \gamma}{d t}(t)\right)=v(p)
$$

i.e., if v is the vector field (2.1.6) and $g: U \rightarrow \mathbb{R}^{n}$ is the function $\left(g_{1}, \ldots, g_{n}\right)$ the condition for $\gamma(t)$ to be an integral curve of v is that it satisfy the system of differential equations

$$
\begin{equation*}
\frac{d \gamma}{d t}(t)=g(\gamma(t)) \tag{2.1.10}
\end{equation*}
$$

We will quote without proof a number of basic facts about systems of ordinary differential equations of the type (2.1.10). (A source for these results that we highly recommend is Birkhoff-Rota, Ordinary Differential Equations, Chapter 6.)
Theorem 2.1.3 (Existence). Given a point $p_{0} \in U$ and $a \in \mathbb{R}$, there exists an interval $I=(a-T, a+T)$, a neighborhood, U_{0}, of p_{0} in U and for every $p \in U_{0}$ an integral curve, $\gamma_{p}: I \rightarrow U$ with $\gamma_{p}(a)=p$.

Theorem 2.1.4 (Uniqueness). Let $\gamma_{i}: I_{i} \rightarrow U, i=1,2$, be integral curves. If $a \in I_{1} \cap I_{2}$ and $\gamma_{1}(a)=\gamma_{2}(a)$ then $\gamma_{1} \equiv \gamma_{2}$ on $I_{1} \cap I_{2}$ and the curve $\gamma: I_{1} \cup I_{2} \rightarrow U$ defined by

$$
\gamma(t)= \begin{cases}\gamma_{1}(t), & t \in I_{1} \\ \gamma_{2}(t), & t \in I_{2}\end{cases}
$$

is an integral curve.
Theorem 2.1.5 (Smooth dependence on initial data). Let v be a \mathcal{C}^{∞}-vector field, on an open subset, V, of $U, I \subseteq \mathbb{R}$ an open interval, $a \in I$ a point on this interval and $h: V \times I \rightarrow U$ a mapping with the properties:
(i) $h(p, a)=p$.
(ii) For all $p \in V$ the curve

$$
\gamma_{p}: I \rightarrow U \quad \gamma_{p}(t)=h(p, t)
$$

is an integral curve of v.
Then the mapping, h, is \mathcal{C}^{∞}.

One important feature of the system (2.1.11) is that it is an autonomous system of differential equations: the function, $g(x)$, is a function of x alone, it doesn't depend on t. One consequence of this is the following:
Theorem 2.1.6. Let $I=(a, b)$ and for $c \in \mathbb{R}$ let $I_{c}=(a-c, b-c)$. Then if $\gamma: I \rightarrow U$ is an integral curve, the reparametrized curve

$$
\begin{equation*}
\gamma_{c}: I_{c} \rightarrow U, \quad \gamma_{c}(t)=\gamma(t+c) \tag{2.1.11}
\end{equation*}
$$

is an integral curve.
We recall that a C^{1}-function $\varphi: U \rightarrow \mathbb{R}$ is an integral of the system (2.1.11) if for every integral curve $\gamma(t)$, the function $t \rightarrow \varphi(\gamma(t))$ is constant. This is true if and only if for all t and $p=\gamma(t)$

$$
0=\frac{d}{d t} \varphi(\gamma(t))=(D \varphi)_{p}\left(\frac{d \gamma}{d t}\right)=(D \varphi)_{p}(\mathrm{v})
$$

where $(p, \mathrm{v})=v(p)$. But by (2.1.6) the term on the right is $L_{v} \varphi(p)$. Hence we conclude

Theorem 2.1.7. $\varphi \in C^{1}(U)$ is an integral of the system (2.1.11) if and only if $L_{v} \varphi=0$.

We'll now discuss a class of objects which are in some sense "dual objects" to vector fields. For each $p \in \mathbb{R}^{n}$ let $\left(T_{p} \mathbb{R}\right)^{*}$ be the dual vector space to $T_{p} \mathbb{R}^{n}$, i.e., the space of all linear mappings, $\ell: T_{p} \mathbb{R}^{n} \rightarrow$ \mathbb{R}.

Definition 2.1.8. Let U be an open subset of \mathbb{R}^{n}. A one-form on U is a function, ω, which assigns to each point, p, of U a vector, ω_{p}, in $\left(T_{p} \mathbb{R}^{n}\right)^{*}$.

Some examples:

1. Let $f: U \rightarrow \mathbb{R}$ be a C^{1} function. Then for $p \in U$ and $c=f(p)$ one has a linear map

$$
\begin{equation*}
d f_{p}: T_{p} \mathbb{R}^{n} \rightarrow T_{c} \mathbb{R} \tag{2.1.12}
\end{equation*}
$$

and by making the identification,

$$
T_{c} \mathbb{R}=\{c, \mathbb{R}\}=\mathbb{R}
$$

$d f_{p}$ can be regarded as a linear map from $T_{p} \mathbb{R}^{n}$ to \mathbb{R}, i.e., as an element of $\left(T_{p} \mathbb{R}^{n}\right)^{*}$. Hence the assignment

$$
\begin{equation*}
p \in U \rightarrow d f_{p} \in\left(T_{p} \mathbb{R}^{n}\right)^{*} \tag{2.1.13}
\end{equation*}
$$

defines a one-form on U which we'll denote by $d f$.
2. Given a one-form ω and a function, $\varphi: U \rightarrow \mathbb{R}$ the product of φ with ω is the one-form, $p \in U \rightarrow \varphi(p) \omega_{p}$.
3. Given two one-forms ω_{1} and ω_{2} their sum, $\omega_{1}+\omega_{2}$ is the one-form, $p \in U \rightarrow \omega_{1}(p)+\omega_{2}(p)$.
4. The one-forms $d x_{1}, \ldots, d x_{n}$ play a particularly important role. By (2.1.12)

$$
\begin{equation*}
\left(d x_{i}\right)\left(\frac{\partial}{\partial x_{j}}\right)_{p}=\delta_{i j} \tag{2.1.14}
\end{equation*}
$$

i.e., is equal to 1 if $i=j$ and zero if $i \neq j$. Thus $\left(d x_{1}\right)_{p}, \ldots,\left(d x_{n}\right)_{p}$ are the basis of $\left(T_{p}^{*} \mathbb{R}^{n}\right)^{*}$ dual to the basis $\left(\partial / \partial x_{i}\right)_{p}$. Therefore, if ω is any one-form on U, ω_{p} can be written uniquely as a sum

$$
\omega_{p}=\sum f_{i}(p)\left(d x_{i}\right)_{p}, \quad f_{i}(p) \in \mathbb{R}
$$

and ω can be written uniquely as a sum

$$
\begin{equation*}
\omega=\sum f_{i} d x_{i} \tag{2.1.15}
\end{equation*}
$$

where $f_{i}: U \rightarrow \mathbb{R}$ is the function, $p \rightarrow f_{i}(p)$. We'll say that ω is a \mathcal{C}^{∞} one-form if the f_{i} 's are \mathcal{C}^{∞}.

Exercise.

Check that if $f: U \rightarrow \mathbb{R}$ is a \mathcal{C}^{∞} function

$$
\begin{equation*}
d f=\sum \frac{\partial f}{\partial x_{i}} d x_{i} \tag{2.1.16}
\end{equation*}
$$

Suppose now that v is a vector field and ω a one-form on U. Then for every $p \in U$ the vectors, $v_{p} \in T_{p} \mathbb{R}^{n}$ and $\omega_{p} \in\left(T_{p} \mathbb{R}^{n}\right)^{*}$ can be paired to give a number, $\iota\left(v_{p}\right) \omega_{p} \in \mathbb{R}$, and hence, as p varies, an
\mathbb{R}-valued function, $\iota(v) \omega$, which we will call the interior product of v with ω. For instance if v is the vector field (2.1.6) and ω the one-form (2.1.15) then

$$
\begin{equation*}
\iota(v) \omega=\sum f_{i} g_{i} \tag{2.1.17}
\end{equation*}
$$

Thus if v and ω are \mathcal{C}^{∞} so is the function $\iota(v) \omega$. Also notice that if $\varphi \in \mathcal{C}^{\infty}(U)$, then as we observed above

$$
d \varphi=\sum \frac{\partial \varphi}{\partial x_{i}} \frac{\partial}{\partial x_{i}}
$$

so if v is the vector field (2.1.6)

$$
\begin{equation*}
\iota(v) d \varphi=\sum g_{i} \frac{\partial \varphi}{\partial x_{i}}=L_{v} \varphi . \tag{2.1.18}
\end{equation*}
$$

Coming back to the theory of integral curves, let U be an open subset of \mathbb{R}^{n} and v a vector field on U. We'll say that v is complete if, for every $p \in U$, there exists an integral curve, $\gamma: \mathbb{R} \rightarrow U$ with $\gamma(0)=p$, i.e., for every p there exists an integral curve that starts at p and exists for all time. To see what "completeness" involves, we recall that an integral curve

$$
\gamma:[0, b) \rightarrow U
$$

with $\gamma(0)=p$, is called maximal if it can't be extended to an interval $\left[0, b^{\prime}\right), b^{\prime}>b$. (See for instance Birkhoff-Rota, $\S 6.11$.) For such curves it's known that either
i. $b=+\infty$
or
ii. $|\gamma(t)| \rightarrow+\infty$ as $t \rightarrow b$
or
iii. the limit set of

$$
\{\gamma(t), \quad 0 \leq t, b\}
$$

contains points on the boundary of U.
Hence if we can exclude ii. and iii. we'll have shown that an integral curve with $\gamma(0)=p$ exists for all positive time. A simple criterion for excluding ii. and iii. is the following.

Lemma 2.1.9. The scenarios ii. and iii. can't happen if there exists a proper C^{1}-function, $\varphi: U \rightarrow \mathbb{R}$ with $L_{v} \varphi=0$.

Proof. $L_{v} \varphi=0$ implies that φ is constant on $\gamma(t)$, but if $\varphi(p)=c$ this implies that the curve, $\gamma(t)$, lies on the compact subset, $\varphi^{-1}(c)$, of U; hence it can't "run off to infinity" as in scenario ii. or "run off the boundary" as in scenario iii.

Applying a similar argument to the interval $(-b, 0]$ we conclude:
Theorem 2.1.10. Suppose there exists a proper C^{1}-function, φ : $U \rightarrow \mathbb{R}$ with the property $L_{v} \varphi=0$. Then v is complete.

Example.

Let $U=\mathbb{R}^{2}$ and let v be the vector field

$$
v=x^{3} \frac{\partial}{\partial y}-y \frac{\partial}{\partial x} .
$$

Then $\varphi(x, y)=2 y^{2}+x^{4}$ is a proper function with the property above. Another hypothesis on v which excludes ii. and iii. is the following. We'll define the support of v to be the set

$$
\operatorname{supp} v=\overline{q \in U, \quad v(q) \neq 0\}},
$$

and will say that v is compactly supported if this set is compact. We will prove
Theorem 2.1.11. If v is compactly supported it is complete.
Proof. Notice first that if $v(p)=0$, the constant curve, $\gamma_{0}(t)=p$, $-\infty<t<\infty$, satisfies the equation

$$
\frac{d}{d t} \gamma_{0}(t)=0=v(p)
$$

so it is an integral curve of v. Hence if $\gamma(t),-a<t<b$, is any integral curve of v with the property, $\gamma\left(t_{0}\right)=p$, for some t_{0}, it has to coincide with γ_{0} on the interval, $-a<t<a$, and hence has to be the constant curve, $\gamma(t)=p$, on this interval.

Now suppose the support, A, of v is compact. Then either $\gamma(t)$ is in A for all t or is in $U-A$ for some t_{0}. But if this happens, and
$p=\gamma\left(t_{0}\right)$ then $v(p)=0$, so $\gamma(t)$ has to coincide with the constant curve, $\gamma_{0}(t)=p$, for all t. In neither case can it go off to ∞ or off to the boundary of U as $t \rightarrow b$.

One useful application of this result is the following. Suppose v is a vector field on U, and one wants to see what its integral curves look like on some compact set, $A \subseteq U$. Let $\rho \in \mathcal{C}_{0}^{\infty}(U)$ be a bump function which is equal to one on a neighborhood of A. Then the vector field, $w=\rho v$, is compactly supported and hence complete, but it is identical with v on A, so its integral curves on A coincide with the integral curves of v.

If v is complete then for every p, one has an integral curve, γ_{p} : $\mathbb{R} \rightarrow U$ with $\gamma_{p}(0)=p$, so one can define a map

$$
f_{t}: U \rightarrow U
$$

by setting $f_{t}(p)=\gamma_{p}(t)$. If v is \mathcal{C}^{∞}, this mapping is \mathcal{C}^{∞} by the smooth dependence on initial data theorem, and by definition f_{0} is the identity map, i.e., $f_{0}(p)=\gamma_{p}(0)=p$. We claim that the f_{t} 's also have the property

$$
\begin{equation*}
f_{t} \circ f_{a}=f_{t+a} \tag{2.1.19}
\end{equation*}
$$

Indeed if $f_{a}(p)=q$, then by the reparametrization theorem, $\gamma_{q}(t)$ and $\gamma_{p}(t+a)$ are both integral curves of v, and since $q=\gamma_{q}(0)=$ $\gamma_{p}(a)=f_{a}(p)$, they have the same initial point, so

$$
\begin{aligned}
\gamma_{q}(t) & =f_{t}(q)=\left(f_{t} \circ f_{a}\right)(p) \\
& =\gamma_{p}(t+a)=f_{t+a}(p)
\end{aligned}
$$

for all t. Since f_{0} is the identity it follows from (2.1.19) that $f_{t} \circ f_{-t}$ is the identity, i.e.,

$$
f_{-t}=f_{t}^{-1}
$$

so f_{t} is a \mathcal{C}^{∞} diffeomorphism. Hence if v is complete it generates a "one-parameter group", $f_{t},-\infty<t<\infty$, of \mathcal{C}^{∞}-diffeomorphisms.
For v not complete there is an analogous result, but it's trickier to formulate precisely. Roughly speaking v generates a one-parameter group of diffeomorphisms, f_{t}, but these diffeomorphisms are not defined on all of U nor for all values of t. Moreover, the identity (2.1.19) only holds on the open subset of U where both sides are well-defined.

We'll devote the remainder of this section to discussing some "functorial" properties of vector fields and one-forms. Let U and W be open subsets of \mathbb{R}^{n} and \mathbb{R}^{m}, respectively, and let $f: U \rightarrow W$ be a \mathcal{C}^{∞} map. If v is a \mathcal{C}^{∞}-vector field on U and w a \mathcal{C}^{∞}-vector field on W we will say that v and w are " f-related" if, for all $p \in U$ and $q=f(p)$

$$
\begin{equation*}
d f_{p}\left(v_{p}\right)=\mathrm{w}_{q} . \tag{2.1.20}
\end{equation*}
$$

Writing

$$
v=\sum_{i=1}^{n} v_{i} \frac{\partial}{\partial x_{i}}, \quad v_{i} \in C^{k}(U)
$$

and

$$
\mathrm{w}=\sum_{j=1}^{m} \mathrm{w}_{j} \frac{\partial}{\partial y_{j}}, \quad \mathrm{w}_{j} \in C^{k}(V)
$$

this equation reduces, in coordinates, to the equation

$$
\begin{equation*}
\mathrm{w}_{i}(q)=\sum \frac{\partial f_{i}}{\partial x_{j}}(p) v_{j}(p) . \tag{2.1.21}
\end{equation*}
$$

In particular, if $m=n$ and f is a \mathcal{C}^{∞} diffeomorphism, the formula (3.2) defines a \mathcal{C}^{∞}-vector field on W, i.e.,

$$
\mathrm{w}=\sum_{j=1}^{n} \mathrm{w}_{i} \frac{\partial}{\partial y_{j}}
$$

is the vector field defined by the equation

$$
\begin{equation*}
\mathrm{w}_{i}=\sum_{j=1}^{n}\left(\frac{\partial f_{i}}{\partial x_{j}} v_{j}\right) \circ f^{-1} . \tag{2.1.22}
\end{equation*}
$$

Hence we've proved
Theorem 2.1.12. If $f: U \rightarrow W$ is a \mathcal{C}^{∞} diffeomorphism and v a \mathcal{C}^{∞}-vector field on U, there exists a unique \mathcal{C}^{∞} vector field, w , on W having the property that v and w are f-related.

We'll denote this vector field by $f_{*} v$ and call it the push-forward of v by f.

I'll leave the following assertions as easy exercises.

Theorem 2.1.13. Let $U_{i}, i=1,2$, be open subsets of $\mathbb{R}^{n_{i}}, v_{i} a$ vector field on U_{i} and $f: U_{1} \rightarrow U_{2}$ a \mathcal{C}^{∞}-map. If v_{1} and v_{2} are f-related, every integral curve

$$
\gamma: I \rightarrow U_{1}
$$

of v_{1} gets mapped by f onto an integral curve, $f \circ \gamma: I \rightarrow U_{2}$, of v_{2}.
Corollary 2.1.14. Suppose v_{1} and v_{2} are complete. Let $\left(f_{i}\right)_{t}: U_{i} \rightarrow$ $U_{i},-\infty<t<\infty$, be the one-parameter group of diffeomorphisms generated by v_{i}. Then $f \circ\left(f_{1}\right)_{t}=\left(f_{2}\right)_{t} \circ f$.

Hints:

1. Theorem 4 follows from the chain rule: If $p=\gamma(t)$ and $q=f(p)$

$$
d f_{p}\left(\frac{d}{d t} \gamma(t)\right)=\frac{d}{d t} f(\gamma(t)) .
$$

2. To deduce Corollary 5 from Theorem 4 note that for $p \in U$, $\left(f_{1}\right)_{t}(p)$ is just the integral curve, $\gamma_{p}(t)$ of v_{1} with initial point $\gamma_{p}(0)=$ p.

The notion of f-relatedness can be very succinctly expressed in terms of the Lie differentiation operation. For $\varphi \in \mathcal{C}^{\infty}\left(U_{2}\right)$ let $f^{*} \varphi$ be the composition, $\varphi \circ f$, viewed as a \mathcal{C}^{∞} function on U_{1}, i.e., for $p \in U_{1}$ let $f^{*} \varphi(p)=\varphi(f(p))$. Then

$$
\begin{equation*}
f^{*} L_{v_{2}} \varphi=L_{v_{1}} f^{*} \varphi . \tag{2.1.23}
\end{equation*}
$$

(To see this note that if $f(p)=q$ then at the point p the right hand side is

$$
(d \varphi)_{q} \circ d f_{p}\left(v_{1}(p)\right)
$$

by the chain rule and by definition the left hand side is

$$
d \varphi_{q}\left(v_{2}(q)\right) .
$$

Moreover, by definition

$$
v_{2}(q)=d f_{p}\left(v_{1}(p)\right)
$$

so the two sides are the same.)
Another easy consequence of the chain rule is:

Theorem 2.1.15. Let $U_{i}, i=1,2,3$, be open subsets of $\mathbb{R}^{n_{i}}, v_{i} a$ vector field on U_{i} and $f_{i}: U_{i} \rightarrow U_{i+1}, i=1,2 a \mathcal{C}^{\infty}$-map. Suppose that, for $i=1,2, v_{i}$ and v_{i+1} are f_{i}-related. Then v_{1} and v_{3} are $f_{2} \circ f_{1}$-related.

In particular, if f_{1} and f_{2} are diffeomorphisms and $v=v_{1}$

$$
\left(f_{2}\right)_{*}\left(f_{1}\right)_{*} v=\left(f_{2} \circ f_{1}\right)_{*} v
$$

The results we described above have "dual" analogues for oneforms. Namely, let U and V be open subsets of \mathbb{R}^{n} and \mathbb{R}^{m}, respectively, and let $f: U \rightarrow V$ be a \mathcal{C}^{∞}-map. Given a one-form, μ, on V one can define a "pull-back" one-form, $f^{*} \mu$, on U by the following method. For $p \in U$ let $q=f(p)$. By definition $\mu(q)$ is a linear map

$$
\begin{equation*}
\mu(q): T_{q} \mathbb{R}^{m} \rightarrow \mathbb{R} \tag{2.1.24}
\end{equation*}
$$

and by composing this map with the linear map

$$
d f_{p}: T_{p} \mathbb{R}^{n} \rightarrow T_{q} \mathbb{R}^{n}
$$

we get a linear map

$$
\mu_{q} \circ d f_{p}: T_{p} \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

i.e., an element $\mu_{q} \circ d f_{p}$ of $T_{p}^{*} \mathbb{R}^{n}$.

Definition 2.1.16. The one-form $f^{*} \mu$ is the one-form defined by the map

$$
p \in U \rightarrow\left(\mu_{q} \circ d f_{p}\right) \in T_{p}^{*} \mathbb{R}^{n}
$$

where $q=f(p)$.
Note that if $\varphi: V \rightarrow \mathbb{R}$ is a \mathcal{C}^{∞}-function and $\mu=d \varphi$ then

$$
\mu_{q} \circ d f_{p}=d \varphi_{q} \circ d f_{p}=d(\varphi \circ f)_{p}
$$

i.e.,

$$
\begin{equation*}
f^{*} \mu=d \varphi \circ f \tag{2.1.25}
\end{equation*}
$$

In particular if μ is a one-form of the form, $\mu=d \varphi$, with $\varphi \in$ $\mathcal{C}^{\infty}(V), f^{*} \mu$ is \mathcal{C}^{∞}. From this it is easy to deduce
Theorem 2.1.17. If μ is any \mathcal{C}^{∞} one-form on V, its pull-back, $f^{*} \omega$, is \mathcal{C}^{∞}. (See exercise 1.)

Notice also that the pull-back operation on one-forms and the push-forward operation on vector fields are somewhat different in character. The former is defined for all \mathcal{C}^{∞} maps, but the latter is only defined for diffeomorphisms.

Exercises.

1. Let U be an open subset of \mathbb{R}^{n}, V an open subset of \mathbb{R}^{n} and $f: U \rightarrow V$ a C^{k} map.
(a) Show that for $\varphi \in \mathcal{C}^{\infty}(V)$ (2.1.25) can be rewritten

$$
\begin{equation*}
f^{*} d \varphi=d f^{*} \varphi . \tag{2.1.25'}
\end{equation*}
$$

(b) Let μ be the one-form

$$
\mu=\sum_{i=1}^{m} \varphi_{i} d x_{i} \quad \varphi_{i} \in \mathcal{C}^{\infty}(V)
$$

on V. Show that if $f=\left(f_{1}, \ldots, f_{m}\right)$ then

$$
f^{*} \mu=\sum_{i=1}^{m} f^{*} \varphi_{i} d f_{i}
$$

(c) Show that if μ is \mathcal{C}^{∞} and f is $\mathcal{C}^{\infty}, f^{*} \mu$ is \mathcal{C}^{∞}.
2. Let v be a complete vector field on U and $f_{t}: U \rightarrow U$, the one parameter group of diffeomorphisms generated by v. Show that if $\varphi \in C^{1}(U)$

$$
L_{v} \varphi=\left(\frac{d}{d t} f_{t}^{*} \varphi\right)_{t=0}
$$

3. (a) Let $U=\mathbb{R}^{2}$ and let \mathfrak{v} be the vector field, $x_{1} \partial / \partial x_{2}-$ $x_{2} \partial / \partial x_{1}$. Show that the curve

$$
t \in \mathbb{R} \rightarrow(r \cos (t+\theta), r \sin (t+\theta))
$$

is the unique integral curve of \mathfrak{v} passing through the point, $(r \cos \theta, r \sin \theta)$, at $t=0$.
(b) Let $U=\mathbb{R}^{n}$ and let \mathfrak{v} be the constant vector field: $\sum c_{i} \partial / \partial x_{i}$. Show that the curve

$$
t \in \mathbb{R} \rightarrow a+t\left(c_{1}, \ldots, c_{n}\right)
$$

is the unique integral curve of \mathfrak{v} passing through $a \in \mathbb{R}^{n}$ at $t=0$.
(c) Let $U=\mathbb{R}^{n}$ and let \mathfrak{v} be the vector field, $\sum x_{i} \partial / \partial x_{i}$. Show that the curve

$$
t \in \mathbb{R} \rightarrow e^{t}\left(a_{1}, \ldots, a_{n}\right)
$$

is the unique integral curve of \mathfrak{v} passing through a at $t=0$.
4. Show that the following are one-parameter groups of diffeomorphisms:
(a) $f_{t}: \mathbb{R} \rightarrow \mathbb{R}, \quad f_{t}(x)=x+t$
(b) $f_{t}: \mathbb{R} \rightarrow \mathbb{R}, \quad f_{t}(x)=e^{t} x$
(c) $f_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad f_{t}(x, y)=(\cos t x-\sin t y, \sin t x+\cos t y)$
5. Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear mapping. Show that the series

$$
\exp t A=I+t A+\frac{t^{2}}{2!} A^{2}+\frac{t^{3}}{3!} A^{3}+\cdots
$$

converges and defines a one-parameter group of diffeomorphisms of \mathbb{R}^{n}.
6. (a) What are the infinitesimal generators of the one-parameter groups in exercise 13?
(b) Show that the infinitesimal generator of the one-parameter group in exercise 14 is the vector field

$$
\sum a_{i, j} x_{j} \frac{\partial}{\partial x_{i}}
$$

where $\left[a_{i, j}\right]$ is the defining matrix of A.
7. Let v be the vector field on $\mathbb{R}, x^{2} \frac{d}{d x}$ Show that the curve

$$
x(t)=\frac{a}{a-a t}
$$

is an integral curve of v with initial point $x(0)=a$. Conclude that for $a>0$ the curve

$$
x(t)=\frac{a}{1-a t}, \quad 0<t<\frac{1}{a}
$$

is a maximal integral curve. (In particular, conclude that v isn't complete.)
8. Let U be an open subset of \mathbb{R}^{n} and v_{1} and v_{2} vector fields on U. Show that there is a unique vector field, w, on U with the property

$$
L_{w} \varphi=L_{v_{1}}\left(L_{v_{2}} \varphi\right)-L_{v_{2}}\left(L_{v_{1}} \varphi\right)
$$

for all $\varphi \in \mathcal{C}^{\infty}(U)$.
9. The vector field w in exercise 8 is called the Lie bracket of the vector fields v_{1} and v_{2} and is denoted $\left[v_{1}, v_{2}\right]$. Verify that "Lie bracket" satisfies the identities

$$
\left[v_{1}, v_{2}\right]=-\left[v_{2}, v_{1}\right]
$$

and

$$
\left[v_{1}\left[v_{2}, v_{3}\right]\right]+\left[v_{2},\left[v_{3}, v_{1}\right]\right]+\left[v_{3},\left[v_{1}, v_{2}\right]\right]=0 .
$$

Hint: Prove analogous identities for $L_{v_{1}}, L_{v_{2}}$ and $L_{v_{3}}$.
10. Let $v_{1}=\partial / \partial x_{i}$ and $v_{2}=\sum g_{j} \partial / \partial x_{j}$. Show that

$$
\left[v_{1}, v_{2}\right]=\sum \frac{\partial}{\partial x_{i}} g_{i} \frac{\partial}{\partial x_{j}}
$$

11. Let v_{1} and v_{2} be vector fields and f a \mathcal{C}^{∞} function. Show that

$$
\left[v_{1}, f v_{2}\right]=L_{v_{1}} f v_{2}+f\left[v_{1}, v_{2}\right] .
$$

12. Let U and V be open subsets of \mathbb{R}^{n} and $f: U \rightarrow V$ a diffeomorphism. If w is a vector field on V, define the pull-back, $f^{*} w$ of w to U to be the vector field

$$
f^{*} w=\left(f_{*}^{-1} w\right) .
$$

Show that if φ is a \mathcal{C}^{∞} function on V

$$
f^{*} L_{w} \varphi=L_{f^{*} w} f^{*} \varphi
$$

Hint: (2.1.26).
13. Let U be an open subset of \mathbb{R}^{n} and v and w vector fields on U. Suppose v is the infinitesimal generator of a one-parameter group of diffeomorphisms

$$
f_{t}: U \rightarrow U, \quad-\infty<t<\infty
$$

Let $w_{t}=f_{t}^{*} w$. Show that for $\varphi \in \mathcal{C}^{\infty}(U)$

$$
L_{[v, w]} \varphi=L_{\dot{w}} \varphi
$$

where

$$
\dot{w}=\left.\frac{d}{d t} f_{t}^{*} w\right|_{t=0}
$$

Hint: Differentiate the identity

$$
f_{t}^{*} L_{w} \varphi=L_{w_{t}} f_{t}^{*} \varphi
$$

with respect to t and show that at $t=0$ the derivative of the left hand side is

$$
L_{v} L_{w} \varphi
$$

by exercise 2 and the derivative of the right hand side is

$$
L_{\dot{w}}+L_{w}\left(L_{v} \varphi\right) .
$$

14. Conclude from exercise 13 that

$$
\begin{equation*}
[v, w]=\left.\frac{d}{d t} f_{t}^{*} w\right|_{t=0} \tag{2.1.26}
\end{equation*}
$$

15. Let U be an open subset of \mathbb{R}^{n} and let $\gamma:[a, b] \rightarrow U, t \rightarrow$ $\left(\gamma_{1}(t), \ldots, \gamma_{n}(t)\right)$ be a C^{1} curve. Given $\omega=\sum f_{i} d x_{i} \in \Omega^{1}(U)$, define the line integral of ω over γ to be the integral

$$
\int_{\gamma} \omega=\sum_{i=1}^{n} \int_{a}^{b} f_{i}(\gamma(t)) \frac{d \gamma_{i}}{d t} d t
$$

Show that if $\omega=d f$ for some $f \in \mathcal{C}^{\infty}(U)$

$$
\int_{\gamma} \omega=f(\gamma(b))-f(\gamma(a)) .
$$

In particular conclude that if γ is a closed curve, i.e., $\gamma(a)=\gamma(b)$, this integral is zero.
16. Let

$$
\omega=\frac{x_{1} d x_{2}-x_{2} d x_{1}}{x_{1}^{2}+x_{2}^{2}} \in \Omega^{1}\left(\mathbb{R}^{2}-\{0\}\right),
$$

and let $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}-\{0\}$ be the closed curve, $t \rightarrow(\cos t, \sin t)$. Compute the line integral, $\int_{\gamma} \omega$, and show that it's not zero. Conclude that ω can't be " d " of a function, $f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2}-\{0\}\right)$.
17. Let f be the function

$$
f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{l}
\arctan \frac{x_{2}}{x_{1}}, x_{1}>0 \\
\frac{\pi}{2}, x_{1}=0, x_{2}>0 \\
\arctan \frac{x_{2}}{x_{1}}+\pi, x_{1}<0
\end{array}\right.
$$

where, we recall: $-\frac{\pi}{2}<\arctan t<\frac{\pi}{2}$. Show that this function is \mathcal{C}^{∞} and that $d f$ is the 1 -form, ω, in the previous exercise. Why doesn't this contradict what you proved in exercise 16 ?

$2.2 k$-forms

One-forms are the bottom tier in a pyramid of objects whose $k^{\text {th }}$ tier is the space of k-forms. More explicitly, given $p \in \mathbb{R}^{n}$ we can, as in §1.5, form the $k^{\text {th }}$ exterior powers

$$
\begin{equation*}
\Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right), \quad k=1,2,3, \ldots, n \tag{2.2.1}
\end{equation*}
$$

of the vector space, $T_{p}^{*} \mathbb{R}^{n}$, and since

$$
\begin{equation*}
\Lambda^{1}\left(T_{p}^{*} \mathbb{R}^{n}\right)=T_{p}^{*} \mathbb{R}^{n} \tag{2.2.2}
\end{equation*}
$$

one can think of a one-form as a function which takes its value at p in the space (2.2.2). This leads to an obvious generalization.

Definition 2.2.1. Let U be an open subset of \mathbb{R}^{n}. $A k$-form, ω, on U is a function which assigns to each point, p, in U an element $\omega(p)$ of the space (2.2.1).

The wedge product operation gives us a way to construct lots of examples of such objects.

Example 1.

Let $\omega_{i}, i=1, \ldots, k$ be one-forms. Then $\omega_{1} \wedge \cdots \wedge \omega_{k}$ is the k-form whose value at p is the wedge product

$$
\begin{equation*}
\omega_{1}(p) \wedge \cdots \wedge \omega_{k}(p) \tag{2.2.3}
\end{equation*}
$$

Notice that since $\omega_{i}(p)$ is in $\Lambda^{1}\left(T_{p}^{*} \mathbb{R}^{n}\right)$ the wedge product (2.2.3) makes sense and is an element of $\Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right)$.

Example 2.

Let $f_{i}, i=1, \ldots, k$ be a real-valued \mathcal{C}^{∞} function on U. Letting $\omega_{i}=d f_{i}$ we get from (2.2.3) a k-form

$$
\begin{equation*}
d f_{1} \wedge \cdots \wedge d f_{k} \tag{2.2.4}
\end{equation*}
$$

whose value at p is the wedge product

$$
\begin{equation*}
\left(d f_{1}\right)_{p} \wedge \cdots \wedge\left(d f_{k}\right)_{p} \tag{2.2.5}
\end{equation*}
$$

Since $\left(d x_{1}\right)_{p}, \ldots,\left(d x_{n}\right)_{p}$ are a basis of $T_{p}^{*} \mathbb{R}^{n}$, the wedge products

$$
\begin{equation*}
\left(d x_{i_{1}}\right)_{p} \wedge \cdots \wedge\left(d x_{1_{k}}\right)_{p}, \quad 1 \leq i_{1}<\cdots<i_{k} \leq n \tag{2.2.6}
\end{equation*}
$$

are a basis of $\Lambda^{k}\left(T_{p}^{*}\right)$. To keep our multi-index notation from getting out of hand, we'll denote these basis vectors by $\left(d x_{I}\right)_{p}$, where $I=$ $\left(i_{1}, \ldots, i_{k}\right)$ and the I 's range over multi-indices of length k which are strictly increasing. Since these wedge products are a basis of $\Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right)$ every element of $\Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right)$ can be written uniquely as a sum

$$
\sum c_{I}\left(d x_{I}\right)_{p}, \quad c_{I} \in \mathbb{R}
$$

and every k-form, ω, on U can be written uniquely as a sum

$$
\begin{equation*}
\omega=\sum f_{I} d x_{I} \tag{2.2.7}
\end{equation*}
$$

where $d x_{I}$ is the k-form, $d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$, and f_{I} is a real-valued function,

$$
f_{I}: U \rightarrow \mathbb{R}
$$

Definition 2.2.2. The k-form (2.2.7) is of class C^{r} if each of the f_{I} 's is in $C^{r}(U)$.

Henceforth we'll assume, unless otherwise stated, that all the k forms we consider are of class \mathcal{C}^{∞}, and we'll denote the space of these k-forms by $\Omega^{k}(U)$.

We will conclude this section by discussing a few simple operations on k-forms.

1. Given a function, $f \in \mathcal{C}^{\infty}(U)$ and a k-form $\omega \in \Omega^{k}(U)$ we define $f \omega \in \Omega^{k}(U)$ to be the k-form

$$
p \in U \rightarrow f(p) \omega_{p} \in \Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right)
$$

2. Given $\omega_{i} \in \Omega^{k}(U), i=1,2$ we define $\omega_{1}+\omega_{2} \in \Omega^{k}(U)$ to be the k-form

$$
p \in U \rightarrow\left(\omega_{1}\right)_{p}+\left(\omega_{2}\right)_{p} \in \Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right) .
$$

(Notice that this sum makes sense since each summand is in $\Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right)$.)
3. Given $\omega_{1} \in \Omega^{k_{1}}(U)$ and $\omega_{2} \in \Omega^{k_{2}}(U)$ we define their wedge product, $\omega_{1} \wedge \omega_{2} \in \Omega^{k_{1}+k_{2}}(u)$ to be the ($k_{1}+k_{2}$)-form

$$
p \in U \rightarrow\left(\omega_{1}\right)_{p} \wedge\left(\omega_{2}\right)_{p} \in \Lambda^{k_{1}+k_{2}}\left(T_{p}^{*} \mathbb{R}^{n}\right)
$$

We recall that $\Lambda^{0}\left(T_{p}^{*} \mathbb{R}^{n}\right)=\mathbb{R}$, so a zero-form is an \mathbb{R}-valued function and a zero form of class \mathcal{C}^{∞} is a \mathcal{C}^{∞} function, i.e.,

$$
\Omega^{0}(U)=\mathcal{C}^{\infty}(U)
$$

A fundamental operation on forms is the " d-operation" which associates to a function $f \in \mathcal{C}^{\infty}(U)$ the 1 -form $d f$. It's clear from the identity (2.1.10) that $d f$ is a 1 -form of class \mathcal{C}^{∞}, so the d-operation can be viewed as a map

$$
\begin{equation*}
d: \Omega^{0}(U) \rightarrow \Omega^{1}(U) \tag{2.2.8}
\end{equation*}
$$

We will show in the next section that an analogue of this map exists for every $\Omega^{k}(U)$.

Exercises.

1. Let $\omega \in \Omega^{2}\left(\mathbb{R}^{4}\right)$ be the 2 -form, $d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{4}$. Compute $\omega \wedge \omega$.
2. Let $\omega_{i} \in \Omega^{1}\left(\mathbb{R}^{3}\right), i=1,2,3$ be the 1 -forms

$$
\begin{aligned}
\omega_{1} & =x_{2} d x_{3}-x_{3} d x_{2} \\
\omega_{2} & =x_{3} d x_{1}-x_{1} d x_{3}
\end{aligned}
$$

and

$$
\omega_{3}=x_{1} d x_{2}-x_{2} d x_{1}
$$

Compute
(a) $\omega_{1} \wedge \omega_{2}$.
(b) $\omega_{2} \wedge \omega_{3}$.
(c) $\omega_{3} \wedge \omega_{1}$.
(d) $\omega_{1} \wedge \omega_{2} \wedge \omega_{3}$.
3. Let U be an open subset of \mathbb{R}^{n} and $f_{i} \in \mathcal{C}^{\infty}(U), i=1, \ldots, n$. Show that

$$
d f_{1} \wedge \cdots \wedge d f_{n}=\operatorname{det}\left[\frac{\partial f_{i}}{\partial x_{j}}\right] d x_{1} \wedge \cdots \wedge d x_{n}
$$

4. Let U be an open subset of \mathbb{R}^{n}. Show that every $(n-1)$-form, $\omega \in \Omega^{n-1}(U)$, can be written uniquely as a sum

$$
\sum_{i=1}^{n} f_{i} d x_{1} \wedge \cdots \wedge \widehat{d x}_{i} \wedge \cdots \wedge d x_{n}
$$

where $f_{i} \in \mathcal{C}^{\infty}(U)$ and the "cap" over $d x_{i}$ means that $d x_{i}$ is to be deleted from the product, $d x_{1} \wedge \cdots \wedge d x_{n}$.
5. Let $\mu=\sum_{i=1}^{n} x_{i} d x_{i}$. Show that there exists an $(n-1)$-form, $\omega \in$ $\Omega^{n-1}\left(\mathbb{R}^{n}-\{0\}\right)$ with the property

$$
\mu \wedge \omega=d x_{1} \wedge \cdots \wedge d x_{n}
$$

6. Let J be the multi-index $\left(j_{1}, \ldots, j_{k}\right)$ and let $d x_{J}=d x_{j_{1}} \wedge \cdots \wedge$ $d x_{j_{k}}$. Show that $d x_{J}=0$ if $j_{r}=j_{s}$ for some $r \neq s$ and show that if the j_{r} 's are all distinct

$$
d x_{J}=(-1)^{\sigma} d x_{I}
$$

where $I=\left(i_{1}, \ldots, i_{k}\right)$ is the strictly increasing rearrangement of $\left(j_{1}, \ldots, j_{k}\right)$ and σ is the permutation

$$
j_{1} \rightarrow i_{1}, \ldots, j_{k} \rightarrow i_{k}
$$

7. Let I be a strictly increasing multi-index of length k and J a strictly increasing multi-index of length ℓ. What can one say about the wedge product $d x_{I} \wedge d x_{J}$?

2.3 Exterior differentiation

Let U be an open subset of \mathbb{R}^{n}. In this section we are going to define an operation

$$
\begin{equation*}
d: \Omega^{k}(U) \rightarrow \Omega^{k+1}(U) \tag{2.3.1}
\end{equation*}
$$

This operation is called exterior differentiation and is the fundamental operation in n-dimensional vector calculus.

For $k=0$ we already defined the operation (2.3.1) in §2.1. Before defining it for the higher k 's we list some properties that we will require to this operation to satisfy.

Property I. For ω_{1} and ω_{2} in $\Omega^{k}(U), d\left(\omega_{1}+\omega_{2}\right)=d \omega_{1}+d \omega_{2}$.
Property II. For $\omega_{1} \in \Omega^{k}(U)$ and $\omega_{2} \in \Omega^{\ell}(U)$

$$
\begin{equation*}
d\left(\omega_{1} \wedge \omega_{2}\right)=d \omega_{1} \wedge \omega_{2}+(-1)^{k} \omega_{1} \wedge d \omega_{2} . \tag{2.3.2}
\end{equation*}
$$

Property III. For $\omega \in \Omega^{k}(U)$

$$
\begin{equation*}
d(d \omega)=0 . \tag{2.3.3}
\end{equation*}
$$

Let's point out a few consequences of these properties. First note that by Property III

$$
\begin{equation*}
d(d f)=0 \tag{2.3.4}
\end{equation*}
$$

for every function, $f \in \mathcal{C}^{\infty}(U)$. More generally, given k functions, $f_{i} \in \mathcal{C}^{\infty}(U), i=1, \ldots, k$, then by combining (2.3.4) with (2.3.2) we get by induction on k :

$$
\begin{equation*}
d\left(d f_{1} \wedge \cdots \wedge d f_{k}\right)=0 \tag{2.3.5}
\end{equation*}
$$

Proof. Let $\mu=d f_{2} \wedge \cdots \wedge d f_{k}$. Then by induction on $k, d \mu=0$; and hence by (2.3.2) and (2.3.4)

$$
d\left(d f_{1} \wedge \mu\right)=d\left(d_{1} f\right) \wedge \mu+(-1) d f_{1} \wedge d \mu=0
$$

as claimed.)

In particular, given a multi-index, $I=\left(i_{1}, \ldots, i_{k}\right)$ with $1 \leq i_{r} \leq n$

$$
\begin{equation*}
d\left(d x_{I}\right)=d\left(d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}\right)=0 . \tag{2.3.6}
\end{equation*}
$$

Recall now that every k-form, $\omega \in \Omega^{k}(U)$, can be written uniquely as a sum

$$
\omega=\sum f_{I} d x_{I}, \quad f_{I} \in \mathcal{C}^{\infty}(U)
$$

where the multi-indices, I, are strictly increasing. Thus by (2.3.2) and (2.3.6)

$$
\begin{equation*}
d \omega=\sum d f_{I} \wedge d x_{I} \tag{2.3.7}
\end{equation*}
$$

This shows that if there exists a " d " with properties I-III, it has to be given by the formula (2.3.7). Hence all we have to show is that the operator defined by this formula has these properties. Property I is obvious. To verify Property II we first note that for I strictly increasing (2.3.6) is a special case of (2.3.7). (Take $f_{I}=1$ and $f_{J}=$ 0 for $J \neq I$.) Moreover, if I is not strictly increasing it is either repeating, in which case $d x_{I}=0$, or non-repeating in which case I^{σ} is strictly increasing for some permutation, $\sigma \in S_{k}$, and

$$
\begin{equation*}
d x_{I}=(-1)^{\sigma} d x_{I^{\sigma}} . \tag{2.3.8}
\end{equation*}
$$

Hence (2.3.7) implies (2.3.6) for all multi-indices I. The same argument shows that for any sum over indices, I, for length k

$$
\sum f_{I} d x_{I}
$$

one has the identity:

$$
\begin{equation*}
d\left(\sum f_{I} d x_{I}\right)=\sum d f_{I} \wedge d x_{I} \tag{2.3.9}
\end{equation*}
$$

(As above we can ignore the repeating I 's, since for these I 's, $d x_{I}=$ 0 , and by (2.3.8) we can make the non-repeating I 's strictly increasing.)

Suppose now that $\omega_{1} \in \Omega^{k}(U)$ and $\omega_{2} \in \Omega^{\ell}(U)$. Writing

$$
\omega_{1}=\sum f_{I} d x_{I}
$$

and

$$
\omega_{2}=\sum g_{J} d x_{J}
$$

with f_{I} and g_{J} in $\mathcal{C}^{\infty}(U)$ we get for the wedge product

$$
\begin{equation*}
\omega_{1} \wedge \omega_{2}=\sum f_{I} g_{J} d x_{I} \wedge d x_{J} \tag{2.3.10}
\end{equation*}
$$

and by (2.3.9)

$$
\begin{equation*}
d\left(\omega_{1} \wedge \omega_{2}\right)=\sum d\left(f_{I} g_{J}\right) \wedge d x_{I} \wedge d x_{J} \tag{2.3.11}
\end{equation*}
$$

(Notice that if $I=\left(i_{1}, \cdots, i_{k}\right)$ and $J=\left(j_{i}, \ldots, i_{\ell}\right), d x_{I} \wedge d x_{J}=$ $d x_{K}, K$ being the multi-index, $\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{\ell}\right)$. Even if I and J are strictly increasing, K won't necessarily be strictly increasing. However in deducing (2.3.11) from (2.3.10) we've observed that this doesn't matter .) Now note that by (2.1.11)

$$
d\left(f_{I} g_{J}\right)=g_{J} d f_{I}+f_{I} d g_{J}
$$

and by the wedge product identities of $\S(1.6)$,

$$
\begin{aligned}
d g_{J} \wedge d x_{I} & =d g_{J} \wedge d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}} \\
& =(-1)^{k} d x_{I} \wedge d g_{J},
\end{aligned}
$$

so the sum (2.3.11) can be rewritten:

$$
\sum d f_{I} \wedge d x_{I} \wedge g_{J} d x_{J}+(-1)^{k} \sum f_{I} d x_{I} \wedge d g_{J} \wedge d x_{J}
$$

or

$$
\left(\sum d f_{I} \wedge d x_{I}\right) \wedge\left(\sum g_{J} d x_{J}\right)+(-1)^{k}\left(\sum d g_{J} \wedge d x_{J}\right)
$$

or finally:

$$
d \omega_{1} \wedge \omega_{2}+(-1)^{k} \omega_{1} \wedge d \omega_{2}
$$

Thus the " d " defined by (2.3.7) has Property II. Let's now check that it has Property III. If $\omega=\sum f_{I} d x_{I}, f_{I} \in \mathcal{C}^{\infty}(U)$, then by definition, $d \omega=\sum d f_{I} \wedge d x_{I}$ and by (2.3.6) and (2.3.2)

$$
d(d \omega)=\sum d\left(d f_{I}\right) \wedge d x_{I}
$$

so it suffices to check that $d\left(d f_{I}\right)=0$, i.e., it suffices to check (2.3.4) for zero forms, $f \in \mathcal{C}^{\infty}(U)$. However, by (2.1.9)

$$
d f=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} d x_{j}
$$

so by (2.3.7)

$$
\begin{aligned}
d(d f) & =\sum_{j=1}^{n} d\left(\frac{\partial f}{\partial x_{j}}\right) d x_{j} \\
& =\sum_{j=1}^{n}\left(\sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} d x_{i}\right) \wedge d x_{j} \\
& =\sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} d x_{i} \wedge d x_{j} .
\end{aligned}
$$

Notice, however, that in this sum, $d x_{i} \wedge d x_{j}=-d x_{j} \wedge d x_{i}$ and

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}
$$

so the (i, j) term cancels the (j, i) term, and the total sum is zero.

A form, $\omega \in \Omega^{k}(U)$, is said to be closed if $d \omega=0$ and is said to be exact if $\omega=d \mu$ for some $\mu \in \Omega^{k-1}(U)$. By Property III every exact form is closed, but the converse is not true even for 1-forms. (See §2.1, exercise 8). In fact it's a very interesting (and hard) question to determine if an open set, U, has the property: "For $k>0$ every closed k-form is exact." ${ }^{1}$

Some examples of sets with this property are described in the exercises at the end of $\S 2.5$. We will also sketch below a proof of the following result (and ask you to fill in the details).
Lemma 2.3.1 (Poincaré's Lemma.). If ω is a closed form on U of degree $k>0$, then for every point, $p \in U$, there exists a neighborhood of p on which ω is exact.
(See exercises 5 and 6 below.)

Exercises:

1. Compute the exterior derivatives of the forms below.

[^1](a) $x_{1} d x_{2} \wedge d x_{3}$
(b) $x_{1} d x_{2}-x_{2} d x_{1}$
(c) $e^{-f} d f$ where $f=\sum_{i=1}^{n} x_{i}^{2}$
(d) $\sum_{i=1}^{n} x_{i} d x_{i}$
(e) $\sum_{i=1}^{n}(-1)^{i} x_{i} d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{n}$
2. Solve the equation: $d \mu=\omega$ for $\mu \in \Omega^{1}\left(\mathbb{R}^{3}\right)$, where ω is the 2-form
(a) $d x_{2} \wedge d x_{3}$
(b) $x_{2} d x_{2} \wedge d x_{3}$
(c) $\left(x_{1}^{2}+x_{2}^{2}\right) d x_{1} \wedge d x_{2}$
(d) $\cos x_{1} d x_{1} \wedge d x_{3}$
3. Let U be an open subset of \mathbb{R}^{n}.
(a) Show that if $\mu \in \Omega^{k}(U)$ is exact and $\omega \in \Omega^{\ell}(U)$ is closed then $\mu \wedge \omega$ is exact. Hint: The formula (2.3.2).
(b) In particular, $d x_{1}$ is exact, so if $\omega \in \Omega^{\ell}(U)$ is closed $d x_{1} \wedge \omega=$ $d \mu$. What is μ ?
4. Let Q be the rectangle, $\left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{n}, b_{n}\right)$. Show that if ω is in $\Omega^{n}(Q)$, then ω is exact.

Hint: Let $\omega=f d x_{1} \wedge \cdots \wedge d x_{n}$ with $f \in \mathcal{C}^{\infty}(Q)$ and let g be the function

$$
g\left(x_{1}, \ldots, x_{n}\right)=\int_{a_{1}}^{x_{1}} f\left(t, x_{2}, \ldots, x_{n}\right) d t
$$

Show that $\omega=d\left(g d x_{2} \wedge \cdots \wedge d x_{n}\right)$.
5. Let U be an open subset of $\mathbb{R}^{n-1}, A \subseteq \mathbb{R}$ an open interval and (x, t) product coordinates on $U \times A$. We will say that a form, $\mu \in \Omega^{\ell}(U \times A)$ is reduced if it can be written as a sum

$$
\begin{equation*}
\mu=\sum f_{I}(x, t) d x_{I}, \tag{2.3.12}
\end{equation*}
$$

(i.e., no terms involving $d t$).
(a) Show that every form, $\omega \in \Omega^{k}(U \times A)$ can be written uniquely as a sum:

$$
\begin{equation*}
\omega=d t \wedge \alpha+\beta \tag{2.3.13}
\end{equation*}
$$

where α and β are reduced.
(b) Let μ be the reduced form (2.3.12) and let

$$
\frac{d \mu}{d t}=\sum \frac{d}{d t} f_{I}(x, t) d x_{I}
$$

and

$$
d_{U} \mu=\sum_{I}\left(\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} f_{I}(x, t) d x_{i}\right) \wedge d x_{I}
$$

Show that

$$
d \mu=d t \wedge \frac{d \mu}{d t}+d_{U} \mu
$$

(c) Let ω be the form (2.3.13). Show that

$$
d \omega=d t \wedge d_{U} \alpha+d t \wedge \frac{d \beta}{d t}+d_{U} \beta
$$

and conclude that ω is closed if and only if

$$
\begin{align*}
\frac{d \beta}{d t} & =d_{U} \alpha \tag{2.3.14}\\
d \beta_{U} & =0
\end{align*}
$$

(d) Let α be a reduced $(k-1)$-form. Show that there exists a reduced $(k-1)$-form, ν, such that

$$
\begin{equation*}
\frac{d \nu}{d t}=\alpha . \tag{2.3.15}
\end{equation*}
$$

Hint: Let $\alpha=\sum f_{I}(x, t) d x_{I}$ and $\nu=\sum g_{I}(x, t) d x_{I}$. The equation (2.3.15) reduces to the system of equations

$$
\begin{equation*}
\frac{d}{d t} g_{I}(x, t)=f_{I}(x, t) \tag{2.3.16}
\end{equation*}
$$

Let c be a point on the interval, A, and using freshman calculus show that (2.3.16) has a unique solution, $g_{I}(x, t)$, with $g_{I}(x, c)=0$.
(e) Show that if ω is the form (2.3.13) and ν a solution of (2.3.15) then the form

$$
\begin{equation*}
\omega-d \nu \tag{2.3.17}
\end{equation*}
$$

is reduced.
(f) Let

$$
\left.\gamma=\sum h_{I}(x, t) d x\right) I
$$

be a reduced k-form. Deduce from (2.3.14) that if γ is closed then $\frac{d \gamma}{d t}=0$ and $d_{U} \gamma=0$. Conclude that $h_{I}(x, t)=h_{I}(x)$ and that

$$
\gamma=\sum h_{I}(x) d x_{I}
$$

is effectively a closed k-form on U. Now prove: If every closed k-form on U is exact, then every closed k-form on $U \times A$ is exact. Hint: Let ω be a closed k-form on $U \times A$ and let γ be the form (2.3.17).
6. Let $Q \subseteq \mathbb{R}^{n}$ be an open rectangle. Show that every closed form on Q of degree $k>0$ is exact. Hint: Let $Q=\left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{n}, b_{n}\right)$. Prove this assertion by induction, at the $n^{\text {th }}$ stage of the induction letting $U=\left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{n-1}, b_{n-1}\right)$ and $A=\left(a_{n}, b_{n}\right)$.

2.4 The interior product operation

In $\S 2.1$ we explained how to pair a one-form, ω, and a vector field, v, to get a function, $\iota(v) \omega$. This pairing operation generalizes: If one is given a k-form, ω, and a vector field, v, both defined on an open subset, U, one can define a ($k-1$)-form on U by defining its value at $p \in U$ to be the interior product

$$
\begin{equation*}
\iota(v(p)) \omega(p) . \tag{2.4.1}
\end{equation*}
$$

Note that $v(p)$ is in $T_{p} \mathbb{R}^{n}$ and $\omega(p)$ in $\Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right)$, so by definition of interior product (see §1.7), the expression (2.4.1) is an element of $\Lambda^{k-1}\left(T_{p}^{*} \mathbb{R}^{n}\right)$. We will denote by $\iota(v) \omega$ the $(k-1)$-form on U whose value at p is (2.4.1). From the properties of interior product on vector spaces which we discussed in $\S 1.7$, one gets analogous properties for this interior product on forms. We will list these properties, leaving their verification as an exercise. Let v and ω be vector fields, and ω_{1}
and $\omega_{2} k$-forms, ω a k-form and μ an ℓ-form. Then $\iota(v) \omega$ is linear in ω :

$$
\begin{equation*}
\iota(v)\left(\omega_{1}+\omega_{2}\right)=\iota(v) \omega_{1}+\iota(v) \omega_{2} \tag{2.4.2}
\end{equation*}
$$

linear in v :

$$
\begin{equation*}
\iota(v+w) \omega=\iota(v) \omega+z(w) \omega \tag{2.4.3}
\end{equation*}
$$

has the derivation property:

$$
\begin{equation*}
\iota(v)(\omega \wedge \mu)=\iota(v) \omega \wedge \mu+(-1)^{k} \omega \wedge \iota(v) \mu \tag{2.4.4}
\end{equation*}
$$

satisfies the identity

$$
\begin{equation*}
\iota(v)(\iota(w) \omega)=-\iota(w)(\iota(v) \omega) \tag{2.4.5}
\end{equation*}
$$

and, as a special case of (2.4.5), the identity,

$$
\begin{equation*}
\iota(v)(\iota(v) \omega)=0 \tag{2.4.6}
\end{equation*}
$$

Moreover, if ω is "decomposable" i.e., is a wedge product of oneforms

$$
\begin{equation*}
\omega=\mu_{1} \wedge \cdots \wedge \mu_{k}, \tag{2.4.7}
\end{equation*}
$$

then

$$
\begin{equation*}
\iota(v) \omega=\sum_{r=1}^{k}(-1)^{r-1}\left(\iota(v) \mu_{r}\right) \mu_{1} \wedge \cdots \widehat{\mu}_{r} \cdots \wedge \mu_{k} \tag{2.4.8}
\end{equation*}
$$

We will also leave for you to prove the following two assertions, both of which are special cases of (2.4.8). If $v=\partial / \partial x_{r}$ and $\omega=d x_{I}=$ $d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$ then

$$
\begin{equation*}
\iota(v) \omega=\sum_{r=1}^{k}(-1)^{r} \delta_{i_{r}}^{i} d x_{I_{r}} \tag{2.4.9}
\end{equation*}
$$

where

$$
\delta_{i_{r}}^{i}= \begin{cases}1 & i=i_{r} \\ 0, & i \neq i_{r}\end{cases}
$$

and $I_{r}=\left(i_{1}, \ldots, \widehat{i}_{r}, \ldots, i_{k}\right)$ and if $v=\sum f_{i} \partial / \partial x_{i}$ and $\omega=d x_{1} \wedge$ $\cdots \wedge d x_{n}$ then

$$
\begin{equation*}
\iota(v) \omega=\sum(-1)^{r-1} f_{r} d x_{1} \wedge \cdots \widehat{d x}_{r} \cdots \wedge d x_{n} \tag{2.4.10}
\end{equation*}
$$

By combining exterior differentiation with the interior product operation one gets another basic operation of vector fields on forms: the Lie differentiation operation. For zero-forms, i.e., for \mathcal{C}^{∞} functions, φ, we defined this operation by the formula (2.1.14). For k-forms we'll define it by the slightly more complicated formula

$$
\begin{equation*}
L_{v} \omega=\iota(v) d \omega+d \iota(v) \omega . \tag{2.4.11}
\end{equation*}
$$

(Notice that for zero-forms the second summand is zero, so (2.4.11) and (2.1.14) agree.) If ω is a k-form the right hand side of (2.4.11) is as well, so L_{v} takes k-forms to k-forms. It also has the property

$$
\begin{equation*}
d L_{v} \omega=L_{v} d \omega \tag{2.4.12}
\end{equation*}
$$

i.e., it "commutes" with d, and the property

$$
\begin{equation*}
L_{v}(\omega \wedge \mu)=L_{v} \omega \wedge \mu+\omega \wedge L_{v} \mu \tag{2.4.13}
\end{equation*}
$$

and from these properties it is fairly easy to get an explicit formula for $L_{v} \omega$. Namely let ω be the k-form

$$
\omega=\sum f_{I} d x_{I}, \quad f_{I} \in \mathcal{C}^{\infty}(U)
$$

and v the vector field

$$
\sum g_{i} \partial / \partial x_{i}, \quad g_{i} \in \mathcal{C}^{\infty}(U)
$$

By (2.4.13)

$$
L_{v}\left(f_{I} d x_{I}\right)=\left(L_{v} f_{I}\right) d x_{I}+f_{I}\left(L_{v} d x_{I}\right)
$$

and

$$
L_{v} d x_{I}=\sum_{r=1}^{k} d x_{i_{1}} \wedge \cdots \wedge L_{v} d x_{i_{r}} \wedge \cdots \wedge d x_{i_{k}}
$$

and by (2.4.12)

$$
L_{v} d x_{i_{r}}=d L_{v} x_{i_{r}}
$$

so to compute $L_{v} \omega$ one is reduced to computing $L_{v} x_{i_{r}}$ and $L_{v} f_{I}$. However by (2.4.13)

$$
L_{v} x_{i_{r}}=g_{i_{r}}
$$

and

$$
L_{v} f_{I}=\sum g_{i} \frac{\partial f_{I}}{\partial x_{i}}
$$

We will leave the verification of (2.4.12) and (2.4.13) as exercises, and also ask you to prove (by the method of computation that we've just sketched) the divergence formula

$$
\begin{equation*}
L_{v}\left(d x_{1} \wedge \cdots \wedge d x_{n}\right)=\sum\left(\frac{\partial g_{i}}{\partial x_{i}}\right) d x_{1} \wedge \cdots \wedge d x_{n} \tag{2.4.14}
\end{equation*}
$$

Exercises:

1. Verify the assertions (2.4.2)-(2.4.7).
2. Show that if ω is the k-form, $d x_{I}$ and v the vector field, $\partial / \partial x_{r}$, then $\iota(v) \omega$ is given by (2.4.9).
3. Show that if ω is the n-form, $d x_{1} \wedge \cdots \wedge d x_{n}$, and v the vector field, $\sum f_{i} \partial / \partial x_{i}, \iota(v) \omega$ is given by (2.4.10).
4. Let U be an open subset of \mathbb{R}^{n} and v a \mathcal{C}^{∞} vector field on U. Show that for $\omega \in \Omega^{k}(U)$

$$
d L_{v} \omega=L_{v} d \omega
$$

and

$$
\iota_{v} L_{v} \omega=L_{v} \iota_{v} \omega .
$$

Hint: Deduce the first of these identities from the identity $d(d \omega)=0$ and the second from the identity $\iota(v)(\iota(v) \omega)=0$.)
5. Given $\omega_{i} \in \Omega^{k_{i}}(U), i=1,2$, show that

$$
L_{v}\left(\omega_{1} \wedge \omega_{2}\right)=L_{v} \omega_{1} \wedge \omega_{2}+\omega_{1} \wedge L_{v} \omega_{2} .
$$

Hint: Plug $\omega=\omega_{1} \wedge \omega_{2}$ into (2.4.11) and use (2.3.2) and (2.4.4)to evaluate the resulting expression.
6. Let v_{1} and v_{2} be vector fields on U and let w be their Lie bracket. Show that for $\omega \in \Omega^{k}(U)$

$$
L_{w} \omega=L_{v_{1}}\left(L_{v_{2}} \omega\right)-L_{v_{2}}\left(L_{v_{1}} \omega\right) .
$$

Hint: By definition this is true for zero-forms and by (2.4.12) for exact one-forms. Now use the fact that every form is a sum of wedge products of zero-forms and one-forms and the fact that L_{v} satisfies the product identity (2.4.13).
7. Prove the divergence formula (2.4.14).
8. (a) Let $\omega=\Omega^{k}\left(\mathbb{R}^{n}\right)$ be the form

$$
\omega=\sum f_{I}\left(x_{1}, \ldots, x_{n}\right) d x_{I}
$$

and \mathfrak{v} the vector field, $\partial / \partial x_{n}$. Show that

$$
L_{\mathfrak{v}} \omega=\sum \frac{\partial}{\partial x_{n}} f_{I}\left(x_{1}, \ldots, x_{n}\right) d x_{I}
$$

(b) Suppose $\iota(\mathfrak{v}) \omega=L_{\mathfrak{p}} \omega=0$. Show that ω only depends on x_{1}, \ldots, x_{k-1} and $d x_{1}, \ldots, d x_{k-1}$, i.e., is effectively a k-form on \mathbb{R}^{n-1}.
(c) Suppose $\iota(\mathfrak{v}) \omega=d \omega=0$. Show that ω is effectively a closed k-form on \mathbb{R}^{n-1}.
(d) Use these results to give another proof of the Poincaré lemma for \mathbb{R}^{n}. Prove by induction on n that every closed form on \mathbb{R}^{n} is exact.

Hints:

i. Let ω be the form in part (a) and let

$$
g_{I}\left(x_{1}, \ldots, x_{n}\right)=\int_{0}^{x_{n}} f_{I}\left(x_{1}, \ldots, x_{n-1}, t\right) d t
$$

Show that if $\nu=\sum g_{I} d x_{I}$, then $L_{\mathfrak{v}} \nu=\omega$.
ii. Conclude that

$$
\begin{equation*}
\omega-d \iota(\mathfrak{v}) \nu=\iota(\mathfrak{v}) d \nu . \tag{*}
\end{equation*}
$$

iii. Suppose $d \omega=0$. Conclude from $\left(^{*}\right)$ and from the formula (2.4.6) that the form $\beta=\iota(\mathfrak{v}) d \nu$ satisfies $d \beta=\iota(\mathfrak{v}) \beta=0$.
iv. By part c, β is effectively a closed form on \mathbb{R}^{n-1}, and by induction, $\beta=d \alpha$. Thus by $\left({ }^{*}\right)$

$$
\omega=d \iota(\mathfrak{v}) \nu+d \alpha .
$$

2.5 The pull-back operation on forms

Let U be an open subset of \mathbb{R}^{n}, V an open subset of \mathbb{R}^{m} and f : $U \rightarrow V$ a \mathcal{C}^{∞} map. Then for $p \in U$ and $q=f(p)$, the derivative of f at p

$$
d f_{p}: T_{p} \mathbb{R}^{n} \rightarrow T_{q} \mathbb{R}^{m}
$$

is a linear map, so (as explained in $\S 7$ of Chapter 1) one gets from it a pull-back map

$$
\begin{equation*}
d f_{p}^{*}: \Lambda^{k}\left(T_{q}^{*} \mathbb{R}^{m}\right) \rightarrow \Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right) \tag{2.5.1}
\end{equation*}
$$

In particular, let ω be a k-form on V. Then at $q \in V, \omega$ takes the value

$$
\omega_{q} \in \Lambda^{k}\left(T_{q}^{*} \mathbb{R}^{m}\right),
$$

so we can apply to it the operation (2.5.1), and this gives us an element:

$$
\begin{equation*}
d f_{p}^{*} \omega_{q} \in \Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right) \tag{2.5.2}
\end{equation*}
$$

In fact we can do this for every point $p \in U$, so this gives us a function,

$$
\begin{equation*}
p \in U \rightarrow\left(d f_{p}\right)^{*} \omega_{q}, \quad q=f(p) \tag{2.5.3}
\end{equation*}
$$

By the definition of k-form such a function is a k-form on U. We will denote this k-form by $f^{*} \omega$ and define it to be the pull-back of ω by the map f. A few of its basic properties are described below.

1. Let φ be a zero-form, i.e., a function, $\varphi \in \mathcal{C}^{\infty}(V)$. Since

$$
\Lambda^{0}\left(T_{p}^{*}\right)=\Lambda^{0}\left(T_{q}^{*}\right)=\mathbb{R}
$$

the map (2.5.1) is just the identity map of \mathbb{R} onto \mathbb{R} when k is equal to zero. Hence for zero-forms

$$
\begin{equation*}
\left(f^{*} \varphi\right)(p)=\varphi(q), \tag{2.5.4}
\end{equation*}
$$

i.e., $f^{*} \varphi$ is just the composite function, $\varphi \circ f \in \mathcal{C}^{\infty}(U)$.
2. Let $\mu \in \Omega^{1}(V)$ be the 1 -form, $\mu=d \varphi$. By the chain rule (2.5.2) unwinds to:

$$
\begin{equation*}
\left(d f_{p}\right)^{*} d \varphi_{q}=(d \varphi)_{q} \circ d f_{p}=d(\varphi \circ f)_{p} \tag{2.5.5}
\end{equation*}
$$

and hence by (2.5.4)

$$
\begin{equation*}
f^{*} d \varphi=d f^{*} \varphi . \tag{2.5.6}
\end{equation*}
$$

3. If ω_{1} and ω_{2} are in $\Omega^{k}(V)$ we get from (2.5.2)

$$
\left(d f_{p}\right)^{*}\left(\omega_{1}+\omega_{2}\right)_{q}=\left(d f_{p}\right)^{*}\left(\omega_{1}\right)_{q}+\left(d f_{p}\right)^{*}\left(\omega_{2}\right)_{q},
$$

and hence by (2.5.3)

$$
f^{*}\left(\omega_{1}+\omega_{2}\right)=f^{*} \omega_{1}+f^{*} \omega_{2} .
$$

4. We observed in § 1.7 that the operation (2.5.1) commutes with wedge-product, hence if ω_{1} is in $\Omega^{k}(V)$ and ω_{2} is in $\Omega^{\ell}(V)$

$$
d f_{p}^{*}\left(\omega_{1}\right)_{q} \wedge\left(\omega_{2}\right)_{q}=d f_{p}^{*}\left(\omega_{1}\right)_{q} \wedge d f_{p}^{*}\left(\omega_{2}\right)_{q} .
$$

In other words

$$
\begin{equation*}
f^{*} \omega_{1} \wedge \omega_{2}=f^{*} \omega_{1} \wedge f^{*} \omega_{2} . \tag{2.5.7}
\end{equation*}
$$

5. Let W be an open subset of \mathbb{R}^{k} and $g: V \rightarrow W$ a \mathcal{C}^{∞} map. Given a point $p \in U$, let $q=f(p)$ and $w=g(q)$. Then the composition of the map

$$
\left(d f_{p}\right)^{*}: \Lambda^{k}\left(T_{q}^{*}\right) \rightarrow \Lambda^{k}\left(T_{p}^{*}\right)
$$

and the map

$$
\left(d g_{q}\right)^{*}: \Lambda^{k}\left(T_{w}^{*}\right) \rightarrow \Lambda^{k}\left(T_{q}^{*}\right)
$$

is the map

$$
\left(d g_{q} \circ d f_{p}\right)^{*}: \Lambda^{k}\left(T_{w}^{*}\right) \rightarrow \Lambda^{k}\left(T_{p}^{*}\right)
$$

by formula (1.7.4) of Chapter 1 . However, by the chain rule

$$
\left(d g_{q}\right) \circ(d f)_{p}=d(g \circ f)_{p}
$$

so this composition is the map

$$
d(g \circ f)_{p}^{*}: \Lambda^{k}\left(T_{w}^{*}\right) \rightarrow \Lambda^{k}\left(T_{p}^{*}\right)
$$

Thus if ω is in $\Omega^{k}(W)$

$$
\begin{equation*}
f^{*}\left(g^{*} \omega\right)=(g \circ f)^{*} \omega \tag{2.5.8}
\end{equation*}
$$

Let's see what the pull-back operation looks like in coordinates. Using multi-index notation we can express every k-form, $\omega \in \Omega^{k}(V)$ as a sum over multi-indices of length k

$$
\begin{equation*}
\omega=\sum \varphi_{I} d x_{I} \tag{2.5.9}
\end{equation*}
$$

the coefficient, φ_{I}, of $d x_{I}$ being in $\mathcal{C}^{\infty}(V)$. Hence by (2.5.4)

$$
f^{*} \omega=\sum f^{*} \varphi_{I} f^{*}\left(d x_{I}\right)
$$

where $f^{*} \varphi_{I}$ is the function of $\varphi \circ f$. What about $f^{*} d x_{I}$? If I is the multi-index, $\left(i_{1}, \ldots, i_{k}\right)$, then by definition

$$
d x_{I}=d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}
$$

so

$$
d^{*} d x_{I}=f^{*} d x_{i} \wedge \cdots \wedge f^{*} d x_{i_{k}}
$$

by (2.5.7), and by (2.5.6)

$$
f^{*} d x_{i}=d f^{*} x_{i}=d f_{i}
$$

where f_{i} is the $i^{\text {th }}$ coordinate function of the map f. Thus, setting

$$
d f_{I}=d f_{i_{1}} \wedge \cdots \wedge d f_{i_{k}},
$$

we get for each multi-index, I,

$$
\begin{equation*}
f^{*} d x_{I}=d f_{I} \tag{2.5.10}
\end{equation*}
$$

and for the pull-back of the form (2.5.9)

$$
\begin{equation*}
f^{*} \omega=\sum f^{*} \varphi_{I} d f_{I} . \tag{2.5.11}
\end{equation*}
$$

We will use this formula to prove that pull-back commutes with exterior differentiation:

$$
\begin{equation*}
d f^{*} \omega=f^{*} d \omega \tag{2.5.12}
\end{equation*}
$$

To prove this we recall that by $(2.2 .5), d\left(d f_{I}\right)=0$, hence by $(2.2 .2)$ and (2.5.10)

$$
\begin{aligned}
d f^{*} \omega & =\sum d f^{*} \varphi_{I} \wedge d f_{I} \\
& =\sum f^{*} d \varphi_{I} \wedge d f^{*} d x_{I} \\
& =f^{*} \sum d \varphi_{I} \wedge d x_{I} \\
& =f^{*} d \omega .
\end{aligned}
$$

A special case of formula (2.5.10) will be needed in Chapter 4: Let U and V be open subsets of \mathbb{R}^{n} and let $\omega=d x_{1} \wedge \cdots \wedge d x_{n}$. Then by (2.5.10)

$$
f^{*} \omega_{p}=\left(d f_{1}\right)_{p} \wedge \cdots \wedge\left(d f_{n}\right)_{p}
$$

for all $p \in U$. However,

$$
\left(d f_{i}\right)_{p}=\sum \frac{\partial f_{i}}{\partial x_{j}}(p)\left(d x_{j}\right)_{p}
$$

and hence by formula (1.7.7) of Chapter 1

$$
f^{*} \omega_{p}=\operatorname{det}\left[\frac{\partial f_{i}}{\partial x_{j}}(p)\right]\left(d x_{1} \wedge \cdots \wedge d x_{n}\right)_{p}
$$

In other words

$$
\begin{equation*}
f^{*} d x_{1} \wedge \cdots \wedge d x_{n}=\operatorname{det}\left[\frac{\partial f_{i}}{\partial x_{j}}\right] d x_{1} \wedge \cdots \wedge d x_{n} \tag{2.5.13}
\end{equation*}
$$

We will outline in exercises 4 and 5 below the proof of an important topological property of the pull-back operation. Let U be an open subset of \mathbb{R}^{n}, V an open subset of $\mathbb{R}^{m}, A \subseteq \mathbb{R}$ an open interval containing 0 and 1 and $f_{i}: U \rightarrow V, i=0,1$, a \mathcal{C}^{∞} map.
Definition 2.5.1. $A \mathcal{C}^{\infty}$ map, $F: U \times A \rightarrow V$, is a homotopy between f_{0} and f_{1} if $F(x, 0)=f_{0}(x)$ and $F(x, 1)=f_{1}(x)$.

Thus, intuitively, f_{0} and f_{1} are homotopic if there exists a family of \mathcal{C}^{∞} maps, $f_{t}: U \rightarrow V, f_{t}(x)=F(x, t)$, which "smoothly deform f_{0} into f_{1} ". In the exercises mentioned above you will be asked to verify that for f_{0} and f_{1} to be homotopic they have to satisfy the following criteria.
Theorem 2.5.2. If f_{0} and f_{1} are homotopic then for every closed form, $\omega \in \Omega^{k}(V), f_{1}^{*} \omega-f_{0}^{*} \omega$ is exact.

This theorem is closely related to the Poincaré lemma, and, in fact, one gets from it a slightly stronger version of the Poincaré lemma than that described in exercises 5-6 in §2.2.
Definition 2.5.3. An open subset, U, of \mathbb{R}^{n} is contractable if, for some point $p_{0} \in U$, the identity map

$$
f_{1}: U \rightarrow U, \quad f(p)=p,
$$

is homotopic to the constant map

$$
f_{0}: U \rightarrow U, \quad f_{0}(p)=p_{0}
$$

From the theorem above it's easy to see that the Poincaré lemma holds for contractable open subsets of \mathbb{R}^{n}. If U is contractable every closed k-form on U of degree $k>0$ is exact. (Proof: Let ω be such a form. Then for the identity $\operatorname{map} f_{0}^{*} \omega=\omega$ and for the constant map, $f_{0}^{*} \omega=0$.)

Exercises.

1. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the map

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} x_{2}, x_{2} x_{3}^{2}, x_{3}^{3}\right)
$$

Compute the pull-back, $f^{*} \omega$ for
(a) $\omega=x_{2} d x_{3}$
(b) $\omega=x_{1} d x_{1} \wedge d x_{3}$
(c) $\omega=x_{1} d x_{1} \wedge d x_{2} \wedge d x_{3}$
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the map

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}\right)
$$

Complete the pull-back, $f^{*} \omega$, for
(a) $\omega=x_{2} d x_{2}+x_{3} d x_{3}$
(b) $\omega=x_{1} d x_{2} \wedge d x_{3}$
(c) $\quad \omega=d x_{1} \wedge d x_{2} \wedge d x_{3}$
3. Let U be an open subset of \mathbb{R}^{n}, V an open subset of \mathbb{R}^{m}, f : $U \rightarrow V$ a \mathcal{C}^{∞} map and $\gamma:[a, b] \rightarrow U$ a \mathcal{C}^{∞} curve. Show that for $\omega \in \Omega^{1}(V)$

$$
\int_{\gamma} f^{*} \omega=\int_{\gamma_{1}} \omega
$$

where $\gamma_{1}:[a, b] \rightarrow V$ is the curve, $\gamma_{1}(t)=f(\gamma(t))$. (See $\S 2.1$, exercise 7.)
4. Let U be an open subset of $\mathbb{R}^{n}, A \subseteq \mathbb{R}$ an open interval containing the points, 0 and 1 , and (x, t) product coordinates on $U \times A$. Recall (§2.2, exercise 5) that a form, $\mu \in \Omega^{\ell}(U \times A$) is reduced if it can be written as a sum

$$
\begin{equation*}
\mu=\sum f_{I}(x, t) d x_{I} \tag{2.5.14}
\end{equation*}
$$

(i.e., none of the summands involve "dt"). For a reduced form, μ, let $Q \mu \in \Omega^{\ell}(U)$ be the form

$$
\begin{equation*}
Q \mu=\left(\sum \int_{0}^{1} f_{I}(x, t) d t\right) d x_{I} \tag{2.5.15}
\end{equation*}
$$

and let $\mu_{i} \in \Omega^{\ell}(U), i=0,1$ be the forms

$$
\begin{equation*}
\mu_{0}=\sum f_{I}(x, 0) d x_{I} \tag{2.5.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{1}=\sum f_{I}(x, 1) d x_{I} \tag{2.5.17}
\end{equation*}
$$

Now recall that every form, $\omega \in \Omega^{k}(U \times A)$ can be written uniquely as a sum

$$
\begin{equation*}
\omega=d t \wedge \alpha+\beta \tag{2.5.18}
\end{equation*}
$$

where α and β are reduced. (See exercise 5 of $\S 2.3$, part a.)
(a) Prove

Theorem 2.5.4. If the form (2.5.18) is closed then

$$
\begin{equation*}
\beta_{0}-\beta_{1}=d Q \alpha \tag{2.5.19}
\end{equation*}
$$

Hint: Formula (2.3.14).
(b) Let ι_{0} and ι_{1} be the maps of U into $U \times A$ defined by $\iota_{0}(x)=$ $(x, 0)$ and $\iota_{1}(x)=(x, 1)$. Show that (2.5.19) can be rewritten

$$
\begin{equation*}
\iota_{0}^{*} \omega-\iota_{1}^{*} \omega=d Q \alpha . \tag{2.5.20}
\end{equation*}
$$

5. Let V be an open subset of \mathbb{R}^{m} and $f_{i}: U \rightarrow V, i=0,1, \mathcal{C}^{\infty}$ maps. Suppose f_{0} and f_{1} are homotopic. Show that for every closed form, $\mu \in \Omega^{k}(V), f_{1}^{*} \mu-f_{0}^{*} \mu$ is exact. Hint: Let $F: U \times A \rightarrow V$ be a
homotopy between f_{0} and f_{1} and let $\omega=F^{*} \mu$. Show that ω is closed and that $f_{0}^{*} \mu=\iota_{0}^{*} \omega$ and $f_{1}^{*} \mu=\iota_{1}^{*} \omega$. Conclude from (2.5.20) that

$$
\begin{equation*}
f_{0}^{*} \mu-f_{1}^{*} \mu=d Q \alpha \tag{2.5.21}
\end{equation*}
$$

where $\omega=d t \wedge \alpha+\beta$ and α and β are reduced.
6. Show that if $U \subseteq \mathbb{R}^{n}$ is a contractable open set, then the Poincaré lemma holds: every closed form of degree $k>0$ is exact.
7. An open subset, U, of \mathbb{R}^{n} is said to be star-shaped if there exists a point $p_{0} \in U$, with the property that for every point $p \in U$, the line segment,

$$
t p+(1-t) p_{0}, \quad 0 \leq t \leq 1,
$$

joining p to p_{0} is contained in U. Show that if U is star-shaped it is contractable.
8. Show that the following open sets are star-shaped:
(a) The open unit ball

$$
\left\{x \in \mathbb{R}^{n},\|x\|<1\right\} .
$$

(b) The open rectangle, $I_{1} \times \cdots \times I_{n}$, where each I_{k} is an open subinterval of \mathbb{R}.
(c) \mathbb{R}^{n} itself.
(d) Product sets

$$
U_{1} \times U_{2} \subseteq \mathbb{R}^{n}=\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}
$$

where U_{i} is a star-shaped open set in $\mathbb{R}^{n_{i}}$.
9. Let U be an open subset of $\mathbb{R}^{n}, f_{t}: U \rightarrow U, t \in \mathbb{R}$, a oneparameter group of diffeomorphisms and v its infinitesimal generator. Given $\omega \in \Omega^{k}(U)$ show that at $t=0$

$$
\begin{equation*}
\frac{d}{d t} f_{t}^{*} \omega=L_{v} \omega \tag{2.5.22}
\end{equation*}
$$

Here is a sketch of a proof:
(a) Let $\gamma(t)$ be the curve, $\gamma(t)=f_{t}(p)$, and let φ be a zero-form, i.e., an element of $\mathcal{C}^{\infty}(U)$. Show that

$$
f_{t}^{*} \varphi(p)=\varphi(\gamma(t))
$$

and by differentiating this identity at $t=0$ conclude that (2.4.40) holds for zero-forms.
(b) Show that if (2.4.40) holds for ω it holds for $d \omega$. Hint: Differentiate the identity

$$
f_{t}^{*} d \omega=d f_{t}^{*} \omega
$$

at $t=0$.
(c) Show that if (2.4.40) holds for ω_{1} and ω_{2} it holds for $\omega_{1} \wedge \omega_{2}$. Hint: Differentiate the identity

$$
f_{t}^{*}\left(\omega_{1} \wedge \omega_{2}\right)=f_{t}^{*} \omega_{1} \wedge f_{t}^{*} \omega_{2}
$$

at $t=0$.
(d) Deduce (2.4.40) from a, b and c. Hint: Every k-form is a sum of wedge products of zero-forms and exact one-forms.
10. In exercise 9 show that for all t

$$
\begin{equation*}
\frac{d}{d t} f_{t}^{*} \omega=f_{t}^{*} L_{v} \omega=L_{v} f_{t}^{*} \omega \tag{2.5.23}
\end{equation*}
$$

Hint: By the definition of "one-parameter group", $f_{s+t}=f_{s} \circ f_{t}=$ $f_{r} \circ f_{s}$, hence:

$$
f_{s+t}^{*} \omega=f_{t}^{*}\left(f_{s}^{*} \omega\right)=f_{s}^{*}\left(f_{t}^{*} \omega\right) .
$$

Prove the first assertion by differentiating the first of these identities with respect to s and then setting $s=0$, and prove the second assertion by doing the same for the second of these identities.
In particular conclude that

$$
\begin{equation*}
f_{t}^{*} L_{v} \omega=L_{v} f_{t}^{*} \omega \tag{2.5.24}
\end{equation*}
$$

11. (a) By massaging the result above show that

$$
\begin{equation*}
\frac{d}{d t} f_{t}^{*} \omega=d Q_{t} \omega+Q_{t} d \omega \tag{2.5.25}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{t} \omega=f_{t}^{*} \iota(v) \omega \tag{2.5.26}
\end{equation*}
$$

Hint: Formula (2.4.11).
(b) Let

$$
Q \omega=\int_{0}^{1} f_{t}^{*} \iota(v) \omega d t
$$

Prove the homotopy indentity

$$
\begin{equation*}
f_{1}^{*} \omega-f_{0}^{*} \omega=d Q \omega+Q d \omega \tag{2.5.27}
\end{equation*}
$$

12. Let U be an open subset of \mathbb{R}^{n}, V an open subset of \mathbb{R}^{m}, v a vector field on U, w a vector field on V and $f: U \rightarrow V$ a \mathcal{C}^{∞} map. Show that if v and w are f-related

$$
\iota(v) f^{*} \omega=f^{*} \iota(w) \omega
$$

Hint: Chapter 1, §1.7, exercise 8.

2.6 Div, curl and grad

The basic operations in 3-dimensional vector calculus: grad, curl and div are, by definition, operations on vector fields. As we'll see below these operations are closely related to the operations

$$
\begin{equation*}
d: \Omega^{k}\left(\mathbb{R}^{3}\right) \rightarrow \Omega^{k+1}\left(\mathbb{R}^{3}\right) \tag{2.6.1}
\end{equation*}
$$

in degrees $k=0,1,2$. However, only two of these operations: grad and div, generalize to n dimensions. (They are essentially the d operations in degrees zero and $n-1$.) And, unfortunately, there is no simple description in terms of vector fields for the other $n-2 d$ operations. This is one of the main reasons why an adequate theory of vector calculus in n-dimensions forces on one the differential form approach that we've developed in this chapter. Even in three dimensions, however, there is a good reason for replacing grad, div and curl by the three operations, (2.6.1). A problem that physicists spend a lot of time worrying about is the problem of general covariance: formulating the laws of physics in such a way that they admit as large a set of symmetries as possible, and frequently these formulations involve differential forms. An example is Maxwell's equations, the fundamental laws of electromagnetism. These are usually expressed as identities involving div and curl. However, as we'll explain below, there is an alternative formulation of Maxwell's equations based on
the operations (2.6.1), and from the point of view of general covariance, this formulation is much more satisfactory: the only symmetries of \mathbb{R}^{3} which preserve div and curl are translations and rotations, whereas the operations (2.6.1) admit all diffeomorphisms of \mathbb{R}^{3} as symmetries.

To describe how grad, div and curl are related to the operations (2.6.1) we first note that there are two ways of converting vector fields into forms. The first makes use of the natural inner product, $B(v, w)=\sum v_{i} w_{i}$, on \mathbb{R}^{n}. From this inner product one gets by $\S 1.2$, exercise 9 a bijective linear map:

$$
\begin{equation*}
L: \mathbb{R}^{n} \rightarrow\left(\mathbb{R}^{n}\right)^{*} \tag{2.6.2}
\end{equation*}
$$

with the defining property: $L(v)=\ell \Leftrightarrow \ell(w)=B(v, w)$. Via the identification (2.1.2) B and L can be transferred to $T_{p} \mathbb{R}^{n}$, giving one an inner product, B_{p}, on $T_{p} \mathbb{R}^{n}$ and a bijective linear map

$$
\begin{equation*}
L_{p}: T_{p} \mathbb{R}^{n} \rightarrow T_{p}^{*} \mathbb{R}^{n} \tag{2.6.3}
\end{equation*}
$$

Hence if we're given a vector field, \mathfrak{v}, on U we can convert it into a 1 -form, \mathfrak{v}^{\sharp}, by setting

$$
\begin{equation*}
\mathfrak{v}^{\sharp}(p)=L_{p} \mathfrak{v}(p) \tag{2.6.4}
\end{equation*}
$$

and this sets up a one-one correspondence between vector fields and 1-forms. For instance

$$
\begin{equation*}
\mathfrak{v}=\frac{\partial}{\partial x_{i}} \Leftrightarrow \mathfrak{v}^{\sharp}=d x_{i}, \tag{2.6.5}
\end{equation*}
$$

(see exercise 3 below) and, more generally,

$$
\begin{equation*}
\mathfrak{v}=\sum f_{i} \frac{\partial}{\partial x_{i}} \Leftrightarrow \mathfrak{v}^{\sharp}=\sum f_{i} d x_{i} . \tag{2.6.6}
\end{equation*}
$$

In particular if f is a \mathcal{C}^{∞} function on U the vector field "grad f " is by definition

$$
\begin{equation*}
\sum \frac{\partial f}{\partial x_{i}} \frac{\partial}{\partial x_{i}} \tag{2.6.7}
\end{equation*}
$$

and this gets converted by (2.6.8) into the 1 -form, $d f$. Thus the "grad" operation in vector calculus is basically just the operation, $d: \Omega^{0}(U) \rightarrow \Omega^{1}(U)$.

The second way of converting vector fields into forms is via the interior product operation. Namely let Ω be the n-form, $d x_{1} \wedge \cdots \wedge$ $d x_{n}$. Given an open subset, U of \mathbb{R}^{n} and a \mathcal{C}^{∞} vector field,

$$
\begin{equation*}
v=\sum f_{i} \frac{\partial}{\partial x_{i}} \tag{2.6.8}
\end{equation*}
$$

on U the interior product of v with Ω is the $(n-1)$-form

$$
\begin{equation*}
\iota(v) \Omega=\sum(-1)^{r-1} f_{r} d x_{1} \wedge \cdots \wedge \widehat{d} x_{r} \cdots \wedge d x_{n} \tag{2.6.9}
\end{equation*}
$$

Moreover, every ($n-1$)-form can be written uniquely as such a sum, so (2.6.8) and (2.6.9) set up a one-one correspondence between vector fields and $(n-1)$-forms. Under this correspondence the d-operation gets converted into an operation on vector fields

$$
\begin{equation*}
v \rightarrow d \iota(v) \Omega \tag{2.6.10}
\end{equation*}
$$

Moreover, by (2.4.11)

$$
d \iota(v) \Omega=L_{v} \Omega
$$

and by (2.4.14)

$$
L_{v} \Omega=\operatorname{div}(v) \Omega
$$

where

$$
\begin{equation*}
\operatorname{div}(v)=\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{i}} \tag{2.6.11}
\end{equation*}
$$

In other words, this correspondence between $(n-1)$-forms and vector fields converts the d-operation into the divergence operation (2.6.11) on vector fields.

Notice that "div" and "grad" are well-defined as vector calculus operations in n-dimensions even though one usually thinks of them as operations in 3-dimensional vector calculus. The "curl" operation, however, is intrinsically a 3-dimensional vector calculus operation. To define it we note that by (2.6.9) every 2 -form, μ, can be written uniquely as an interior product,

$$
\begin{equation*}
\mu=\iota(\mathfrak{w}) d x_{1} \wedge d x_{2} \wedge d x_{3} \tag{2.6.12}
\end{equation*}
$$

for some vector field \mathfrak{w}, and the left-hand side of this formula determines \mathfrak{w} uniquely. Now let U be an open subset of \mathbb{R}^{3} and \mathfrak{v} a
vector field on U. From \mathfrak{v} we get by (2.6.6) a 1 -form, \mathfrak{v}^{\sharp}, and hence by (2.6.12) a vector field, \mathfrak{w}, satisfying

$$
\begin{equation*}
d \mathfrak{v}^{\sharp}=\iota(\mathfrak{w}) d x_{1} \wedge d x_{2} \wedge d x_{3} \tag{2.6.13}
\end{equation*}
$$

The "curl" of \mathfrak{v} is defined to be this vector field, in other words,

$$
\begin{equation*}
\operatorname{curl} \mathfrak{v}=\mathfrak{w} \tag{2.6.14}
\end{equation*}
$$

where \mathfrak{v} and \mathfrak{w} are related by (2.6.13).
We'll leave for you to check that this definition coincides with the definition one finds in calculus books. More explicitly we'll leave for you to check that if v is the vector field

$$
\begin{equation*}
v=f_{1} \frac{\partial}{\partial x_{1}}+f_{2} \frac{\partial}{\partial x_{2}}+f_{3} \frac{\partial}{\partial x_{3}} \tag{2.6.15}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{curl} v=g_{1} \frac{\partial}{\partial x_{1}}+g_{2} \frac{\partial}{\partial x_{2}}+g_{3} \frac{\partial}{\partial x_{3}} \tag{2.6.16}
\end{equation*}
$$

where

$$
\begin{align*}
g_{1} & =\frac{\partial f_{2}}{\partial x_{3}}-\frac{\partial f_{3}}{\partial x_{2}} \\
g_{2} & =\frac{\partial f_{3}}{\partial x_{1}}-\frac{\partial f_{1}}{\partial x_{3}} \tag{2.6.17}\\
g_{3} & =\frac{\partial f_{1}}{\partial x_{2}}-\frac{\partial f_{2}}{\partial x_{1}}
\end{align*}
$$

To summarize: the grad, curl and div operations in 3-dimensions are basically just the three operations (2.6.1). The "grad" operation is the operation (2.6.1) in degree zero, "curl" is the operation (2.6.1) in degree one and "div" is the operation (2.6.1) in degree two. However, to define "grad" we had to assign an inner product, B_{p}, to the next tangent space, $T_{p} \mathbb{R}^{n}$, for each p in U; to define "div" we had to equip U with the 3 -form, Ω, and to define "curl", the most complicated of these three operations, we needed the B_{p} 's and Ω. This is why diffeomorphisms preserve the three operations (2.6.1) but don't preserve grad, curl and div. The additional structures which one needs to define grad, curl and div are only preserved by translations and rotations.

We will conclude this section by showing how Maxwell's equations, which are usually formulated in terms of div and curl, can be reset into "form" language. (The paragraph below is an abbreviated version of Guillemin-Sternberg, Symplectic Techniques in Physics, §1.20.)

Maxwell's equations assert:

$$
\begin{align*}
\operatorname{div} \mathfrak{v}_{E} & =q \tag{2.6.18}\\
\operatorname{curl} \mathfrak{v}_{E} & =-\frac{\partial}{\partial t} \mathfrak{v}_{M} \tag{2.6.19}\\
\operatorname{div} \mathfrak{v}_{M} & =0 \tag{2.6.20}\\
c^{2} \operatorname{curl} \mathfrak{v}_{M} & =\mathfrak{w}+\frac{\partial}{\partial t} \mathfrak{v}_{E} \tag{2.6.21}
\end{align*}
$$

where \mathfrak{v}_{E} and \mathfrak{v}_{M} are the electric and magnetic fields, q is the scalar charge density, \mathfrak{w} is the current density and c is the velocity of light. (To simplify (2.6.25) slightly we'll assume that our units of spacetime are chosen so that $c=1$.) As above let $\Omega=d x_{1} \wedge d x_{2} \wedge d x_{3}$ and let

$$
\begin{equation*}
\mu_{E}=\iota\left(\mathfrak{v}_{E}\right) \Omega \tag{2.6.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{M}=\iota\left(\mathfrak{v}_{M}\right) \Omega . \tag{2.6.23}
\end{equation*}
$$

We can then rewrite equations (2.6.18) and (2.6.20) in the form

$$
\begin{equation*}
d \mu_{E}=q \Omega \tag{2.6.18'}
\end{equation*}
$$

and

$$
\begin{equation*}
d \mu_{M}=0 . \tag{2.6.20'}
\end{equation*}
$$

What about (2.6.19) and (2.6.21)? We will leave the following "form" versions of these equations as an exercise.

$$
\begin{equation*}
d \mathfrak{v}_{E}^{\sharp}=-\frac{\partial}{\partial t} \mu_{M} \tag{2.6.19'}
\end{equation*}
$$

and

$$
d \mathfrak{v}_{M}^{\sharp}=\iota(\mathfrak{w}) \Omega+\frac{\partial}{\partial t} \mu_{E}
$$

where the 1-forms, $\mathfrak{v}_{E}^{\sharp}$ and $\mathfrak{v}_{M}^{\sharp}$, are obtained from \mathfrak{v}_{E} and \mathfrak{v}_{M} by the operation, (2.6.4).

These equations can be written more compactly as differential form identities in $3+1$ dimensions. Let ω_{M} and ω_{E} be the 2 -forms

$$
\begin{equation*}
\omega_{M}=\mu_{M}-\mathfrak{v}_{E}^{\sharp} \wedge d t \tag{2.6.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{E}=\mu_{E}-\mathfrak{v}_{M}^{\sharp} \wedge d t \tag{2.6.25}
\end{equation*}
$$

and let Λ be the 3 -form

$$
\begin{equation*}
\Lambda=q \Omega+\iota(\mathfrak{w}) \Omega \wedge d t \tag{2.6.26}
\end{equation*}
$$

We will leave for you to show that the four equations (2.6.18) (2.6.21) are equivalent to two elegant and compact (3+1)-dimensional identities

$$
\begin{equation*}
d \omega_{M}=0 \tag{2.6.27}
\end{equation*}
$$

and

$$
\begin{equation*}
d \omega_{E}=\Lambda \tag{2.6.28}
\end{equation*}
$$

Exercises.

1. Verify that the "curl" operation is given in coordinates by the formula (2.6.17).
2. Verify that the Maxwell's equations, (2.6.18) and (2.6.19) become the equations (2.6.20) and (2.6.21) when rewritten in differential form notation.
3. Show that in $(3+1)$-dimensions Maxwell's equations take the form (2.6.17)-(2.6.18).
4. Let U be an open subset of \mathbb{R}^{3} and v a vector field on U. Show that if v is the gradient of a function, its curl has to be zero.
5. If U is simply connected prove the converse: If the curl of v vanishes, v is the gradient of a function.
6. Let $w=\operatorname{curl} v$. Show that the divergence of w is zero.
7. Is the converse statment true? Suppose the divergence of w is zero. Is $w=\operatorname{curl} v$ for some vector field v ?

2.7 Symplectic geometry and classical mechanics

In this section we'll describe some other applications of the theory of differential forms to physics. Before describing these applications, however, we'll say a few words about the geometric ideas that are involved. Let $x_{1}, \ldots, x_{2 n}$ be the standard coordinate functions on $\mathbb{R}^{2 n}$ and for $i=1, \ldots, n$ let $y_{i}=x_{i+n}$. The two-form

$$
\begin{equation*}
\omega=\sum_{i=1}^{n} d x_{i} \wedge j y_{i} \tag{2.7.1}
\end{equation*}
$$

is known as the Darboux form. From the identity

$$
\begin{equation*}
\omega=-d\left(\sum y_{i} d x_{i}\right) . \tag{2.7.2}
\end{equation*}
$$

it follows that ω is exact. Moreover computing the n-fold wedge product of ω with itself we get

$$
\begin{aligned}
\omega^{n} & =\left(\sum_{i_{i}=1}^{n} d x_{i_{1}} \wedge d y_{i_{1}}\right) \wedge \cdots \wedge\left(\sum_{i_{n}=1}^{n} d x_{i_{n}} \wedge d y_{i_{n}}\right) \\
& =\sum_{i_{1}, \ldots, i_{n}} d x_{i_{1}} \wedge d y_{i_{1}} \wedge \cdots \wedge d x_{i_{n}} \wedge d y_{i_{n}}
\end{aligned}
$$

We can simplify this sum by noting that if the multi-index, $I=$ i_{1}, \ldots, i_{n}, is repeating the wedge product

$$
\begin{equation*}
d x_{i_{1}} \wedge d y_{i_{1}} \wedge \cdots \wedge d x_{i_{n}} \wedge d x_{i_{n}} \tag{2.7.3}
\end{equation*}
$$

involves two repeating $d x_{i_{1}}$'s and hence is zero, and if I is nonrepeating we can permute the factors and rewrite (2.7.3) in the form

$$
d x_{1} \wedge d y_{1} \wedge \cdots \wedge d x_{n} \wedge d y_{n}
$$

(See $\S 1.6$, exercise 5.) Hence since these are exactly n ! non-repeating multi-indices

$$
\omega^{n}=n!d x_{1} \wedge d y_{1} \wedge \cdots \wedge d x_{n} \wedge d y_{n}
$$

i.e.,

$$
\begin{equation*}
\frac{1}{n!} \omega^{n}=\Omega \tag{2.7.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega=d x_{1} \wedge d y_{1} \wedge \cdots \wedge d x_{n} \wedge d y_{n} \tag{2.7.5}
\end{equation*}
$$

is the symplectic volume form on $\mathbb{R}^{2 n}$.
Let U and V be open subsets of $\mathbb{R}^{2 n}$. A diffeomorphism $f: U \rightarrow V$ is said to be a symplectic diffeomorphism (or symplectomorphism for short) if $f^{*} \omega=\omega$. In particular let

$$
\begin{equation*}
f_{t}: U \rightarrow U, \quad-\infty<t<\infty \tag{2.7.6}
\end{equation*}
$$

be a one-parameter group of diffeomorphisms and let v be the vector field generating (2.7.6). We will say that v is a symplectic vector field if the diffeomorphisms, (2.7.6) are symplectomorphisms, i.e., for all t,

$$
\begin{equation*}
f_{t}^{*} \omega=\omega \tag{2.7.7}
\end{equation*}
$$

Let's see what such vector fields have to look like. Note that by (2.5.23)

$$
\begin{equation*}
\frac{d}{d t} f_{t}^{*} \omega=f_{t}^{*} L_{v} \omega \tag{2.7.8}
\end{equation*}
$$

hence if $f_{t}^{*} \omega=\omega$ for all t, the left hand side of (2.7.8) is zero, so

$$
f_{t}^{*} L_{v} \omega=0
$$

In particular, for $t=0, f_{t}$ is the identity map so $f_{t}^{*} L_{v} \omega=L_{v} \omega=0$. Conversely, if $L_{v} \omega=0$, then $f_{t}^{*} L_{v} \omega=0$ so by (2.7.8) $f_{t}^{*} \omega$ doesn't depend on t. However, since $f_{t}^{*} \omega=\omega$ for $t=0$ we conclude that $f_{t}^{*} \omega=\omega$ for all t. Thus to summarize we've proved
Theorem 2.7.1. Let $f_{t}: U \rightarrow U$ be a one-parameter group of diffeomorphisms and v the infinitesmal generator of this group. Then v is symplectic of and only if $L_{v} \omega=0$.

There is an equivalent formulation of this result in terms of the interior product, $\iota(v) \omega$. By (2.4.11)

$$
L_{v} \omega=d \iota(v) \omega+\iota(v) d \omega
$$

But by (2.7.2) $d \omega=0$ so

$$
L_{v} \omega=d \iota(v) \omega .
$$

Thus we've shown
Theorem 2.7.2. The vector field v is symplectic if and only if $\iota(v) \omega$ is closed.

If $\iota(v) \omega$ is not only closed but is exact we'll say that v is a Hamiltonian vector field. In other words v is Hamiltonian if

$$
\begin{equation*}
\iota(v) \omega=d H \tag{2.7.9}
\end{equation*}
$$

for some \mathcal{C}^{∞} functions, $H \in \mathcal{C}^{\infty}(U)$.
Let's see what this condition looks like in coordinates. Let

$$
\begin{equation*}
v=\sum f_{i} \frac{\partial}{\partial x_{i}}+g_{i} \frac{\partial}{\partial y_{i}} \tag{2.7.10}
\end{equation*}
$$

Then

$$
\begin{aligned}
\iota(v) \omega= & \sum_{i, j} f_{i} \iota\left(\frac{\partial}{\partial x_{i}}\right) d x_{j} \wedge d y_{j} \\
& +\sum_{i, j} g_{i} \iota\left(\frac{\partial}{\partial y_{i}}\right) d x_{j} \wedge d y_{i}
\end{aligned}
$$

But

$$
\iota\left(\frac{\partial}{\partial x_{i}}\right) d x_{j}= \begin{cases}1 & i=i \\ 0 & i \neq j\end{cases}
$$

and

$$
\iota\left(\frac{\partial}{\partial x_{i}}\right) d y_{j}=0
$$

so the first summand above is

$$
\sum f_{i} d y_{i}
$$

and a similar argument shows that the second summand is

$$
-\sum g_{i} d x_{i}
$$

Hence if v is the vector field (2.7.10)

$$
\begin{equation*}
\iota(v) \omega=\sum f_{i} d y_{i}-g_{i} d x_{i} \tag{2.7.11}
\end{equation*}
$$

Thus since

$$
d H=\sum \frac{\partial H}{\partial x_{i}} d x_{i}+\frac{\partial H}{\partial y_{i}} d y_{i}
$$

we get from (2.7.9)-(2.7.11)

$$
\begin{equation*}
f_{i}=\frac{\partial H}{\partial y_{i}} \text { and } g_{i}=-\frac{\partial H}{\partial x_{i}} \tag{2.7.12}
\end{equation*}
$$

so v has the form:

$$
\begin{equation*}
v=\sum \frac{\partial H}{\partial y_{i}} \frac{\partial}{\partial x_{i}}-\frac{\partial H}{\partial x_{i}} \frac{\partial}{\partial y_{i}} . \tag{2.7.13}
\end{equation*}
$$

In particular if $\gamma(t)=(x(t), y(t))$ is an integral curve of v it has to satisfy the system of differential equations

$$
\begin{align*}
\frac{d x_{i}}{d t} & =\frac{\partial H}{\partial y_{i}}(x(t), y(t)) \tag{2.7.14}\\
\frac{d y_{i}}{d t} & =-\frac{\partial H}{\partial x_{i}}(x(t), y(t))
\end{align*}
$$

The formulas (2.7.10) and (2.7.11) exhibit an important property of the Darboux form, ω. Every one-form on U can be written uniquely as a sum

$$
\sum f_{i} d y_{i}-g_{i} d x_{i}
$$

with f_{i} and g_{i} in $\mathcal{C}^{\infty}(U)$ and hence (2.7.10) and (2.7.11) imply
Theorem 2.7.3. The map, $v \rightarrow \iota(v) \omega$, sets up a one-one correspondence between vector field and one-forms.

In particular for every \mathcal{C}^{∞} function, H, we get by correspondence a unique vector field, $v=v_{H}$, with the property (2.7.9).

We next note that by (1.7.6)

$$
L_{v} H=\iota(v) d H=\iota(v)(\iota(v) \omega)=0 .
$$

Thus

$$
\begin{equation*}
L_{v} H=0 \tag{2.7.15}
\end{equation*}
$$

i.e., H is an integral of motion of the vector field, v. In particular if the function, $H: U \rightarrow \mathbb{R}$, is proper, then by Theorem 2.1.10 the vector field, v, is complete and hence by Theorem 2.7.1 generates a one-parameter group of symplectomorphisms.

One last comment before we discuss the applications of these results to classical mechanics. If the one-parameter group (2.7.6) is a group of symplectomorphisms then $f_{t}^{*} \omega^{n}=f_{t}^{*} \omega \wedge \cdots \wedge f_{t}^{*} \omega=\omega^{n}$ so by (2.7.4)

$$
\begin{equation*}
f_{t}^{*} \Omega=\Omega \tag{2.7.16}
\end{equation*}
$$

where Ω is the symplectic volume form (2.7.5).
The application we want to make of these ideas concerns the description, in Newtonian mechanics, of a physical system consisting of N interacting point-masses. The configuration space of such a system is

$$
\mathbb{R}^{n}=\mathbb{R}^{3} \times \cdots \times \mathbb{R}^{3} \quad(N \text { copies })
$$

with position coordinates, x_{1}, \ldots, x_{n} and the phase space is $\mathbb{R}^{2 n}$ with position coordinates x_{1}, \ldots, x_{n} and momentum coordinates, y_{1}, \ldots, y_{n}. The kinetic energy of this system is a quadratic function of the momentum coordinates

$$
\begin{equation*}
\frac{1}{2} \sum \frac{1}{m_{i}} y_{i}^{2}, \tag{2.7.17}
\end{equation*}
$$

and for simplicity we'll assume that the potential energy is a function, $V\left(x_{1}, \ldots, x_{n}\right)$, of the position coordinates alone, i.e., it doesn't depend on the momenta and is time-independent as well. Let

$$
\begin{equation*}
H=\frac{1}{2} \sum \frac{1}{m_{i}} y_{i}^{2}+V\left(x_{1}, \ldots, x_{n}\right) \tag{2.7.18}
\end{equation*}
$$

be the total energy of the system. We'll show below that Newton's second law of motion in classical mechanics reduces to the assertion: the trajectories in phase space of the system above are just the integral curves of the Hamiltonian vector field, v_{H}.

Proof. For the function (2.7.18) the equations (2.7.14) become

$$
\begin{align*}
& \frac{d x_{i}}{d t}=\frac{1}{m_{i}} y_{i} \tag{2.7.19}\\
& \frac{d y_{i}}{d t}=-\frac{\partial V}{\partial x_{i}}
\end{align*}
$$

The first set of equation are essentially just the definitions of momenta, however, if we plug them into the second set of equations we get

$$
\begin{equation*}
m_{i} \frac{d^{2} x_{i}}{d t^{2}}=-\frac{\partial V}{\partial x_{i}} \tag{2.7.20}
\end{equation*}
$$

and interpreting the term on the right as the force exerted on the $i^{\text {th }}$ point-mass and the term on the left as mass times acceleration this equation becomes Newton's second law.

In classical mechanics the equations (2.7.14) are known as the Hamilton-Jacobi equations. For a more detailed account of their role in classical mechanics we highly recommend Arnold's book, Mathematical Methods of Classical Mechanics. Historically these equations came up for the first time, not in Newtonian mechanics, but in gemometric optics and a brief description of their origins there and of their relation to Maxwell's equations can be found in the bookl we cited above, Symplectic Techniques in Physics.

We'll conclude this chapter by mentioning a few implications of the Hamiltonian description (2.7.14) of Newton's equations (2.7.20).

1. Conservation of energy. By (2.7.15) the energy function (2.7.18) is constant along the integral curves of v, hence the energy of the system (2.7.14) doesn't change in time.
2. Noether's principle. Let $\gamma_{t}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ be a one-parameter group of diffeomorphisms of phase space and w its infinitesmal generator. The γ_{t} 's are called a symmetry of the system above if
(a) They preserve the function (2.7.18) and
(b) the vector field w is Hamiltonian.

The condition (b) means that

$$
\begin{equation*}
\iota(w) \omega=d G \tag{2.7.21}
\end{equation*}
$$

for some \mathcal{C}^{∞} function, G, and what Noether's principle asserts is that this function is an integral of motion of the system (2.7.14), i.e., satisfies $L_{v} G=0$. In other words stated more succinctly: symmetries of the system (2.7.14) give rise to integrals of motion.
3. Poincaré recurrence. An important theorem of Poincaré asserts that if the function $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ defined by (2.7.18) is proper then every trajectory of the system (2.7.14) returns arbitrarily close to its initial position at some positive time, t_{0}, and, in fact, does this not just once but does so infinitely often. We'll sketch a proof of this theorem, using (2.7.16), in the next chapter.

Exercises.

1. Let v_{H} be the vector field (2.7.13). Prove that $\operatorname{div}\left(v_{H}\right)=0$.
2. Let U be an open subset of $\mathbb{R}^{m}, f_{t}: U \rightarrow U$ a one-parameter group of diffeomorphisms of U and v the infinitesmal generator of this group. Show that if α is a k-form on U then $f_{t}^{*} \alpha=\alpha$ for all t if and only if $L_{v} \alpha=0$ (i.e., generalize to arbitrary k-forms the result we proved above for the Darboux form).
3. The harmonic oscillator. Let H be the function $\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+\right.$ y_{i}^{2}) where the m_{i} 's are positive constants.
(a) Compute the integral curves of v_{H}.
(b) Poincaré recurrence. Show that if $(x(t), y(t))$ is an integral curve with initial point $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ and U an arbitrarily small neighborhood of $\left(x_{0}, y_{0}\right)$, then for every $c>0$ there exists a $t>c$ such that $(x(t), y(t)) \in U$.
4. Let U be an open subset of $\mathbb{R}^{2 n}$ and let $H_{i}, i=1,2$, be in $\mathcal{C}^{\infty}(U)_{i}$. Show that

$$
\begin{equation*}
\left[v_{H_{1}}, v_{H_{2}}\right]=v_{H} \tag{2.7.22}
\end{equation*}
$$

where

$$
\begin{equation*}
H=\sum_{i=1}^{n} \frac{\partial H_{1}}{\partial x_{i}} \frac{\partial H_{2}}{\partial y_{i}}-\frac{\partial H_{2}}{\partial x_{i}} \frac{\partial H_{1}}{\partial y_{i}} . \tag{2.7.23}
\end{equation*}
$$

5. The expression (2.7.23) is known as the Poisson bracket of H_{1} and H_{2} and is denoted by $\left\{H_{1}, H_{2}\right\}$. Show that it is anti-symmetric

$$
\left\{H_{1}, H_{2}\right\}=-\left\{H_{2}, H_{1}\right\}
$$

and satisfies Jacobi's identity

$$
0=\left\{H_{1},\left\{H_{2}, H_{3}\right\}\right\}+\left\{H_{2},\left\{H_{3}, H_{1}\right\}\right\}+\left\{H_{3},\left\{H_{1}, H_{2}\right\}\right\} .
$$

6. Show that

$$
\begin{equation*}
\left\{H_{1}, H_{2}\right\}=L_{v_{H_{1}}} H_{2}=-L_{v_{H_{2}}} H_{1} . \tag{2.7.24}
\end{equation*}
$$

7. Prove that the following three properties are equivalent.
(a) $\left\{H_{1}, H_{2}\right\}=0$.
(b) H_{1} is an integral of motion of v_{2}.
(c) H_{2} is an integral of motion of v_{1}.
8. Verify Noether's principle.
9. Conservation of linear momentum. Suppose the potential, V in (2.7.18) is invariant under the one-parameter group of translations

$$
T_{t}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}+t, \ldots, x_{n}+t\right) .
$$

(a) Show that the function (2.7.18) is invariant under the group of diffeomorphisms

$$
\gamma_{t}(x, y)=\left(T_{t} x, y\right) .
$$

(b) Show that the infinitesmal generator of this group is the Hamiltonian vector field v_{G} where $G=\sum_{i=1}^{n} y_{i}$.
(c) Conclude from Noether's principle that this function is an integral of the vector field v_{H}, i.e., that "total linear moment" is conserved.
(d) Show that "total linear momentum" is conserved if V is the Coulomb potential

$$
\sum_{i \neq j} \frac{m_{i}}{\left|x_{i}-x_{j}\right|}
$$

10. Let $R_{t}^{i}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ be the rotation which fixes the variables, $\left(x_{k}, y_{k}\right), k \neq i$ and rotates $\left(x_{i}, y_{i}\right)$ by the angle, t :

$$
R_{t}^{i}\left(x_{i}, y_{i}\right)=\left(\cos t x_{i}+\sin t y_{i},-\sin t x_{i}+\cos t y_{i}\right) .
$$

(a) Show that $R_{t}^{i},-\infty<t<\infty$, is a one-parameter group of symplectomorphisms.
(b) Show that its generator is the Hamiltonian vector field, $v_{H_{i}}$, where $H_{i}=\left(x_{i}^{2}+y_{i}^{2}\right) / 2$.
(c) Let H be the "harmonic oscillator" Hamiltonian in exercise 3 . Show that the R_{t}^{j},s preserve H.
(d) What does Noether's principle tell one about the classical mechanical system with energy function H ?
11. Show that if U is an open subset of $\mathbb{R}^{2 n}$ and v is a symplectic vector field on U then for every point, $p_{0} \in U$, there exists a neighborhood, U_{0}, of p_{0} on which v is Hamiltonian.
12. Deduce from exercises 4 and 11 that if v_{1} and v_{2} are symplectic vector fields on an open subset, U, of $\mathbb{R}^{2 n}$ their Lie bracket, $\left[v_{1}, v_{2}\right]$, is a Hamiltonian vector field.
13. Let α be the one-form, $\sum_{i=1}^{n} y_{i} d x_{i}$.
(a) Show that $\omega=-d \alpha$.
(b) Show that if α_{1} is any one-form on $\mathbb{R}^{2 n}$ with the property, $\omega=-d \alpha_{1}$, then

$$
\alpha=\alpha_{1}+F
$$

for some \mathcal{C}^{∞} function F.
(c) Show that $\alpha=\iota(w) \omega$ where w is the vector field

$$
-\sum y_{i} \frac{\partial}{\partial y_{i}}
$$

14. Let U be an open subset of $\mathbb{R}^{2 n}$ and v a vector field on U. Show that v has the property, $L_{v} \alpha=0$, if and only if

$$
\begin{equation*}
\iota(v) \omega=d \iota(v) \alpha \tag{2.7.25}
\end{equation*}
$$

In particular conclude that if $L_{v} \alpha=0$ then v is Hamiltonian. Hint: (2.7.2).
15. Let H be the function

$$
\begin{equation*}
H(x, y)=\sum f_{i}(x) y_{i} \tag{2.7.26}
\end{equation*}
$$

where the f_{i} 's are \mathcal{C}^{∞} functions on \mathbb{R}^{n}. Show that

$$
\begin{equation*}
L_{v_{H}} \alpha=0 \tag{2.7.27}
\end{equation*}
$$

16. Conversely show that if H is any \mathcal{C}^{∞} function on $\mathbb{R}^{2 n}$ satisfying (2.7.27) it has to be a function of the form (2.7.26). Hints:
(a) Let v be a vector field on $\mathbb{R}^{2 n}$ satisfying $L_{v} \alpha=0$. By the previous exercise $v=v_{H}$, where $H=\iota(v) \alpha$.
(b) Show that H has to satisfy the equation

$$
\sum_{i=1}^{n} y_{i} \frac{\partial H}{\partial y_{i}}=H
$$

(c) Conclude that if $H_{r}=\frac{\partial H}{\partial y_{r}}$ then H_{r} has to satisfy the equation

$$
\sum_{i=1}^{n} y_{i} \frac{\partial}{\partial y_{i}} H_{r}=0
$$

(d) Conclude that H_{r} has to be constant along the rays $(x, t y)$, $0 \leq t<\infty$.
(e) Conclude finally that H_{r} has to be a function of x alone, i.e., doesn't depend on y.
17. Show that if $v_{\mathbb{R}^{n}}$ is a vector field

$$
\sum f_{i}(x) \frac{\partial}{\partial x_{i}}
$$

on configuration space there is a unique lift of $v_{\mathbb{R}^{n}}$ to phase space

$$
v=\sum f_{i}(x) \frac{\partial}{\partial x_{i}}+g_{i}(x, y) \frac{\partial}{\partial y_{i}}
$$

satisfying $L_{v} \alpha=0$.

This is page 104
Printer: Opaque this

CHAPTER 3

INTEGRATION OF FORMS

3.1 Introduction

The change of variables formula asserts that if U and V are open subsets of \mathbb{R}^{n} and $f: U \rightarrow V$ a C^{1} diffeomorphism then, for every continuous function, $\varphi: V \rightarrow \mathbb{R}$ the integral

$$
\int_{V} \varphi(y) d y
$$

exists if and only if the integral

$$
\int_{U} \varphi \circ f(x)|\operatorname{det} D f(x)| d x
$$

exists, and if these integrals exist they are equal. Proofs of this can be found in [?], [?] or [?]. This chapter contains an alternative proof of this result. This proof is due to Peter Lax. Our version of his proof in $\S 3.5$ below makes use of the theory of differential forms; but, as Lax shows in the article [?] (which we strongly recommend as collateral reading for this course), references to differential forms can be avoided, and the proof described in $\S 3.5$ can be couched entirely in the language of elementary multivariable calculus.

The virtue of Lax's proof is that is allows one to prove a version of the change of variables theorem for other mappings besides diffeomorphisms, and involves a topological invariant, the degree of a mapping, which is itself quite interesting. Some properties of this invariant, and some topological applications of the change of variables formula will be discussed in $\S 3.6$ of these notes.

Remark 3.1.1. The proof we are about to describe is somewhat simpler and more transparent if we assume that f is a \mathcal{C}^{∞} diffeomorphism. We'll henceforth make this assumption.

3.2 The Poincaré lemma for compactly supported forms on rectangles

Let ν be a k-form on \mathbb{R}^{n}. We define the support of ν to be the closure of the set

$$
\left\{x \in \mathbb{R}^{n}, \nu_{x} \neq 0\right\}
$$

and we say that ν is compactly supported if $\operatorname{supp} \nu$ is compact. We will denote by $\Omega_{c}^{k}\left(\mathbb{R}^{n}\right)$ the set of all $\mathcal{C}^{\infty} k$-forms which are compactly supported, and if U is an open subset of \mathbb{R}^{n}, we will denote by $\Omega_{c}^{k}(U)$ the set of all compactly supported k-forms whose support is contained in U.

Let $\omega=f d x_{1} \wedge \cdots \wedge d x_{n}$ be a compactly supported n-form with $f \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. We will define the integral of ω over \mathbb{R}^{n} :

$$
\int_{\mathbb{R}^{n}} \omega
$$

to be the usual integral of f over \mathbb{R}^{n}

$$
\int_{\mathbb{R}^{n}} f d x
$$

(Since f is \mathcal{C}^{∞} and compactly supported this integral is well-defined.)
Now let Q be the rectangle

$$
\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right] .
$$

The Poincaré lemma for rectangles asserts:
Theorem 3.2.1. Let ω be a compactly supported n-form, with $\operatorname{supp} \omega \subseteq$ Int Q. Then the following assertions are equivalent:
a. $\quad \int \omega=0$.
b. There exists a compactly supported ($n-1$)-form, μ, with $\operatorname{supp} \mu \subseteq$ Int Q satisfying $d \mu=\omega$.

We will first prove that $(\mathrm{b}) \Rightarrow(\mathrm{a})$. Let

$$
\mu=\sum_{i=1}^{n} f_{i} d x_{1} \wedge \ldots \wedge \widehat{d x_{i}} \wedge \ldots \wedge d x_{n}
$$

(the "hat" over the $d x_{i}$ meaning that $d x_{i}$ has to be omitted from the wedge product). Then

$$
d \mu=\sum_{i=1}^{n}(-1)^{i-1} \frac{\partial f_{i}}{\partial x_{i}} d x_{1} \wedge \ldots \wedge d x_{n}
$$

and to show that the integral of $d \mu$ is zero it suffices to show that each of the integrals

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{\partial f}{\partial x_{i}} d x \tag{2.1}
\end{equation*}
$$

is zero. By Fubini we can compute $(2.1)_{i}$ by first integrating with respect to the variable, x_{i}, and then with respect to the remaining variables. But

$$
\int \frac{\partial f}{\partial x_{i}} d x_{i}=\left.f(x)\right|_{x_{i}=a_{i}} ^{x_{i}=b_{i}}=0
$$

since f_{i} is supported on U.
We will prove that (a) \Rightarrow (b) by proving a somewhat stronger result. Let U be an open subset of \mathbb{R}^{m}. We'll say that U has property P if every form, $\omega \in \Omega_{c}^{m}(U)$ whose integral is zero in $d \Omega_{c}^{m-1}(U)$.

We will prove
Theorem 3.2.2. Let U be an open subset of \mathbb{R}^{n-1} and $A \subseteq \mathbb{R}$ an open interval. Then if U has property $P, U \times A$ does as well.
Remark 3.2.3. It's very easy to see that the open interval A itself has property P. (See exercise 1 below.) Hence it follows by induction from Theorem 3.2.2 that

$$
\operatorname{Int} Q=A_{1} \times \cdots \times A_{n}, \quad A_{i}=\left(a_{i}, b_{i}\right)
$$

has property P, and this proves " $(a) \Rightarrow(b)$ ".
To prove Theorem 3.2.2 let $(x, t)=\left(x_{1}, \ldots, x_{n-1}, t\right)$ be product coordinates on $U \times A$. Given $\omega \in \Omega_{c}^{n}(U \times A)$ we can express ω as a wedge product, $d t \wedge \alpha$ with $\alpha=f(x, t) d x_{1} \wedge \cdots \wedge d x_{n-1}$ and $f \in \mathcal{C}_{0}^{\infty}(U \times A)$. Let $\theta \in \Omega_{c}^{n-1}(U)$ be the form

$$
\begin{equation*}
\theta=\left(\int_{A} f(x, t) d t\right) d x_{1} \wedge \cdots \wedge d x_{n-1} \tag{3.2.1}
\end{equation*}
$$

Then

$$
\int_{\mathbb{R}^{n-1}} \theta=\int_{\mathbb{R}^{n}} f(x, t) d x d t=\int_{\mathbb{R}^{n}} \omega
$$

so if the integral of ω is zero, the integral of θ is zero. Hence since U has property $P, \beta=d \nu$ for some $\nu \in \Omega_{c}^{n-1}(U)$. Let $\rho \in \mathcal{C}^{\infty}(\mathbb{R})$ be a bump function which is supported on A and whose integral over A is one. Setting

$$
\kappa=-\rho(t) d t \wedge \nu
$$

we have

$$
d \kappa=\rho(t) d t \wedge d \nu=\rho(t) d t \wedge \theta
$$

and hence

$$
\omega-d \kappa=d t \wedge(\alpha-\rho(t) \theta)=d t \wedge u(x, t) d x_{1} \wedge \cdots \wedge d x_{n-1}
$$

where

$$
u(x, t)=f(x, t)-\rho(t) \int_{A} f(x, t) d t
$$

by (3.2.1). Thus

$$
\begin{equation*}
\int u(x, t) d t=0 \tag{3.2.2}
\end{equation*}
$$

Let a and b be the end points of A and let

$$
\begin{equation*}
v(x, t)=\int_{a}^{t} i(x, s) d s \tag{3.2.3}
\end{equation*}
$$

By (3.2.2) $v(a, x)=v(b, x)=0$, so v is in $\mathcal{C}_{0}^{\infty}(U \times A)$ and by (3.2.3), $\partial v / \partial t=u$. Hence if we let γ be the form, $v(x, t) d x_{1} \wedge \cdots \wedge d x_{n-1}$, we have:

$$
d \gamma=u(x, t) d x \wedge \cdots \wedge d x_{n-1}=\omega-d \kappa
$$

and

$$
\omega=d(\gamma+\kappa) .
$$

Since γ and κ are both in $\Omega_{c}^{n-1}(U \times A)$ this proves that ω is in $d \Omega_{c}^{n-1}(U \times A)$ and hence that $U \times A$ has property P.

Exercises for §3.2.

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a compactly supported function of class C^{r} with support on the interval, (a, b). Show that the following are equivalent.
(a) $\int_{a}^{b} f(x) d x=0$.
(b) There exists a function, $g: \mathbb{R} \rightarrow \mathbb{R}$ of class C^{r+1} with support on (a, b) with $\frac{d g}{d x}=f$.

Hint: Show that the function

$$
g(x)=\int_{a}^{x} f(s) d s
$$

is compactly supported.
2. Let $f=f(x, y)$ be a compactly supported function on $\mathbb{R}^{k} \times \mathbb{R}^{\ell}$ with the property that the partial derivatives

$$
\frac{\partial f}{\partial x_{i}}(x, y), i=1, \ldots, k
$$

and are continuous as functions of x and y. Prove the following "differentiation under the integral sign" theorem (which we implicitly used in our proof of Theorem 3.2.2).

Theorem 3.2.4. The function

$$
g(x)=\int f(x, y) d y
$$

is of class C^{1} and

$$
\frac{\partial g}{\partial x_{i}}(x)=\int \frac{\partial f}{\partial x_{i}}(x, y) d y
$$

Hints: For y fixed and $h \in \mathbb{R}^{k}$,

$$
f_{i}(x+h, y)-f_{i}(x, y)=D_{x} f_{i}(c) h
$$

for some point, c, on the line segment joining x to $x+c$. Using the fact that $D_{x} f$ is continuous as a function of x and y and compactly supported, conclude:

Lemma 3.2.5. Given $\epsilon>0$ there exists a $\delta>0$ such that for $|h| \leq \delta$

$$
\left|f(x+h, y)-f(x, y)-D_{x} f(x, c) h\right| \leq \epsilon|h|
$$

Now let $Q \subseteq \mathbb{R}^{\ell}$ be a rectangle with $\operatorname{supp} f \subseteq \mathbb{R}^{k} \times Q$ and show that

$$
\left|g(x+h)-g(x)-\left(\int D_{x} f(x, y) d y\right) h\right| \leq \epsilon \operatorname{vol}(Q)|h|
$$

Conclude that g is differentiable at x and that its derivative is

$$
\int D_{x} f(x, y) d y
$$

3. Let $f: \mathbb{R}^{k} \times \mathbb{R}^{\ell} \rightarrow \mathbb{R}$ be a compactly supported continuous function. Prove
Theorem 3.2.6. If all the partial derivatives of $f(x, y)$ with respect to x of order $\leq r$ exist and are continuous as functions of x and y the function

$$
g(x)=\int f(x, y) d y
$$

is of class C^{r}.
4. Let U be an open subset of $\mathbb{R}^{n-1}, A \subseteq \mathbb{R}$ an open interval and (x, t) product coordinates on $U \times A$. Recall ($\S 2.2)$ exercise 5) that every form, $\omega \in \Omega^{k}(U \times A)$, can be written uniquely as a sum, $\omega=d t \wedge \alpha+\beta$ where α and β are reduced, i.e., don't contain a factor of $d t$.
(a) Show that if ω is compactly supported on $U \times A$ then so are α and β.
(b) Let $\alpha=\sum_{I} f_{I}(x, t) d x_{I}$. Show that the form

$$
\begin{equation*}
\theta=\sum_{I}\left(\int_{A} f_{I}(x, t) d t\right) d x_{I} \tag{3.2.4}
\end{equation*}
$$

is in $\Omega_{c}^{k-1}(U)$.
(c) Show that if $d \omega=0$, then $d \theta=0$. Hint: By (3.2.4)

$$
\begin{aligned}
d \theta & =\sum_{I, i}\left(\int_{A} \frac{\partial f_{I}}{\partial x_{i}}(x, t) d t\right) d x_{i} \wedge d x_{I} \\
& =\int_{A}\left(d_{U} \alpha\right) d t
\end{aligned}
$$

and by (??) $d_{U} \alpha=\frac{d \beta}{d t}$.
5. In exercise 4 show that if θ is in $d \Omega^{k-1}(U)$ then ω is in $d \Omega_{c}^{k}(U)$. Hints:
(a) Let $\theta=d \nu$, with $\nu=\Omega_{c}^{k-2}(U)$ and let $\rho \in \mathcal{C}^{\infty}(\mathbb{R})$ be a bump function which is supported on A and whose integral over A is one. Setting $k=-\rho(t) d t \wedge \nu$ show that

$$
\begin{aligned}
\omega-d \kappa & =d t \wedge(\alpha-\rho(t) \theta)+\beta \\
& =d t \wedge\left(\sum_{I} u_{I}(x, t) d x_{I}\right)+\beta
\end{aligned}
$$

where

$$
u_{I}(x, t)=f_{I}(x, t)-\rho(t) \int_{A} f_{I}(x, t) d t
$$

(b) Let a and b be the end points of A and let

$$
v_{I}(x, t)=\int_{a}^{t} u_{I}(x, t) d t
$$

Show that the form $\sum v_{I}(x, t) d x_{I}$ is in $\Omega_{c}^{k-1}(U \times A)$ and that

$$
d \gamma=\omega-d \kappa-\beta-d_{U} \gamma
$$

(c) Conclude that the form $\omega-d(\kappa+\gamma)$ is reduced.
(d) Prove: If $\lambda \in \Omega_{c}^{k}(U \times A)$ is reduced and $d \lambda=0$ then $\lambda=0$. Hint: Let $\lambda=\sum g_{I}(x, t) d x_{I}$. Show that $d \lambda=0 \Rightarrow \frac{\partial}{\partial t} g_{I}(x, t)=0$ and exploit the fact that for fixed $x, g_{I}(x, t)$ is compactly supported in t.
6. Let U be an open subset of \mathbb{R}^{m}. We'll say that U has property P_{k}, for $k<n$, if every closed k-form, $\omega \in \Omega_{c}^{k}(U)$, is in $d \Omega_{c}^{k-1}(U)$. Prove that if the open set $U \subseteq \mathbb{R}^{n-1}$ in exercise 3 has property P_{k} then so does $U \times A$.
7. Show that if Q is the rectangle $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ and $U=$ Int Q then u has property P_{k}.
8. Let \mathbb{H}^{n} be the half-space

$$
\begin{equation*}
\left\{\left(x_{1}, \ldots, x_{n}\right) ; \quad x_{1} \leq 0\right\} \tag{3.2.5}
\end{equation*}
$$

and let $\omega \in \Omega_{c}^{n}(\mathbb{R})$ be the n-form, $f d x_{1} \wedge \cdots \wedge d x_{n}$ with $f \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Define:

$$
\begin{equation*}
\int_{\mathbb{H}^{n}} \omega=\int_{\mathbb{H}^{n}} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n} \tag{3.2.6}
\end{equation*}
$$

where the right hand side is the usual Riemann integral of f over \mathbb{H}^{n}. (This integral makes sense since f is compactly supported.) Show that if $\omega=d \mu$ for some $\mu \in \Omega_{c}^{n-1}\left(\mathbb{R}^{n}\right)$ then

$$
\begin{equation*}
\int_{\mathbb{H}^{n}} \omega=\int_{\mathbb{R}^{n-1}} \iota^{*} \mu \tag{3.2.7}
\end{equation*}
$$

where $\iota: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n}$ is the inclusion map

$$
\left(x_{2}, \ldots, x_{n}\right) \rightarrow\left(0, x_{2}, \ldots, x_{n}\right) .
$$

Hint: Let $\mu=\sum_{i} f_{i} d x_{1} \wedge \cdots \widehat{d x_{i}} \cdots \wedge d x_{n}$. Mimicking the "(b) \Rightarrow (a)" part of the proof of Theorem 3.2.1 show that the integral (3.2.6) is the integral over \mathbb{R}^{n-1} of the function

$$
\int_{-\infty}^{0} \frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1}
$$

3.3 The Poincaré lemma for compactly supported forms on open subsets of \mathbb{R}^{n}

In this section we will generalize Theorem 3.2.1 to arbitrary connected open subsets of \mathbb{R}^{n}.
Theorem 3.3.1. Let U be a connected open subset of \mathbb{R}^{n} and let ω be a compactly supported n-form with $\operatorname{supp} \omega \subset U$. The the following assertions are equivalent,
a. $\quad \int \omega=0$.
b. There exists a compactly supported ($n-1$)-form, μ, with $\operatorname{supp} \mu \subseteq$ U and $\omega=d \mu$.

Proof that $(\mathrm{b}) \Rightarrow(\mathrm{a})$. The support of μ is contained in a large rectangle, so the integral of $d \mu$ is zero by Theorem 3.2.1.

Proof that $(\mathrm{a}) \Rightarrow(\mathrm{b})$: Let ω_{1} and ω_{2} be compactly supported n forms with support in U. We will write

$$
\omega_{1} \sim \omega_{2}
$$

as shorthand notation for the statement: "There exists a compactly supported ($n-1$)-form, μ, with support in U and with $\omega_{1}-\omega_{2}=d \mu$.", We will prove that $(\mathrm{a}) \Rightarrow(\mathrm{b})$ by proving an equivalent statement: Fix a rectangle, $Q_{0} \subset U$ and an n-form, ω_{0}, with $\operatorname{supp} \omega_{0} \subseteq Q_{0}$ and integral equal to one.

Theorem 3.3.2. If ω is a compactly supported n-form with $\operatorname{supp} \omega \subseteq$ U and $c=\int \omega$ then $\omega \sim c \omega_{0}$.

Thus in particular if $c=0$, Theorem 3.3.2 says that $\omega \sim 0$ proving that $(\mathrm{a}) \Rightarrow(\mathrm{b})$.

To prove Theorem 3.3.2 let $Q_{i} \subseteq U, i=1,2,3, \ldots$, be a collection of rectangles with $U=\cup \operatorname{Int} Q_{i}$ and let φ_{i} be a partition of unity with $\operatorname{supp} \varphi_{i} \subseteq \operatorname{Int} Q_{i}$. Replacing ω by the finite $\operatorname{sum} \sum_{i=1}^{m} \varphi_{i} \omega, m$ large, it suffices to prove Theorem 3.3.2 for each of the summands $\varphi_{i} \omega$. In other words we can assume that $\operatorname{supp} \omega$ is contained in one of the open rectangles, Int Q_{i}. Denote this rectangle by Q. We claim that one can join Q_{0} to Q by a sequence of rectangles as in the figure below.

Lemma 3.3.3. There exists a sequence of rectangles, $R_{i}, i=0, \ldots$, $N+1$ such that $R_{0}=Q_{0}, R_{N+1}=Q$ and $\operatorname{Int} R_{i} \cap \operatorname{Int} R_{i+1}$ is nonempty.

Proof. Denote by A the set of points, $x \in U$, for which there exists a sequence of rectangles, $R_{i}, i=0, \ldots, N+1$ with $R_{0}=Q_{0}$, with $x \in$ $\operatorname{Int} R_{N+1}$ and with $\operatorname{Int} R_{i} \cap \operatorname{Int} R_{i+1}$ non-empty. It is clear that this
set is open and that its complement is open; so, by the connectivity of $U, U=A$.

To prove Theorem 3.3.2 with $\operatorname{supp} \omega \subseteq Q$, select, for each i, a compactly supported n-form, ν_{i}, with $\operatorname{supp} \nu_{i} \subseteq \operatorname{Int} R_{i} \cap \operatorname{Int} R_{i+1}$ and with $\int \nu_{i}=1$. The difference, $\nu_{i}-\nu_{i+1}$ is supported in $\operatorname{Int} R_{i+1}$, and its integral is zero; so by Theorem 3.2.1, $\nu_{i} \sim \nu_{i+1}$. Similarly, $\omega_{0} \sim \nu_{1}$ and, if $c=\int \omega, \omega \sim c \nu_{N}$. Thus

$$
c \omega_{0} \sim c \nu_{0} \sim \cdots \sim c \nu_{N}=\omega
$$

proving the theorem.

3.4 The degree of a differentiable mapping

Let U and V be open subsets of \mathbb{R}^{n} and \mathbb{R}^{k}. A continuous mapping, $f: U \rightarrow V$, is proper if, for every compact subset, B, of $V, f^{-1}(B)$ is compact. Proper mappings have a number of nice properties which will be investigated in the exercises below. One obvious property is that if f is a \mathcal{C}^{∞} mapping and ω is a compactly supported k form with support on $V, f^{*} \omega$ is a compactly supported k-form with support on U. Our goal in this section is to show that if U and V are connected open subsets of \mathbb{R}^{n} and $f: U \rightarrow V$ is a proper \mathcal{C}^{∞} mapping then there exists a topological invariant of f, which we will call its degree (and denote by $\operatorname{deg}(f)$), such that the "change of variables" formula:

$$
\begin{equation*}
\int_{U} f^{*} \omega=\operatorname{deg}(f) \int_{V} \omega \tag{3.4.1}
\end{equation*}
$$

holds for all $\omega \in \Omega_{c}^{n}(V)$.
Before we prove this assertion let's see what this formula says in coordinates. If

$$
\omega=\varphi(y) d y_{1} \wedge \cdots \wedge d y_{n}
$$

then at $x \in U$

$$
f^{*} \omega=(\varphi \circ f)(x) \operatorname{det}(D f(x)) d x_{1} \wedge \cdots \wedge d x_{n}
$$

so, in coordinates, (3.4.1) takes the form

$$
\begin{equation*}
\int_{V} \varphi(y) d y=\operatorname{deg}(f) \int_{U} \varphi \circ f(x) \operatorname{det}(D f(x)) d x \tag{3.4.2}
\end{equation*}
$$

Proof of 3.4.1. Let ω_{0} be an n-form of compact support with supp ω_{0} $\subset V$ and with $\int \omega_{0}=1$. If we set $\operatorname{deg} f=\int_{U} f^{*} \omega_{0}$ then (3.4.1) clearly holds for ω_{0}. We will prove that (3.4.1) holds for every compactly supported n-form, ω, with $\operatorname{supp} \omega \subseteq V$. Let $c=\int_{V} \omega$. Then by Theorem $3.1 \omega-c \omega_{0}=d \mu$, where μ is a completely supported $(n-1)$ form with $\operatorname{supp} \mu \subseteq V$. Hence

$$
f^{*} \omega-c f^{*} \omega_{0}=f^{*} d \mu=d f^{*} \mu,
$$

and by part (a) of Theorem 3.1

$$
\int_{U} f^{*} \omega=c \int f^{*} \omega_{0}=\operatorname{deg}(f) \int_{V} \omega .
$$

We will show in $\S 3.6$ that the degree of f is always an integer and explain why it is a "topological" invariant of f. For the moment, however, we'll content ourselves with pointing out a simple but useful property of this invariant. Let U, V and W be connected open subsets of \mathbb{R}^{n} and $f: U \rightarrow V$ and $g: V \rightarrow W$ proper \mathcal{C}^{∞} mappings. Then

$$
\begin{equation*}
\operatorname{deg}(g \circ f)=\operatorname{deg}(g) \operatorname{deg}(f) \tag{3.4.3}
\end{equation*}
$$

Proof. Let ω be a compactly supported n-form with support on W. Then

$$
(g \circ f)^{*} \omega=g^{*} f^{*} \omega ;
$$

so

$$
\begin{aligned}
\int_{U}(g \circ f)^{*} \omega & =\int_{U} g^{*}\left(f^{*} \omega\right)=\operatorname{deg}(g) \int_{V} f^{*} \omega \\
& =\operatorname{deg}(g) \operatorname{deg}(f) \int_{W} \omega
\end{aligned}
$$

From this multiplicative property it is easy to deduce the following result (which we will need in the next section).

Theorem 3.4.1. Let A be a non-singular $n \times n$ matrix and f_{A} : $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ the linear mapping associated with A. Then $\operatorname{deg}\left(f_{A}\right)=+1$ if $\operatorname{det} A$ is positive and -1 if $\operatorname{det} A$ is negative.

A proof of this result is outlined in exercises 5-9 below.

Exercises for §3.4.

1. Let U be an open subset of \mathbb{R}^{n} and $\varphi_{i}, i=1,2,3, \ldots$, a partition of unity on U. Show that the mapping, $f: U \rightarrow \mathbb{R}$ defined by

$$
f=\sum_{k=1}^{\infty} k \varphi_{k}
$$

is a proper \mathcal{C}^{∞} mapping.
2. Let U and V be open subsets of \mathbb{R}^{n} and \mathbb{R}^{k} and let $f: U \rightarrow V$ be a proper continuous mapping. Prove:
Theorem 3.4.2. If B is a compact subset of V and $A=f^{-1}(B)$ then for every open subset, U_{0}, with $A \subseteq U_{0} \subseteq U$, there exists an open subset, V_{0}, with $B \subseteq V_{0} \subseteq V$ and $f^{-1}\left(V_{0}\right) \subseteq U_{0}$.

Hint: Let C be a compact subset of V with $B \subseteq \operatorname{Int} C$. Then the set, $W=f^{-1}(C)-U_{0}$ is compact; so its image, $f(W)$, is compact. Show that $f(W)$ and B are disjoint and let

$$
V_{0}=\operatorname{Int} C-f(W)
$$

3. Show that if $f: U \rightarrow V$ is a proper continuous mapping and X is a closed subset of $U, f(X)$ is closed.

Hint: Let $U_{0}=U-X$. Show that if p is in $V-f(X), f^{-1}(p)$ is contained in U_{0} and conclude from the previous exercise that there exists a neighborhood, V_{0}, of p such that $f^{-1}\left(V_{0}\right)$ is contained in U_{0}. Conclude that V_{0} and $f(X)$ are disjoint.
4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the translation, $f(x)=x+a$. Show that $\operatorname{deg}(f)=1$.

Hint: Let $\psi: \mathbb{R} \rightarrow \mathbb{R}$ be a compactly supported \mathcal{C}^{∞} function. For $a \in \mathbb{R}$, the identity

$$
\begin{equation*}
\int \psi(t) d t=\int \psi(t-a) d t \tag{3.4.4}
\end{equation*}
$$

is easy to prove by elementary calculus, and this identity proves the assertion above in dimension one. Now let

$$
\begin{equation*}
\varphi(x)=\psi\left(x_{1}\right) \ldots \varphi\left(x_{n}\right) \tag{3.4.5}
\end{equation*}
$$

and compute the right and left sides of (3.4.2) by Fubini's theorem.
5. Let σ be a permutation of the numbers, $1, \ldots, n$ and let f_{σ} : $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the diffeomorphism, $f_{\sigma}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$. Prove that $\operatorname{deg} f_{\sigma}=\operatorname{sgn}(\sigma)$.

Hint: Let φ be the function (3.4.5). Show that if ω is equal to $\varphi(x) d x_{1} \wedge \cdots \wedge d x_{n}, f^{*} \omega=(\operatorname{sgn} \sigma) \omega$.
6. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the mapping

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}+\lambda x_{2}, x_{2}, \ldots, x_{n}\right) .
$$

Prove that $\operatorname{deg}(f)=1$.
Hint: Let $\omega=\varphi\left(x_{1}, \ldots, x_{n}\right) d x_{1} \wedge \ldots \wedge d x_{n}$ where $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is compactly supported and of class \mathcal{C}^{∞}. Show that

$$
\int f^{*} \omega=\int \varphi\left(x_{1}+\lambda x_{2}, x_{2}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
$$

and evaluate the integral on the right by Fubini's theorem; i.e., by first integrating with respect to the x_{1} variable and then with respect to the remaining variables. Note that by (3.4.4)

$$
\int f\left(x_{1}+\lambda x_{2}, x_{2}, \ldots, x_{n}\right) d x_{1}=\int f\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1}
$$

7. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the mapping

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(\lambda x_{1}, x_{2}, \ldots, x_{n}\right)
$$

with $\lambda \neq 0$. Show that $\operatorname{deg} f=+1$ if λ is positive and -1 if λ is negative.

Hint: In dimension 1 this is easy to prove by elementary calculus techniques. Prove it in d-dimensions by the same trick as in the previous exercise.
8. (a) Let e_{1}, \ldots, e_{n} be the standard basis vectors of \mathbb{R}^{n} and A, B and C the linear mappings

$$
\begin{align*}
& A e_{1}=e, \quad A e_{i}=\sum_{j} a_{j, i} e_{j}, \quad i>1 \\
& B e_{i}=e_{i}, \quad i>1, \quad B e_{1}=\sum_{j=1}^{n} b_{j} e_{j} \tag{3.4.6}\\
& C e_{1}=e_{1}, \quad C e_{i}=e_{i}+c_{i} e_{1}, \quad i>1
\end{align*}
$$

Show that

$$
B A C e_{1}=\sum b_{j} e_{j}
$$

and

$$
B A C e_{i}=\sum_{j}^{n}=\left(a_{j, i}+c_{i} b_{j}\right) e_{j}+c_{i} b_{1} e_{1}
$$

for $i>1$.
(b)

$$
\begin{equation*}
L e_{i}=\sum_{j=1}^{n} \ell_{j, i} e_{j}, \quad i=1, \ldots, n \tag{3.4.7}
\end{equation*}
$$

Show that if $\ell_{1,1} \neq 0$ one can write L as a product, $L=B A C$, where A, B and C are linear mappings of the form (3.4.6).

Hint: First solve the equations

$$
\ell_{j, 1}=b_{j}
$$

for $j=1, \ldots, n$, then the equations

$$
\ell_{1, i}=b_{1} c_{i}
$$

for $i>1$, then the equations

$$
\ell_{j, i}=a_{j, i}+c_{i} b_{j}
$$

for $i, j>1$.
(c) Suppose L is invertible. Conclude that A, B and C are invertible and verify that Theorem 3.4.1 holds for B and C using the previous exercises in this section.
(d) Show by an inductive argument that Theorem 3.4.1 holds for A and conclude from (3.4.3) that it holds for L.
9. To show that Theorem 3.4.1 holds for an arbitrary linear mapping, L, of the form (3.4.7) we'll need to eliminate the assumption: $\ell_{1,1} \neq 0$. Show that for some $j, \ell_{j, 1}$ is non-zero, and show how to eliminate this assumption by considering $f_{\sigma} \circ L$ where σ is the transposition, $1 \leftrightarrow j$.
10. Here is an alternative proof of Theorem 4.3 .1 which is shorter than the proof outlined in exercise 9 but uses some slightly more sophisticated linear algebra.
(a) Prove Theorem 3.4.1 for linear mappings which are orthogonal, i.e., satisfy $L^{t} L=I$.

Hints:

i. Show that $L^{*}\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)=x_{1}^{2}+\cdots+x_{n}^{2}$.
ii. Show that $L^{*}\left(d x_{1} \wedge \cdots \wedge d x_{n}\right)$ is equal to $d x_{1} \wedge \cdots \wedge d x_{n}$ or $-d x_{1} \wedge \cdots \wedge d x_{n}$ depending on whether L is orientation preserving or orinetation reversing. (See $\S 1.2$, exercise 10.)
iii. Let ψ be as in exercise 4 and let ω be the form

$$
\omega=\psi\left(x_{1}^{2}+\cdots+x_{n}^{2}\right) d x_{1} \wedge \cdots \wedge d x_{n} .
$$

Show that $L^{*} \omega=\omega$ if L is orientation preserving and $L^{*} \omega=-\omega$ if L is orientation reversing.
(b) Prove Theorem 3.4.1 for linear mappings which are self-adjoint (satisfy $L^{t}=L$). Hint: A self-adjoint linear mapping is diagonizable: there exists an intervertible linear mapping, $M: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

$$
\begin{equation*}
M^{-1} L M e_{i}=\lambda_{i} e_{i}, \quad i=1, \ldots, n . \tag{3.4.8}
\end{equation*}
$$

(c) Prove that every invertible linear mapping, L, can be written as a product, $L=B C$ where B is orthogonal and C is self-adjoint.

Hints:
i. Show that the mapping, $A=L^{t} L$, is self-adjoint and that it's eigenvalues, the λ_{i} 's in 3.4.8, are positive.
ii. Show that there exists an invertible self-adjoint linear mapping, C, such that $A=C^{2}$ and $A C=C A$.
iii. Show that the mapping $B=L C^{-1}$ is orthogonal.

3.5 The change of variables formula

Let U and V be connected open subsets of \mathbb{R}^{n}. If $f: U \rightarrow V$ is a diffeomorphism, the determinant of $D f(x)$ at $x \in U$ is non-zero, and hence, since it is a continuous function of x, its sign is the same at every point. We will say that f is orientation preserving if this sign is positive and orientation reversing if it is negative. We will prove below:

Theorem 3.5.1. The degree of f is +1 if f is orientation preserving and -1 if f is orientation reversing.

We will then use this result to prove the following change of variables formula for diffeomorphisms.

Theorem 3.5.2. Let $\varphi: V \rightarrow \mathbb{R}$ be a compactly supported continuous function. Then

$$
\begin{equation*}
\int_{U} \varphi \circ f(x)|\operatorname{det}(D f)(x)|=\int_{V} \varphi(y) d y \tag{3.5.1}
\end{equation*}
$$

Proof of Theorem 3.5.1. Given a point, $a_{1} \in U$, let $a_{2}=-f\left(a_{1}\right)$ and for $i=1,2$, let $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the translation, $g_{i}(x)=x+a_{i}$. By (3.4.1) and exercise 4 of $\S 4$ the composite diffeomorphism

$$
\begin{equation*}
g_{2} \circ f \circ g_{1} \tag{3.5.2}
\end{equation*}
$$

has the same degree as f, so it suffices to prove the theorem for this mapping. Notice however that this mapping maps the origin onto the origin. Hence, replacing f by this mapping, we can, without loss of generality, assume that 0 is in the domain of f and that $f(0)=0$.

Next notice that if $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a bijective linear mapping the theorem is true for A (by exercise 9 of $\S 3.4$), and hence if we can prove the theorem for $A^{-1} \circ f,(3.4 .1)$ will tell us that the theorem is true for f. In particular, letting $A=D f(0)$, we have

$$
D\left(A^{-1} \circ f\right)(0)=A^{-1} D f(0)=I
$$

where I is the identity mapping. Therefore, replacing f by $A^{-1} f$, we can assume that the mapping, f, for which we are attempting to prove Theorem 3.5.1 has the properties: $f(0)=0$ and $D f(0)=I$. Let $g(x)=f(x)-x$. Then these properties imply that $g(0)=0$ and $D g(0)=0$.

Lemma 3.5.3. There exists a $\delta>0$ such that $|g(x)| \leq \frac{1}{2}|x|$ for $|x| \leq \delta$.

Proof. Let $g(x)=\left(g_{1}(x), \ldots, g_{n}(x)\right)$. Then

$$
\frac{\partial g_{i}}{\partial x_{j}}(0)=0
$$

so there exists a $\delta>0$ such that

$$
\left|\frac{\partial g_{i}}{\partial x_{j}}(x)\right| \leq \frac{1}{2}
$$

for $|x| \leq \delta$. However, by the mean value theorem,

$$
g_{i}(x)=\sum \frac{\partial g_{i}}{\partial x_{j}}(c) x_{j}
$$

for $c=t_{0} x, 0<t_{0}<1$. Thus, for $|x|<\delta$,

$$
\left|g_{i}(x)\right| \leq \frac{1}{2} \sup \left|x_{i}\right|=\frac{1}{2}|x|,
$$

so

$$
|g(x)|=\sup \left|g_{i}(x)\right| \leq \frac{1}{2}|x|
$$

Let ρ be a compactly supported \mathcal{C}^{∞} function with $0 \leq \rho \leq 1$ and with $\rho(x)=0$ for $|x| \geq \delta$ and $\rho(x)=1$ for $|x| \leq \frac{\delta}{2}$ and let $\tilde{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the mapping

$$
\begin{equation*}
\widetilde{f}(x)=x+\rho(x) g(x) . \tag{3.5.3}
\end{equation*}
$$

It's clear that

$$
\begin{equation*}
\widetilde{f}(x)=x \text { for }|x| \geq \delta \tag{3.5.4}
\end{equation*}
$$

and, since $f(x)=x+g(x)$,

$$
\begin{equation*}
\widetilde{f}(x)=f(x) \text { for }|x| \leq \frac{\delta}{2} . \tag{3.5.5}
\end{equation*}
$$

In addition, for all $x \in \mathbb{R}^{n}$:

$$
\begin{equation*}
|\widetilde{f}(x)| \geq \frac{1}{2}|x| \tag{3.5.6}
\end{equation*}
$$

Indeed, by (3.5.4), $|\widetilde{f}(x)| \geq|x|$ for $|x| \geq \delta$, and for $|x| \leq \delta$

$$
\begin{aligned}
|\widetilde{f}(x)| & \geq|x|-\rho(x)|g(x)| \\
& \geq|x|-|g(x)| \geq|x|-\frac{1}{2}|x|=\frac{1}{2}|x|
\end{aligned}
$$

by Lemma 3.5.3.
Now let \mathcal{Q}_{r} be the cube, $\left\{x \in \mathbb{R}^{n},|x| \leq r\right\}$, and let $\mathcal{Q}_{r}^{c}=\mathbb{R}^{n}-\mathcal{Q}_{r}$.
From (3.5.6) we easily deduce that

$$
\begin{equation*}
\tilde{f}^{-1}\left(\mathcal{Q}_{r}\right) \subseteq \mathcal{Q}_{2 r} \tag{3.5.7}
\end{equation*}
$$

for all r, and hence that \widetilde{f} is proper. Also notice that for $x \in \mathcal{Q}_{\delta}$,

$$
|\widetilde{f}(x)| \leq|x|+|g(x)| \leq \frac{3}{2}|x|
$$

by Lemma 3.5.3 and hence

$$
\begin{equation*}
\tilde{f}^{-1}\left(\mathcal{Q}_{\frac{3}{2} \delta}^{c}\right) \subseteq \mathcal{Q}_{\delta}^{c} . \tag{3.5.8}
\end{equation*}
$$

We will now prove Theorem 3.5.1. Since f is a diffeomorphism mapping 0 to 0 , it maps a neighborhood, U_{0}, of 0 in U diffeomorphically onto a neighborhood, V_{0}, of 0 in V, and by shrinking U_{0} if necessary we can assume that U_{0} is contained in $\mathcal{Q}_{\delta / 2}$ and V_{0} contained in $\mathcal{Q}_{\delta / 4}$. Let ω be an n-form with support in V_{0} whose integral over \mathbb{R}^{n} is equal to one. Then $f^{*} \omega$ is supported in U_{0} and hence in $\mathcal{Q}_{\delta / 2}$. Also by (3.5.7) $\widetilde{f}^{*} \omega$ is supported in $\mathcal{Q}_{\delta / 2}$. Thus both of these forms are zero outside $\mathcal{Q}_{\delta / 2}$. However, on $\mathcal{Q}_{\delta / 2}, \tilde{f}=f$ by (3.5.5), so these forms are equal everywhere, and hence

$$
\operatorname{deg}(f)=\int f^{*} \omega=\int \widetilde{f}^{*} \omega=\operatorname{deg}(\widetilde{f})
$$

Next let ω be a compactly supported n-form with support in $\mathcal{Q}_{3 \delta / 2}^{c}$ and with integral equal to one. Then $\widetilde{f}^{*} \omega$ is supported in \mathcal{Q}_{δ}^{c} by (3.5.8), and hence since $f(x)=x$ on $\mathcal{Q}_{\delta}^{c} \widetilde{f}^{*} \omega=\omega$. Thus

$$
\operatorname{deg}(\widetilde{f})=\int f^{*} \omega=\int \omega=1
$$

Putting these two identities together we conclude that $\operatorname{deg}(f)=1$. Q.E.D.

If the function, φ, in Theorem 3.5.2 is a \mathcal{C}^{∞} function, the identity (3.5.1) is an immediate consequence of the result above and the identity (3.4.2). If φ is not \mathcal{C}^{∞}, but is just continuous, we will deduce Theorem 3.5.2 from the following result.

Theorem 3.5.4. Let V be an open subset of \mathbb{R}^{n}. If $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a continuous function of compact support with $\operatorname{supp} \varphi \subseteq V$; then for every $\epsilon>0$ there exists a \mathcal{C}^{∞} function of compact support, $\psi: \mathbb{R}^{n} \rightarrow$ \mathbb{R} with $\operatorname{supp} \psi \subseteq V$ and

$$
\sup |\psi(x)-\varphi(x)|<\epsilon
$$

Proof. Let A be the support of φ and let d be the distance in the sup norm from A to the complement of V. Since φ is continuous and compactly supported it is uniformly continuous; so for every $\epsilon>0$ there exists a $\delta>0$ with $\delta<\frac{d}{2}$ such that $|\varphi(x)-\varphi(y)|<\epsilon$ when $|x-y| \leq \delta$. Now let Q be the cube: $|x|<\delta$ and let $\rho: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a non-negative \mathcal{C}^{∞} function with $\operatorname{supp} \rho \subseteq Q$ and

$$
\begin{equation*}
\int \rho(y) d y=1 \tag{3.5.9}
\end{equation*}
$$

Set

$$
\psi(x)=\int \rho(y-x) \varphi(y) d y
$$

By Theorem 3.2.5 ψ is a \mathcal{C}^{∞} function. Moreover, if A_{δ} is the set of points in \mathbb{R}^{d} whose distance in the sup norm from A is $\leq \delta$ then for $x \notin A_{\delta}$ and $y \in A,|x-y|>\delta$ and hence $\rho(y-x)=0$. Thus for $x \notin A_{\delta}$

$$
\int \rho(y-x) \varphi(y) d y=\int_{A} \rho(y-x) \varphi(y) d y=0
$$

so ψ is supported on the compact set A_{δ}. Moreover, since $\delta<\frac{d}{2}$, $\operatorname{supp} \psi$ is contained in V. Finally note that by (3.5.9) and exercise 4 of $\S 3.4$:

$$
\begin{equation*}
\int \rho(y-x) d y=\int \rho(y) d y=1 \tag{3.5.10}
\end{equation*}
$$

and hence

$$
\varphi(x)=\int \varphi(x) \rho(y-x) d y
$$

so

$$
\varphi(x)-\psi(x)=\int(\varphi(x)-\varphi(y)) \rho(y-x) d y
$$

and

$$
|\varphi(x)-\psi(x)| \leq \int|\varphi(x)-\varphi(y)| \rho(y-x) d y
$$

But $\rho(y-x)=0$ for $|x-y| \geq \delta$; and $|\varphi(x)-\varphi(y)|<\epsilon$ for $|x-y| \leq \delta$, so the integrand on the right is less than

$$
\epsilon \int \rho(y-x) d y
$$

and hence by (3.5.10)

$$
|\varphi(x)-\psi(x)| \leq \epsilon .
$$

To prove the identity (3.5.1), let $\gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a \mathcal{C}^{∞} cut-off function which is one on a neighborhood, V_{1}, of the support of φ, is non-negative, and is compactly supported with supp $\gamma \subseteq V$, and let

$$
c=\int \gamma(y) d y .
$$

By Theorem 3.5.4 there exists, for every $\epsilon>0$, a \mathcal{C}^{∞} function ψ, with support on V_{1} satisfying

$$
\begin{equation*}
|\varphi-\psi| \leq \frac{\epsilon}{2 c} . \tag{3.5.11}
\end{equation*}
$$

Thus

$$
\begin{aligned}
\left|\int_{V}(\varphi-\psi)(y) d y\right| & \leq \int_{V}|\varphi-\psi|(y) d y \\
& \leq \int_{V} \gamma|\varphi-\psi|(x y) d y \\
& \leq \frac{\epsilon}{2 c} \int \gamma(y) d y \leq \frac{\epsilon}{2}
\end{aligned}
$$

so

$$
\begin{equation*}
\left|\int_{V} \varphi(y) d y-\int_{V} \psi(y) d y\right| \leq \frac{\epsilon}{2} . \tag{3.5.12}
\end{equation*}
$$

Similarly, the expression

$$
\left|\int_{U}(\varphi-\psi) \circ f(x)\right| \operatorname{det} D f(x)|d x|
$$

is less than or equal to the integral

$$
\int_{U} \gamma \circ f(x)|(\varphi-\psi) \circ f(x)||\operatorname{det} D f(x)| d x
$$

and by (3.5.11), $|(\varphi-\psi) \circ f(x)| \leq \frac{\epsilon}{2 c}$, so this integral is less than or equal to

$$
\frac{\epsilon}{2 c} \int \gamma \circ f(x)|\operatorname{det} D f(x)| d x
$$

and hence by (3.5.1) is less than or equal to $\frac{\epsilon}{2}$. Thus

$$
\begin{equation*}
\left|\int_{U} \varphi \circ f(x)\right| \operatorname{det} D f(x)\left|d x-\int_{U} \psi \circ f(x)\right| \operatorname{det} D f(x)|d x| \leq \frac{\epsilon}{2} . \tag{3.5.13}
\end{equation*}
$$

Combining (3.5.12), (3.5.13) and the identity

$$
\int_{V} \psi(y) d y=\int \psi \circ f(x)|\operatorname{det} D f(x)| d x
$$

we get, for all $\epsilon>0$,

$$
\left|\int_{V} \varphi(y) d y-\int_{U} \varphi \circ f(x)\right| \operatorname{det} D f(x)|d x| \leq \epsilon
$$

and hence

$$
\int \varphi(y) d y=\int \varphi \circ f(x)|\operatorname{det} D f(x)| d x .
$$

Exercises for $\S 3.5$

1. Let $h: V \rightarrow \mathbb{R}$ be a non-negative continuous function. Show that if the improper integral

$$
\int_{V} h(y) d y
$$

is well-defined, then the improper integral

$$
\int_{U} h \circ f(x)|\operatorname{det} D f(x)| d x
$$

is well-defined and these two integrals are equal.

Hint: If $\varphi_{i}, i=1,2,3, \ldots$ is a partition of unity on V then $\psi_{i}=$ $\varphi_{i} \circ f$ is a partition of unity on U and

$$
\int \varphi_{i} h d y=\int \psi_{i}(h \circ f(x))|\operatorname{det} D f(x)| d x .
$$

Now sum both sides of this identity over i.
2. Show that the result above is true without the assumption that h is non-negative.
Hint: $h=h_{+}-h_{-}$, where $h_{+}=\max (h, 0)$ and $h_{-}=\max (-h, 0)$.
3. Show that, in the formula (3.4.2), one can allow the function, φ, to be a continuous compactly supported function rather than a \mathcal{C}^{∞} compactly supported function.
4. Let \mathbb{H}^{n} be the half-space (??) and U and V open subsets of \mathbb{R}^{n}. Suppose $f: U \rightarrow V$ is an orientation preserving diffeomorphism mapping $U \cap \mathbb{H}^{n}$ onto $V \cap \mathbb{H}^{n}$. Show that for $\omega \in \Omega_{c}^{n}(V)$

$$
\begin{equation*}
\int_{U \cap \mathbb{H}^{n}} f^{*} \omega=\int_{V \cap \mathbb{H}^{n}} \omega . \tag{3.5.14}
\end{equation*}
$$

Hint: Interpret the left and right hand sides of this formula as improper integrals over $U \cap \operatorname{Int} \mathbb{H}^{n}$ and $V \cap \operatorname{Int} \mathbb{H}^{n}$.
5. The boundary of \mathbb{H}^{n} is the set

$$
b \mathbb{H}^{n}=\left\{\left(0, x_{2}, \ldots, x_{n}\right), \quad\left(x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}\right\}
$$

so the map

$$
\iota: \mathbb{R}^{n-1} \rightarrow \mathbb{H}^{n}, \quad\left(x_{2}, \ldots, x_{n}\right) \rightarrow\left(0, x_{2}, \ldots, x_{n}\right)
$$

in exercise 9 in $\S 3.2$ maps \mathbb{R}^{n-1} bijectively onto $b \mathbb{H}^{n}$.
(a) Show that the map $f: U \rightarrow V$ in exercise 4 maps $U \cap b \mathbb{H}^{n}$ onto $V \cap b \mathbb{H}^{n}$.
(b) Let $U^{\prime}=\iota^{-1}(U)$ and $V^{\prime}=\iota^{-1}(V)$. Conclude from part (a) that the restriction of f to $U \cap b \mathbb{H}^{n}$ gives one a diffeomorphism

$$
g: U^{\prime} \rightarrow V^{\prime}
$$

satisfying:

$$
\begin{equation*}
\iota \cdot g=f \cdot \iota . \tag{3.5.15}
\end{equation*}
$$

(c) Let μ be in $\Omega_{c}^{n-1}(V)$. Conclude from (3.2.7) and (3.5.14):

$$
\begin{equation*}
\int_{U^{\prime}} g^{*} \iota^{*} \mu=\int_{V^{\prime}} \iota^{*} \mu \tag{3.5.16}
\end{equation*}
$$

and in particular show that the diffeomorphism, $g: U^{\prime} \rightarrow V^{\prime}$, is orientation preserving.

3.6 Techniques for computing the degree of a mapping

Let U and V be open subsets of \mathbb{R}^{n} and $f: U \rightarrow V$ a proper \mathcal{C}^{∞} mapping. In this section we will show how to compute the degree of f and, in particular, show that it is always an integer. From this fact we will be able to conclude that the degree of f is a topological invariant of f : if we deform f smoothly, its degree doesn't change.
Definition 3.6.1. A point, $x \in U$, is a critical point of f if the derivative

$$
D f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

fails to be bijective, i.e., if $\operatorname{det}(D f(x))=0$.
We will denote the set of critical points of f by C_{f}. It's clear from the definition that this set is a closed subset of U and hence, by exercise 3 in $\S 3.4, f\left(C_{f}\right)$ is a closed subset of V. We will call this image the set of critical values of f and the complement of this image the set of regular values of f. Notice that $V-f(U)$ is contained in $f-f\left(C_{f}\right)$, so if a point, $g \in V$ is not in the image of f, it's a regular value of f "by default", i.e., it contains no points of U in the pre-image and hence, a fortiori, contains no critical points in its pre-image. Notice also that C_{f} can be quite large. For instance, if c is a point in V and $f: U \rightarrow V$ is the constant map which maps all of U onto c, then $C_{f}=U$. However, in this example, $f\left(C_{f}\right)=\{c\}$, so the set of regular values of f is $V-\{c\}$, and hence (in this example) is an open dense subset of V. We will show that this is true in general.
Theorem 3.6.2. (Sard's theorem.)
If U and V are open subsets of \mathbb{R}^{n} and $f: U \rightarrow V$ a proper \mathcal{C}^{∞} map, the set of regular values of f is an open dense subset of V.

We will defer the proof of this to Section 3.7 and, in this section, explore some of its implications. Picking a regular value, q, of f we will prove:

Theorem 3.6.3. The set, $f^{-1}(q)$ is a finite set. Moreover, if $f^{-1}(q)=$ $\left\{p_{1}, \ldots, p_{n}\right\}$ there exist connected open neighborhoods, U_{i}, of p_{i} in Y and an open neighborhood, W, of q in V such that:
i. for $i \neq j U_{i}$ and U_{j} are disjoint;
ii. $\quad f^{-1}(W)=\bigcup U_{i}$,
iii. f maps U_{i} diffeomorphically onto W.

Proof. If $p \in f^{-1}(q)$ then, since q is a regular value, $p \notin C_{f}$; so

$$
D f(p): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

is bijective. Hence by the inverse function theorem, f maps a neighborhood, U_{p} of p diffeomorphically onto a neighborhood of q. The open sets

$$
\left\{U_{p}, \quad p \in f^{-1}(q)\right\}
$$

are a covering of $f^{-1}(q)$; and, since f is proper, $f^{-1}(q)$ is compact; so we can extract a finite subcovering

$$
\left\{U_{p_{i}}, \quad i=1, \ldots, N\right\}
$$

and since p_{i} is the only point in $U_{p_{i}}$ which maps onto $q, f^{-1}(q)=$ $\left\{p_{1}, \ldots, p_{N}\right\}$.

Without loss of generality we can assume that the $U_{p_{i}}$'s are disjoint from each other; for, if not, we can replace them by smaller neighborhoods of the p_{i} 's which have this property. By Theorem 3.4.2 there exists a connected open neighborhood, W, of q in V for which

$$
f^{-1}(W) \subset \bigcup U_{p_{i}}
$$

To conclude the proof let $U_{i}=f^{-1}(W) \cap U_{p_{i}}$.

The main result of this section is a recipe for computing the degree of f by counting the number of p_{i} 's above, keeping track of orientation.
Theorem 3.6.4. For each $p_{i} \in f^{-1}(q)$ let $\sigma_{p_{i}}=+1$ if $f: U_{i} \rightarrow W$ is orientation preserving and -1 if $f: U_{i} \rightarrow W$ is orientation reversing. Then

$$
\begin{equation*}
\operatorname{deg}(f)=\sum_{i=1}^{N} \sigma_{p_{i}} . \tag{3.6.1}
\end{equation*}
$$

Proof. Let ω be a compactly supported n-form on W whose integral is one. Then

$$
\operatorname{deg}(f)=\int_{U} f^{*} \omega=\sum_{i=1}^{N} \int_{U_{i}} f^{*} \omega .
$$

Since $f: U_{i} \rightarrow W$ is a diffeomorphism

$$
\int_{U_{i}} f^{*} \omega= \pm \int_{W} \omega=+1 \text { or }-1
$$

depending on whether $f: U_{i} \rightarrow W$ is orientation preserving or not. Thus $\operatorname{deg}(f)$ is equal to the sum (3.6.1).

As we pointed out above, a point, $q \in V$ can qualify as a regular value of f "by default", i.e., by not being in the image of f. In this case the recipe (3.6.1) for computing the degree gives "by default" the answer zero. Let's corroborate this directly.
Theorem 3.6.5. If $f: U \rightarrow V$ isn't onto, $\operatorname{deg}(f)=0$.
Proof. By exercise 3 of $\S 3.4, V-f(U)$ is open; so if it is non-empty, there exists a compactly supported n-form, ω, with support in V $f(U)$ and with integral equal to one. Since $\omega=0$ on the image of f, $f^{*} \omega=0$; so

$$
0=\int_{U} f^{*} \omega=\operatorname{deg}(f) \int_{V} \omega=\operatorname{deg}(f)
$$

Remark: In applications the contrapositive of this theorem is much more useful than the theorem itself.

Theorem 3.6.6. If $\operatorname{deg}(f) \neq 0 f$ maps U onto V.
In other words if $\operatorname{deg}(f) \neq 0$ the equation

$$
\begin{equation*}
f(x)=y \tag{3.6.2}
\end{equation*}
$$

has a solution, $x \in U$ for every $y \in V$.
We will now show that the degree of f is a topological invariant of f : if we deform f by a "homotopy" we don't change its degree. To make this assertion precise, let's recall what we mean by a homotopy
between a pair of \mathcal{C}^{∞} maps. Let U be an open subset of \mathbb{R}^{m}, V an open subset of \mathbb{R}^{n}, A an open subinterval of \mathbb{R} containing 0 and 1 , and $f_{i}: U \rightarrow V, i=0,1, \mathcal{C}^{\infty}$ maps. Then a \mathcal{C}^{∞} map $F: U \times A \rightarrow V$ is a homotopy between f_{0} and f_{1} if $F(x, 0)=f_{0}(x)$ and $F(x, 1)=f_{1}(x)$. (See Definition ??.) Suppose now that f_{0} and f_{1} are proper.

Definition 3.6.7. F is a proper homotopy between f_{0} and f_{1} if the map

$$
\begin{equation*}
F^{\sharp}: U \times A \rightarrow V \times A \tag{3.6.3}
\end{equation*}
$$

mapping (x, t) to $(F(x, t), t)$ is proper.
Note that if F is a proper homotopy between f_{0} and f_{1}, then for every t between 0 and 1 , the map

$$
f_{t}: U \rightarrow V, \quad f_{t}(x)=F_{t}(x)
$$

is proper.
Now let U and V be open subsets of \mathbb{R}^{n}.
Theorem 3.6.8. If f_{0} and f_{1} are properly homotopic, their degrees are the same.

Proof. Let

$$
\omega=\varphi(y) d y_{1} \wedge \cdots \wedge d y_{n}
$$

be a compactly supported n-form on X whose integral over V is 1 . The the degree of f_{t} is equal to

$$
\begin{equation*}
\int_{U} \varphi\left(F_{1}(x, t), \ldots, F_{n}(x, t)\right) \operatorname{det} D_{x} F(x, t) d x \tag{3.6.4}
\end{equation*}
$$

The integrand in (3.6.4) is continuous and for $0 \leq t \leq 1$ is supported on a compact subset of $U \times[0,1]$, hence (3.6.4) is continuous as a function of t. However, as we've just proved, $\operatorname{deg}\left(f_{t}\right)$ is integer valued so this function is a constant.
(For an alternative proof of this result see exercise 9 below.) We'll conclude this account of degree theory by describing a couple applications.

Application 1. The Brouwer fixed point theorem

Let B^{n} be the closed unit ball in \mathbb{R}^{n} :

$$
\left\{x \in \mathbb{R}^{n},\|x\| \leq 1\right\}
$$

Theorem 3.6.9. If $f: B^{n} \rightarrow B^{n}$ is a continuous mapping then f has a fixed point, i.e., maps some point, $x_{0} \in B^{n}$ onto itself.

The idea of the proof will be to assume that there isn't a fixed point and show that this leads to a contradiction. Suppose that for every point, $x \in B^{n} f(x) \neq x$. Consider the ray through $f(x)$ in the direction of x :

$$
f(x)+s(x-f(x)), \quad 0 \leq s<\infty
$$

This intersects the boundary, S^{n-1}, of B^{n} in a unique point, $\gamma(x)$, (see figure 1 below); and one of the exercises at the end of this section will be to show that the mapping $\gamma: B^{n} \rightarrow S^{n-1}, x \rightarrow \gamma(x)$, is a continuous mapping. Also it is clear from figure 1 that $\gamma(x)=x$ if $x \in S^{n-1}$, so we can extend γ to a continuous mapping of \mathbb{R}^{n} into \mathbb{R}^{n} by letting γ be the identity for $\|x\| \geq 1$. Note that this extended mapping has the property

$$
\begin{equation*}
\|\gamma(x)\| \geq 1 \tag{3.6.5}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ and

$$
\begin{equation*}
\gamma(x)=x \tag{3.6.6}
\end{equation*}
$$

for all $\|x\| \geq 1$. To get a contradiction we'll show that γ can be approximated by a \mathcal{C}^{∞} map which has similar properties. For this we will need the following corollary of Theorem 3.5.4.
Lemma 3.6.10. Let U be an open subset of \mathbb{R}^{n}, C a compact subset of U and $\varphi: U \rightarrow \mathbb{R}$ a continuous function which is \mathcal{C}^{∞} on the complement of C. Then for every $\epsilon>0$, there exists a \mathcal{C}^{∞} function, $\psi: U \rightarrow \mathbb{R}$, such that $\varphi-\psi$ has compact support and $|\varphi-\psi|<\epsilon$.

Proof. Let ρ be a bump function which is in $\mathcal{C}_{0}^{\infty}(U)$ and is equal to 1 on a neighborhood of C. By Theorem 3.5.4 there exists a function, $\psi_{0} \in \mathcal{C}_{0}^{\infty}(U)$ such that $\left|\rho \varphi-\psi_{0}\right|<\epsilon$. Let $\psi=(1-\rho) \varphi+\psi_{0}$, and note that

$$
\begin{aligned}
\varphi-\psi & =(1-\rho) \varphi+\rho \varphi-(1-\rho) \varphi-\psi_{0} \\
& =\rho \varphi-\psi_{0}
\end{aligned}
$$

By applying this lemma to each of the coordinates of the map, γ, one obtains a \mathcal{C}^{∞} map, $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

$$
\begin{equation*}
\|g-\gamma\|<\epsilon<1 \tag{3.6.7}
\end{equation*}
$$

and such that $g=\gamma$ on the complement of a compact set. However, by (3.6.6), this means that g is equal to the identity on the complement of a compact set and hence (see exercise 9) that g is proper and has degree one. On the other hand by (3.6.8) and (3.6.6) $\|g(x)\|>1-\epsilon$ for all $x \in \mathbb{R}^{n}$, so $0 \notin \operatorname{Im} g$ and hence by Theorem 3.6.4, $\operatorname{deg}(g)=0$. Contradiction.

Figure 3.6.1.

Application 2. The fundamental theorem of algebra

Let $p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$ be a polynomial of degree n with complex coefficients. If we identify the complex plane

$$
\mathbb{C}=\{z=x+i y ; x, y \in \mathbb{R}\}
$$

with \mathbb{R}^{2} via the map, $(x, y) \in \mathbb{R}^{2} \rightarrow z=x+i y$, we can think of p as defining a mapping

$$
p: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, z \rightarrow p(z)
$$

We will prove
Theorem 3.6.11. The mapping, p, is proper and $\operatorname{deg}(p)=n$.
Proof. For $t \in \mathbb{R}$

$$
\begin{aligned}
p_{t}(z) & =(1-t) z^{n}+t p(z) \\
& =z^{n}+t \sum_{i=0}^{n-1} a_{i} z^{i} .
\end{aligned}
$$

We will show that the mapping

$$
g: \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, z \rightarrow p_{t}(z)
$$

is a proper homotopy. Let

$$
C=\sup \left\{\left|a_{i}\right|, i=0, \ldots, n-1\right\} .
$$

Then for $|z| \geq 1$

$$
\begin{aligned}
\left|a_{0}+\cdots+a_{n-1} z^{n-1}\right| & \leq\left|a_{0}\right|+\left|a_{1}\right||z|+\cdots+\left|a_{n-1}\right||z|^{n-1} \\
& \leq C|z|^{n-1},
\end{aligned}
$$

and hence, for $|t| \leq a$ and $|z| \geq 2 a C$,

$$
\begin{aligned}
\left|p_{t}(z)\right| & \geq|z|^{n}-a C|z|^{n-1} \\
& \geq a C|z|^{n-1}
\end{aligned}
$$

If A is a compact subset of \mathbb{C} then for some $R>0, A$ is contained in the disk, $|w| \leq R$ and hence the set

$$
\left\{z \in \mathbb{C},\left(p_{t}(z), t\right) \in A \times[-a, a]\right\}
$$

is contained in the compact set

$$
\left\{z \in \mathbb{C}, a C|z|^{n-1} \leq R\right\}
$$

and this shows that g is a proper homotopy. Thus each of the mappings,

$$
p_{t}: \mathbb{C} \rightarrow \mathbb{C}
$$

is proper and $\operatorname{deg} p_{t}=\operatorname{deg} p_{1}=\operatorname{deg} p=\operatorname{deg} p_{0}$. However, $p_{0}: \mathbb{C} \rightarrow \mathbb{C}$ is just the mapping, $z \rightarrow z^{n}$ and an elementary computation (see exercises 5 and 6 below) shows that the degree of this mapping is n.

In particular for $n>0$ the degree of p is non-zero; so by Theorem 3.6.4 we conclude that $p: \mathbb{C} \rightarrow \mathbb{C}$ is surjective and hence has zero in its image.

Theorem 3.6.12. (fundamental theorem of algebra)
Every polynomial,

$$
p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}
$$

with complex coefficients has a complex root, $p\left(z_{0}\right)=0$, for some $z_{0} \in \mathbb{C}$.

Exercises for §3.6

1. Let W be a subset of \mathbb{R}^{n} and let $a(x), b(x)$ and $c(x)$ be realvalued functions on W of class C^{r}. Suppose that for every $x \in W$ the quadratic polynomial

$$
\begin{equation*}
a(x) s^{2}+b(x) s+c(x) \tag{*}
\end{equation*}
$$

has two distinct real roots, $s_{+}(x)$ and $s_{-}(x)$, with $s_{+}(x)>s_{-}(x)$. Prove that s_{+}and s_{-}are functions of class C^{r}.

Hint: What are the roots of the quadratic polynomial: $a s^{2}+b s+c$?
2. Show that the function, $\gamma(x)$, defined in figure 1 is a continuous mapping of B^{n} onto $S^{2 n-1}$. Hint: $\gamma(x)$ lies on the ray,

$$
f(x)+s(x-f(x)), \quad 0 \leq s<\infty
$$

and satisfies $\|\gamma(x)\|=1$; so $\gamma(x)$ is equal to

$$
f(x)+s_{0}(x-f(x))
$$

where s_{0} is a non-negative root of the quadratic polynomial

$$
\|f(x)+s(x-f(x))\|^{2}-1
$$

Argue from figure 1 that this polynomial has to have two distinct real roots.
3. Show that the Brouwer fixed point theorem isn't true if one replaces the closed unit ball by the open unit ball. Hint: Let U be the open unit ball (i.e., the interior of B^{n}). Show that the map

$$
h: U \rightarrow \mathbb{R}^{n}, \quad h(x)=\frac{x}{1-\|x\|^{2}}
$$

is a diffeomorphism of U onto \mathbb{R}^{n}, and show that there are lots of mappings of \mathbb{R}^{n} onto \mathbb{R}^{n} which don't have fixed points.
4. Show that the fixed point in the Brouwer theorem doesn't have to be an interior point of B^{n}, i.e., show that it can lie on the boundary.
5. If we identify \mathbb{C} with \mathbb{R}^{2} via the mapping: $(x, y) \rightarrow z=x+i y$, we can think of a \mathbb{C}-linear mapping of \mathbb{C} into itself, i.e., a mapping of the form

$$
z \rightarrow c z, \quad c \in \mathbb{C}
$$

as being an \mathbb{R}-linear mapping of \mathbb{R}^{2} into itself. Show that the determinant of this mapping is $|c|^{2}$.
6. (a) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be the mapping, $f(z)=z^{n}$. Show that

$$
D f(z)=n z^{n-1}
$$

Hint: Argue from first principles. Show that for $h \in \mathbb{C}=\mathbb{R}^{2}$

$$
\frac{(z+h)^{n}-z^{n}-n z^{n-1} h}{|h|}
$$

tends to zero as $|h| \rightarrow 0$.
(b) Conclude from the previous exercise that

$$
\operatorname{det} D f(z)=n^{2}|z|^{2 n-2}
$$

(c) Show that at every point $z \in \mathbb{C}-0, f$ is orientation preserving.
(d) Show that every point, $w \in \mathbb{C}-0$ is a regular value of f and that

$$
f^{-1}(w)=\left\{z_{1}, \ldots, z_{n}\right\}
$$

with $\sigma_{z_{i}}=+1$.
(e) Conclude that the degree of f is n.
7. Prove that the map, f, in exercise 6 has degree n by deducing this directly from the definition of degree. Some hints:
(a) Show that in polar coordinates, f is the map, $(r, \theta) \rightarrow\left(r^{n}, n \theta\right)$.
(b) Let ω be the two-form, $g\left(x^{2}+y^{2}\right) d x \wedge d y$, where $g(t)$ is a compactly supported \mathcal{C}^{∞} function of t. Show that in polar coordinates, $\omega=g\left(r^{2}\right) r d r \wedge d \theta$, and compute the degree of f by computing the integrals of ω and $f^{*} \omega$, in polar coordinates and comparing them.
8. Let U be an open subset of \mathbb{R}^{n}, V an open subset of \mathbb{R}^{m}, A an open subinterval of \mathbb{R} containing 0 and $1, f_{i}: U \rightarrow V i=0,1$, a pair of \mathcal{C}^{∞} mappings and $F: U \times A \rightarrow V$ a homotopy between f_{0} and f_{1}.
(a) In $\S 2.3$, exercise 4 you proved that if μ is in $\Omega^{k}(V)$ and $d \mu=0$, then

$$
\begin{equation*}
f_{0}^{*} \mu-f_{1}^{*} \mu=d \nu \tag{3.6.8}
\end{equation*}
$$

where ν is the $(k-1)$-form, $Q \alpha$, in formula (??). Show (by careful inspection of the definition of $Q \alpha$) that if F is a proper homotopy and $\mu \in \Omega_{c}^{k}(V)$ then $\nu \in \Omega_{c}^{k-1}(U)$.
(b) Suppose in particular that U and V are open subsets of \mathbb{R}^{n} and μ is in $\Omega_{c}^{n}(V)$. Deduce from (3.6.8) that

$$
\int f_{0}^{*} \mu=\int f_{1}^{*} \mu
$$

and deduce directly from the definition of degree that degree is a proper homotopy invariant.
9. Let U be an open connected subset of \mathbb{R}^{n} and $f: U \rightarrow U$ a proper \mathcal{C}^{∞} map. Prove that if f is equal to the identity on the complement of a compact set, C, then f is proper and its degree is equal to 1. Hints:
(a) Show that for every subset, A, of $U, f^{-1}(A) \subseteq A \cup C$, and conclude from this that f is proper.
(b) Let $C^{\prime}=f(C)$. Use the recipe (1.6.1) to compute $\operatorname{deg}(f)$ with $q \in U-C^{\prime}$.
10. Let $\left[a_{i, j}\right]$ be an $n \times n$ matrix and $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ the linear mapping associated with this matrix. Frobenius' theorem asserts: If the $a_{i, j}$'s are non-negative then A has a non-negative eigenvalue. In
other words there exists a $v \in \mathbb{R}^{n}$ and a $\lambda \in \mathbb{R}, \lambda \geq 0$, such that $A v=\lambda v$. Deduce this linear algebra result from the Brouwer fixed point theorem. Hints:
(a) We can assume that A is bijective, otherwise 0 is an eigenvalue. Let S^{n-1} be the $(n-1)$-sphere, $|x|=1$, and $f: S^{n-1} \rightarrow S^{n-1}$ the map,

$$
f(x)=\frac{A x}{\|A x\|}
$$

Show that f maps the set

$$
Q=\left\{\left(x_{1}, \ldots, x_{n}\right) \in S^{n-1} ; \quad x_{i} \geq 0\right\}
$$

into itself.
(b) It's easy to prove that Q is homeomorphic to the unit ball B^{n-1}, i.e., that there exists a continuous map, $g: Q \rightarrow B^{n-1}$ which is invertible and has a continuous inverse. Without bothering to prove this fact deduce from it Frobenius' theorem.

3.7 Appendix: Sard's theorem

The version of Sard's theorem stated in $\S 3.5$ is a corollary of the following more general result.

Theorem 3.7.1. Let U be an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}^{n} a$ \mathcal{C}^{∞} map. Then $\mathbb{R}^{n}-f\left(C_{f}\right)$ is dense in \mathbb{R}^{n}.

Before undertaking to prove this we will make a few general comments about this result.

Remark 3.7.2. If $\mathcal{O}_{n}, n=1,2$, are open dense subsets of \mathbb{R}^{n}, the intersection

is dense in \mathbb{R}^{n}. (See [?], pg. 200 or exercise 4 below.)
Remark 3.7.3. If $A_{n}, n=1,2, \ldots$ are a covering of U by compact sets, $\mathcal{O}_{n}=\mathbb{R}^{n}-f\left(C_{f} \cap A_{n}\right)$ is open, so if we can prove that it's dense then by Remark 3.7.2 we will have proved Sard's theorem. Hence since we can always cover U by a countable collection of closed cubes, it suffices to prove: for every closed cube, $A \subseteq U, \mathbb{R}^{n}-f\left(C_{f} \cap A\right)$ is dense in \mathbb{R}^{n}.

Remark 3.7.4. Let $g: W \rightarrow U$ be a diffeomorphism and let $h=$ $f \circ g$. Then

$$
\begin{equation*}
f\left(C_{f}\right)=h\left(C_{h}\right) \tag{3.7.1}
\end{equation*}
$$

so Sard's theorem for g implies Sard's theorem for f.
We will first prove Sard's theorem for the set of super-critical points of f, the set:

$$
\begin{equation*}
C_{f}^{\sharp}=\{p \in U, \quad D f(p)=0\} \tag{3.7.2}
\end{equation*}
$$

Proposition 3.7.5. Let $A \subseteq U$ be a closed cube. Then the open set $\mathbb{R}^{n}-f\left(A \cap C_{f}^{\sharp}\right)$ is a dense subset of \mathbb{R}^{n}.

We'll deduce this from the lemma below.
Lemma 3.7.6. Given $\epsilon>0$ one can cover $f\left(A \cap C_{f}^{\sharp}\right)$ by a finite number of cubes of total volume less than ϵ.

Proof. Let the length of each of the sides of A be ℓ. Given $\delta>0$ one can subdivide A into N^{n} cubes, each of volume, $\left(\frac{\ell}{N}\right)^{n}$, such that if x and y are points of any one of these subcubes

$$
\begin{equation*}
\left|\frac{\partial f_{i}}{\partial x_{j}}(x)-\frac{\partial f_{i}}{\partial x_{j}}(y)\right|<\delta \tag{3.7.3}
\end{equation*}
$$

Let A_{1}, \ldots, A_{m} be the cubes in this collection which intersect C_{f}^{\sharp}.
Then for $z_{0} \in A_{i} \cap C_{f}^{\sharp}, \frac{\partial f_{i}}{\partial x_{j}}\left(z_{0}\right)=0$, so for $z \in A_{i}$

$$
\begin{equation*}
\left|\frac{\partial f_{i}}{\partial x_{j}}(z)\right|<\delta \tag{3.7.4}
\end{equation*}
$$

by (3.7.3). If x and y are points of A_{i} then by the mean value theorem there exists a point z on the line segment joining x to y such that

$$
f_{i}(x)-f_{i}(y)=\sum \frac{\partial f_{i}}{\partial x_{j}}(z)\left(x_{j}-y_{j}\right)
$$

and hence by (3.7.4)

$$
\begin{equation*}
\left|f_{i}(x)-f_{i}(y)\right| \leq \delta \sum\left|x_{i}-y_{i}\right| \leq n \delta \frac{\ell}{N} \tag{3.7.5}
\end{equation*}
$$

Thus $f\left(C_{f} \cap A_{i}\right)$ is contained in a cube, B_{i}, of volume $\left(n \frac{\delta \ell}{N}\right)^{n}$, and $f\left(C_{f} \cap A\right)$ is contained in a union of cubes, B_{i}, of total volume less that

$$
N^{n} n^{n} \frac{\delta^{n} \ell^{n}}{N^{n}}=n^{n} \delta^{n} \ell^{n}
$$

so if w choose $\delta^{n} \ell^{n}<\epsilon$, we're done.

Proof. To prove Proposition 3.7.5 we have to show that for every point $p \in \mathbb{R}^{n}$ and neighborhood, W, of $p, W-f\left(C_{f}^{\sharp} \cap A\right)$ is nonempty. Suppose

$$
\begin{equation*}
W \subseteq f\left(C_{f}^{\sharp} \cap A\right) \tag{3.7.6}
\end{equation*}
$$

Without loss of generality we can assume W is a cube of volume ϵ, but the lemma tells us that $f\left(C_{f}^{\sharp} \cap A\right)$ can be covered by a finite number of cubes whose total volume is less than ϵ, and hence by (3.7.6) W can be covered by a finite number of cubes of total volume less than ϵ, so its volume is less than ϵ. This contradiction proves that the inclusion (3.7.6) can't hold.

To prove Theorem 3.7.1 let $U_{i, j}$ be the subset of U where $\frac{\partial f_{i}}{\partial x_{j}} \neq 0$. Then

$$
U=\bigcup U_{i, j} \cup C_{f}^{\sharp},
$$

so to prove the theorem it suffices to show that $\mathbb{R}^{n}-f\left(U_{i, j} \cap C_{f}\right)$ is dense in \mathbb{R}^{n}, i.e., it suffices to prove the theorem with U replaced by $U_{i, j}$. Let $\sigma_{i}: \mathbb{R}^{n} \times \mathbb{R}^{n}$ be the involution which interchanges x_{1} and x_{i} and leaves the remaining x_{k} 's fixed. Letting $f_{\text {new }}=\sigma_{i} f_{\text {old }} \sigma_{j}$ and $U_{\text {new }}=\sigma_{j} U_{\text {old }}$, we have, for $f=f_{\text {new }}$ and $U=U_{\text {new }}$

$$
\begin{equation*}
\left.\frac{\partial f_{1}}{\partial x_{1}}(p) \neq 0 \quad \text { for all } p \in U\right\} \tag{3.7.7}
\end{equation*}
$$

so we're reduced to proving Theorem 3.7.1 for maps $f: U \rightarrow \mathbb{R}^{n}$ having the property (3.7.6). Let $g: U \rightarrow \mathbb{R}^{n}$ be defined by

$$
\begin{equation*}
g\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}(x), x_{2}, \ldots, x_{n}\right) . \tag{3.7.8}
\end{equation*}
$$

Then

$$
\begin{equation*}
g^{*} x_{1}=f^{*} x_{1}=f_{1}\left(x_{1}, \ldots, x_{n}\right) \tag{3.7.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}(D g)=\frac{\partial f_{1}}{\partial x_{1}} \neq 0 \tag{3.7.10}
\end{equation*}
$$

Thus, by the inverse function theorem, g is locally a diffeomorphism at every point, $p \in U$. This means that if A is a compact subset of U we can cover A by a finite number of open subsets, $U_{i} \subset U$ such that g maps U_{i} diffeomorphically onto an open subset W_{i} in \mathbb{R}^{n}. To conclude the proof of the theorem we'll show that $\mathbb{R}^{n}-f\left(C_{f} \cap U_{i} \cap A\right)$ is a dense subset of \mathbb{R}^{n}. Let $h: W_{i} \rightarrow \mathbb{R}^{n}$ be the map $h=f \circ g^{-1}$. To prove this assertion it suffices by Remark 3.7.4 to prove that the set

$$
\mathbb{R}^{n}-h\left(C_{h}\right)
$$

is dense in \mathbb{R}^{n}. This we will do by induction on n. First note that for $n=1, C_{f}=C_{f}^{\sharp}$, so we've already proved Theorem 3.7.1 in dimension one. Now note that by (3.7.8), $h^{*} x_{1}=x_{1}$, i.e., h is a mapping of the form

$$
\begin{equation*}
h\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, h_{2}(x), \ldots, h_{n}(x)\right) . \tag{3.7.11}
\end{equation*}
$$

Thus if we let W_{c} be the set

$$
\begin{equation*}
\left\{\left(x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n-1} ;\left(c, x_{2}, \ldots, x_{n}\right) \in W_{i}\right\} \tag{3.7.12}
\end{equation*}
$$

and let $h_{c}: W_{c} \rightarrow \mathbb{R}^{n-1}$ be the map

$$
\begin{equation*}
h_{c}\left(x_{2}, \ldots, x_{n}\right)=\left(h_{2}\left(c, x_{2}, \ldots, x_{n}\right), \ldots, h_{n}\left(c, x_{2}, \ldots, x_{n}\right)\right) . \tag{3.7.13}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{det}\left(D h_{c}\right)\left(x_{2}, \ldots, x_{n}\right)=\operatorname{det}(D h)\left(c, x_{2}, \ldots, x_{n}\right) \tag{3.7.14}
\end{equation*}
$$

and hence

$$
\begin{equation*}
(c, x) \in W_{i} \cap C_{h} \Leftrightarrow x \in C_{h_{c}} . \tag{3.7.15}
\end{equation*}
$$

Now let $p_{0}=\left(c, x_{0}\right)$ be a point in \mathbb{R}^{n}. We have to show that every neighborhood, V, of p_{0} contains a point $p \in \mathbb{R}^{n}-h\left(C_{h}\right)$. Let $V_{c} \subseteq$ \mathbb{R}^{n-1} be the set of points, x, for which $(c, x) \in V$. By induction V_{c} contains a point, $x \in \mathbb{R}^{n-1}-h_{c}\left(C_{h_{c}}\right)$ and hence $p=(c, x)$ is in V by definition and in $\mathbb{R}^{n}-h\left(C_{n}\right)$ by (3.7.15).
Q.E.D.

Exercises for $\S 3.7$

1. (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the map $f(x)=\left(x^{2}-1\right)^{2}$. What is the set of critical points of f ? What is its image?
(b) Same questions for the map $f(x)=\sin x+x$.
(c) Same questions for the map

$$
f(x)=\left\{\begin{array}{ll}
0, & x \leq 0 \\
e^{-\frac{1}{x}}, & x>0
\end{array} .\right.
$$

2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an affine map, i.e., a map of the form

$$
f(x)=A(x)+x_{0}
$$

where $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear map. Prove Sard's theorem for f.
3. Let $\rho: \mathbb{R} \rightarrow \mathbb{R}$ be a \mathcal{C}^{∞} function which is supported in the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$ and has a maximum at the origin. Let r_{1}, r_{2}, \ldots, be an enumeration of the rational numbers, and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the map

$$
f(x)=\sum_{i=1}^{\infty} r_{i} \rho(x-i) .
$$

Show that f is a \mathcal{C}^{∞} map and show that the image of C_{f} is dense in \mathbb{R}. (The moral of this example: Sard's theorem says that the complement of C_{f} is dense in \mathbb{R}, but C_{f} can be dense as well.)
4. Prove the assertion made in Remark 3.7.2. Hint: You need to show that for every point $p \in \mathbb{R}^{n}$ and every neighborhood, V, of p, $\bigcap \mathcal{O}_{n} \cap V$ is non-empty. Construct, by induction, a family of closed balls, B_{k}, such that
(a) $B_{k} \subseteq V$
(b) $B_{k+1} \subseteq B_{k}$
(c) $B_{k} \subseteq \bigcap_{n \leq k} \mathcal{O}_{n}$
(d) radius $B_{k}<\frac{1}{k}$
and show that the intersection of the B_{k} 's is non-empty.
5. Verify (3.7.1).

[^0]: ${ }^{1}$ and by the author of these notes in his book with Alan Pollack, "Differential Topology"

[^1]: ${ }^{1}$ For $k=0, d f=0$ doesn't imply that f is exact. In fact "exactness" doesn't make much sense for zero forms since there aren't any " -1 " forms. However, if $f \in \mathcal{C}^{\infty}(U)$ and $d f=0$ then f is constant on connected components of U. (See § 2.1, exercise 2.)

