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Preface

Introduction

For most math undergraduates one’s first encounter with differential forms is the change
of variables formula in multivariable calculus, i.e. the formula

(1) J-Uf*qSldet]fIdx: Jv(pdy

In this formula, U and V are bounded open subsets of R”, ¢: V' — R is a bounded contin-
uous function, f: U — V is a bijective differentiable map, f*¢: U — R is the function
¢o f,and det] £(x) is the determinant of the Jacobian matrix.

~ | 9%
Jp(x) = [axj (x)] ,

As for the “dx” and “d y”, their presence in ([I]) can be accounted for by the fact that in single-
variable calculus, with U = (a,b), V = (¢,d), f: (a,b) — (c,d), and y = f(x) a C'function

with positive first derivative, the tautological equation % = % can be rewritten in the form

d(f*y) = f*dy

and ([1]) can be written more suggestively as

@) J, £@an=[ say

One of the goals of this text on differential forms is to legitimize this interpretation of
in n dimensions and in fact, more generally, show that an analogue of this formula
is true when U and V' are n-dimensional manifolds.

Another related goal is to prove an important topological generalization of the change
of variables formula (fff). This formula asserts that if we drop the assumption that f be a
bijection and just require f to be proper (i.e., that pre-images of compact subsets of V to be
compact subsets of U) then the formula ([]) can be replaced by

G [, 7 @dy) = deg() | ody

where deg(f) is a topological invariant of f that roughly speaking counts, with plus and
minus signs, the number of pre-image points of a generically chosen point of V.8

This degree formula is just one of a host of results which connect the theory of differ-
ential forms with topology, and one of the main goals of this book will explore some of the
other examples. For instance, for U an open subset of R%, we define Q°(U) to be the vector

't is our feeling that this formula should, like formula (f), be part of the standard calculus curriculum,
particularly in view of the fact that there now exists a beautiful elementary proof of it by Peter Lax (see [8,8,gl]).

v



Draft: March 28, 2018

vi Preface

space of C*® functions on U. We define the vector space Q'(U) to be the space of formal
sums

(4) frdx, + frdx;,

where f,, f, € C®(U). We define the vector space Q?(U) to be the space of expressions of
the form

(5) fdx; ndx, ,

where f € C®(U), and for k > 2 define QK(U) to the zero vector space.
On these vector spaces one can define operators

(6) d: Q'(U) -» Q")
by the recipes
() af = 9 ge + 9 gy
0x, 0x,
fori =0,
(8) d(fldx1+f2dx2)=(%—%> dx, Ndx
ox; 0Ox,

fori =1,and d = 0 fori > 1. It is easy to see that the operator
9) d*: QU) - ")
is zero. Hence,
im(d: Q7'(U) - Q'(U)) c ker(d: Q'(U) - Q*'(U)),

and this enables one to define the de Rham cohomology groups of U as the quotient vector
space

ker(d: Q'(U) —» Q*'(U))

im(d: Q71(U) - Q/(U))

It turns out that these cohomology groups are topological invariants of U and are, in
fact, isomorphic to the cohomology groups of U defined by the algebraic topologists. More-
over, by slightly generalizing the definitions in quations (4}, [5) and [7] to one can
define these groups for open subsets of R” and, with a bit more effort, for arbitrary C*
manifolds (as we will do in [Chapter 3)); and their existence will enable us to describe inter-
esting connections between problems in multivariable calculus and differential geometry
on the one hand and problems in topology on the other.

To make the context of this book easier for our readers to access we will devote the
rest of this introduction to the following annotated table of contents, chapter by chapter
descriptions of the topics that we will be covering.

(10) H'U) =

Organization

[Chapter 1: Multilinear algebra

As we mentioned above one of our objectives is to legitimatize the presence of the dx
and dy in formula ([f), and translate this formula into a theorem about differential forms.
However a rigorous exposition of the theory of differential forms requires a lot of algebraic
preliminaries, and these will be the focus of Chapter 1. We'll begin, in and 1.3, by
reviewing material that we hope most of our readers are already familiar with: the definition
of vector space, the notions of basis, of dimension, of linear mapping, of bilinear form, and
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of dual space and quotient space. Then in we will turn to the main topics of
this chapter, the concept of k-tensor and (the future key ingredient in our exposition of
the theory of differential forms in [Chapter 2)) the concept of alternating k-tensor. Those k
tensors come up in fact in two contexts: as alternating k-tensors, and as exterior forms, i.e.,
in the first context as a subspace of the space of k-tensors and in the second as a quotient
space of the space of k-tensors. Both descriptions of k-tensors will be needed in our later
applications. For this reason the second half of is mostly concerned with exploring
the relationships between these two descriptions and making use of these relationships to
define a number of basic operations on exterior forms such as the wedge product operation
(see §1.6), the interior product operation (see §1.7) and the pullback operation (see §1.§).
We will also make use of these results in to define the notion of an orientation for
an n-dimensional vector space, a notion that will, among other things, enable us to simplify
the change of variables formula (fil) by getting rid of the absolute value sign in the term
| det J¢.

[Chapter 2}: Differential Forms
The expressions in pquations (4), [5), [7) and [8] are typical examples of differential

forms, and if this were intended to be a text for undergraduate physics majors we would
define differential forms by simply commenting that theyre expressions of this type. We'll
begin this chapter, however, with the following more precise definition: Let U be an open
subset of R". Then a k-form w on U is a “function” which to each p € U assigns an element
of Ak(T; U), T,U being the tangent space to U at p, TP* U its vector space dual, and Ak(T; )

the k™ order exterior power of T;U. (It turns out, fortunately, not to be too hard to recon-
cile this definition with the physics definition above.) Differential 1-forms are perhaps best
understood as the dual objects to vector fields, and in and p.2 we elaborate on
this observation, and recall for future use some standard facts about vector fields and their
integral curves. Then in we will turn to the topic of k-forms and in the exercises
at the end of discuss a lot of explicit examples (that we strongly urge readers of
this text to stare at). Then in to p.7 we will discuss in detail three fundamen-
tal operations on differential forms of which we've already gotten preliminary glimpses in
the Equation (3) and Equations (5) to [9), namely the wedge product operation, the exterior
differential operation, and the pullback operation. Also, to add to this list in we
will discuss the interior product operation of vector fields on differential forms, a general-
ization of the duality pairing of vector fields with one-forms that we alluded to earlier. (In
order to get a better feeling for this material we strongly recommend that one take a look
at where these operations are related to the div, curl, and grad operations in
freshman calculus.) In addition this section contains some interesting applications of the
material above to physics, in to electrodynamics and Maxwell’s equation, as well
as to classical mechanisms and the Hamilton-Jacobi equations.

[Chapter 3: Integration of Forms

As we mentioned above, the change of variables formula in integral calculus is a special
case of a more general result: the degree formula; and we also cited a paper of Peter Lax
which contains an elementary proof of this formula which will hopefully induce future au-
thors of elementary text books in multivariate calculus to include it in their treatment of the
Riemann integral. In this chapter we will also give a proof of this result but not, regrettably,
Lax’s proof. The reason why not is that we want to relate this result to another result which
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will have some important de Rham theoretic applications when we get to [Chapter 5. To de-
scribe this result let U be a connected open set in R” and w = fdx; A--- A dx,, a compactly
supported n-form on U. We will prove:

Theorem 11. The integral jUw = jU fdx, ---dx, of w over U is zero if and only if w = dv
where v is a compactly supported (n — 1)-form on U.

An easy corollary of this result is the following weak version of the degree theorem:

Corollary 12. LetU andV be connected open subsets of R" and f : U — V a proper mapping.
Then there exists a constant 8( f) with the property that for every compactly supported n-form
wonV

Lf*wza(f)]vw.

Thus to prove the degree theorem it suffices to show that this §(f) is the deg( f) in formula
(B) and this turns out not to be terribly hard.

The degree formula has a lot of interesting applications and at the end of we
will describe two of them. The first, the Brouwer fixed point theorem, asserts that if B” is
the closed unit ball in R” and f: B" — B" is a continuous map, then f has a fixed point,
i.e. there is a point x;, € B" that gets mapped onto itself by f. (We will show that if this were
not true the degree theorem would lead to an egregious contradiction.)

The second is the fundamental theorem of algebra. If

pz) =ay+ayz+-+a, 2" + 2"

is a polynomial function of the complex variable z, then it has to have a complex root z;
satisfying p(z,) = 0. (We'll show that both these results are more-or-less one line corolaries
of the degree theorem.)

Chapter 4: Forms on Manifolds

In the previous two chapters the differential forms that we have been considering have
been forms defined on open subsets of R”. In this chapter we'll make the transition to forms
defined on manifolds; and to prepare our readers for this transition, include at the beginning
of this chapter a brief introduction to the theory of manifolds. (It is a tradition in under-
graduate courses to define n-dimensional manifolds as #n-dimensional submanifolds of RN,
i.e., as n-dimensional generalizations of curves and surfaces in R?, whereas the tradition in
graduate level courses is to define them as abstract entities. Since this is intended to be a text
book for undergraduates, we'll adopt the first of these approaches, our reluctance to doing
so being somewhat tempered by the fact that, thanks to the Whitney embedding theorem,
these two approaches are the same.) In section we will review a few general facts
about manifolds, in section Fection 4.2, define the crucial notion of the tangent space T, X
to a manifold X at a point p and in sections and [1.4 show how to define dif-
ferential forms on X by defining a k-form to be, as in §2.4, a function w which assigns to
each p € X an element w,, of A¥ (T X). Then in we will define what it means
for a manifold to be oriented and in show that if X is an oriented n-dimensional
manifold and w a compactly supported n-form, the integral of w is well-defined. Moreover,
we'll prove in this section a manifold version of the change of variables formula and in
prove manifold versions of two standard results in integral calculus: the divergence
theorem and Stokes theorem, setting the stage for the main results of Chapter 4: the mani-
fold version of the degree theorem (see §4.7) and a number of applications of this theorem
(among them the Jordan-Brouwer separation theorem, the Gauss-Bonnet theorem and the

Index theorem for vector fields (see and [.9).
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[Chapter 3: Cohomology via Forms
Given an n-dimensional manifold let Q¥(X) be the space of differential forms on X of
degree k, let d: OF(X) — QF1(X) be exterior differentiation and let H*(X) be the k" de
Rham cohomology group of X: the quotient of the vector space

ZK(X) = ker(d: OF(X) - QF1(X))

by the vector space
BY(X) = im(d: Q"(X) - Q*(X)).

In we will make a systematic study of these groups and also show that some of
the results about differential forms that we proved in earlier chapters can be interpreted as
cohomological properties of these groups. For instance, in we will show that
the wedge product and pullback operations on forms that we discussed in gives
rise to analogous operations in cohomology and that for a compact oriented n-dimensional
manifold the integration operator on forms that we discussed in gives rise to a
pairing

H*(X) x H"*(X) - R,
and in fact more generally if X is non-compact, a pairing
(13) HE(X) x H"5(X) > R,

where the groups H:(X) are the DeRham cohomology groups that one gets by replacing
the spaces of differential forms ((X) by the corresponding spaces Q.(X) of compactly sup-
ported differential forms.

One problem one runs into in the definition of these cohomology groups is that since
the spaces QF(X)and Q’C‘ (X) areinfinite dimensional in general, there’s no guarantee that the
same won't be the case for the spaces H k(X) and H f (X), and we'll address this problem in
Bection 5.3. More explicitly, we will say that X has finite topology if it admits a finite covering

by open sets Uy, ... Uy such that for every multi-index I = (i}, ...,i;), where 1 < i, < N,
the intersection
(14) Up=U, n---nU,

is either empty or is diffeomorphic to a convex open subset of R”. We will show that if X has
finite topology, then its cohomology groups are finite dimensional and, secondly, we will
show that many manifolds have finite topology. (For instance, if X is compact then X has

finite topology; for details see andE.3.)

We mentioned above that if X is not compact it has two types of cohomology groups:
the groups H*(X) and the groups H* *(X). In we will show that if X is oriented
then for v € QF(X) and w € Q?’k(X) the integration operation

(v, w) — JXVAw

gives rise to a pairing
H¥(X) x H'%(X) - R,
and that if X is connected this pairing is non-degenerate, i.e., defines a bijective linear trans-
formation
H'*(X) =~ H(X)* .
This results in the Poincaré duality theorem and it has some interesting implications which

we will explore in to p.7. For instance in we will show that if Y and

Z are closed oriented submanifolds of X and Z is compact and of codimension equal to
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the dimension of Y, then the intersection number I(Y,Z) of Y and Z in X is well-defined
(no matter how badly Y and Z intersect). In we will show that if X is a compact
oriented manifold and f: X — X a C® map one can define the Lefschetz number of f as
the intersection number I(Ay, graph( f)) where Ay is the diagonal in X x X, and view this
as a “topological count” of the number of fixed points of the map f.

Finally in we will show that if X has finite topology (in the sense we de-
scribed above), then one can define an alternative set of cohomology groups for X, the Cech
cohomology groups of a cover U, and we will sketch a proof of the association that this Cech
cohomology and de Rham cohomology coincide, leaving a lot of details as exercises (how-
ever, with some hints supplied).

Appendices

In we review some techniques in multi-variable calculus that enable one to
reduce global problems to local problems and illustrate these techniques by describing some
typical applications. In particular we show how these techniques can be used to make sense
of “improper integrals” and to extend differentiable maps f: X — R on arbitrary subsets
X ¢ R™ to open neighborhoods of these sets.

In we discuss another calculus issue: how to solve systems of equations

fix)=n

@) = yy

for x in terms of y (here fi, ..., fy are differentiable functions on an open subset of R"). To
answer this question we prove a somewhat refined version of what in elementary calculus
texts is referred to as the implicit function theorem and derive as corollaries of this theorem
two results that we make extensive use of in [Chapter 4: the canonical submersion theorem
and the canonical immersion theorem.

Finally, in we discuss a concept which plays an important role in the for-
mulation of the “finite topology” results that we discussed in [Chapter 3, namely the concept
of a “good cover”. In more detail let X be an n-dimensional manifold an let U = {U,} ; be
a collection of open subsets of X with the property that | J,., U, = X.

Then U is a good cover of X if for every finite subset

fog, ..o} I

the intersection U, N -+ NU,_is either empty or is diffeomorphic to a convex open subset

of R".In we will prove that good covers always exist.

Notational Conventions

Below we provide a list of a few of our common notational conventions.

= used to define a term; the term being defined appears to the left of the colon
C subset
— denotes an map (of sets, vector spaces, etc.)
< inclusion map
—» surjective map
= a map that is an isomorphism
~ difference of sets: if A ¢ X, then X ~ A is the complement of A in X
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CHAPTER 1

Multilinear Algebra

1.1. Background

We will list below some definitions and theorems that are part of the curriculum of a
standard theory-based course in linear algebra.l

Definition 1.1.1. A (real) vector space is a set V the elements of which we refer to as vectors.
The set V is equipped with two vector space operations:

(1) Vector space addition: Given vectors v,,v, € V one can add them to get a third vector,
Uy + U,

(2) Scalar multiplication: Given a vector v € V and a real number A, one can multiply v by
A to get a vector Av.

These operations satisfy a number of standard rules: associativity, commutativity, dis-
tributive laws, etc. which we assume youre familiar with. (See Exercise 1.1.i.) In addition
we assume that the reader is familiar with the following definitions and theorems.

(1) The zero vector in V is the unique vector 0 € V with the property that for every vector
veV,wehavev+0=0+v =vand Av = 0if A € Ris nonzero.

(2) Linear independence: A (finite) set of vectors, vy, ..., vy € V is linearly independent if
the map

(1.1.2) RFE SV, (cpy.oonch) — €Uy + - + UL
is injective.
(3) A (finite) set of vectors vy, ..., vy € V spans V if the map ([L.1.2) is surjective.
(4) Vectors vy, ...,v, € V are a basis of V if they span V and are linearly independent; in

other words, if the map ([L.1.2)) is bijective. This means that every vector v can be written
uniquely as a sum

(1.1.3) v= ZC,-vi .

(5) IfV isavector space with a basis vy, ..., vy, then V is said to be finite dimensional, and k
is the dimension of V. (It is a theorem that this definition is legitimate: every basis has to
have the same number of vectors.) In this chapter all the vector spaces we'll encounter
will be finite dimensional. We write dim(V') for the dimension of V.

(6) AsubsetU c V isasubspace if it is vector space in its own right, i.e., for allv,v;,v, € U
and A € R, both Avand v; + v, are in U (where the addition and scalar multiplication
is given as vectors of V).

(7) LetV and W be vector spaces. Amap A: V — W is linear if for v,v;,v, € Uand A € R
we have

(1.1.4) A(Av) = AAv
Such a course is a prerequisite for reading this text.

1
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and
A(v, +v,y) = Avy + Av, .

(8) Let A: V. — W be a linear map of vector spaces. The kernel of A is the subset of V

defined by
ker(A) ={veV|A(w) =0},

i.e, is the set of vectors in V which A sends to the zero vector in W. By
and ftem 7, the subset ker(A) is a subspace of V.

(9) By (L:1.4) and () the set-theoretic image im(A)of A is a subspace of W. We call im(A)
the image A of A. The following is an important rule for keeping track of the dimensions
of ker A and im A:

(1.1.5) dim(V) = dim(ker(A)) + dim(im(A)) .

(10) Linear mappings and matrices: Let vy, ..., v, be abasis of V and wy, ..., w,, a basis of W.
Then by ([.1.3) Av; can be written uniquely as a sum,

m
(1.1.6) AUJ = ch‘)jwi 5 Ci,j € R .
i=1
The m x n matrix of real numbers, [c; j], is the matrix associated with A. Conversely,
given such an m x n matrix, there is a unique linear map A with the property ([.1.9).
(11) An inner product on a vector space is a map

B: VxV —->R

with the following three properties:
(a) Bilinearity: For vectors v, v, v,,w € V and A € R we have

B(v; + v,, w) = B(v;, w) + B(v,, w)

and
B(Av,w) = AB(v,w) .
(b) Symmetry: For vectors v,w € V we have B(v, w) = B(w, v).
(c) Positivity: For every vector v € V we have B(v,v) > 0. Moreover, if v # 0 then
B(v,v) > 0.

Remark 1.1.7. Notice that by property (L1H), property (jL.1d) is equivalent to
B(w, Av) = AB(w, v)

and
B(w,v; +v,) = B(w,v;) + B(w, v,) .

Example 1.1.8. The map ([L.1.2) is a linear map. The vectors vy, ..., v span V if its image of
this map is V, and the vy, ..., vy are linearly independent if the kernel of this map is the zero
vector in R,

The items on the list above are just a few of the topics in linear algebra that we're assum-
ing our readers are familiar with. We have highlighted them because they’re easy to state.
However, understanding them requires a heavy dollop of that indefinable quality “mathe-
matical sophistication’, a quality which will be in heavy demand in the next few sections of
this chapter. We will also assume that our readers are familiar with a number of more low-
brow linear algebra notions: matrix multiplication, row and column operations on matrices,
transposes of matrices, determinants of n x n matrices, inverses of matrices, Cramer’s rule,
recipes for solving systems of linear equations, etc. (See [[Ld, §$1.1 & 1.2] for a quick review
of this material.)



Draft: March 28, 2018

§1.2 Quotient spaces & dual spaces 3

Exercises for
Exercise 1.1.i. Our basic example of a vector space in this course is R” equipped with the
vector addition operation
(ap,....a,) + (by,...b,) =(a, + by, ...,a,+b,)

and the scalar multiplication operation

May,....a,) = (Aa, ..., Aa,) .
Check that these operations satisfy the axioms below.
(1) Commutativity: v+ w = w + v.
(2) Associativity: u+ (v +w) = (U +v) + w.
(3) For the zero vector 0 := (0, ...,0) wehavev + 0 = 0 + v.
(4) v+ (-v=0.
(5) lv=vw.
(6) Associative law for scalar multiplication: (ab)v = a(bv).
(7) Distributive law for scalar addition: (a + b)v = av + bv.
(8) Distributive law for vector addition: a(v + w) = av + aw.

Exercise 1.1.ii. Check that the standard basis vectors of R":¢; = (1,0,...,0),e, = (0,1,0,...,0),
etc. are a basis.

Exercise 1.1.iii. Check that the standard inner product on R”

B((@y, s y)s (bys o onb)) = Y iy

i=1

is an inner product.

1.2. Quotient spaces & dual spaces

In this section we will discuss a couple of items which are frequently, but not always,
covered in linear algebra courses, but which we’ll need for our treatment of multilinear al-

gebra in to[..§.
The quotient spaces of a vector space
Definition 1.2.1. Let V be a vector space and W a vector subspace of V. A W-coset is a set

of the form
v+W={v+w|lweW}.

It is easy to check that if v; — v, € W, the cosets v; + W and v, + W, coincide while if
v, -, ¢ W, the cosetsv; + W and v, +W are disjoint. Thus the distinct W-cosets decompose
V into a disjoint collection of subsets of V.

Notation 1.2.2. Let V be a vector space and W C V a subspace. We write V//W for the set
of distinct W-cosets in V.

Definition 1.2.3. Let V be a vector space and W ¢ V a subspace. Define a vector addition
operation on V//W by setting

(1.2.4) (V +W)+ (U + W) = (v, +vy) + W
and define a scalar multiplication operation on V/W by setting
(1.2.5) AMuv+W) = (Alv) + W.

These operations make V /W into a vector space, called quotient space of V by W.
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It is easy to see that the operations on V/W from are well-defined. For
instance, suppose v; + W = v} + W and v, + W = v} + W. Then v, — v} and v, — v} are in
W, so

(v +v,) — (V] +V)) eW,
and hence (v; +v,) + W = (V] +v}) + W.
Definition 1.2.6. Let V be a vector space and W ¢ V a subspace. Define a map quotient
map

(1.2.7) Vo V/W

by setting 71(v) == v + W. It is clear from pquations (1.2.4) and [1.2.5] that 7 is linear, and
that it maps V' surjectively onto V//W.

Observation 1.2.8. Note that the zero vector in the vector space V/W is the zero coset
0+W = W. Hencev € ker(n) if and only if v + W = W, ie, v € W. In other words,
ker(m) = W.

In the Definitions 1.2.3 and i.2.4, V and W do not have to be finite dimensional, but if
they are then by we have
dim(V /W) = dim(V) — dim(W) .

We leave the following easy proposition as an exercise.

Proposition 1.2.9. Let A: V — U a linear map of vector spaces. If W C ker(A) there exists
a unique linear map A% : V/W — U with the property that A = A% o t, where t: V. — VW
is the quotient map.

The dual space of a vector space

Definition 1.2.10. Let V be a vector space. Write V* the set of all linear functions £: V' — R.
Define a vector space structure on V* as follows: if £, £, € V*, then define the sum ¢, + ¢,
to be the map V' — R given by

(€, + 6)(V) = £,(v) + £, (v)
which is clearly is linear. If £ € V* is a linear function and A € R, define A€ by
AO)() = A- €(v) ;

then A¢ is clearly linear.
The vector space V* is called the dual space of V.

Suppose V is n-dimensional, and let e, ..., e, be a basis of V. Then every vector v € V
can be written uniquely as a sum

v=ce + - +ce,, ¢ €R.
Let
(1.2.11) ef(v) =¢.
Ifv=ce + +cue,and v’ =cle; +---+ce, thenv+v' = (c; +¢})e; + -+ +(c, +c)e,, sO
efw+v')=c+c =¢ () +ef (V).
This shows that e/ (v) is a linear function of v and hence e} € V'*.

Claim 1.2.12. IfV is an n-dimensional vector space with basis e,, ..., e,, then e}, ..., e, is a
basis of V*.
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Proof. First of all note that by (fL.2.11])

i+j.
If¢ € V*let A; = £(e;) and let &' = Y Ase. Then by (.2.13)

1, i=j
(1.2.13) ei*(ej) = {0 J

'(e;) = ) hief(e;) = A = €(e))
i=1

i.e., € and €' take identical values on the basis vectors, e;. Hence =2,

Suppose next that Y., A;ef = 0. Then by (L.2.13), A; = (3, Aief)(e;) = 0 for j =
1,...,n. Hence the vectors e}, ..., e;, are linearly independent. O

Let V and W be vector spaces and A: V. — W, a linear map. Given £ € W* the com-
position, € o A, of A with the linear map, £: W — R, is linear, and hence is an element of
V*. We will denote this element by A*¢, and we will denote by

A" WF -V
the map, € — A*¢. It is clear from the definition that
A*(8, + £,) = A", + A*¢,

and that
AT (M) = LA™ ¢,

i.e., that A* is linear.

Definition 1.2.14. Let V and W be vector spaces and A: V — W, alinear map. We call the
map A*: W* — V* defined above the transpose of the map A.

We conclude this section by giving a matrix description of A*. Let e, ..., e, be a basis
of Vaand f,,..., f,, a basis of W; lete],...,e; and f*,..., f, be the dual bases of V* and
W*. Suppose A is defined in terms of ey, ..., e, and fi, ..., f,, by the m x n matrix, [a; ;], i.e.,
suppose

n
Ae; = Zai,jfi .
i=1

Claim 1.2.15. The linear map A* is defined, in terms of {1, ..., f, and e, ..., e by the trans-
pose matrix (a j,,-).

Proof. Let
m
A*f;'* = Z Cj)ie]:k .
=1
Then
A" (g) = Z criek (ej) = cj;
k=1
by (.2.13). On the other hand
m m
A*fi*(ej) = fi*(Aej) =f (Z ak,jfk) = Z ak,jfi*(fk) =4a;j
k=1 k=1

SO al‘)]‘ = Cj,i' l:l
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Exercises for
Exercise 1.2.i. Let V be an n-dimensional vector space and W a k-dimensional subspace.
Show that there exists a basis, ey, ..., e, of V with the property thate,, ..., e is a basis of W.
Hint: Induction on n — k. To start the induction suppose thatn — k = 1. Letey, ..., e,_;
be a basis of W and e,, any vector in V ~ W.

Exercise 1.2.ii. In show that the vectors f; = m(e,;),i = 1,...,n —karea
basis of V/W, where n: V' — V//W is the quotient map.

Exercise 1.2.iii. In let U be the linear span of the vectors e, ,; fori = 1, ..., n—k.
Show that the map
U-sVIW, u—nu),

is a vector space isomorphism, i.e., show that it maps U bijectively onto V /W.

Exercise 1.2.iv. Let U, V and W be vector spaces andlet A: V — Wand B: U — V be
linear mappings. Show that (AB)* = B*A*.

Exercise 1.2.v. Let V = R? and let W be the x, -axis, i.e., the one-dimensional subspace
{(x;,0)|x; € R}

of R%.

(1) Show that the W-cosets are the lines, x, = a, parallel to the x; -axis.

(2) Show that the sum of the cosets, “x, = a” and “x, = b” is the coset “x, =a +b".

(3) Show that the scalar multiple of the coset, “x, = ¢” by the number, A, is the coset, “x, =
A

Exercise 1.2.vi.

(1) Let (V*)* be the dual of the vector space, V*. For every v € V,letev,: V* — Rbe the
evaluation function ev,(¢) = £(v). Show that the ev,, is a linear function on V*, i.e., an
element of (V*)*, and show that the map

(1.2.16) ev=ev_,: V> V"), vi>ev
(=) v

is a linear map of V into (V*)*.

(2) IfV is finite dimensional, show that the map ([L.2.16) is bijective. Conclude that there is
a natural identification of V with (V*)*, i.e,, that V and (V*)* are two descriptions of
the same object.

Hint: dim(V*)* = dimV* = dimV, so by it suffices to show that
(£:2:19) is injective.

Exercise 1.2.vii. Let W be a vector subspace of a finite dimensional vector space V and let
Wt={¢eV*|e(w)=0forallwe W}.

W+ is called the annihilator of W in V*. Show that W+ is a subspace of V* of dimension
dimV - dimW.

Hint: By we can choose a basis, e, ..., e, of V such that e, ...e is a basis
of W. Show thatef, |, ..., e} is a basis of W,

Exercise 1.2.viii. Let V and V' be vector spaces and A: V — V' alinear map. Show that if
W C ker(A), then there exists a linear map B: V/W — V' with the property that A = Bor
(where 7 is the quotient map ([t.2.7)). In addition show that this linear map is injective if
and only if ker(A) = W.
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Exercise 1.2.ix. Let W be a subspace of a finite dimensional vector space, V. From the
inclusion map, 1: W+ — V*, one gets a transpose map,

S (V) — (WJ_)*
and, by composing this with (.2.16), a map

Foev: V- (WH*.
Show that this map is onto and that its kernel is W. Conclude from that

there is a natural bijective linear map
v: V/IW = (WH)*

with the property verr = 1* oev. In other words, V/W and (W*)* are two descriptions of the
same object. (This shows that the “quotient space” operation and the “dual space” operation
are closely related.)

Exercise 1.2.x. Let V} and V, be vector spaces and A: V; — V, alinear map. Verify that for
the transpose map A* : V;* — V{* we have:

ker(A*) = im(A)*
and

m(A*) = ker(A)*.
Exercise 1.2.xi. Let V be a vector space.
(1) Let B: VxV — Rbe an inner producton V. For v € V let

¢,:V-oR
be the function: £,(w) = B(v, w). Show that €, is linear and show that the map

(1.2.17) L: VoSV, u- ¢,

is a linear mapping.
(2) IfV isfinite dimensional, prove that L bijective. Conclude that if V has an inner product
one gets from it a natural identification of V with V*.

Hint: Since dim V' = dim V'™ it suffices by to show that ker(L) = 0.

Now note that if v # 0 £,(v) = B(v, v) is a positive number.

Exercise 1.2.xii. Let V be an n-dimensional vector space and B: V x V' — R an inner
product on V. A basis, ey, ..., e, of V is orthonormal if

1, i=j
1.2.18 Ble;,e;) =
(1.2.18) (ere) {0) o

(1) Show that an orthonormal basis exists.
Hint: By induction let e, ..., e, be vectors with the property (.2.1§) and let v be a
vector which is not a linear combination of these vectors. Show that the vector

k
w=v- Z B(e;, v)e;
i=1

1
is nonzero and is orthogonal to the e;’s. Now let e, ; = Aw, where A = B(w, w) 2.
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(2) Letey,...e, and e], ...e], be two orthonormal bases of V and let

Show that
n .
1, j=k
1.2.1 a; :a;; =
( 9) Z i,j%,k {0’ ]?ék
(3) Let A be the matrix [a; ;]. Show that can be written more compactly

as the matrix identity

(1.2.20) AAT =id,

i=1

where id,, is the n x n identity matrix.
(4) Letey,...,e, be an orthonormal basis of V and e, ..., e;; the dual basis of V*. Show that

the mapping ([.2.17) is the mapping, Le; = ¢/, i =1, ...n.
1.3. Tensors

Definition 1.3.1. LetV be an n-dimensional vector space and let V* be the set of all k-tuples
(vq5 .-, Ug), where vy, ..., v, € V, that is, the k-fold direct sum of V with itself. A function

T:Vk SR

is said to be linear in its i variable if, when we fix vectors, vy, ..., U;_j, Uj,, ..., Uy, the map
V' — R defined by

(1.3.2) U= T, o0 Ui Uy Ui g - Ug)

is linear.

If T is linear in its i" variable for i = 1,...,k it is said to be k-linear, or alternatively
is said to be a k-tensor. We write 75(V) for the set of all k-tensors in V. We will agree that
0-tensors are just the real numbers, that is 7°(V) =R

Let T}, T,: VK — R be linear functions. It is clear from (.3.3) that if T; and T, are
k-linear, so is T} + T,. Similarly if T is k-linear and A is a real number, AT is k-linear. Hence
7X(V) is a vector space. Note that for k = 1, “k-linear” just means ‘linear”, so 2MWV)=V*.

Definition 1.3.3. Letn and k be positive integers. A multi-index of n of length k is a k-tuple
I=(i,...,i) of integers with 1 <i, <mforr=1,...,k.

Example 1.3.4. Letnbe a positive integer. The multi-indices of n of length 2 are in bijection
the square of pairs of integers integers

G,j), 1<ij<n,
and there are exactly n? of them.

We leave the following generalization as an easy exercise.

Lemma 1.3.5. Letnand k be positive integers. There are exactly n* multi-indices of n of length

k.

Now fix a basis e, ..., e, of V. For T € Z¥(V) write
(136) TI = T(eil, cees eik)

for every multi-index I of length k.



Draft: March 28, 2018

§1.3 Tensors 9
Proposition 1.3.7. The real numbers Ty determine T, i.e., if T and T' are k-tensors and T; =
T forall I, then T =T".

Proof. By induction on n. For n = 1 we proved this result in §1.1). Let’s prove that if this
assertion is true for n — 1, it is true for n. For each ¢; let T; be the (k — 1)-tensor

Ve V) P T, o0, 15 6)

Then for v = c;e; + -+ c,e,
n
T ..Uy 0) = ZCiTi(Up cerUp_1)
i=1

so the T;’s determine T. Now apply the inductive hypothesis. O

The tensor product operation

Definition 1.3.8. If T} is a k-tensor and T;, is an £-tensor, one can define a k + ¢-tensor,
T, ® T,, by setting

(Ty ®T) (V15 s Ugyp) = T1(V15 s V) Ty (Vg1 > Upeae) -

This tensor is called the tensor product of T} and T,,.

We note that if T} is a O-tensor, i.e., scalar, then tensor product with T) is just scalar
multiplication by T}, and similarly if T, is a O-tensor. Thatisa® T = T®a = aT fora € R
and T € 7K(V).

Properties 1.3.9. Suppose that we are given a k; -tensor T}, a k,-tensor T,, and a k;-tensor
T; on a vector space V.

(1) Associativity: One can define a (k; + k, + k;)-tensor T} ® T, ® T; by setting
(1 @ T, @ T3) (V15 s Vo) = Ty (V1 s U Ty (Uper 15 -5 U ) T3 (Vg p415 -0 Uk pam) -

Alternatively, one can define T} ® T, ® T3 by defining it to be the tensor product of
(T, ® T,) ® T; or the tensor product of T} ® (T, ® T3). It is easy to see that both these
tensor products are identical with T} ® T, ® Tj:

(I19T,)T;=T0T,0T, =T, (T, ®T3) .

(2) Distributivity of scalar multiplication: We leave it as an easy exercise to check that if A is
a real number then

MI1®T,) =(AT))®T, =T, ® (AT,)
(3) Left and right distributive laws: If k; = k,, then
N+0)e =TT+ T,0T;
and if k, = k5, then
T'0(TL,+T5) =TT, +T, ®T; .

A particularly interesting tensor product is the following. Fori = 1,...,klet ¢; € V*
and let

(1.3.10) T=0,0---®¢.
Thus, by definition,
(1.3.11) Ty .. vg) = €1(vy) - € (vy) .
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A tensor of the form ([.3.11)) is called a decomposable k-tensor. These tensors, as we will
see, play an important role in what follows. In particular, let e;, ..., e, be a basis of V and
ey, ..., e, the dual basis of V*. For every multi-index I of length k let

ef =€ @ ®¢ .
Then if ] is another multi-index of length k,

1, I=]
0, I+]

by (L.2.13), (.3:1d) and ([.3.11)). From ([t.3.12)) it is easy to conclude:

(1.3.12) er(ej,....e;) = ‘[

Theorem 1.3.13. Let V be a vector space with basis ey, ...,e, and 0 < k < n be an integer.

The k-tensors ef of (.3.12) are a basis of (V).
Proof. GivenT € 75V, let
T' =) Tref
I
where the T;’s are defined by ([.3.4). Then

(1.3.14) T’(ejl, €)= ;Tlel*(ejl, ne;) =T,

by (L.3:17); however, by the T)’s determine T', so T' = T. This proves that

the e}’s are a spanning set of vectors for Z¥(V). To prove they’re a basis, suppose
Z CIe}( = 0
i

for constants, C; € R. Then by (1.3.14) with T' = 0, C; = 0, so the e s are linearly indepen-
dent. O

As we noted in [[emma 1.3.5, there are exactly #* multi-indices of length k and hence
#* basis vectors in the set {e};, so we have proved

Corollary 1.3.15. Let V be an n-dimensional vector space. Then dim(ZF(V)) = nk,

The pullback operation

Definition 1.3.16. Let V and W be finite dimensional vector spaces and let A: V — W be
a linear mapping. If T € (W), we define

A*T: VF SR
to be the function
(1.3.17) (A*T)(vy, .., vp) = T(Avy, ..., Avg) .

It is clear from the linearity of A that this function is linear in its i variable for all 7, and
hence is a k-tensor. We call A*T the pullback of T by the map A.

Proposition 1.3.18. The map
A% TFW) > 7ZF(V), T — A*T,

is a linear mapping.
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We leave this as an exercise. We also leave as an exercise the identity
(1.3.19) A"(T; 0 T,) = A*(T}) ® A*(T,)

for T € 7¥(W) and T, € L™ (W). Also, if U is a vector space and B: U — V a linear
mapping, we leave for you to check that

(1.3.20) (AB)*T = B*(A*T)
forall T € TF(W).
Exercises for

Exercise 1.3.i. Verify that there are exactly n* multi-indices of length k.

Exercise 1.3.ii. Prove Proposition 1.3.18.
Exercise 1.3.iii. Verify pquation (1.3.19).
Exercise 1.3.iv. Verify quation (1.3.20].

Exercise 1.3.v. Let A: V — W be a linear map. Show that if ¢;,i = 1, ..., k are elements of
W*

A, ®--®8)=A"(£)® - @A™ (€,) .
Conclude that A* maps decomposable k-tensors to decomposable k-tensors.

Exercise 1.3.vi. Let V be an n-dimensional vector space and ¢;, i = 1,2, elements of V*.
Show that ¢; ® ¢, = ¢, ® ¢, if and only if ¢, and ¢, are linearly dependent.
Hint: Show that if £, and ¢, are linearly independent there exist vectors, v;, 7 =, 1,2 in

V with property
1, i=j
Ei(vj) = ‘[ g

0, i#j.
Now compare (¢, ® £,)(v;,0,) and (£, ® £;)(v;,v,). Conclude that if dim V' > 2 the tensor
product operation is not commutative, i.e., it is usually not true that £, ® £, = £, ® £,.

Exercise 1.3.vii. Let T be a k-tensor and v a vector. Define T, : V¥™! — R to be the map
(1.3.21) T,V .0 V) =T (0,015 ., Ug_y) -
Show that T}, is a (k — 1)-tensor.
Exercise 1.3.viii. Show thatif T} is an r-tensor and T, is an s-tensor, then if # > 0,
(ToT),=(T),®T,.

Exercise 1.3.ix. Let A: V — W be a linear map mapping, and v € V. Write w := Av. Show
that for T € Z5(W), A*(T,) = (A*T),.

1.4. Alternating k-tensors

We will discuss in this section a class of k-tensors which play an important role in multi-
variable calculus. In this discussion we will need some standard facts about the “permutation
group”. For those of you who are already familiar with this object (and I suspect most of you
are) you can regard the paragraph below as a chance to re-familiarize yourselves with these
facts.
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Permutations

Definition 1.4.1. Let % be the k-element set X, = {1,2,...,k}. A permutation of order
k is a bijecton 0: X, > X. Given two permutations o, and o,, their product 0,0, is the
composition of g, © 0,, i.e., the map,

i ay(0,()) .

For every permutation o, one denotes by o™ the inverse permutation given by the inverse
bijection of 0, i.e., defined by

o(i)=j & o'(j)=i.
Let S; be the set of all permutations of order k. One calls S, the permutation group of % or,
alternatively, the symmetric group on k letters.

It is easy to check the following.
Lemma 1.4.2. The group Sy has k! elements.

Definition 1.4.3. Let k be a positive integer. For every 1 <i < j < k, let 7; ; be the permu-
tation

Jj» €=i
6, C#ij.

The permuation 7; ; is called a transposition, and if j = i+ 1, then 7; ; is called an elementary
transposition.

Theorem 1.4.4. Every permutation in S can be written as a product of (a finite number of)
transpositions.

Proof. We prove this by induction on k. The base case when k = 2 is obvious.

For the induction step, suppose that we know the claim for S;_;. Given 0 € S, we
have o(k) = i if and only if 7; 0(k) = k. Thus 7;,0 is, in effect, a permutation of X;_,. By
induction, 7; ;0 can be written as a product of transpositions, so

0 = 74(7;40)
can be written as a product of transpositions. O
Theorem 1.4.5. Every transposition can be written as a product of elementary transpositions.
Proof. Lett =1, i < j. With i fixed, argue by induction on j. Note that for j > i + 1

Tij = Tj-1,jTij-1Tj-1, -

Now apply the inductive hypothesis to T; O

i,j—1-
Corollary 1.4.6. Every permutation can be written as a product of elementary transpositions.

The sign of a permutation

Definition 1.4.7. Let x;, ..., x; be the coordinate functions on R¥. For o € S; we define

Xy — X
(1.4.8) (-1)° = H Tol) o)
i<j XX

Notice that the numerator and denominator in ([t.4.§) are identical up to sign. Indeed,

if p = 0(i) < 0(j) = g, the term, X, — X, Occurs once and just once in the numerator and

once and just once in the denominator; and if g = o(i) > o(j) = p, the term, X, = Xg> OCCULS
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once and just once in the numerator and its negative, x, — x,, once and just once in the
numerator. Thus

(-1) = +1.
In light of this, we call (1) the sign of 0.
Claim 1.4.9. Foro,T € S, we have
(D7 = (=D7(-D".
That is, the sign defines a group homomorphism S, — {£1}.
Proof. By definition,

(—I)UT _ 1—[ Xor() ~ xar(j) .
X; — X

i<j j

We write the right hand side as a product of

Koy — X
H (i) T(]) —_ (_1)1
i<j T

and

(1 4 10) xzrr(i) - xor(j)

i<j X)) T *r(j)

Fori < j,let p = 7(i) and g = 7(j) when 7(i) < 7(j) and let p = 7(j) and q = 7(i) when
7(j) < 7(i). Then
Xou(i) = Xo1(j) _ Xa(p) ~ *a(g)

Xe(i) ~ Xa(j) Xp~%q
(i.e., if 7(i) < 7(j), the numerator and denominator on the right equal the numerator and
denominator on the left and, if 7(j) < 7(i) are negatives of the numerator and denominator

on the left). Thus becomes

Xg(p) — X,
1—[ olp) — Tolg) _ (-1)°. 0
p<q *p ™%

We'll leave for you to check that if 7 is a transposition, (—1)* = —1 and to conclude from
this:

Proposition 1.4.11. If o is the product of an odd number of transpositions, (-1)° = —1 and
if o is the product of an even number of transpositions (—1)° = +1.
Alternation

Definition 1.4.12. Let V be an n-dimensional vector space and T' € 1k(v) a k-tensor. For
0 €Sy, define T7 ¢ 7¥(V) to be the k-tensor

(1.4.13) T7(vgs s V) = T(Ug-1(1)5 5 Vg1 (i) -

Proposition 1.4.14.
(1) IfT = fl ® .- ®€k’ gi € V*, then TG = a(1) ® - ®€O'(k)

(2) The assignment T v T¢ is a linear map 5(V) - 2EWV).
(3) Ifo,7 € Sy, we have T°F = (T°)".
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Proof. To ([1]), we note that by
(f] Q- ® fk)a(vl, vees Uk) = €1(v(771(1)) Ek(va’l(k)) .
Setting o71G) = g, the i term in this product is Ea(q)(vq); so the product can be rewritten
as
€0(1)(Ul)...€g(k)(vk)

or

(80(1) ®--Q €U(k))(vl, ...,Uk) .
We leave the proof of (B)) as an exercise.

Now we prove (). Let T = £, ® -+ ® €. Then
TG = 30(1) ® - ®€0(k) = E{ ® .- ®€l,c
where £ = £,(;). Thus
(TU)T = 54(1) Q- ® g‘:’(k) .

Butif (i) = j, €7(;) = Ly(x(jy)- Hence

(TU)TEO.T(I) R ® ear(k) = TUT . |:|

Definition 1.4.15. Let V be a vector space and k > 0 an integer. A k-tensor T € W) is
alternating if T° = (-1)°T for all o € ;.

We denote by AX(V) the set of all alternating k-tensors in FW). By (f]) this set is a
vector subspace of xWV).

It is not easy to write down simple examples of alternating k-tensors. However, there is
a method, called the alternation operation Alt for constructing such tensors.

Definition 1.4.16. Let V be a vector space and k a nonnegative integer. The alternation
operation on 7¥(V) is defined as follows: givenT € TF(V) let
AlY(T) = ) (-1)7T".

TES,

The alternation operation enjoys the following properties.

Proposition 1.4.17. ForT € ¥(V)ando € Si
(1) Al(T)? = (-1)? Alt T
(2) IfT € A*(V), then At T = kIT.
(3) AI(T?) = Al(T)°
(4) The map
Alt: 25(V) - 75(V), T — Al(T)

is linear.

Proof. To prove ([]) we note that by Proposition 1.4.14:
AI(T)® = Z (-1)7T™ = (-1)° Z (-1TT™.

TES, TES)

But as 7 runs over Sy, 7o runs over Sy, and hence the right hand side is (1) Alt(T).
To prove (P]), note that if T € AkwW)

AltT = Y (-1)'T" = Y (-1)"(-1)'T = KIT.

TES, TES,
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To prove (f]), we compute:

Alt(T?) = z (-1)7T™ = (-1)° Z (~1)7°T"

TES, TES)

= (-1)° Al(T) = Al(T)° .

Finally, (§) is an easy corollary of (g]) of Proposition 1.4.14. O

We will use this alternation operation to construct a basis for ﬂk(V). First, however, we
require some notation.

Definition 1.4.18. LetI = (i, ..., i;) be a multi-index of length k.
(1) Iisrepeating ifi, =i, for somer # s.

(2) Iisstrictly increasing ifi; <i, < -+ <i
(3) Foro € Sk’ write 19 == (i0(1)7 vees io’(k))‘

re

Remark 1.4.19. IfI is non-repeating there is a unique o € Sy so that I is strictly increasing.

Lete,,...,e, be abasis of V and let

and
yr = Alt(eg) .
Proposition 1.4.20.

(1) ¥ = (1%
(2) IfIis repeating, y; = 0.
(3) IfI and ] are strictly increasing,

1, I=]
WI(ejl""’ejk): 0, I#]
Proof. To prove () we note that (ef )’ = efs; so
Alt(efo) = Alt(er)? = (-1)7 Alt(ey) .
To prove (B), suppose I = (iy, ..., i) with i, =i  forr # s. Thenif r = 7; ; , ef = efr s0
v =y = G0y = —yp .
To prove ([), note that by definition

yilej,..e) = Y (-1)efe(ej,..oe) -
T

But by (£3:13)
. 1, I'=]
(1.4.21) elr(ejl,...,ejk) = {0) I :/:]
Thus if I and J are strictly increasing, I” is strictly increasing if and only if I" = I, and
(:4.21)) is nonzero if and only if I = J. O

Now let T be in %(V). By [Theorem 1.3.13,
T=Za,e;, a; €R.
J
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Since k!T = Alt(T),
1 *

We can discard all repeating terms in this sum since they are zero; and for every non-repeating
term, J, we can write J = I?, where I is strictly increasing, and hence y; = (-1)yy;.

Conclusion 1.4.22. We can write T as a sum

(1.4.23) T= ZCII//I .
T

with I’s strictly increasing.
Claim 1.4.24. The c¢;’s are unique.
Proof. For ] strictly increasing

(1.4.25) T(ejl, ...,ejk) = ZI:clwl(ejl, ...,ejk) =¢.

By (:4.23) the y’s, I strictly increasing, are a spanning set of vectors for A¥(V), and by
(24:29) they are linearly independent, so we have proved:

Proposition 1.4.26. The alternating tensors, vy, I strictly increasing, are a basis for A*(V).

Thus dim A*(V) is equal to the number of strictly increasing multi-indices I of length k.
We leave for you as an exercise to show that this number is equal to the binomal coefficient

(1.4.27) <n> _ n!
27 k)" =l
ifl<k<n. O
Hint: Show that every strictly increasing multi-index of length k determines a k element

subset of {1, ..., n} and vice-versa.
Note also that if k > n every multi-index

I=(if,..0riy)

oflength k has to be repeating: i, = i, for some r # s since thei,’slie on the interval 1 <i < .
Thus by Proposition 1.4.17

v =0
for all multi-indices of length k > 0 and

ANy =0.
Exercises for

Exercise 1.4.i. Show that there are exactly k! permutations of order k.
Hint: Induction on k: Let 0 € S, and let o(k) = i, 1 < i < k. Show that 7;,0 leaves k
fixed and hence is, in effect, a permutation of X;_;.

Exercise 1.4.ii. Prove that if T € S is a transposition, (-1)* = —1 and deduce from this
[Proposition 1.4.11.

Exercise 1.4.iii. Prove assertion 2 in [Proposition 1.4.14.

Exercise 1.4.iv. Prove that dim A¥(V') is given by (T.2.27).
Exercise 1.4.v. Verify that fori < j—1

Tij = Tj-1,jTi,j-1> Tj-1,j -
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Exercise 1.4.vi. For k = 3 show that every one of the six elements of S; is either a transpo-
sition or can be written as a product of two transpositions.
Exercise 1.4.vii. Let o € S; be the “cyclic” permutation

o) =i+1, i=1,...k—1

and o(k) = 1. Show explicitly how to write o as a product of transpositions and compute
(=1
Hint: Same hint as in [Exercise 1.4.1.

Exercise 1.4.viii. In show that if T is in A¥(V), T, is in A1 (V). Show in
addition that forv,w € Vand T € ﬂk(V) we have (T,),, = —(T,,),-

Exercise 1.4.ix. Let A: V — W be a linear mapping. Show that if T is in A*(W), A*T is in
AKW).
Exercise 1.4.x. In show that if T is in Z*¥(W) then Alt(A*T) = A*(AIK(T)),

i.e., show that the Alt operation commutes with the pullback operation.
1.5. The space AR(V)
In we showed that the image of the alternation operation, Alt: Z%(V) — (V) is
Ak (V). In this section we will compute the kernel of Alt.

Definition 1.5.1. A decomposable k-tensor £; ® -+ ® £}, with ¢y, ..., ¢, € V*, is redundant
if for some index i we have ¢; = ¢, ;.
Let T5(V)) ¢ Z¥(V) be the linear span of the set of redundant k-tensors.

Note that for k = 1 the notion of redundant does not really make sense; a single vector
¢ € 1'(V*) cannot be “redundant” so we decree

T'(V)=0.
Proposition 1.5.2. IfT ¢ T5(V) then AI(T) = 0.

Proof. LetT = £, ®--- ® €, with &, = ¢;,,. Thenif T = 7;;,,, T* = T and (-1)* = -1. Hence
Al(T) = AI(T™) = Al(T)" = — Alt(T); so Al(T) = 0. O

Proposition 1.5.3. If T € T(V) andT' € L°(V) then T®T' and T' ® T are in T(V).

Proof. We can assume that T and T’ are decomposable, i.e, T = ¢, ® --- ® £, and T’ =
0] ® -+ ® ¢! and that T is redundant: ¢; = ¢, ;. Then

TRT =6,® - 6,_,06,04,0 -, 80]® L]
is redundant and hence in 7*°. The argument for T' ® T is similar. O
Proposition 1.5.4. IfT € *(V)and o € Sy, then
(1.5.5) T = (-1)°T +$
where S is in T°(V)).

Proof. We can assume T is decomposable, i.e.,T = £;®---®¢,. Lets first look at the simplest
possible case: k = 2 and 0 = 7, ,. Then

T - (-1)°T =€, 88, + £, 8¢,

1
= (L +8)8 @ +8) -8l -8 8),
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and the terms on the right are redundant, and hence in T2(V). Next let k be arbitrary and
0="7;,. 0T =€,®--®¢ ,and T, = £;,, ® --- ® £;. Then

T— (_I)UT = Tl ® (el ®€i+1 +€i+l ®€1) ®T2

is in 7°(V) by and the computation above.
The general case: By [[Theorem 1.4.9, 0 can be written as a product of m elementary transpo-
sitions, and we'll prove ([L.5.5)) by induction on .

We have just dealt with the case m = 1.
The induction step: the“m — 17 case implies the “m” case. Let 0 = 73 where 8 is a product of
m — 1 elementary transpositions and 7 is an elementary transposition. Then

T = (TP = (-1)"TP + ...
= (-1)"(-D)PT + -
= (_1)UT+

where the “dots” are elements of 7(V'), and the induction hypothesis was used in the second
line. |

Corollary 1.5.6. IfT ¢ 7*(V), then
(1.5.7) A(T) =k'T+W,
where W is in Tk(V).
Proof. By definition Alt(T) = )., s (-1)°T7, and by Proposition 1.5.4, T = (-1)°T + W,
with W, € 7°(V). Thus
Al(T) = Y (-1)°(-1)°T + Y (-1)°W, =kIT + W

o€S;, o€S;,
where W = zaesk(—l)"WU. O
Corollary 1.5.8. Let V be a vector space and k > 1. Then

(V) = ker(Alt: Z5(V) - A*(V)).

Proof. We have already proved that if T € T5(V), then Alt(T) = 0. To prove the converse
assertion we note that if Alt(T) = 0, then by (L5.7)

T=-Lw.
K

with W e 75(V) . O
Putting these results together we conclude:

Theorem 1.5.9. Every element T € TX(V) can be written uniquely as a sum T = T, + T,,
where T, € ﬂk(V) andT, € (V).

Proof. By (L5.4), T =T, + T, with
1
T, = il Al(T)

and .
T, = _EW
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To prove that this decomposition is unique, suppose T} + T, = 0, with T} € A¥(V) and
T, € T5(V). Then

0= Al(T; + T,) = k'T;
so T} = 0, and hence T, = 0. [l

Definition 1.5.10. Let V be a finite dimensional vector space and k > 0. Define

(1.5.11) ANV*) = V)TV,

ie., let AX(V*) be the quotient of the vector space 75(V) by the subspace *WV). By (L.2-7)
one has a linear map:

(1.5.12) s V) —» AV, T o T+ (V)

which is onto and has 7¢(V) as kernel.

Theorem 1.5.13. The map 7: (V) - ARK(V™) maps Akw) bijectively onto AF(V).

Proof. By every T¢(V) coset T+ T(V') contains a unique element T, of A*(V/).
Hence for every element of A*(V*) there is a unique element of Z*(V) which gets mapped
onto it by 7. O

Remark 1.5.14. Since A¥(V*) and ﬂlk(V) are isomorphic as vector spaces many treatments
of multilinear algebra avoid mentioning A*(V*), reasoning that A*(V) is a perfectly good
substitute for it and that one should, if possible, not make two different definitions for what
is essentially the same object. This is a justifiable point of view (and is the point of view taken
by in [4,10,12]). There are, however, some advantages to distinguishing between 4¥(V) and
AF(V*), as we shall see in F1.4.

Exercises for
Exercise 1.5.i. A k-tensor T € ZF(V) is symmetricif T = T for all o € S;. Show that the
set (V) of symmetric k tensors is a vector subspace of 5(V).

Exercise 1.5.ii. Lete,,...,e, be a basis of V. Show that every symmetric 2-tensor is of the

form
* *
1<i,j<n
where a; ; = a;; and ef, ..., e, are the dual basis vectors of V*.

Exercise 1.5.iii. Show that if T' is a symmetric k-tensor, then for k > 2, then T is in *WV).
Hint: Let o be a transposition and deduce from the identity, T = T, that T has to be in
the kernel of Alt.

Exercise 1.5.iv (a warning). In general & k(V) # 7(V). Show, however, that if k = 2 these
two spaces are equal.

Exercise 1.5.v. Show thatif € € V* and T € ZF2(V), then £® T ® £ is in T5(V).

Exercise 1.5.vi. Show thatif¢; and ¢, areinV*and T € 752(V), then £,8T®8,+6,8T®¢,
is in (V).

Exercise 1.5.vii. Given a permutationo € S and T € T*(V), show that T? € T5(V).

Exercise 1.5.viii. Let W(V) be a subspace of 5(V) having the following two properties.
(1) ForS e $2(V)and T € ZF2(V), S® T is in W(V).
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(2) ForTin W(V)ando € S, T? is in W(V).

Show that W(V') has to contain 7(V) and conclude that 7°(V) is the smallest subspace
of 7¥(V) having properties () and (g).
Exercise 1.5.ix. Show that there is a bijective linear map

a: AV = akw)

with the property
1
k!
forall T € 7%(V), and show that « is the inverse of the map of _71k(V) onto A¥(V*) described

in [[heorem 1.5.13.
Hint: [Exercise 1.2.viii.

Exercise 1.5.x. Let V be an n-dimensional vector space. Compute the dimension of S¥(V).

(1.5.15) an(T) = — AlY(T)

Hints:
(1) Introduce the following symmetrization operation on tensors T' € FWV):
Sym(T) = Z T".
TES,

Prove that this operation has properties (g)- (i) of Proposition 1.4.17 and, as a substitute
for ([), has the property: Sym(T)° = Sym(T).

(2) Let¢; = Sym(er), ef =e¢f ®---®e] . Prove that {¢; |Iis non-decreasing } form a basis
of SK(V).

(3) Conclude that dim($*(V)) is equal to the number of non-decreasing multi-indices of
lengthk:1<i; <iy <--- <€ <n

(4) Compute this number by noticing that the assignment

(i ee0ndp) > (40, + 1, .. i  + k- 1)
is a bijection between the set of these non-decreasing multi-indicesand the set of in-
creasing multi-indices 1 < j; < -+ < jp <m+k—-1.

1.6. The wedge product

The tensor algebra operations on the spaces Z*(V') which we discussed in and .3,
i.e., the “tensor product operation” and the “pullback” operation, give rise to similar oper-
ations on the spaces, AR(V*). We will discuss in this section the analogue of the tensor
product operation.

Definition 1.6.1. Given w; € AN(V*), i = 1,2 we can, by Equation (1.5.12), find a T} €
7% (V) with w; = 71(T;). Then T, ® T, € LX1%%2(V). The wedge product w, A w, is defined by

(1.6.2) w, Awy =(T; ® T,) € ARtk (V) |
Claim 1.6.3. This wedge product is well defined, i.e., does not depend on our choices of T; and
To,.
Proof. Let n(T,) = n(T}) = w,. Then T| = T, + W, for some W, € T°(V), so
T T, =T8T, +W,®T,.
But W, € 15 (V) implies W, ® T, € T**2(V) and this implies:
(T} ®T,) =n(T\®T,).
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A symmetric argument shows that w; A w, is well-defined, independent of the choice of
T,. O
More generally let w; € A% (V*), fori = 1,2,3, and let w; = 72(T}), T; € % (V). Define
W) A wy Aws € ARtkaths (v

by setting
w ANw, ANws =1(T) T, ®T;3) .
As above it is easy to see that this is well-defined independent of the choice of T}, T}, and T5.

It is also easy to see that this triple wedge product is just the wedge product of w; A w, with
w; or, alternatively, the wedge product of w; with w, A ws, i.e.,

W) AWy Aws = (W] Aw,y) Aws = w; A (W, A wy).
We leave for you to check: for A € R
(1.6.4) Mw; Aw,) = (Awy) Aw, = w; A (Aw,)

and verify the two distributive laws:

(1.6.5) (W) + W) ANws = W) Aws + Wy A ws
and
(1.6.6) W AWy +w3) =w; Aw, + W Aws .

As we noted in 1.4, T (V) = 0 for k = 1, i.e,, there are no nonzero “redundant” k tensors
in degree k = 1. Thus
ANV =V = 7Y(V).
A particularly interesting example of a wedge product is the following. Let £, ..., € €
V* =AY (V*). Thenif T=€,® --- ® &
(1.6.7) e, A N8 =7(T) € AR(V*).
We will call (1.6.7) a decomposable element of ARV,

We will prove that these elements satisfy the following wedge product identity. For o €
SkI

(168) eo.(l) VARERIAN eo.(k) = (—l)o-el JANRERIVAN Ek .

Proof. For every T € 1¥(V), T = (=1)°T + W for some W € T%(V') by Proposition 1.5.4.
Therefore since (W) = 0

n(T?) = (-1)’n(T) .
In particular, if T = €; ® -+ ® €4, T = €51y ® -+ ® €5, SO
T[(TG) = fc(l) JARERIVAN eo(k) = (—I)GT[(T)
=D N NE . O
In particular, for ¢, and ¢, € V*
(1.6.9) CNE =, NE
and for €;, £, and &5 € V*
el A€2A€3 = _22/\61 /\€3 :€2/\£3/\€1 .

More generally, it is easy to deduce from the following result (which we'll
leave as an exercise).
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Theorem 1.6.10. Ifw; € A"(V*) and w, € A*(V*) then
(1.6.11) w; Aw, = ()" w, A w; .

Hint: It suffices to prove this for decomposable elements i.e., for w; = €; A -+ A€, and
w, = €] A -+ A £}. Now make rs applications of (L.6.9).

Lete,,...,e, be a basis of V and let ef, ..., e be the dual basis of V*. For every multi-
index I of length k,

(1.6.12) e,?j/\---/\e,-’;=n(e}*)=ﬂ(ei*l®---®e;;().

Theorem 1.6.13. The elements (.6.13), with I strictly increasing, are basis vectors of AK(V'*).

Proof. The elements y; = Alt(e}), for I strictly increasing, are basis vectors of 4(V) by
Proposition 1.4.26; so their images, 7(y;), are a basis of AR(V*). But

2(y) = 7 (Lpes, (1)) = Y (~1)m(ef)’

o€S;
= Y (-1)7(-1)°n(ef) = kln(ef) . O
o€S;,
Exercises for

Exercise 1.6.i. Prove the assertions ([..6.4), (.6.5)), and ([..6.6).

Exercise 1.6.ii. Verify the multiplication law in for the wedge product.

Exercise 1.6.iii. Given w € A"(V*) let &* be the k-fold wedge product of w with itself, i.e.,
letw” =wAw @ =wAwA w, etc.

(1) Show that if  is odd then for k > 1, w* = 0.
(2) Show that if w is decomposable, then for k > 1, ok =0.

Exercise 1.6.iv. If w and y are in A"(V™) prove:

k

(w+p)k = Z (?)wel\yk_f.

=0
Hint: As in freshman calculus, prove this binomial theorem by induction using the iden-
tiy: (3) = (60) + (21):
Exercise 1.6.v. Let w be an element of A?(V*). By definition the rank of w is k if o* # 0 and
@1 = 0. Show that if
w=e Afi+-+e A fi

with e;, f; € V*, then w is of rank < k.
Hint: Show that

(Uk = k!el /\fl A /\ek/\fk
Exercise 1.6.vi. Givene; € V*,i = 1,...,k show thate; A --- A g, # 0if and only if the ¢;’s

are linearly independent.
Hint: Induction on k.
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1.7. The interior product

We'll describe in this section another basic product operation on the spaces A¥(V*). As
above we'll begin by defining this operator on the Z¥(V)’s.

Definition 1.7.1. Let V be a vector space and k a nonnegative integer. Given T' € lk(V) and
v € V let,T be the be the (k — 1)-tensor which takes the value

k
(D), v y) = Z(—l)r_lT(vl, s Up_ 15 Uy Upy oy Up)

r=1

on the k — 1-tuple of vectors, vy, ..., Uy, i.e., in the 7' summand on the right, v gets in-
serted between v,_; and v,. (In particular the first summand is T'(v, vy, ..., Ux_;) and the last
summand is (—l)k_lT(vl, ves Up_15 0).)

It is clear from the definition that if v = v; + v,
(1.7.2) wI=1,T+u,T,
andif T=T; + T,
(1.7.3) 1, T =1,T, +1,T,,
and we will leave for you to verify by inspection the following two lemmas.
Lemma 1.7.4. IfT is the decomposable k-tensor €; ® --- ® ¢, then

k
(1.7.5) 1, T = Z(—l)"lt’r(v)f1 ®---®ér®-~-®€k,

r=1

where the “hat” over €, means that €, is deleted from the tensor product.
Lemma 1.7.6. If T, € Z°(V) and T, € 79(V)
(1.7.7) (T eT,) =TT, + (-1)PT; ®4,T, .
We will next prove the important identity.
Lemma 1.7.8. LetV be a vector space and T € xW). Then for allv € V we have
(1.7.9) 14,6, T)=0.

Proof. It suffices by linearity to prove this for decomposable tensors and since ([L.7.9) is
trivially true for T € Z'(V’), we can by induction assume ([.7.9) is true for decomposable
tensors of degree k — 1. Let £; ® -+ ® ¢, be a decomposable tensor of degree k. Setting
T=4¢8®: ®¢f_; and £ = £, we have

L, ® - ®8)=1,(T®e) =1,T®e+(-1)ewT
by (L.7.7). Hence
1, (1, (T ® €)) = 1,(1,T) ® € + (1) 2e(v), T + (-1)FLe(w)., T .

But by induction the first summand on the right is zero and the two remaining summands
cancel each other out. O

From ([£.7.9) we can deduce a slightly stronger result: For v;,v, € V

(1.7.10) Ly, by, = ~ly by, -
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Proof. Letv =v, +v,. Theny, =1, +1, so

0= ryty = (4, + 1)1y, +1y,)

=ty by, ol ly, Fly Ly F L

U1y vy Uy
= Ly by, F by by,
since the first and last summands are zero by (L.7.9). O

We'll now show how to define the operation 1, on AX(V*). We'll first prove:
Lemma 1.7.11. IfT € TX(V) is redundant then so is 1, T.

Proof. LetT =T, ® £ ® £ ® T, where £isin V*, T, is in 27 (V) and T, is in 24(V). Then by

,T=1,T,®®eRT, +(-1)’T,®1,t®€) T, + (-1)!?T 00 t®1,T,.
However, the first and the third terms on the right are redundant and
L,(E® ) =L)t - e(v)t
by Equation (1:7:5). O

Now let 7 be the projection ([:5.12)) of 75(V) onto A¥(V*) and for w = n(T) € AF(V*)
define
(1.7.12) rw =m(,T).
To show that this definition is legitimate we note that if w = 7n(T}) = n(T;), then T} - T, €
T*(V), so by Cemma 1.7.11] £, T} — 1, T, € 7" and hence

(e, T) =n(,T5) .

Therefore, (.7.12)) does not depend on the choice of T..

By definition, 1, is a linear map A¥(V*) — A¥"1(V*). We call this the interior product

operation. From the identities (.7.2)-([.7.12)) one gets, for v, v;,v, € V, w € AK(V*), w, €
AP(V*), and w, € A2(V*)

(1.7.13) Lo, 40,)@ = Ly @ + 1y @

(1.7.14) (W) A w,) = 1,0, Aw, + (-1)Pw; A0,
(1.7.15) 1,(1,w) = 0

and

Ly, by, @ =~y b, @

Moreover if w = €; A -+ A € is a decomposable element of AK(V*) one gets from (L.7.3))

k
W= Y (1)) A NN N
r=1
In particular ifey, ..., e, isabasis of V, ef, ..., e, the dual basis of V* and w; = &/ A--- Aef,
1<i) < <y Sn,thenteij =0ifj¢ Iandif j=1,
(1.7.16) L, Wy = (—l)r_lwlr

where I, = (i}, ..., 1,, ..., i) (i.e., I, is obtained from the multi-index I by deleting i,).
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Exercises for
Exercise 1.7.i. Prove [Lemma 1.7.4.

Exercise 1.7.ii. Prove Lemma 1.7.4.

Exercise 1.7.iii. Show thatif T € A¥, 1, T = kT, where T, is the tensor ([:3.21). In particular
conclude that 1, T € A* (V). (See Exercise 1.4.viil.)

Exercise 1.7.iv. Assume the dimension of V is n and let 2 be a nonzero element of the one
dimensional vector space A"(V*). Show that the map

(1.7.17) p: V- ANV, v ,Q,

is a bijective linear map. Hint: One can assume ( = e; A --- Ae,, whereey, ..., e, is a basis of

V. Now use to compute this map on basis elements.

Exercise 1.7.v (cross-product). Let V be a 3-dimensional vector space, B an inner product
on V and Q a nonzero element of A*(V*). Define a map

-x=:VxV -V
by setting
vy X vy = p (L, A Lv,)
where p is the map (L.7.17) and L: V — V* the map (.2.17). Show that this map is linear
in v;, with v, fixed and linear in v, with v, fixed, and show that v; x v, = —v, x v,.

Exercise 1.7.vi. ForV = R’ lete,, e, and e; be the standard basis vectors and B the standard
inner product. (See §1.1.) Show that if Q = e A e; A e3 the cross-product above is the
standard cross-product:

e Xe, =e;
e, Xe; =e;
e3xXe =e,.

Hint: If B is the standard inner product, then Le; = ¢} .
Remark 1.7.18. One can make this standard cross-product look even more standard by
using the calculus notation: e; =1, e, = j,and e; = k.
1.8. The pullback operation on A¥(V*)

Let V and W be vector spaces and let A be a linear map of V into W. Given a k-tensor
T € 75(W), recall that the pullback A*T is the k-tensor

(A*T)(vy, ..., v) = T(Avy, ..., Avg)

in Z5(V). (See and Equation (1.3.17).) In this section we’ll show how to define a similar
pullback operation on A¥(V*).

Lemma 1.8.1. IfT € (W), then A*T € T%(V).
Proof. It suffices to verify this when T is a redundant k-tensor, i.e., a tensor of the form
T=6®--®¢
where €, € W* and ¢; = ¢;,, for some index, i. But by Equation (1.3.19),
AT=A® - ® A,
and the tensor on the right is redundant since A*¢; = A*¢;, ;. O
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Now let w be an element of A*(W*) and let w = 72(T) where T is in ZX(W). We define
(1.8.2) A*w=m(AT).
Claim 1.8.3. The left hand side of pquation (1.8.2) is well-defined.

Proof. Ifw =n(T) = n(T'),thenT =T’ + S for some S € (W), and A*T = A*T' + A*S.
But A*S € T(V), so

n(A*T") = n(A*T) . O
Proposition 1.8.4. The map A* : AFW*) > Ak(v) sending w — A*w is linear. Moreover,
(1) Ifw; € AN(W*),i=1,2, then

A (w; Aw,) = A" (w;) A A (w,) .

(2) IfU is a vector space and B : U — V a linear map, then for w € AK(W™),

B*A*w = (AB)*w.

We'll leave the proof of these three assertions as exercises. As a hint, they follow im-

mediately from the analogous assertions for the pullback operation on tensors. (See
fions (1.3.19) and [1.3.20).)

As an application of the pullback operation we’ll show how to use it to define the notion
of determinant for a linear mapping.

Definition 1.8.5. Let V be a n-dimensional vector space. Then dim A"(V*) = (Z) =1
i.e, A"(V*) is a one-dimensional vector space. Thus if A: V — V is a linear mapping, the
induced pullback mapping:

A* AMV) - ANV,
is just “multiplication by a constant” We denote this constant by det(A) and call it the de-
terminant of A, Hence, by definition,

(1.8.6) A*w = det(A)w
for all w € A*(V™).
From it is easy to derive a number of basic facts about determinants.
Proposition 1.8.7. If A and B are linear mappings of V into V, then
det(AB) = det(A) det(B) .
Proof. By (P]) and

(AB)*w = det(AB)w = B*(A*w)
= det(B)A*w = det(B) det(A)w ,

so det(AB) = det(A) det(B). O
Proposition 1.8.8. Writeidy : V — V for the identity map. Then det(idy,) = 1.

We'll leave the proof as an exercise. As a hint, note that idy, is the identity map on
AM(V™).

Proposition 1.8.9. If A: V — V is not surjective, then det(A) = 0.
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Proof. Let W be the image of A. Then if A is not onto, the dimension of W is less than #,
so A"(W™) = 0. Now let A = iy, B where iy, is the inclusion map of W into V and B is the
mapping, A, regarded as a mapping from V to W. Thus if w is in A"(V*), then by (B)

A*w = B¥ijyw
and since iy w is in A"(W™) it is zero. O
We will derive by wedge product arguments the familiar “matrix formula” for the deter-
minant. Let V and W be n-dimensional vector spaces and let ey, ..., e, be a basis for V and
fi> - [, a basis for W. From these bases we get dual bases, e, ..., e, and f", ..., f,7, for V*
and W*. Moreover, if A is a linear map of V into W and [, ;] the n x n matrix describing

A in terms of these bases, then the transpose map, A* : W* — V*, is described in terms of
these dual bases by the n x n transpose matrix, i.e., if

n
Aej = Zai)jf.i 5
i=1
then
n
* £x _ *
A fJ = Zaj,,-e,- .
i=1

(See §1.2) Consider now A*(fi" A -+ A ). By (),
AS(fi NN = A TN NAT S

= Z (A ex) N A(ay e ) -

Thus,
ATfE A N = Y g, €, Ao e
If the multi-index, k;, ..., k,,, is repeating, then eg A---Aef is zero, and if it is not repeating
then we can write
ki=0(i) i=1,...,n
for some permutation, o, and hence we can rewrite A*(fi* A--- A f,7) as
A*(fl* AR /\fn*) = Z A1,6(1) " Anon) (ef AN /\e;)g .
o€S,
But
(ef A--Nep)? =(-1)%e A= Ne,

so we get finally the formula

(1.8.10) A*(fI Ao A ) = det([a j1)ef Ao Aep

where

(1.8.11) det([ai,j]) = Z (—1)0‘11,0(1) © Ay o(n)
o€S,

summed over o € §,,. The sum on the right is (as most of you know) the determinant of the
matric [a; j].
Notice that if V. = Wande; = f;,i=1,...,n,thenw =ef A-- Ae, = f' N A [,

hence by ([.8.4) and ([.8.19),

det(A) = det[ai,j] .
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Exercises for

Exercise 1.8.i. Verify the three assertions of [Proposition 1.8.4.

Exercise 1.8.ii. Deduce from a well-known fact about determinants of

n x n matrices: If two columns are equal, the determinant is zero.

Exercise 1.8.iii. Deduce from another well-known fact about determi-
nants of n x n matrices: If one interchanges two columns, then one changes the sign of the
determinant.

Hint: Letey, ..., e, be a basis of V and let B: V' — V be the linear mapping: Be; = e;,
Be; = ¢; and Be, = ¢, € # i, j. Whatis B*(ef A -+ Aep)?

Exercise 1.8.iv. Deduce from Propositions 1.8.3 and 1.8.4 another well-known fact about
determinants of # x n matrix: If (b; j) is the inverse of [a; j], its determinant is the inverse of
the determinant of [a; j].

Exercise 1.8.v. Extract from ([..8.11]) a well-known formula for determinants of 2 x 2 ma-
trices:

an ) _
det (a a = a4,y — G120, -
210 G2

Exercise 1.8.vi. Show thatif A = [a; ;] is an n X n matrix and AT = [aj;] is its transpose
det A =det AT.
Hint: You are required to show that the sums

Z (— 1)0611,0.(1) .. ‘an,O'(n)
o€S,

and
Z (_ l)gao(l),l .. ‘ao(n),n

o€S,

are the same. Show that the second sum is identical with

-1
Z (—1)0 ao.—l(l),l .. .a071(n),n .

o€S,
Exercise 1.8.vii. Let A be an n x n matrix of the form
B
4= <o &)

where B is a k x k matrix and C the € x £ matrix and the bottom ¢ x k block is zero. Show
that

det(A) = det(B) det(C) .
Hint: Show that in every nonzero term is of the form
(D7 b1601) - Breot C1,201) -+ -Ce,ee)
where o € S and 7 € S,.

Exercise 1.8.viii. Let V and W be vector spaces and let A: V' — W be a linear map. Show
that if Av = w then for w € AP(W™),

* _ *
Ao =1,Aw.

Hint: By Equation (1.7.14) and [Proposition 1.8.4 it suffices to prove this for w € A'(W*),
ie., forw e W*.
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1.9. Orientations

Definition 1.9.1. We recall from freshman calculus that if £ ¢ R? is a line through the
origin, then € ~ {0} has two connected components and an orientation of € is a choice of

one of these components (as in the below).

Figure 1.9.1. A line in R?

More generally, if L is a one-dimensional vector space then L ~ {0} consists of two com-
ponents: namely if v is an element of L ~ {0}, then these two components are

L ={Av|]A >0}

and
L,={Av|A<0}.

Definition 1.9.2. Let L be a one-dimensional vector space. An orientation of L is a choice of
one of a connected component of L~ {0}. Usually the component chosen is denoted L, , and
called the positive component of L~{0} and the other component L_ the negative component
of L~ {0}.

Definition 1.9.3. Let (L, L, ) be an oriented one-dimensional vector space. A vector v € L
is positively oriented if v € L,.
Definition 1.9.4. Let V be an n-dimensional vector space. An orientation of V is an orien-

tation of the one-dimensional vector space A"(V*).

One important way of assigning an orientation to V' is to choose a basis, ey, ..., e, of V.
Then, if ef, ..., e}, is the dual basis, we can orient A”*(V*) by requiring that e; A --- A e}, be
in the positive component of A"(V*).

Definition 1.9.5. Let V be an oriented n-dimensional vector space. We say that an ordered
basis (e, ...,e,) of V is positively oriented if el A --- A e;; is in the positive component of
AM(V™).

Suppose thate,, ...,e, and f, ..., f, are bases of V and that
(1.9.6) € = Z ai,j,fi .
i=1
Then by (£7:19)

*

[ A A S = detfa; jlef A Aepy

so we conclude:
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Proposition 1.9.7. Ife,, ..., e, is positively oriented, then fi, ..., f, is positively oriented if and
only if det[a; ;] is positive.
Corollary 1.9.8. Ifey,...,e, is a positively oriented basis of V, then the basis

€1 > €i1>—€j> iy 15 €y
is negatively oriented.

Now let V be a vector space of dimension # > 1 and W a subspace of dimension k < n.
We will use the result above to prove the following important theorem.

Theorem 1.9.9. Given orientations on'V and V [W, one gets from these orientations a natural
orientation on W.

Remark 1.9.10. What we mean by “natural” will be explained in the course of the proof.

Proof. Letr = n—k and let 7 be the projection of V onto V/W . By [Exercises 1.2.] and [L.2.1]
we can choose a basis e}, ..., e, of V such thate,_, ..., e, is a basis of W and n(e,), ..., 7(e,)
a basis of V/W. Moreover, replacing e; by —e; if necessary we can assume by
that 71(e;), ..., (e,) is a positively oriented basis of V/W and replacing e, by —e,, if neces-
sary we can assume that e, ..., e, is a positively oriented basis of V. Now assign to W the
orientation associated with the basise,,, ..., e,.

Let’s show that this assignment is “natural”(i.e., does not depend on our choice of basis
ep,...,e,). To see this let f},..., f,, be another basis of V with the properties above and let
A=la; j] be the matrix ([L.9.6) expressing the vectors ey, ..., e, as linear combinations of the
vectors fi, ... f,,. This matrix has to have the form

(1.9.11) A= (13 g)

where B is the r xr matrix expressing the basis vectors 7r(e;), ..., m(e,) of V/W aslinear com-
binations of 7z( f}), ..., w(f,) and D the k x k matrix expressing the basis vectorse,,;, ...,e,
of W as linear combinations of f, 1, ..., f,. Thus

det(A) = det(B) det(D) .
However, by Proposition 1.9.7, det A and det B are positive, so det D is positive, and hence

ife, ., ...,e, is a positively oriented basis of W so is f,,{, ..., f,- O

As a special case of this theorem suppose dim W = n — 1. Then the choice of a vector
v € VW gives one a basis vector 77(v) for the one-dimensional space V/W and hence if V
is oriented, the choice of v gives one a natural orientation on W.

Definition 1.9.12. Let A: V| — V, a bijective linear map of oriented n-dimensional vector
spaces. We say that A is orientation-preserving if, for w € A"(V;"),, we have that A*w is in
AV,

Example 1.9.13. If V] =V, then A*w = det(A)w so A is orientation preserving if and only
if det(A) > 0.

The following proposition we'll leave as an exercise.

Proposition 1.9.14. Let V}, V,, and V; be oriented n-dimensional vector spaces and A;: V; >
Vipp fori = 1,2 be bijective linear maps. Then if A, and A, are orientation preserving, so is
Ayo A
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Exercises for
Exercise 1.9.i. Prove [Corollary 1.9.§.

Exercise 1.9.ii. Show that the argument in the proof of can be modified to
prove that if V and W are oriented then these orientations induce a natural orientation on
VI/w.

Exercise 1.9.iii. Similarly show that if W and V//W are oriented these orientations induce
a natural orientation on V.

Exercise 1.9.iv. Let V be an n-dimensional vector space and W ¢ V a k-dimensional sub-
space. Let U = V/W andleti: W — Vandn: V — U be the inclusion and projection
maps. Suppose V and U are oriented. Let i be in A" *(U*), and let w be in A"(V*),. Show
that there exists a v in A*(V*) such that 7* UAv = w. Moreover show that (*v is intrinsically
defined (i.e., does not depend on how we choose v) and sits in the positive part AK(W*), of
AFW™).

Exercise 1.9.v. Lete, ..., e, be the standard basis vectors of R”. The standard orientation of
R” is, by definition, the orientation associated with this basis. Show that if W is the subspace
of R” defined by the equation x; = 0, and v = e¢; ¢ W then the natural orientation of W
associated with v and the standard orientation of R” coincide with the orientation given by
the basis vectors e,, ..., e, of W.

Exercise 1.9.vi. LetV be an oriented n-dimensional vector space and W an n—1-dimensional
subspace. Show thatifvand v’ arein V=W thenv' = Av+w, wherewisin W and A € R~{0}.
Show that v and v’ give rise to the same orientation of W if and only if A is positive.

Exercise 1.9.vii. Prove Proposition 1.9.14.

Exercise 1.9.viii. A key step in the proof of was the assertion that the matrix
A expressing the vectors, e; as linear combinations of the vectors f;, had to have the form

(29:11). Why is this the case?

Exercise 1.9.ix.

(1) LetV beavector space, W a subspace of Vand A: V — V a bijective linear map which
maps W onto W. Show that one gets from A a bijective linear map

B:V/IW - V/W

with the property
nA = Bm,
where r: V — V/W is the quotient map.
(2) Assume that V, W and V/W are compatibly oriented. Show that if A is orientation-
preserving and its restriction to W is orientation preserving then B is orientation pre-
serving.

Exercise 1.9.x. Let V be a oriented n-dimensional vector space, W an (n — 1)-dimensional
subspace of Vand i: W — V the inclusion map. Given w € A"(V*), and v € V ~ W show
that for the orientation of W described in [Exercise 1.9., i* (1,w) € A" 1 (W™*),.

Exercise 1.9.xi. Let V be an n-dimensional vector space, B: V x V' — R an inner prod-
uct and ey, ..., e, a basis of V which is positively oriented and orthonormal. Show that the
volume element

vol =ef A~ Nej € AN(V™)
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is intrinsically defined, independent of the choice of this basis.
Hint: [Equations (1.2.20) and [1.8.10).

Exercise 1.9.xii.

(1) Let V be an oriented n-dimensional vector space and B an inner product on V. Fix an
oriented orthonormal basis, e, ...,e,, of V and let A: V — V be a linear map. Show
that if

n
Aei = vl‘ = Z aj)iej
=1
and b,-,j = B(v;, vj), the matrices M, = [a,-)j] and My = (bi,j) are related by: Mp =
MEM,.
(2) Show that if vol is the volume form e} A --- Ae;;, and A is orientation preserving
A*vol = det(MB)% vol .
(3) By[lheorem 1.5.13 one has a bijective map
ANV = A"(V).
Show that the element, Q, of A”(V) corresponding to the form vol has the property
vy, ..., v,)* = det((b; ;)

where vy, ..., v, are any n-tuple of vectors in V- and b; ; = B(v;, v)).



Draft: March 28, 2018

CHAPTER 2

Differential Forms

The goal of this chapter is to generalize to #n dimensions the basic operations of three
dimensional vector calculus: divergence, curl, and gradient. The divergence and gradient
operations have fairly straightforward generalizations, but the curl operation is more subtle.
For vector fields it does not have any obvious generalization, however, if one replaces vector
fields by a closely related class of objects, differential forms, then not only does it have a
natural generalization but it turns out that divergence, curl, and gradient are all special cases
of a general operation on differential forms called exterior differentiation.

2.1. Vector fields and one-forms

In this section we will review some basic facts about vector fields in # variables and
introduce their dual objects: one-forms. We will then take up in the theory of k-forms
for k > 1. We begin by fixing some notation.

Definition 2.1.1. Let p € R". The tangent space to R" at p is the set of pairs
T,R" = {(p,v) v e R"}.

The identification

(2.1.2) TPR” = R", (p,v)— v

makes T,R" into a vector space. More explicitly, for v,v;,v, € R" and A € R we define the
addition and scalar multiplication operations on T, R" by setting

(p,v1) + (p,vy) = (P, vy +03)
and
Ap.v) = (p, M)
Let U be an open subset of R” and f: U — R™ a C' map. We recall that the derivative
Df(p): R* > R"
of f at p is the linear map associated with the m x n matrix
[ g—iz ( p)] :
It will be useful to have a “base-pointed” version of this definition as well. Namely, ifg = f(p)
we will define
df,: T,R" > T_R"
to be the map
dfy(p:v) = (g, Df(p)v).

Itis clear from the way we have defined vector space structures on T, R" and T, R™ that this
map is linear.

33
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Suppose that the image of f is contained in an open set V, and suppose g: V — RF is
a C! map. Then the “base-pointed” version of the chain rule asserts that

dgy e df, =d(f > g),-
(This is just an alternative way of writing Dg(q)D f(p) = D(g » f)(p).)

In 3-dimensional vector calculus a vector field is a function which attaches to each point
p of R® a base-pointed arrow (p, v) € T,R’. The n-dimensional version of this definition is
essentially the same.

Definition 2.1.3. Let U be an open subset of R”. A vector field v on U is a function which
assigns to each point p € U a vector v(p) € T,R".

Thus a vector field is a vector-valued function, but its value at p is an element of a vector
space T,R" that itself depends on p.
Examples 2.1.4.

(1) Given a fixed vector v € R", the function

(2.1.5) pr (p,v)

is a vector field on R". Vector fields of this type are called constant vector fields.

(2) Inparticularlete,, ..., e, be the standard basis vectors of R”. If v = ¢; we will denote the
vector field (2.1.5) by 9/0x;. (The reason for this “derivation notation” will be explained
below.)

(3) Given a vector field v on U and a function, f: U — R we denote by fv the vector field
on U defined by

P f(p(p).

(4) Given vector fields v, and v, on U, we denote by v, + v, the vector field on U defined

by
p = vi(p) +vy(p).

(5) The vectors, (p,e;), i = 1,...,n, are a basis of TPR”, so if v is a vector field on U, v(p)
can be written uniquely as a linear combination of these vectors with real numbers
91(p)s -.-» g, (p) as coeflicients. In other words, using the notation in example (g)) above,
v can be written uniquely as a sum

(2.1.6) v= Zgii

where g;: U — Ris the function p — g;(p).
Definition 2.1.7. We say that v is a C* vector field if the g;’s are in C*°(U).

Definition 2.1.8. A basic vector field operation is Lie differentiation. If f € C'(U) we define
L, f to be the function on U whose value at p is given by

(2.1.9) L,f(p) =Df(p,
where v(p) = (p,v).
Example 2.1.10. If v is the vector field (p.1.6) then
n af
L = —
of i:Zlg, o

(motivating our “derivation notation” for v).
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We leave the following generalization of the product rule for differentiation as an exer-
cise.

Lemma 2.1.11. LetU be an open subset of R", v a vector field on U, and f,, f, € C*(U). Then
Ly(fi- f2) = L(f)- o+ fi- Lo(f2) -

We now discuss a class of objects which are in some sense “dual objects” to vector fields.

Definition 2.1.12. Let p € R". The cotangent space to R" at p is the dual vector space
T;R" = (T,R)".
An element of T R" is called a cotangent vector to R" at p.

Definition 2.1.13. Let U be an open subset of R". A differential one-form, or simply one-
Jormon U is a function w which assigns to each point p € U a vector w,, in T/ R".

Examples 2.1.14.
(1) Let f: U — RbeaC' function. Then for p € U and q = f(p) one has a linear map

(2.1.15) dfpz TPR” — TqR

and by making the identification T,R = R by sending (q,v) — v, the differential df,
can be regarded as a linear map from T, R” to R, i.e., as an element of T; R". Hence the
assignment
prdf,
defines a one-form on U which we denote by d f.
(2) Givenaone-form wandafunction¢: U — R the pointwise product of ¢ with w defines
one-form ¢w on U by (¢w), = ¢(plw,,.
(3) Given two one-forms w; and w, their pointwise sum defines a one-form w, + w, by
(wg + wz)p = (‘U1)p + (wz)p.
(4) The one-forms dx, ..., dx,, play a particularly important role. By
(2.1.16) (dx;) <£) = Si’j
Ty
ie,isequal to 1 ifi = jand zero ifi # j. Thus (dx1)ps s (dx,,)P are the basis of
T; R" dual to the basis (0/ Bx,-)P. Therefore, if w is any one-form on U, w,, can be written
uniquely as a sum

w, =Y fi(p)dx),, fi(p)€R,
i=1
and w can be written uniquely as a sum

(2.1.17) w = Zfidxi
i=1

where f;: U — Ris the function p — f;(p). We say that w is a C* one-form or smooth
one-form if the functions fi, ..., f, are C*.

We leave the following as an exercise.

Lemma 2.1.18. Let U be an open subset of R". If f: U — Ris a C*™ function, then

Vlaf
df =Y Lgx, .
f ;axi X;
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Suppose that v is a vector field and w a one-form on U C R”. Then for every p € U the
vectors v(p) € TPR” and w, € (TPR")* can be paired to give a number ly(p@p € R, and
hence, as p varies, an R-valued function 1, which we will call the interior product of v with
w.

Example 2.1.19. For instance if v is the vector field (£:1.4) and w the one-form (p.1.17),
then

n
o =) figi-
i=1

Thus if v and w are C*, so is the function ¢, w. Also notice that if ¢ € C*®(U), then as we
observed above

& 0 O
dp=Y —& —
¢ l;axiaxi

so if v is the vector field (2.1.6) then we have

n

0¢
do = — =L d.
I, d¢ 219, o, o

Exercises for
Exercise 2.1.i. Prove
Exercise 2.1.ii. Prove Lemma 2.1.1

Exercise 2.1.iii. Let U be an open subset of R” and v, and v, vector fields on U. Show that
there is a unique vector field w, on U with the property

Lw¢ = Lvl (va(/)) - va (Lvl¢)
forall ¢ € C®(U).

Exercise 2.1.iv. The vector field w in is called the Lie bracket of the vector
fields v, and v, and is denoted by [v,, v,]. Verify that the Lie bracket is skew-symmetric, i.e.,

(v}, 0,] = —[vy,04],
and satisfies the Jacobi identity
[V}, [Vy, v3]] + [V, [V3, 0] + [v3, [V, 0,]] =0.
(And thus defines the structure of a Lie algebra.)

Hint: Prove analogous identities for L, , L, and L,,,.
Exercise 2.1.v. Letv; = 0/0x; and v, = Z;‘:l 9;0/0x;. Show that
-~ 99;
[v,v,] = ]; B_xj,a_x] .
Exercise 2.1.vi. Let v; and v, be vector fields and f a C* function. Show that
(v, fo,] = Lulfvz + flv,v,].

Exercise 2.1.vii. Let U be an open subset of R” and let y: [a,b] — U, t — (p;(t), ..., p,(t))
bea C' curve. Given a C*® one-formw = Y| f;dx; on U, define the line integral of w over

y to be the integral
szz
y .

n
i=1

b dy;
L fivenDear.
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Show that if w = d f for some f € C*(U)
[ @=ro) - fovan.
Y

In particular conclude that if y is a closed curve, i.e., y(a) = p(b), this integral is zero.

Exercise 2.1.viii. Let w be the C* one-form on R? ~ {0} defined by
xdx, — x,dx;
- X2+ x3
andlety: [0,271] — R%\{0} be the closed curve t > (cost, sint). Compute the line integral
Iy w, and note that Iy w # 0. Conclude that w is not of the form d f for f € C®(R? ~ {0}).

Exercise 2.1.ix. Let f be the function
)
arctan -2 x>0
1
flxx) =17, x,>0o0rx =0
arctan 2+ x; <0.
1

Recall that =7 < arctan(t) < 7. Show that f is C* and that df is the 1-form w in

Eise 2.1.vii]. Why does not this contradict what you proved in Exercise 2.1.viij?

2.2. Integral Curves for Vector Fields

In this section we'll discuss some properties of vector fields which we'll need for the
manifold segment of this text. We'll begin by generalizing to n-variables the calculus notion
of an “integral curve” of a vector field.

Definition 2.2.1. Let U ¢ R” be open and v a vector field on U. A C! curve y: (a,b) - U
is an integral curve of v if for all t € (a, b) we have

v(y(e) = (yo), @) .

Remark 2.2.2. If v is the vector field (2.1.6) and g: U — R”" is the function (g, ..., g,)
the condition for y(f) to be an integral curve of v is that it satisfy the system of differential
equations

d
(2.2.3) d—f(t) = g(y(1)) .

We will quote without proof a number of basic facts about systems of ordinary differ-
ential equations of the type (£.2.3).5

Theorem 2.2.4 (existence of integral curves). Let U be an open subset of R” and v a vector
field on U. Given a point p, € U and a € R, there exists an interval I = (a - T,a+T), a
neighborhood U, of py in U, and for every p € U, an integral curve y,: I — U for v such that
yp(a) =p.

Theorem 2.2.5 (uniqueness of integral curves). Let U be an open subset of R” and v a vector
field on U. Fori = 1,2, let y;: I, — U, i = 1,2 be integral curves forv. Ifa € I, N I, and
v1(a) = v,(a) then y\; a1, = V2l1,n1, and the curve'y: I UL, — U defined by

yi(t), tel
t) :=
ve {Yz(t), tel,

1A source for these results that we highly recommend is [2, Ch. 6].
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is an integral curve for v.

Theorem 2.2.6 (smooth dependence on initial data). Let V c U ¢ R" be open subsets. Let
v be a C®-vector field on V, I C R an open interval, a € I, and h: V x I — U a map with
the following properties.

(1) h(p,a) = p.
(2) Forall p €V the curve
i I U, () = hip,1)
is an integral curve of v.
Then the map h is C™°.
One important feature of the system (2.2.3) is that it is an autonomous system of differ-

ential equations: the function g(x) is a function of x alone (it does not depend on t). One
consequence of this is the following.

Theorem 2.2.7. LetI = (a,b) and forc € RletI. = (a—c,b—c). Thenify: I — Uisan
integral curve, the reparametrized curve

(2.2.8) Ve: I. = U, p(t) =yt +¢)

is an integral curve.

We recall that C'-function ¢: U — R is an integral of the system (£.2.3) if for every
integral curve y(t), the function t — ¢(y(t)) is constant. This is true if and only if for all ¢

dy

d
0= Egb(y(t)) = (D¢)y(t) (E) = (D¢)y(t)(v)

where v(p) = (p,v). By the term on the right is L,,¢(p). Hence we conclude:

Theorem 2.2.9. Let U be an open subset of R" and ¢ € C'(U). Then ¢ is an integral of the
system (R.2.3) if and only if L,¢ = 0.
Definition 2.2.10. Let U be an open subset of R” and v a vector field on U. We say that v is

complete if for every p € U there exists an integral curve y: R — U with y(0) = p, i.e,, for
every p there exists an integral curve that starts at p and exists for all time.

To see what completeness involves, we recall that an integral curve
y: [0,b) - U,
with y(0) = p is called maximal if it cannot be extended to an interval [0,b’), where b’ > b.
(See for instance [, §6.11].) For such curves it is known that either
(1) b=+oo,
(2) ly(t)] = +c0ast — b,
(3) or the limit set of
(y®10<t<b)
contains points on the boundary of U.

Hence if we can exclude (B)) and (B]), we have shown that an integral curve with y(0) = p
exists for all positive time. A simple criterion for excluding (p]) and (g) is the following.

Lemma 2.2.11. The scenarios (B) and (B) cannot happen if there exists a proper C'-function
¢: U > Rwith Ly = 0.
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Proof. The identity L,¢ = 0 implies that ¢ is constant on y(t), but if ¢(p) = c this implies
that the curve y(t) lies on the compact subset ¢‘1 (¢) c U, hence it cannot “run oft to infinity”
as in scenario (P)) or “run off the boundary” as in scenario (f]). O

Applying a similar argument to the interval (-b, 0] we conclude:

Theorem 2.2.12. Suppose there exists a proper C'-function ¢p: U — R with the property
L,¢ = 0. Then the vector field v is complete.

Example 2.2.13. Let U = R? and let v be the vector field

;0 0
v=x"— - y—.
Jdy ~ ox

Then ¢(x, y) = 2y* + x* is a proper function with the property above.
Another hypothesis on v which excludes (p]) and (f)) is the following.

Definition 2.2.14. The support of v is set

supp(v) = {geUlv(q) #0}.
We say that v is compactly supported if supp(v) is compact.
We now show that compactly supported vector fields are complete.
Theorem 2.2.15. If a vector field v is compactly supported, then v is complete.

Proof. Notice first that if v(p) = 0, the constant curve, y,(t) = p, —00 < t < 00, satisfies the
equation

d
Ey"(t) =0=wv(p),

so it is an integral curve of v. Hence if y(¢), —a < t < b, is any integral curve of v with the
property y(t,) = p for some t, it has to coincide with y, on the interval (-a, a), and hence
has to be the constant curve y(t) = p on (—a, a).

Now suppose the support supp(v) of v is compact. Then either y(t) is in supp(v) for all
t or is in U ~ supp(v) for some ¢,. But if this happens, and p = y(t,) then v(p) = 0, so p(t)
has to coincide with the constant curve y,(t) = p, for all t. In neither case can it go off to co
or off to the boundary of U as t — b. O

One useful application of this result is the following. Suppose v is a vector field on
U c R”, and one wants to see what its integral curves look like on some compact set A c U.
Let p € C5°(U) be a bump function which is equal to one on a neighborhood of A. Then
the vector field w = pv is compactly supported and hence complete, but it is identical with
v on A, so its integral curves on A coincide with the integral curves of v.

If v is complete then for every p, one has an integral curve y,: R — U with y,(0) = p,
so one can define a map

f:U—->U

by setting f,(p) = y,(t). lfvis C®, this mapping is C** by the smooth dependence on initial
data theorem, and, by definition, f, = id;;. We claim that the f,’s also have the property

(2.2.16) feo fa= fia-



Draft: March 28, 2018

40 Chapter 2: Differential Forms

Indeed if f,(p) = g, then by the reparametrization theorem, y,(t) and y,(t + a) are both
integral curves of v, and since q = y,(0) = y,(a) = f,(p), they have the same initial point,
s0

Yq®) = fi(q) = (f; ° f)(p)
= Yp(t +ta)= ft+a(P)
for all ¢. Since f, is the identity it follows from (2.2.14) that f, o f_, is the identity, i.e.,

fo= ft_l >
s0 f, is a C* diffeomorphism. Hence if v is complete it generates a one-parameter group f,,
—00 < t < 00, of C*-diffeomorphisms of U.

If v is not complete there is an analogous result, but it is trickier to formulate precisely.
Roughly speaking v generates a one-parameter group of diffeomorphisms f, but these dif-
feomorphisms are not defined on all of U nor for all values of t. Moreover, the identity
(R-2:16) only holds on the open subset of U where both sides are well-defined.

We devote the remainder of this section to discussing some “functorial” properties of
vector fields and one-forms.

Definition 2.2.17. LetU ¢ R" and W ¢ R" be open, andlet f: U — W be a C* map. Ifv
is a C*™-vector field on U and w a C*®-vector field on W we say that v and w are f-related
if, for all p € U we have

df,@(p) = w(f(p)).
Writing

v= Zvi— , v; € CKU)

i=1 axi

and
w= iwi w; € CKV)
= J 0 yj J

this equation reduces, in coordinates, to the equation

n

of
wi@=Y Loy p).
a 0x;

In particular, if m = nand f is a C* diffeomorphism, the formula (.2]) defines a C**-vector
fieldon W, i,

Hence we have proved:

Theorem 2.2.18. If f: U = W is a C* diffeomorphism and v a C*°-vector field on U, there
exists a unique C* vector field w on W having the property that v and w are f-related.

Definition 2.2.19. In the setting of [Theorem 2.2.1§, we denote the vector field w by f, v,
and call f,v the pushforward of vby f .
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We leave the following assertions as easy exercises (but provide some hints).

Theorem 2.2.20. Fori = 1,2, let U; be an open subset of R", v; a vector field on U; and
f: U, = U, aC®-map. If v, and v, are f-related, every integral curve

y: I -U
of v, gets mapped by f onto an integral curve f oy: I — U, of v,.
Proof sketch. follows from the chain rule: if p = p(t) and g = f(p)

d d
af, <EV(’-‘)> = Ef()/(f))- O

Corollary 2.2.21. In the setting of [[heorem 2.2.2d, suppose v, and v, are complete. Let
(fitdter: U; > U be the one-parameter group of diffeomorphisms generated by v;. Then

feohf=taef
Proof sketch. To deduce [Corollary 2.2.21 from [Theorem 2.2.2d note that for p € U, f, .(p)
is just the integral curve y,(f) of v; with initial point y,(0) = p.
The notion of f-relatedness can be very succinctly expressed in terms of the Lie differ-
entiation operation. For ¢ € C®(U,) let f*¢ be the composition, ¢ o f, viewed as a C*°
function on Uy, i.e,, for p € U let f*¢(p) = ¢(f(p)). Then
f*va(p = Lvlf*(p .

To see this, note that if f(p) = g then at the point p the right hand side is
(d), o df,(v,(p))

by the chain rule and by definition the left hand side is

de,(v,(9))

Moreover, by definition
v,(q) = df,(v,(p))

so the two sides are the same. O
Another easy consequence of the chain rule is:

Theorem 2.2.22. Fori = 1,2,3, let U; be an open subset of R™, v; a vector field on U;, and
fori=1,2let f;: Uy - Uy, be a C®-map. Suppose that v, and v, are f,-related and that v,
and vy are f,-related. Then v, and v; are (f, o f;)-related.

In particular, if f; and f, are diffeomorphisms writing v := v, we have

() (f1)ev = (fr° fi).v.
The results we described above have “dual” analogues for one-forms.

Construction 2.2.23. LetU ¢ R" and V ¢ R" be open, and let f: U — V be a C*°-map.
Given a one-form ¢ on V' one can define a pullback one-form f*u on U by the following
method. For p € U, by definition p4(,,) is a linear map
tp: TrpR™ — R

and by composing this map with the linear map

dfpl TPRn - Tf(p)Rn
we get a linear map

bip)© dfp: TR >R,
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ie., an element pi () o df, of T/R".
The pullback one-form f*u is defined by the assignment p — (uf(,) © dfy).
In particular, if ¢: V' — R is a C*°-function and y = d¢ then
Moo dfy=degedf,=d(@ef),
ie.,
fru=ddef.

In particular if y is a one-form of the form y = d¢, with ¢ € C®(V), f*u is C*. From this
it is easy to deduce:

Theorem 2.2.24. If pis any C* one-form on 'V, its pullback f*w is C*. (See [Exercise 2.2.11.)

Notice also that the pullback operation on one-forms and the pushforward operation
on vector fields are somewhat different in character. The former is defined for all C* maps,
but the latter is only defined for diffeomorphisms.

Exercises for
Exercise 2.2.i. Prove the reparameterization result [Theorem 2.2.2d.

Exercise 2.2.ii. Let U be an open subset of R”, V an open subset of R” and f: U — V a C¥
map.

(1) Show that for ¢ € C*°(V) (2.2]) can be rewritten
frag=df*¢.

(2) Let y be the one-form
U= Z¢idxi » §; € C2(V)
i=1
on V. Show thatif f = (f},..., f,,) then
fru=Y frédf;.
i=1

(3) Show thatif yis C*° and f is C*™°, f*uis C™.

Exercise 2.2.iii. Let v be a complete vector field on U and f,: U — U, the one parameter
group of diffeomorphisms generated by v. Show that if ¢ € C'(U)

Lé= S5

Exercise 2.2.iv.
(1) LetU = R? and let v be the vector field, x,0/0x, — x,0/0x,. Show that the curve

t — (rcos(t +0),rsin(t +0)),

for t € R, is the unique integral curve of v passing through the point, (r cos 9, r sin 0),
att = 0.
(2) LetU = R” and let v be the constant vector field: Y- | ¢;0/0x;. Show that the curve

t—a+t(c,....c,),

for t € R, is the unique integral curve of v passing through a € R" att = 0.
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(3) LetU = R" and let v be the vector field, Z:’zl x;0/0x;. Show that the curve
t—eéag,....a,),
fort € R, is the unique integral curve of v passing through a at t = 0.

Exercise 2.2.v. Show that the following are one-parameter groups of diffeomorphisms:
(1) fi: R>R, filx)=x+t

(2) f;: R>R, fi(x)=¢x

(3) f;: R? - R?, fi(x, y) = (x cos(t) — ysin(t), x sin(t) + y cos(t)).

Exercise 2.2.vi. Let A: R” — R” be a linear mapping. Show that the series

(o]
tA)" t* £
exp(tA) = ) (t4) =id, +HA+ — A+ — A% + ..
T 27 T

converges and defines a one-parameter group of diffeomorphisms of R".

Exercise 2.2.vii.

(1) What are the infinitesimal generators of the one-parameter groups in [Exercise 2.2.W?
(2) Show that the infinitesimal generator of the one-parameter group in is

the vector field 3
Z i X5
1<i,j<n 0x;

where (a; ;) is the defining matrix of A.

Exercise 2.2.viii. Let v be the vector field on R given by x? %. Show that the curve

x(t) =

a-—at
is an integral curve of v with initial point x(0) = a. Conclude that for a > 0 the curve

1
xt)= -2 o0<t<=
1—at a

is a maximal integral curve. (In particular, conclude that v is not complete.)

Exercise 2.2.ix. Let U and V be open subsets of R” and f: U > V a diffeomorphism. If w
is a vector field on V, define the pullback of w to U to be the vector field

frw=(f;'w).
Show that if ¢ is a C* function on V'
flup=Lewf ¢,
Hint: Equation (2:2.35).

Exercise 2.2.x. Let U be an open subset of R” and v and w vector fields on U. Suppose v is
the infinitesimal generator of a one-parameter group of diffeomorphisms

fi:U>»U, —co<t<oo.
Letw, = fw. Show that for ¢ € C*(U) we have
L[v,w](/) = Lw¢ >
where

o _d .,
w:Eftw

t=0
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Hint: Differentiate the identity

fiLy$ = Lwtft*¢
with respect to ¢ and show that at ¢t = 0 the derivative of the left hand side is L,L,¢ by
Exercise 2.2.1i}, and the derivative of the right hand side is

Ly + Ly (L) .
Exercise 2.2.xi. Conclude from that

(2.2.25) [v,w] = %ft*w .

2.3. Differential k-forms

One-forms are the bottom tier in a pyramid of objects whose k'" tier is the space of k-
forms. More explicitly, given p € R" we can, as in Section 1.5, form the k'™ exterior powers

AKTRY), k=1,2,3,..,n
of the vector space T)R", and since
(2.3.1) AI(T;R”) = TI;*R’1

one can think of a one-form as a function which takes its value at p in the space (£.3.1)). This
leads to an obvious generalization.

Definition 2.3.2. Let U be an open subset of R”. A k-form w on U is a function which
assigns to each point p € U an element w;, € Ak(T; R").

The wedge product operation gives us a way to construct lots of examples of such ob-
jects.

Example 2.3.3. Let w, ..., w; be one-forms. Then w; A -+ A wy is the k-form whose value
at p is the wedge product

(2.3.4) (W A=+ A wk)p = (wl)p Ao A (wk)P .
Notice that since (w,-)P is in Al (T; R”) the wedge product (p.3.4) makes sense and is an
element of Ak(T; R").

Example 2.3.5. Let f, ..., f; be a real-valued C* functions on U. Letting w; = d f; we get
from (p.3.4) a k-form

dfy A Ndfi
whose value at p is the wedge product
(2.3.6) (dfi)p N AN(dfi)y -

Since (dx,),, ..., (dx,), are a basis of T)R", the wedge products
(2.3.7) (dx; )p Ao A(dxy, )y, 1<idp <o <ip<n
are a basis of Ak(T; ). To keep our multi-index notation from getting out of hand, we denote
these basis vectors by (dx;),, where I = (iy, ..., it) and the multi-indices I range over multi-

indices of length k which are strictly increasing. Since these wedge products are a basis of
Ak(T; R"), every element of Ak(T; R") can be written uniquely as a sum

ch(dxl)p , ct€R
T
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and every k-form w on U can be written uniquely as a sum
(2.3.8) W= ijdxl
1

where dx; is the k-form dx; A --- Adx; ,and f; is a real-valued function f;: U — R,
Definition 2.3.9. The k-form (p-3.§) is of class C" if each function f; is in C"(U).

Henceforth we assume, unless otherwise stated, that all the k-forms we consider are of
class C*°. We denote the set of k-forms of class C* on U by k).

We will conclude this section by discussing a few simple operations on k-forms. Let U
be an open subset of R".

(1) Given a function f € C*°(U) and a k-form w € QF(U) we define fwe QF(U) to be the
k-form defined by

p— f(p)wp .
(2) Given w;,w, € Qk(U), we define w; +w, € QK(U) to be the k-form
p= (wl)p + (wz)p .
(Notice that this sum makes sense since each summand is in Ak(TP* R").)
(3) Givenw, € Q" (U)and w, € Q% (U) we define their wedge product, w, Aw, € Q1% (U)
to be the (k; + k,)-form
P () Alwy), .
We recall that AO(T; R"”) = R, so a zero-form is an R-valued function and a zero form
of class C® is a C* function, i.e., Q°(U) = C®(U).
The addition and multiplication by functions operations naturally give the sets QX(U)
the structures of R-vector spaces — we always regard Q¥(U) as a vector space in this manner.
A fundamental operation on forms is the exterior differention operation which asso-
ciates to a function f € C*°(U) the 1-form d f. It is clear from the identity (p.2.3)) that d f
is a 1-form of class C*, so the d-operation can be viewed as a map
d: Q°(U) - Q'(U).

In the next section we show that an analogue of this map exists for every QX(U).

Exercises for
Exercise 2.3.i. Let w € Q*(R*) be the 2-form dx; A dx, + dx; A dx,. Compute w A w.
Exercise 2.3.ii. Let w,, w,, w; € Q'(R?) be the 1-forms
w; = Xydx; — x3dx, ,
W, = x3dx; — x,dx;,
w3 = x,dx, — x,dx; .
Compute the following.
(1) w; A w,.
(2) wy A ws.
(3) w3 Aw;.
(4) W A wy A w;.

Exercise 2.3.iii. Let U be an open subset of R” and f, ..., f,, € C®°(U). Show that

ox;

dfl/\---/\dfn:det[%]dxl/\---/\dxn.
]
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Exercise 2.3.iv. Let U be an open subset of R”. Show that every (n — 1)-form w € Q""}(U)
can be written uniquely as a sum

n
Y fidxy Ao ANdx A Adx,
i=1

where f; € C®(U) and c/la\ci indicates that dx; is to be omitted from the wedge product
dx; A - Ndx,,.

Exercise 2.3.v. Lety = Y| x;dx;. Show that there exists an (n—1)-form, w € Q" (R"~{0})
with the property

UAw=dx; A Ndx,, .

Exercise 2.3.vi. Let J be the multi-index (j;, ..., j) and let dx; = dx; A --- Adx; . Show
thatdx; = 0if j, = j; for some r # s and show that if the numbers ji, ..., ji are all distinct,
then

dXJ = (—1)de1 5

where I = (i}, ..., i) is the strictly increasing rearrangement of (j;, ..., ji) and o is the per-
mutation

(jl’ ey Jk) [ d (il’ seey lk) .
Exercise 2.3.vii. Let I be a strictly increasing multi-index of length k and J a strictly increas-
ing multi-index of length £. What can one say about the wedge product dx; A dx;?
2.4. Exterior differentiation

Let U be an open subset of R”. In this section we define an exterior differentiation oper-
ation

(2.4.1) d: OKU) - QNU).

This operation is the fundamental operation in n-dimensional vector calculus.
For k = 0 we already defined the operation (2.4.1)) in §2.1). Before defining it for k > 0,
we list some properties that we require to this operation to satisfy.

Properties 2.4.2 (desired properties of exterior differentiation). Let U be an open subset of
R".
(1) For w; and w, in Qk(U), we have
dw, + w,) = dw; + dw, .

(2) Forw, € QkU) and w, € Qf(U) we have
(2.4.3) d(w, Aw,) = dw, Aw, + (-0, A dw, .
(3) For all w € QF(U) we have
(2.4.4) d(dw) =0

Let is point out a few consequences of these properties.
Lemma 2.4.5. Let U be an open subset of R”. For any functions fi, ..., fi € C*°(U) we have

ddfin---Ndfi)=0.
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Proof. We prove this by induction on k. For the base case note that by (f)
(2.4.6) ddf,) =0
for every function f; € C®(U).

For the induction step, suppose that we know the result for k — 1 functions and that
we are given functions fi, ..., fy € C®°(U). Let y = d f, A --- A df;. Then by the induction
hypothesis dy = 0 Combining (p-4.3) with (p.4.6) we see that

ddfindfy N---Ndfy) =ddf, Ap)
=ddf)Au+(-1)dfi A du
=0. O

Example 2.4.7. As a special case of Lemma 2.4.5, given a multi-index I = (i}, ..., ;) with
1 <i, <nwehave

(2.4.8) d(dx;) = d(dxl-1 A A dx,-k) =0.
Recall that every k-form w € Q*(U) can be written uniquely as a sum

w=)Y fdx;, f; € C*U)
I

where the multi-indices I are strictly increasing. Thus by (£-4.3) and (£.4.8)
(2.4.9) do=Y df; Ndx; .
i

This shows that if there exists an operator d: Q*(U) — Q**!(U) with Properties 2.4.2, then
d is necessarily given by the formula (2:4.9). Hence all we have to show is that the operator

defined by this has these properties.

Proposition 2.4.10. Let U be an open subset of R". There is a unique operator d : Q*(U) —
Q") (U) satisfying Properfies 243
Proof. The property ([l is obvious.

To verify (P]) we first note that for I strictly increasing is a special case
of (take f; = 1and f; = 0 for J # I). Moreover, if I is not strictly increasing
it is either repeating, in which case dx; = 0, or non-repeating in which case there exists a
permuation o € Sy such that I” is strictly increasing. Moreover,

(2.4.11) dx; = (-1)%dxpo .

Hence (p-4.9) implies (2:4.8) for all multi-indices I. The same argument shows that for any
sum Y ; fidx; over multi-indices I of length k, we have

(2.4.12) d(3; fidx)) = Y df; Adx; .
I

(As above we can ignore the repeating multi-indices dx; = 0 if I is repeating, and by (2-4.11)
we can replace the non-repeating multi-indices by strictly increasing multi-indices.)

Suppose now that w, € Q¥(U) and w, € QYU). Write w, = ¥, fidx; and w, =
Y. 9;dx;, where f1, g; € C*°(U). We see that the wedge product w; A w, is given by

(2.4.13) w; ANw, = Zflg]dxl A dx;,
L
and by Fquation (3.4.12)

(2.4.14) dw, Awy) = Y d(frgy) Ndx; Adx; .
L
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(Notice that if I = (i, ...,i) and J = (jj, ..., i), we have dx; A dx; = dxy, where K =
(i1> -+ > j1» ---» Jp)- Even if I and J are strictly increasing, K is not necessarily strictly in-
creasing. However, in deducing (p.4.14) from (p.4.13) we have observed that this does not
matter.)

Now note that by
d(f19) = gydfi + fidgy »
and by the wedge product identities of § 1.6,

dgy Adx; =dgy Adx; A Adx; = (-1)'dx; ndgy,
so the sum (p.4.14) can be rewritten:
Y dfy Adxp A gydxy + (-DF Y frdxg A dgy Adx
L] L]
or
<de1 /\de> A <Zg]dx]) + (-1 (ng, /\dx,> A (Zdﬁ /\de> ,
1 J J 1
or, finally,

dw, Aw, + (-1)Fw, Adw, .

Thus the the operator d defined by has (B).
Let is now check that d satisfies (). If w = ), fidx;, where f; € C*®(U), then by

definition, dw = Y, d f; A dx; and by (2:4.8) and (p-4.3)
d(dw) = Y d(dfy) Adxy
1

so it suffices to check that d(d f;) = 0, i.e,, it suffices to check (g:4.q) for zero forms f ¢
C*®(U). However, by (2.2.3) we have

n af
df = Zl a—xjdxj
J:

so by equation (2.4.9)

ddf) = Zd(%)dxj => <Z aizg;.dx,) A dx;
j=1

]

2

1<i,j<n axiaxj
Notice, however, that in this sum, dx; A dx; = —dx; A dx; and

f B *f
0x;0x; - 0x;0x;
so the (4, j) term cancels the (j, i) term, and the total sum is zero. O

Definition 2.4.15. Let U be an open subset of R”. A k-form w € QFU) is closed if dw = 0
and is exact if w = dy for some y € QF1(U).
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By (B) every exact form is closed, but the converse is not true even for 1-forms (see
[Exercise 2.1.11). In fact it is a very interesting (and hard) question to determine if an open
set U has the following property: For k > 0 every closed k-form is exact.B

Some examples of spaces with this property are described in the exercises at the end of
§2.6. We also sketch below a proof of the following result (and ask you to fill in the details).

Lemma 2.4.16 (Poincaré lemma). If w is a closed form on U of degree k > 0, then for every
point p € U, there exists a neighborhood of p on which w is exact.

Proof. See Exercises 2.4.Y and p.4.v]. ([l
Exercises for

Exercise 2.4.i. Compute the exterior derivatives of the following differential forms.
(1) x,dx, Ndxs

(2) xydx, — x,dx;

(3) e fdf where f = Y7 x?

(4) Z?:l xidxi

(5) Y (-Dixidx; A=+ A dx; A -+ Ndx,

Exercise 2.4.ii. Solve the equation du = w for u € Q'(R?), where w is the 2-form:
(1) dxy N dx,
(2) x,dx, Ndxs
(3) (x? +x3)dx, ANdx,
(4) cos(x;)dx; A dx;,
Exercise 2.4.iii. Let U be an open subset of R".
(1) Show thatif y € QFU) is exact and w € Qf(U) is closed then U A w is exact.
Hint: Equation (2.4.3).
(2) In particular, dx, is exact, so if w € Qf(U) is closed dx; A @ = du. What is u?
Exercise 2.4.iv. Let Q be the rectangle (a;,b;) x -+ x (a,,,b,). Show that if w is in Q*(Q),
then w is exact.
Hint: Let w = fdx, A -+ Adx, with f € C*°(Q) and let g be the function

X1

91 x,) = j £l Xy oo, )t

a,
Show that w = d(gdx, A -+ Ndx,,).
Exercise 2.4.v. Let U be an open subset of R”"!, A ¢ R an open interval and (x, t) product

coordinates on U x A. We say that a form p € Qf(U x A) is reduced if y can be written as a
sum

(2.4.17) U= Z Sfi(x, t)dx; ,
T

(i.e., with no terms involving dt).
(1) Show that every form, w € QKU x A) can be written uniquely as a sum:
(2.4.18) w=dtNa+f

where o and f3 are reduced.

*For k = 0, df = 0 does not imply that f is exact. In fact “exactness” does not make much sense for zero
forms since there are not any “(—1)-forms”. However, if f € C*°(U) and df = 0 then f is constant on connected

components of U (see [Exercise 2.2.11]).
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(2) Let p be the reduced form (k:4.17) and let

d d
ﬁzzaﬁ%w&
and

- 0
dyy = Z <Z a—f,(x, t)dx,-) Ndx; .
T \i=1 9%
Show that
dy
du=dtN— +dyp.
4 ar vk
(3) Let w be the form (p:4.1§). Show that

dp

dw = —dt A dUoc+dt/\E+ dyB

and conclude that w is closed if and only if

éé =
(2.4.19) { ar = 4o
dUﬂ = 0 .

(4) Let « be a reduced (k — 1)-form. Show that there exists a reduced (k — 1)-form v such
that

o,
dt
Hint: Leta = )| fi(x,t)dx;and v = } g;(x,t)dx;. The reduces

to the system of equations

(2.4.20)

d
(2.4.21) zgl(x, t) = fi(x,t).
Let ¢ be a point on the interval, A, and using calculus show that has a

unique solution, g;(x, t), with g;(x,c) = 0.

(5) Show that if w is the form (p:4.1§) and v a solution of (p-4.2d) then the form
(2.4.22) w—dv
is reduced.
(6) Let
Y= h(xt)dx;

be a reduced k-form. Deduce from (-4.19)) that if y is closed then % =0anddyy = 0.
Conclude that h;(x, t) = h;(x) and that

y =Y h(x)dx;
I

is effectively a closed k-form on U. Prove that if every closed k-form on U is exact, then
every closed k-form on U x A is exact.
Hint: Let w be a closed k-form on U x A and let p be the form (£.4.22).

Exercise 2.4.vi. Let Q C R" be an open rectangle. Show that every closed form on Q of
degree k > 0 is exact.

Hint: Let Q = (a;,b;) X -+ x (a,,, b,). Prove this assertion by induction, at the n'™ stage
of the induction letting U = (a,,b,) X --- x (a,_;,b,_,) and A = (a,,,b,,).
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2.5. The interior product operation

In we explained how to pair a one-form w and a vector field v to get a function ,w.
This pairing operation generalizes.

Definition 2.5.1. Let U be an open subset of R”, v a vector field on U, and w € QFU) The
interior product of v with w is (k — 1)-form 1, on U defined by declaring the value of 1, w
value at p € U to be the interior product

(2.5.2) Ly(p)@p -
Note that v(p) is in TPR” and w, in Ak (T; R"), so by definition of interior product (see[§1.7),
the expression (.5.2)) is an element of AR-1 (T; R™).

From the properties of interior product on vector spaces which we discussed in §1.7,
one gets analogous properties for this interior product on forms. We list these properties,
leaving their verification as an easy exercise.

Properties 2.5.3. Let U be an open subset of R”, v and w vector fields on U, w; and w, both
k-forms on U, and w a k-form and y an €-form on U.

(1) Linearity in the form: we have
(W) + w,) = L, + 1w, .
(2) Linearity in the vector field: we have
Lysw®@ = L@ + LW .
(3) Derivation property: we have
AW =,wAu+ (-Dkw A LY
(4) The interior product satisfies the identity
1y (1) = =1, (1,0) .
(5) As a special case of (|f), the interior product satisfies the identity
1, (t,w) =0.
(6) Moreover, if w is decomposable, i.e., is a wedge product of one-forms
W=py N N s
then

k
Lw = Z(_l)r_llu([’tr)#l A -e- /\ﬁr A A g
r=1

We also leave for you to prove the following two assertions, both of which are special
cases of (f).
Example 2.5.4. If v = 0/0x, and w = dx; = dx; A--- Adx; then

k
(2.5.5) Lyw = Z(_l)i_16i,i,dxl,

i=1
where

and I, = (i, ..r By o or Bg)-
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Example 2.5.6. Ifv =Y f;0/0x; and w = dx; A --- Adx,, then

n
(2.5.7) =Y (1) f,dx; A dx, o A, .
r=1
By combining exterior differentiation with the interior product operation one gets an-
other basic operation of vector fields on forms: the Lie differentiation operation. For zero-
forms, i.e., for C* functions, we defined this operation by the formula (p.1.1§). For k-forms
we define it by a slightly more complicated formula.

Definition 2.5.8. Let U be an open subset of R", v a vector field on U, and w € QFU). The
Lie derivative of w with respect to v is the k-form

(2.5.9) L,w = 1,(dw) + d(1,w) .

Notice that for zero-forms the second summand is zero, so (2.5.9) and (p.1.16) agree.

Properties 2.5.10. Let U be an open subset of R”, v a vector field on U, w € QkU), and
€ QY(U). The Lie derivative enjoys the following properties:

(1) Commutativity with exterior differentiation: we have
(2.5.11) d(L,w) = L,(dw) .
(2) Interaction with wedge products: we have
(2.5.12) LwAyu)=LwAp+wALyp
From it is fairly easy to get an explicit formula for L,w. Namely let w

be the k-form
T

and v the vector field

n

a (0e]
v=Zg,~£, g; € C*(U).

i=1 i

By Equation (2.5.13]
Ly(fidxp) = (L, fpdx; + f(L,dxp)
and
k
L,dx; = de,-l Ao NLydxg Ao Ndxg
r=1
and by Fquation (2.3.11)

Lydx; = dL,x;
so to compute L,w one is reduced to computing L,x; and L, f;.
However by
L,x; =g;

and
n

af
Lfi=Y g2,
ofi ;gzaxi

We leave the verification of as exercises, and also ask you to prove (by the

method of computation that we have just sketched) the following divergence formula.

Lemma 2.5.13. LetU C R" be open, let gy, ..., g, € CP°(U), and setv = Y| g; 0/0x;. Then
n

(2.5.14) Lv(dxl/\---/\dxn)=Z<%>dx1/\---/\dxn.

=1 \ 0%,
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Exercises for
Exercise 2.5.i. Verify the (H-@.

Exercise 2.5.ii. Show that if w is the k-form dx; and v the vector field 0/0x,, then 1w is

given by Equation (2.5.5)

Exercise 2.5.iii. Show thatifw is the n-form dx; A---Adx,, and v the vector field Y, f,0/0x;,
then 1w is given by pquation (2.5.7).
Exercise 2.5.iv. Let U be an open subset of R” and v a C* vector field on U. Show that for
w € OFU)
dL,w = L,dw
and
1,(Lyw) = L,(1,w) .

Hint: Deduce the first of these identities from the identity d(dw) = 0 and the second
from the identity ¢, (1, w) = 0.
Exercise 2.5.v. Given w; € Qki(U), fori = 1,2 show that

L,(w; Aw,) = Lyw; Aw, +w; A Lyw, .

Hint: Plug w = w; A w, into and use Equation (2.4.3) and the derivation

property of the interior product to evaluate the resulting expression.

Exercise 2.5.vi. Letv; and v, be vector fields on U and let w be their Lie bracket. Show that
for w € QF(U)
Lyw =L, (L, w) - L, (L, ).
Hint: By definition this is true for zero-forms and by for exact one-
forms. Now use the fact that every form is a sum of wedge products of zero-forms and
one-forms and the fact that L,, satisfies the product identity (p.5.12).

Exercise 2.5.vii. Prove the divergence formula (p:5.14).

Exercise 2.5.viii.
(1) Let w = QF(R") be the form

W= Zfl(xl, v X,)dX]
i

and v the vector field 9/0x,,. Show that

0
va = Z a—xnfl(xl, ...,xn)de .

(2) Suppose 1,w = L,w = 0. Show that w only depends on x,, ..., x,_; and dx,, ..., dx,_;,
i.e., is effectively a k-form on R"*"!.
(3) Suppose 1,0 = dw = 0. Show that w is effectively a closed k-form on R"™!.
(4) Use these results to give another proof of the Poincaré lemma for R". Prove by induction
on n that every closed form on R” is exact.
Hints:
> Let w be the form in part ([i]) and let

G1Gers oo X,) = L Fi(Xp ooy, DL

Show that if v = )| g;dxy, then L,v = w.
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» Conclude that
(2.5.15) w-di,v=1,dv.

> Suppose dw = 0. Conclude from and (f)) of that
the form 8 = 1,dv satisfies df§ = «(v)[3 = 0.
» By part (B)), B is effectively a closed form on R"™!, and by induction, 8 = da. Thus

by
w=di,v+ da.
2.6. The pullback operation on forms

Let U be an open subset of R”, V an open subset of R” and f: U — V a C* map. Then
for p € U and the derivative of f at p

dpr TpRn - Tf(p)Rm
is a linear map, so (as explained in §1.7) we get from a pullback map
(2.6.1) dfy = @f,)": AT} ,R™) — ANTHR").
In particular, let w be a k-form on V. Then at f(p) € V, w takes the value
ws(p € ATFR™),
so we can apply to it the operation (p-6.1)), and this gives us an element:
(2.6.2) dfjws, € AT;RY).
In fact we can do this for every point p € U, and the assignment
(263) p (dfp)*wf(p)
defines a k-form on U, which we denote by f*w. We call f*w the pullback of w along the
map f. A few of its basic properties are described below.
Properties 2.6.4. Let U be an open subset of R”, V an open subset of R” and f: U —» V a
C® map.
(1) Let ¢ be a zero-form, i.e., a function ¢ € C*°(V). Since
O*y — AO(* _
AT;) = A°(Tj) = R
the map (2.6.1)) is just the identity map of R onto R when k = 0. Hence for zero-forms

(2.6.5) (f*)(p) = ¢(f(p))
that is, f*¢ is just the composite function, ¢ o f € C*°(U).
(2) Let ¢ € Q°(U) and let 4 € Q(V) be the 1-form y = d¢. By the chain rule (2.6.2)

unwinds to:

(2.6.6) (dfp) dp, = (dp) o df, =d(¢o f),
and hence by (£:6.5) we have

(2.6.7) frdd=df*¢.

(3) Ifw,,w, € QX(V) from we see that
(df,)* (@) + @)y = (dfy) (@), + (@df,) (@), »
and hence by eq:2.5.3 we have

o +wy) = o + ffw, .
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(4) We observed in that the operation (.6.1) commutes with wedge-product, hence if
w, € Q*(V) and w, € QY(V)

df;(wl)q A (w,y), = df;(wl)q A dfp*(wz)q .
In other words
(2.6.8) ffoiAw, = ffwo A ffw,.

(5) Let W be an open subset of R* and g: V' — W a C*® map. Given a point p € U, let
q = f(p) and w = g(q). Then the composition of the map

(df,) : AKTy) - AK(Ty)
and the map
(dg,)*: AK(Ty) — AK(TY)
is the map
(dgg e dfy)": ANTS) — ANTY)
by formula ([t.7.5)). However, by the chain rule
(dg,) > @), =d(ge ),
so this composition is the map
d(go f)y: ANTS) — ANT}) .
Thus if w € QX(W)
frlgrw)=(g-f)w.
Let us see what the pullback operation looks like in coordinates. Using multi-index
notation we can express every k-form w € QK(V) as a sum over multi-indices of length k

(2.6.9) w = Z¢1dx1 >
T

the coefficient ¢; of dx; being in C*°(V). Hence by (£.6.5)

fro=Y f¢uf dxp)
where f*¢; is the function of ¢ o f.
What about f*dx;? If I is the multi-index, (i, ..., i), then by definition

dxp=dx; N Ndx;
S0
fr(dxp) = fr(dx; ) A== A f7(dx;)
by (2-6.9), and by (2.6.7), we have
frdx;=df"x; =df;
where f; is the i coordinate function of the map f. Thus, setting
dfp=df, N Adf,
we see that for each multi-index I we have
(2.6.10) fdxp) =df;,
and for the pullback of the form (p.6.9)

(2.6.11) f*w:Zf*‘/’Ide-
i
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We will use this formula to prove that pullback commutes with exterior differentiation:
(2.6.12) d(f*w) = f*(dw) .
To prove this we recall that by (2:3.6) we have d(d f;) = 0, hence by (p-3.1)) and (£.6.1d) we

have

d(f @) = Y d(f e ndfy = Y f*dgp) A f(dxy)
T T
= f* ) dy Adx; = f*(dw).
T
A special case of formula (p:6.1d) will be needed in [Chapter 4: Let U and V be open
subsets of R” and let w = dx; A --- A dx,,. Then by (p.6.1d) we have
frw,=@dfi)p A NS,y
for all p € U. However,
of;
@f)y = Y, L pyiaxy,
j
and hence by formula (L.7.1d)
* 0 i
f w, = det [a—j;(p)] (dx; A -+ /\dxn)P .

In other words

(2.6.13) f*(dxl/\---/\dxn)=det[?]dxl/\---/\dxn.
x.

j
In Exercise 2.6.1Y and pquation (2.6.6) we outline the proof of an important topological
property of the pullback operation.

Definition 2.6.14. Let U be an open subset of R”, V an open subset of R”, A ¢ R an open
interval containing 0 and 1 and f), f;: U —» Vtwo C® maps. AC® map F: Ux A — Vis
a C® homotopy between f, and f; if F(x,0) = fy(x) and F(x,1) = f;(x).

If there exists a homotopy between f; and f;, we say that f; and f; are homotopic and
write f, = f}.

Intuitively, fy and f, are homotopic if there exists a family of C*° maps f,: U — V,
where f,(x) = F(x,t), which “smoothly deform f; into f,”. In Exercise 2.6.iY and pqua]j
you will be asked to verify that for f, and f; to be homotopic they have to

satisfy the following criteria.

Theorem 2.6.15. Let U be an open subset of R”, V an open subset of R”, and f,, f;: U - V
two C® maps. If f, and f, are homotopic then for every closed form w € Q*(V) the form
fi'w— fyw is exact.

This theorem is closely related to the Poincaré lemma, and, in fact, one gets from it
a slightly stronger version of the Poincaré lemma than that described in
and gquation (2.3.7).

Definition 2.6.16. An open subset U of R" is contractible if, for some point p, € U, the
identity map idy; : U — U is homotopic to the constant map

for U—=U, folp) = po
at p,.
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From it is easy to see that the Poincaré lemma holds for contractable
open subsets of R”. If U is contractable every closed k-form on U of degree k > 0 is exact. To
see this, note that if w € Q%(U), then for the identity map id{; w = w and if f is the constant
map at a point of U, then f*w = 0.

Exercises for
Exercise 2.6.i. Let f: R® — R® be the map
fxy, x5, %3) = (x1x2’x2x§>x§) .
Compute the pullback, f*w for the following forms.
(1) w = x,dx;,
(2) w=x;dx; Ndx,
(3) w=x;dx; ANdx, N dx;

Exercise 2.6.ii. Let f: R? — R’ be the map

fx1, %) = (6, %3, x,%,)
Complete the pullback, f*w, for the following forms.
(1) w = x,dx, + x3dx;

(2) w=x;dx, Ndx,
(3) w=dx; Ndx, Ndx;

Exercise 2.6.iii. Let U be an open subset of R"”, V an open subset of R”, f: U —» V a C®
map and y: [a,b] — U a C® curve. Show that for w € Q' (V)

Jy Jre L ¢

where y; : [a,b] — V is the curve, y,(¢) = f(y(t)). (See Exercise 2.2.viii.)

Exercise 2.6.iv. Let U be an open subset of R”, A ¢ R an open interval containing the
points, 0 and 1, and (x, t) product coordinates on U x A. Recall from that a
form p € Qf(U x A) is reduced if it can be written as a sum

u=Y filxt)dx
1

(i.e., none of the summands involve dt). For a reduced form y, let Qu € Qf(U) be the form
1
(2.6.17) Qu = <Z J fi(x, t)dt> dx;
1 J0
and let y;, 4, € Q°(U), be the forms
Ho = ). fi(x, 0)dx;
T

and
= filx Ddx; .
Now recall from that every form w € QF(U x A) can be written uniquely as a

sum
(2.6.18) w=dtNa+f

where o and f are reduced.

(1) Prove:
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Theorem 2.6.19. If the form (2.6.18) is closed then
(2.6.20) Bi— By =dQu.

Hint: Equation (2.4.19).Let sy and ¢; be the maps of U into U x A defined by 1y(x) = (x,0)
and ¢, (x) = (x, 1). Show that (p.6.2d) can be rewritten

(2.6.21) fw-w=dQu.

Exercise 2.6.v. Let V be an open subset of R” and f;, f; : U — V be C* maps. Suppose f,
and f; are homotopic. Show that for every closed form, yu € Q*(V), f*u — f5 u is exact.
Hint: Let F: U x A — V be a homotopy between f; and f; and let w = F* . Show that

w is closed and that f;'y = ijw and f;*u = 17 w. Conclude from Equation (2.6.21 )that
fru-fop=dQ
where w = dt Ao + S and o and f3 are reduced.

Exercise 2.6.vi. Show that if U ¢ R” is a contractable open set, then the Poincaré lemma
holds: every closed form of degree k > 0 is exact.

Exercise 2.6.vii. An open subset, U, of R” is said to be star-shaped if there exists a point
Do € U, with the property that for every point p € U, the line segment,
{tp+(1-1t)pylO<t <1},

joining p to p, is contained in U. Show that if U is star-shaped it is contractable.

Exercise 2.6.viii. Show that the following open sets are star-shaped.
(1) The open unit ball
{xeR"||x| <1}.

(2) The open rectangle, I, x --- x I,,, where each I} is an open subinterval of R.
(3) R"itself.
(4) Product sets

U, xU, cR"=R" xR™
where U is a star-shaped open set in R".

Exercise 2.6.ix. Let U be an open subset of R”, f,: U — U, t € R, a one-parameter group
of diffeomorphisms and v its infinitesimal generator. Given w € Q*(U) show that at t = 0

d .,
(2.6.22) Eft w=Lw.

Here is a sketch of a proof:

(1) Let p(t) be the curve, y(t) = f,(p), and let ¢ be a zero-form, i.e., an element of C*(U).
Show that

feo(p) = ¢(y())
and by differentiating this identity at t = 0 conclude that (2.6.22)) holds for zero-forms.
(2) Show that if (p.6.22]) holds for w it holds for dw.
Hint: Differentiate the identity

ffdw=dffw

att =0.
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(3) Show that if (£.6.22]) holds for w; and w, it holds for w; A w,.
Hint: Differentiate the identity
filwy ANwy) = flwy A fiw,
att =0.
(4) Deduce (p.6.22)) from ([i))-(f)).

Hint: Every k-form is a sum of wedge products of zero-forms and exact one-forms.
Exercise 2.6.x. In show that for all t
d * * *
(2.6.23) Eftw=ftva=vat w.

Hint: By the definition of a one-parameter group, f.,, = f;° f; = f, ° f,, hence:

Joww = fF(ffw) = £ (fw).
Prove the first assertion by differentiating the first of these identities with respect to s and
then setting s = 0, and prove the second assertion by doing the same for the second of these
identities.
In particular conclude that

* _ *
ffLw=L,ffw.
Exercise 2.6.xi.

(1) By massaging the result above show that

d .
E'ft w = dQ,w + Q,dw
where
Quw = ffi,w.
Hint: [Equation (2:5:)
(2) Let
1
Qu = J [ wdt .
0
Prove the homotopy identity
flfw- fofw=dQw+ Qdw .

Exercise 2.6.xii. Let U be an open subset of R”, V an open subset of R™, v a vector field on
U, wavector fieldon Vand f: U — V a C* map. Show that if v and w are f-related

Lffw=fr,w.
2.7. Divergence, curl, and gradient

The basic operations in 3-dimensional vector calculus: gradient, curl and divergence
are, by definition, operations on vector fields. As we see below these operations are closely
related to the operations

(2.7.1) d: OKR?) - QF1(R?)

in degrees k = 0, 1, 2. However, only the gradient and divergence generalize to n dimensions.
(They are essentially the d-operations in degrees zero and n — 1.) And, unfortunately, there
is no simple description in terms of vector fields for the other d-operations. This is one of
the main reasons why an adequate theory of vector calculus in #-dimensions forces on one
the differential form approach that we have developed in this chapter.
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Even in three dimensions, however, there is a good reason for replacing the gradient,
divergence, and curl by the three operations (p.7.1). A problem that physicists spend a lot of
time worrying about is the problem of general covariance: formulating the laws of physics in
such a way that they admit as large a set of symmetries as possible, and frequently these for-
mulations involve differential forms. An example is Maxwell’s equations, the fundamental
laws of electromagnetism. These are usually expressed as identities involving div and curl.
However, as we explain below, there is an alternative formulation of Maxwell’s equations
based on the operations (2.7.1)), and from the point of view of general covariance, this for-
mulation is much more satisfactory: the only symmetries of R* which preserve div and curl
are translations and otations, whereas the operations (.7.1) admit all diffeomorphisms of
R? as symmetries.

To describe how the gradient, divergence, and curl are related to the operations (p.7.1))
we first note that there are two ways of converting vector fields into forms.

The first makes use of the natural inner product B(v,w) = Y v;w; on R". From this

inner product one gets by a bijective linear map

L: R" = (R")*
with the defining property: L(v) = € if and only if £(w) = B(v,w). Via the identification
(.1.2) B and L can be transferred to T,R", giving one an inner product B, on T,R" and a
bijective linear map

L,: T,R" = T;R".

Hence if we are given a vector field v on U we can convert it into a 1-form v* by setting
(2.7.2) v(p) = L,v(p)

and this sets up a bijective correspondence between vector fields and 1-forms.
For instance

v= 9 = vt =dx;,
ox;
(see Exercise 2.7.11f) and, more generally,
n a n
(2.7.3) v= Zfl— — vt = Zf,-dx,-.
=7 0x i=1

Example 2.7.4. In particular if f is a C* function on U c R” the gradient of f is the vector

field
< 0
grad(f) =Y oL,
=0
and this gets converted by (.7.9) into the 1-form d f. Thus the gradient operation in vector
calculus is basically just the exeterior derivative operation d : Q°U) - QYU).

i

The second way of converting vector fields into forms is via the interior product oper-
ation. Namely let Q be the n-form dx; A --- A dx,,. Given an open subset U of R” and a C®
vector field

-0
(2.7.5) v= ,:Zlf’a_x,
on U the interior product of v with Q is the (n — 1)-form

(2.7.6) Q=Y (1) fdxy Ao Adx, o A dx,,
r=1
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Moreover, every (n — 1)-form can be written uniquely as such a sum, so (p.7.3) and (2.7.9)
set up a bijective correspondence between vector fields and (2 — 1)-forms. Under this corre-
spondence the d-operation gets converted into an operation on vector fields

v—d,Q.
Moreover, by (p.5.9)
di,Q=1,0
and by (£5:19)
L,Q = div(v)Q
where
. - 0f;
(2.7.7) div(v) = )’ %

0x;

In other words, this correspondence between (n — 1)-forms and vector fields converts the
d-operation into the divergence operation (.7.7) on vector fields.

Notice that divergence and gradient are well-defined as vector calculus operations in »
dimensions, even though one usually thinks of them as operations in 3-dimensional vector
calculus. The curl operation, however, is intrinsically a 3-dimensional vector calculus oper-
ation. To define it we note that by (.7.) every 2-form g on an open subset U ¢ R* can be
written uniquely as an interior product,

i=1

(2.7.8) U = t,dx; Adx, Adxs,
for some vector field w, and the left-hand side of this formula determines w uniquely.

Definition 2.7.9. Let U be an open subset of R? and v a vector field on U. From v we get by
(B-7-3) a 1-form v*, and hence by (£.7.8) a vector field w satisfying

dvt = 1 dx, Adx, Ndx; .

The curl of v is the vector field
curl(v) =w.

We leave for you to check that this definition coincides with the definition one finds in
calculus books. More explicitly we leave for you to check that if v is the vector field

d d d
v= fla—x1 Jffza—x2 +f3a—x3
then 5 5
Curl(v) = glg + gza + g3£
1 2 3
where
_9h _9fs
! Ox; 0x,
0 9]
(2.7.10) gy = f - %
1 3
_9h _0fh
T ox, ox;

To summarize: the gradient, curl, and divergence operations in 3-dimensions are basi-
cally just the three operations (p.7.1)). The gradient operation is the operation (p.7.1) in de-
gree zero, curl is the operation (.7.1]) in degree one, and divergence is the operation (.7.1))
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in degree two. However, to define gradient we had to assign an inner product B, to the tan-
gent space T,R" for each p € U; to define divergence we had to equip U with the 3-form
0 and to define curl, the most complicated of these three operations, we needed the inner
products B, and the form Q. This is why diffeomorphisms preserve the three operations
(R-7.1) but do not preserve gradient, curl, and divergence. The additional structures which
one needs to define grad, curl and div are only preserved by translations and rotations.

Maxwell’s equations and differential forms

We conclude this section by showing how Maxwell’s equations, which are usually for-
mulated in terms of divergence and curl, can be reset into “form” language. The discussion
below is an abbreviated version of [5, §1.20].

Maxwell’s equations assert:

(2.7.11) div(vg) =g

0
(2.7.12) curl(vg) = _EUM
(2.7.13) div(vy) =0
(2.7.14) c?curl(vy) = w+ %UE

where vy and v, are the electric and magnetic fields, q is the scalar charge density, w is the
current density and c is the velocity of light. (To simplify (p.7.19) slightly we assume that
our units of space-time are chosen so that ¢ = 1.) As above let Q = dx; Adx, Adx; and let

pg = H(vp)Q
and
pnr = o) Q.
We can then rewrite equations (2.7.11]) and (p.7.13) in the form
€711 dyg = g0
and
E713) dppy = 0.

What about (p.7.12]) and (2.7.14)? We leave the following “form” versions of these equa-
tions as an exercise:

0
€z13) dv = ==ty
and

0
(714" dvl = 1,0+ =

where the 1-forms, v% and vjuvl, are obtained from v and v, by the operation (p.7.2).
These equations can be written more compactly as differential form identities in 3 + 1
dimensions. Let w,; and wg be the 2-forms

Wy = P — v% Adt
and
(2.7.15) wg =Yg — vg,l Adt

and let A be the 3-form
A=q0Q+1, QN dt.
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We will leave for you to show that the four equations (p.7.11))-(.7.14) are equivalent
to two elegant and compact (3 + 1)-dimensional identities

de =0
and
dwE =A .
Exercises for

Exercise 2.7.i. Verify that the curl operation is given in coordinates by pquation (2.7.10).

Exercise 2.7.ii. Verify that Maxwell’spquations (2.7.11)and [2.7.12) become the
and when rewritten in differential form notation.

Exercise 2.7.iii. Show thatin (3+ 1)-dimensions Maxwell’s equations take the form of
fions (2.7.10) and [2.7.11).

Exercise 2.7.iv. Let U be an open subset of R*> and v a vector field on U. Show that if v is
the gradient of a function, its curl has to be zero.

Exercise 2.7.v. If U is simply connected prove the converse: If the curl of v vanishes, v is
the gradient of a function.

Exercise 2.7.vi. Letw = curl(v). Show that the divergence of w is zero.

Exercise 2.7.vii. Is the converse to [Exercise 2.7.v] true? Suppose the divergence of w is zero.
Is w = curl(v) for some vector field v?

2.8. Symplectic geometry & classical mechanics

In this section we describe some other applications of the theory of differential forms
to physics. Before describing these applications, however, we say a few words about the geo-
metric ideas that are involved.

Definition 2.8.1. Let x,, ..., X,,, be the standard coordinate functions on R*" and for i =

L,...,nlet y; = x,,,;. The two-form

w = de,-/\dyi = dei/\dxnﬂ-

i=1 i=1

is called the Darboux form on R*",

From the identity
(2.8.2) w=-d (Z?:l J’idxi) .

it follows that w is exact. Moreover computing the n-fold wedge product of w with itself we

get
n n
4 < dxll/\dyll>/\---/\<2dxln/\dy1n>
i=1 i=1

' Z dxil /\dyil JARER /\dxin /\dyin .

ieenl,

g
I

We can simplify this sum by noting that if the multi-index I = (i, ..., i,) is repeating, the
wedge product

(2.8.3) dx; Ndy; N Ndx; Ndx;
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involves two repeating dxij and hence is zero, and if I is non-repeating we can permute the
factors and rewrite (p.8.3) in the form

dx;Ndy, AN Ndx, N dy, .
(Sec Exercise 1:631.)

Hence since these are exactly n! non-repeating multi-indices

W' =nldx, Ndy, A--- Ndx, Ndy, ,

ie.,
1
(2.8.4) —w" =0
n!
where
(2.8.5) Q=dx, Ndy, N--- Ndx, Ndy,

is the symplectic volume form on R*".

Definition 2.8.6. Let U and V be open subsets of R*". A diffeomorphism f: U = Visa
symplectic diffeomorphism or symplectomorphism if f*w = w, where w denotes the Dar-
boux form on R,

Definition 2.8.7. Let U be an open subset of R*", let
(2.8.8) fi:U>»U, —co<t<oo

be a one-parameter group of diffeomorphisms of U, and v be the vector field generating
(R-8-8) We say that v is a symplectic vector field if the diffeomorphisms (p.8.§) are symplec-
tomorphisms, i.e., for all t we have fw = w.

Let us see what such vector fields have to look like. Note that by (.6.23))

d * *
(2.8.9) Eft w=fLw,
hence if f;*w = w for all ¢, the left hand side of (p-8.9) is zero, so
ffLw=0.

In particular, for t = 0, f; is the identity map so f;"L,w = L,w = 0. Conversely, if L,w = 0,
then f*L,w = 0so by (2:8.9) f;"w does not depend on t. However, since f*w = w fort =0
we conclude that f;*w = w for all £. To summarize, we have proved:

Theorem 2.8.10. Let f,: U — U be a one-parameter group of diffeomorphisms and v the
infinitesmal generator of this group. Then v is symplectic of and only if L,w = 0.

There is an equivalent formulation of in terms of the interior product
- By (2:5.9)

Lw=d,w+1,dw.
But by (2.8.2) we have dw = 0, so
Lw=d,w.
Thus we have shown:

Theorem 2.8.11. A vector field v on an open subset of R*" is symplectic if and only if the form
L,w is closed.
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Let U be an open subset of R*” and v a vector field on U. If 1,,w is not only closed but is
exact we say that v is a Hamiltonian vector field. In other words, v is Hamiltonian if

(2.8.12) L,w=dH

for some C* function H € C*°(U).
Let is see what this condition looks like in coordinates. Let

(2.8.13) v=i<_fii+g~i> .

S\ ox; "0y;
Then
LW = Z Jitajox,(dxj Ndy;) + Z Gitajay,(dx; Ndy;) .

1<i,j<n 1<i,j<n

But
1, i=j

and

ta/ax,4Y; = 0

so the first summand above is Y, f; dy;, and a similar argument shows that the second
summand is — Y., g;dx;.
Hence if v is the vector field (-8:13), then

(2.8.14) Lyw = Z(fz dy; - gidx;) .

i=1

dH =) <a—de,. + a—de,.>

. ox;
i=1 i
we get from (.8.12)-(p.8.14)

Thus since

OoH oH
=2 and g =-22
J 9y me ox;
so v has the form:
—(0H 0 0H 0
.8- = —_—— — —— .
(815) ° ; (ayi Ox;  0x; a)’i>

In particular if p(¢) = (x(t), y(t)) is an integral curve of v it has to satisfy the system of
differential equations

5= 3 ao, )
(2.8.16) dt BiH
Ji __od
i ox, (x(®), y(2)) .

The formulas (2.8.13)) and (p.8.14) exhibit an important property of the Darboux form w.
Every one-form on U can be written uniquely as a sum

Z (fidy; - gidx;)
i=1

with f; and g; in C*(U) and hence (£.8:13) and (p.8.14) imply:

Theorem 2.8.17. The map v v 1w defines a bijective between vector field and one-forms.
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In particular, for every C* function H, we get by correspondence a unique vector field
v = vy with the property (p.8.12)). We next note that by (L.7.9))
L,H =1,dH = 1,(1,w) = 0.
Thus
(2.8.18) L,H=0

i.e., H is an integral of motion of the vector field v. In particular, if the function H: U — Ris

proper, then by the vector field, v, is complete and hence by

generates a one-parameter group of symplectomorphisms.

Remark 2.8.19. Ifthe one-parameter group (p.8.§) is a group of symplectomorphisms, then
o' = ffon- A ffw=w" soby (384

(2.8.20) =0,

where Q is the symplectic volume form (p.8.3).

Application 2.8.21. The application we want to make of these ideas concerns the descrip-
tion, in Newtonian mechanics, of a physical system consisting of N interacting point-masses.
The configuration space of such a system is

R'=R3>x---xR3,

where there are N copies of R? in the product, with position coordinates x;, ..., x,, and
the phase space is R*" with position coordinates x;, ..., x,, and momentum coordinates,
Y1» -+ V. The kinetic energy of this system is a quadratic function of the momentum co-

ordinates
1&12
Sl T i
2iam

and for simplicity we assume that the potential energy is a function V(x, ..., x,,) of the
position coordinates alone, i.e., it does not depend on the momenta and is time-independent
as well. Let

lw 1
(2.8.22) H = 3 Z —y,-z +V(x,.0X,)
i=1 """

be the total energy of the system.

‘We now show that Newton’s second law of motion in classical mechanics reduces to the
assertion.

Proposition 2.8.23. The trajectories in phase space of the system above are just the integral
curves of the Hamiltonian vector field vy;.

Proof. For the function (2.8:27)) the equations (p.8.16) become

dx; _ 1

dt_miyl
dy; __oV
dt  0x;

The first set of equation are essentially just the definitions of momentum, however, if we
plug them into the second set of equations we get

(2.8.24) m@——a—v
24 ar T ox,
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and interpreting the term on the right as the force exerted on the i point-mass and the
term on the left as mass times acceleration this equation becomes Newton’s second law. [

In classical mechanics the equations (p.8.16) are known as the Hamilton-Jacobi equa-
tions. For a more detailed account of their role in classical mechanics we highly recommend
[a]. Historically these equations came up for the first time, not in Newtonian mechanics,
but in geometric optics and a brief description of their origins there and of their relation to
Maxwell’s equations can be found in [5].

We conclude this chapter by mentioning a few implications of the Hamiltonian descrip-
tion (.8.16) of Newton’s equations (2.8.24).

(1) Conservation of energy: By (p.8.1§) the energy function (p.8.22)) is constant along the
integral curves of v, hence the energy of the system (p.8.16) does notchange in time.

(2) Noethers principle: Let y, : R** — R*" be a one-parameter group of diffeomorphisms of
phase space and w its infinitesimal generator. Then (};);cg is @ symmetry of the system
above if each y, preserves the function (p.8.27) and the vector field w is Hamiltonian.

The Hamiltonian condition means that

Lyw = dG

for some C* function G, and what Noether’s principle asserts is that this function is an
integral of motion of the system (p.8.14), i.e., satisfies L,G = 0. In other words stated
more succinctly: symmetries of the system (p.8.16) give rise to integrals of motion.

(3) Poincaré recurrence: An important theorem of Poincaré asserts that if the function

H:R*™ >R

defined by (p.8:22)) is proper then every trajectory of the system (.8.16) returns arbi-
trarily close to its initial position at some positive time t,, and, in fact, does this not just

once but does so infinitely often. We sketch a proof of this theorem, using (2.8.2d), in
the next chapter.

Exercises for
Exercise 2.8.i. Let vy be the vector field (p.8.15)). Prove that div(vy) = 0.

Exercise 2.8.ii. Let U be an open subset of R”, f,: U — U a one-parameter group of
diffeomorphisms of U and v the infinitesmal generator of this group. Show that if « is a k-
form on U then f*« = « for all t if and only if L& = 0 (i.e., generalize to arbitrary k-forms
the result we proved above for the Darboux form).

Exercise 2.8.iii (the harmonic oscillator). Let H be the function Y, m;(x7 + y7) where the
m;’s are positive constants.

(1) Compute the integral curves of vy.

(2) Poincaré recurrence: Show thatif (x(¢), y(t)) is an integral curve with initial point (x,, y,) =
(x(0), (0)) and U an arbitrarily small neighborhood of (x;, y,), then for every ¢ > 0
there exists a t > ¢ such that (x(t), y(t)) € U.

Exercise 2.8.iv. Let U be an open subset of R* and let H,, H, € C®(U). Show that
[vy,>vy,] = vy
where
_ < 0H, 0H, 0H,dH,

8. H=) ———= - —=—~,
(5:25) i;axi 9y; ox; 0y;
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Exercise 2.8.v. The expression (p.8.25)) is known as the Poisson bracket of H, and H,, de-
noted by {H,, H,}. Show that it is anti-symmetric
{H,,H,} = -{H,,H,}
and satisfies the Jacobi identity
0 ={H,,{H,, H3}} + {H,,{H3, H|}} + {H3,{H;, H,}} .
Exercise 2.8.vi. Show that

{Hy, Hy} = L, Hy =Ly, Hy.

Exercise 2.8.vii. Prove that the following three properties are equivalent.
(1) {H,,H,} =0.

(2) H, is an integral of motion of v,.

(3) H, is an integral of motion of v;.

Exercise 2.8.viii. Verify Noether’s principle.

Exercise 2.8.ix (conservation of linear momentum). Suppose the potential Vin
is invariant under the one-parameter group of translations
Ti(xps oo X,) = (X 00X, + 1) .

(1) Show that the function (p.8.23)) is invariant under the group of diffeomorphisms

el y) = (Tix, y) -
(2) Show that the infinitesmal generator of this group is the Hamiltonian vector field vs
where G =Y, y;.
(3) Conclude from Noether’s principle that this function is an integral of the vector field
vy, 1.e., that “total linear moment” is conserved.
(4) Show that “total linear momentum” is conserved if V' is the Coulomb potential

>

iz 1% = %l

Exercise 2.8.x. Let Ri : R — R?" be the rotation which fixes the variables, (X Vi), k # i
and rotates (x;, y;) by the angle, t:

Ri(x;, ;) = (cost x; +sint y, ,— sint x; + cost ¥;) .
(1) Show that R}, —co < t < 00, is a one-parameter group of symplectomorphisms.
(2) Show that its generator is the Hamiltonian vector field, Uy, where H; = (x? + yiz) /2.
(3) Let H be the harmonic oscillator Hamiltonian from [Exercise 2.8.111. Show that the R/’s
preserve H.

(4) What does Noether’s principle tell one about the classical mechanical system with en-
ergy function H?

Exercise 2.8.xi. Show that ifU is an open subset of R*" and v is a symplectic vector field on U
then for every point p, € U there exists a neighborhood Uj of p, on which v is Hamiltonian.

Exercise 2.8.xii. Deduce from [Exercises 2.8.1y and p.8.x] that if v, and v, are symplectic

vector fields on an open subset U of R*" their Lie bracket [v;,v,] is a Hamiltonian vector
field.

Exercise 2.8.xiii. Leta =Y y;dx;.
(1) Show that w = —da.
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(2) Show that if &, is any one-form on R*" with the property w = —da;, then
a=a,+dF

for some C* function F.
(3) Show that « = 1,,w where w is the vector field

-0
w = — y— .
i; "0y,
Exercise 2.8.xiv. Let U be an open subset of R** and v a vector field on U. Show that v has
the property, L, = 0, if and only if
Lw = di,x.

In particular conclude that if L& = 0 then v is Hamiltonian.
Hint: Equation (8:2)

Exercise 2.8.xv. Let H be the function
n
(2.8.26) H(x,y) = Z fiX)yi,
i=1
where the f;’s are C® functions on R". Show that
(2.8.27) L, a=0.

Exercise 2.8.xvi. Conversely show that if H is any C* function on R*" satisfying

it has to be a function of the form (g-8:29).
Hints:

(1) Let v be a vector field on R*" satisfying L,& = 0. By we have v = vy,
where H = 1.
(2) Show that H has to satisfy the equation

— OH
;y,a—yl:H

(3) Conclude thatif H, = gTH then H, has to satisfy the equation

- 0
;yia—yiH,=o.

(4) Conclude that H, has to be constant along the rays (x,ty), for 0 <t < co.
(5) Conclude finally that H, has to be a function of x alone, i.e., does not depend on y.

Exercise 2.8.xvii. Show that if vg. is a vector field
n
0
Jilx)—
izzl 0x;
on configuration space there is a unique lift of vg» to phase space
c 0 0
v=) fi(x)=— + gi(x, y)—
izzl ox T 0y;

satisfying L, = 0.
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CHAPTER 3

Integration of Forms

3.1. Introduction

The change of variables formula asserts that if U and V are open subsets of R" and
f: U — VaC' diffeomorphism then, for every continuous function ¢: V' — R the integral

|, o0y

exists if and only if the integral

JU(¢> o £)(x) |det Df(x)ldx

exists, and if these integrals exist they are equal. Proofs of this can be found in [1a] or [12].
This chapter contains an alternative proof of this result. This proof is due to Peter Lax. Our
version of his proof in below makes use of the theory of differential forms; but, as
Lax shows in the article [§] (which we strongly recommend as collateral reading for this
course), references to differential forms can be avoided, and the proof described in can
be couched entirely in the language of elementary multivariable calculus.

The virtue of Lax’s proof is that is allows one to prove a version of the change of variables
theorem for other mappings besides diffeomorphisms, and involves a topological invariant,
the degree of a map, which is itself quite interesting. Some properties of this invariant, and
some topological applications of the change of variables formula will be discussed in
of these notes.

Remark 3.1.1. The proof we are about to describe is somewhat simpler and more transpar-
ent if we assume that f is a C* diffeomorphism. We'll henceforth make this assumption.

3.2. The Poincaré lemma for compactly supported forms on rectangles
Definition 3.2.1. Let v be a k-form on R”. We define the support of v by
supp(v) = {x e R"|v, #0},

and we say that v is compactly supported if supp(v) is compact.

We will denote by QX(R") the set of all C* k-forms which are compactly supported,
and if U is an open subset of R", we will denote by QX(U) the set of all compactly supported
k-forms whose support is contained in U.

Letw = fdx; A--- Adx, be a compactly supported n-form with f € Cg°(R"). We will
define the integral of w over R":
[ o

Ln fdx.

71

to be the usual integral of f over R"
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(Since f is C* and compactly supported this integral is well-defined.)
Now let Q be the rectangle
la;,b)] x - x[a,.b,] .
The Poincaré lemma for rectangles asserts:

Theorem 3.2.2 (Poincaré lemma for rectangles). Let w be a compactly supported n-form with
supp(w) < int(Q). Then the following assertions are equivalent.

(1) f w=0.
(2) There exists a compactly supported (n — 1)-form u with supp(u) C int(Q) satisfying du =
w.

We will first prove that ()= ().
Proof that ()= (f1)). Let

p=Y fidx, A Adxp Ao A dx,,,
i=1
(the “hat” over the dx; meaning that dx; has to be omitted from the wedge product). Then
S i-19f;
du = ;(—1) la—){idxl A A dx,,

and to show that the integral of dy is zero it suffices to show that each of the integrals

%dx

n axl

(B.2.9); JR

is zero. By Fubini we can compute (B.2.2); by first integrating with respect to the variable,
x;, and then with respect to the remaining variables. But

d b

Jidxizf(x) =0
0x;

since f; is supported on U. O

x;=
.=

i~

We will prove that (I)=(f]) by proving a somewhat stronger result. Let U be an open
subset of R”. We'll say that U has property P if every form w € Q' (U) such that jU w=0

we have w € d Q"1 (U). We will prove:

Theorem 3.2.3. Let U be an open subset of R and A ¢ R an open interval. Then if U has
property P, U x A does as well.

Remark 3.2.4. It is very easy to see that the open interval A itself has property P. (See
below.) Hence it follows by induction from that

intQ=A;x---xA4,, A;=(a,b)
has property P, and this proves “(1)= ()"

Proof of [Theorem 3.2.3. Let (x,t) = (xy, ..., X,_;,t) be product coordinates on U x A. Given

w € QMU x A) we can express w as a wedge product, dt Aa with o = f(x,t) dx; A---Adx,_,
and f € C°(U x A). Let 0 € Q! (U) be the form

(3.2.5) 0= <J-A f(x, t)dt> dxy N\ Ndx,,_; .
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Then
J 9=J fuJMmﬁzj w
Rn—l R" R"

so if the integral of w is zero, the integral of 0 is zero. Hence since U has property P, 0 = dv
for some v € Q' 2(U). Let p € C®(R) be a bump function which is supported on A and
whose integral over A is 1. Setting

Kk =—pt)dt Av
we have
di = p(t)dt Ndv = p(t)dt N O,
and hence
w—dx = dt A\ (a— p(t)0)
=dt ANu(x, t)dx; A+ Ndx,,_;
where

u(x,t) = f(x,t) — p(t) L fx, t)dt
by (B.2.9). Thus
(3.2.6) JM&nmzo.

Let a and b be the end points of A and let
t

(3.2.7) v(x,t) = J u(x,s)ds.

a

By v(a,x) = v(b,x) = 0,s0visin Ci°(U x A) and by (-2-7), dv/ot = wu.

Hence if we let y be the form, v(x, t) dx; A --- Adx,,_;, we have:

dy =dt Nu(x,t)dx, N Ndx,_; =w—dxk

and
w=d(y+x).
Since y and « are both in Q! (U x A) this proves that w is in d Q""(U x A) and hence
that U x A has property P. g
Exercises for

Exercise 3.2.i. Let f: R — Rbe a compactly supported function of class C" with support
on the interval (a, b). Show that the following are equivalent.

() [ feodx =o.

(2) There exists a function g: R — R of class C"*! with support on (a, b) with Z—z = f.
Hint: Show that the function

g(x) = j F(s)ds

is compactly supported.

Exercise 3.2.ii. Let f = f(x, y) be a compactly supported function on R* x R¢ with the
property that the partial derivatives
of

a(x,y), fori=1,...,k,

1
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exist and are continuous as functions of x and y. Prove the following “differentiation under
the integral sign” theorem (which we implicitly used in our proof of [Theorem 3.2.3)).

Theorem 3.2.8. The function g(x) = JR" f(x, y)dy is of class C* and
2= [ Lenay.
Hints: For y fixed and h € R,
fle+hy) = fx,y) = Defe. y)h
for some point ¢ on the line segment joining x to x +h. Using the fact that D, f is continuous
as a function of x and y and compactly supported, conclude the following.

Lemma 3.2.9. Given & > 0 there exists a 8 > 0 such that for |h| < &
|f(x+h,y) = f(x,y) = Dy f(x, y)h| < ¢lh].
Nowlet Q c R bea rectangle with supp(f) c R¥ x Q and show that

96+ 1)~ 9) ~ (| D) dy ) bl < vl
Conclude that g is differentiable at x and that its derivative is
[ st nay.
Exercise 3.2.iii. Let f: R*xR® — Rbe a compactly supported continuous function. Prove
the following theorem.

Theorem 3.2.10. If all the partial derivatives of f(x, y) with respect to x of order < r exist
and are continuous as functions of x and y the function

96 = | f0n )y
is of class C'.

Exercise 3.2.iv. Let U be an open subset of R”"!, A ¢ R an open interval and (x, t) product
coordinates on U x A. Recall from that every form w € QF(U x A) can be
written uniquely as a sum w = df A o + 3 where o and f3 are reduced, i.e., do not contain a
factor of dt.

(1) Show that if w is compactly supported on U x A then so are o and S.
(2) Leta =Y, fi(x,t)dx;. Show that the form

(3.2.11) 6= ;(JAﬁ(x, 9 dt) dx;

is in QF1(U).
(3) Show that if dw = 0, then d6 = 0.
Hint: By fquation (3:2.11),

9]
do = IZ, (L a—ﬁ(x, t) dt) dx; A dx; = L(dua) dt

and by we have dya = 9.

Exercise 3.2.v. In [Exercise 3.2.1, show that if 6 is in dQ52(U) then w is in dQ51(U x A)
as follows.
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(1) Let = dv,withv € Q¥2(U) and let p € C*°(R) be abump function which is supported
on A and whose integral over A is one. Setting k = —p(t)dt A v show that

w—dx = dt A (a— p(t)0) + B
=dt A (ZI Ml(x’ t)dxl) + JB >
where

w68 = £ t) = plt) L F(x, )t

(2) Letaand b be the end points of A and let

t

v(x,t) = J. up(x,t) dt .

Show that the form ¥, v;(x, t) dx; is in Q¥"1(U x A) and that
dy=w-dk—-B+dyy.

(3) Conclude that the form w — d(x + y) is reduced.
(4) Prove thatif A € _QL‘(U x A) is reduced and dA = 0 then A = 0.
Hint: Let A = Y} g;(x,t) dx;. Show that dA = 0 = %gI(x, t) = 0 and exploit the
fact that for fixed x, g;(x, t) is compactly supported in ¢.

Exercise 3.2.vi. LetU be an open subset of R™. We say that U has property P, for 1 < k < m,
if every closed k-form w € QX(U) is in d Q"1 (U). Prove that if the open set U ¢ R"! in
has property P,_; then U x A has property P.

Exercise 3.2.vii. Show that if Q is the rectangle [a,,b,] x -+ X [a,,,b,] and U = intQ then
U has property P.

Exercise 3.2.viii. Let H” be the half-space
(3.2.12) H" = {(x},...,x,) € R"|x, <0}

and let w € OF(R") be the n-form w == fdx; A --- Adx, with f € Ci°(R"). Define

(3.2.13) J wi= Ln f(xps .0 x,)dx; -+ dx,

where the right hand side is the usual Riemann integral of f over H". (This integral makes
sense since f is compactly supported.) Show that if w = dy for some y € Q7"'(R") then

(3.2.14) J a):J fu
n Rn—l

where 1: R*™! — R" is the inclusion map
(%35 .e0r ) P (0,%5, ..., x,,) -
Hint: Lety = Y, fidx; A -+ dx; --- A dx,,. Mimicking the “(B)=(f)” part of the proof
of show that the integral (3:2.13) is the integral over R"™! of the function

0
j %(xl,xz,...,xn)dxl .
—c0 0%
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3.3. The Poincaré lemma for compactly supported forms on open subsets of R”

In this section we will generalize to arbitrary connected open subsets of
R".
Theorem 3.3.1 (Poincaré lemma for compactly supported forms). LetU be a connected open
subset of R and let w be a compactly supported n-form with supp(w) C U. The the following
assertions are equivalent:
(1) @ = 0.
(2) There exists a compactly supported (n — 1)-form y with supp u C U and w = dp.

Proof that ()= (). The support of y is contained in a large rectangle, so the integral of du
is zero by [[heorem 3.2.. 0

Proof that (i)=(@). Let w, and w, be compactly supported n-forms with support in U. We
will write

Wy ~ Wy
as shorthand notation for the statement: There exists a compactly supported (n — 1)-form,
w, with support in U and with w; — w, = du. We will prove that (I])=(f]) by proving an
equivalent statement: Fix a rectangle, Q, ¢ U and an n-form, w, with supp w, ¢ Q, and
integral equal to one.

Theorem 3.3.2. If w is a compactly supported n-form with supp(w) ¢ U and ¢ = Iw then
w ~ cwy.
Thus in particular if ¢ = 0, says that w ~ 0 proving that (il)=(g). O
To prove letQ; c U,i = 1,2,3,..., be a collection of rectangles with
U = U2, int(Q;) and let ¢; be a partition of unity with supp(¢;) ¢ int(Q;). Replacing w
by the finite sum Y, ¢, for m large, it suffices to prove for each of the
summands ¢;w. In other words we can assume that supp(w) is contained in one of the open

rectangles int(Q;). Denote this rectangle by Q. We claim that one can join Q, to Q by a
sequence of rectangles as in the figure below.

Qo

Figure 3.3.1. A sequence of rectangles joining the rectangles Q, and Q

Lemma 3.3.3. There exists a sequence of rectangles Ry, ..., Ry, such that Ry = Qy, Ry, = Q
and int(R;) N int(R;, ) is nonempty.

Proof. Denote by A the set of points, x € U, for which there exists a sequence of rectangles,
R;,i =0,...,N + 1 with Ry = Q,, with x € int Ry, and with int R; N int R;,; nonempty.
It is clear that this set is open and that its complement is open; so, by the connectivity of U,
U= A. O
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To prove with suppw C Q, select, for each i, a compactly supported
n-form v; with supp(v;) ¢ int(R;) N int(R;,;) and with jvi = 1. The difference, v; — v,
is supported in int R;, ;, and its integral is zero. So by [Theorem 3.2.2, v; ~ v, ;. Similarly,
wy ~ Vv, and, setting ¢ := Jw, we have w ~ cvy. Thus

C(UO ""CVO IR ad CVN =w

proving the theorem.

3.4. The degree of a differentiable mapping

Definition 3.4.1. Let U and V be open subsets of R” and R¥. A continuous map f: U — V,
is proper if for every compact subset K ¢ V, the preimage f~!(K) is compact in U.

Proper mappings have a number of nice properties which will be investigated in the
exercises below. One obvious property is that if f is a C* mapping and w is a compactly
supported k-form with support on V, f*w is a compactly supported k-form with support
on U. Our goal in this section is to show that if U and V are connected open subsets of R"
and f: U — Visaproper C* mapping then there exists a topological invariant of f, which
we will call its degree (and denote by deg( f)), such that the “change of variables” formula:

(3.4.2) jU f*w = deg(f) JV w
holds for all w € Q}(V).

Before we prove this assertion let’s see what this formula says in coordinates. If
@ =¢()dy, A= Ny,
thenatx e U
ffw="(po f)(x)det(Df(x))dx; A--- ANdx,, .
Hence, in coordinates, takes the form

(3.4.3) jv $(y)dy = deg(f) L $o f(x) det(Df(x))dx

Proof of pquation (3.4.2). Let w, be a compactly-supported n-form with supp(w,) ¢ V and
with jwo = 1. If we set deg f = _[U f*w, then (-4.2)) clearly holds for w,. We will prove

that (B.4.2)) holds for every compactly supported n-form w with supp(w) c V. Let ¢ := IV w.

Then by w — cwy = dy, where y is a compactly supported (n — 1)-form with
supp 4 € V. Hence

fro-cfroy= frdu=df
and by part (§) of [Teorem 3.3.1

JUf*w=cjf*w0=deg(f)JVw. O

We will show in that the degree of f is always an integer and explain why it is a
“topological” invariant of f.

Proposition 3.4.4. For the moment, however, we'll content ourselves with pointing out a sim-
ple but useful property of this invariant. Let U, V and W be connected open subsets of R" and
f:U—>Vandg: V— W proper C*° maps. Then

(3.4.5) deg(g > f) = deg(g) deg(f) .
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Proof. Let w be a compactly supported #n-form with support on W. Then
(gef)w=g"fw;

SO
o nro=] gra =9 | 1o
- deg(g) deg(f) |

w. O
w

From this multiplicative property it is easy to deduce the following result (which we
will need in the next section).

Theorem 3.4.6. Let A be a non-singular n x n matrix and f, : R" — R" the linear mapping
associated with A. Then deg(f,) = +1 if det A is positive and —1 if det A is negative.

A proof of this result is outlined in Exercises 3.4. to B.4.1 below.

Exercises for

Exercise 3.4.i. Let U be an open subset of R” and (¢;);, be a partition of unity on U. Show
that the mapping f: U — R defined by

f= kZ, ke

is a proper C*° mapping.

Exercise 3.4.ii. Let U and V be open subsets of R” and R and let f: U — V be a proper
continuous mapping. Prove:

Theorem 3.4.7. If B is a compact subset of V and A = f~'(B) then for every open subset U,
with A c U, C U, there exists an open subset Vo with B C Vy ¢ V and £~ (V;) c U,

Hint: Let C be a compact subset of V with B ¢ int C. Then the set W = f~1(C) \ Uj, is
compact; so its image f(W) is compact. Show that f(W) and B are disjoint and let

Vo =intC~ f(W).

Exercise 3.4.iii. Show thatif f: U — V is a proper continuous mapping and X is a closed
subset of U, then f(X) is closed.

Hint: Let Uy = U — X. Show that if p is in V'~ f(X), then f~!(p) is contained in U, and
conclude from that there exists a neighborhood V;, of p such that f~(V;) is
contained in Uj. Conclude that V; and f(X) are disjoint.

Exercise 3.4.iv. Let f: R” — R" be the translation f(x) = x + a. Show that deg(f) = 1.
Hint: Let y: R — R be a compactly supported C* function. For a € R, the identity

(3.4.8) L W) dt = L Wt - a) dt

is easy to prove by elementary calculus, and this identity proves the assertion above in di-
mension one. Now let

(3.4.9) ¢(x) = ylxy) - ylx,)
and compute the right and left sides of by Fubini’s theorem.
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Exercise 3.4.v. Let o be a permutation of the numbers, 1,...,nandlet f,: R” — R” be the
diffeomorphism, f,(x;, ..., x,) = (X5(1)> -++> Xo(n))- Prove that deg f, = (=1)°.
Hint: Let ¢ be the function (B.4.9). Show that if w = ¢(x) dx; A --- Adx,,, then we have
ffo=(-1) .
Exercise 3.4.vi. Let f: R” — R" be the mapping
f(xps e x,) = () + Axy, X5, .05 X,,).
Prove that deg(f) = 1.

Hint: Let w = ¢(xy, ..., x,) dx; A --- Adx, where ¢: R” — R is compactly supported
and of class C*. Show that

Jf*w = Jqﬁ(xl + AXy, Xy, oeur X,,) AXq o0 dX,

and evaluate the integral on the right by Fubini’s theorem; i.e., by first integrating with re-
spect to the x; variable and then with respect to the remaining variables. Note that by

tion (3.4.8)
Jf(xl + A%y, Xy . X,) dX) = Jf(xl,xz,...,xn)dxl .

Exercise 3.4.vii. Let f: R” — R" be the mapping

flxp %) = (Axg, %5, .05 X,)
with A # 0. Show that deg f = +1 if A is positive and —1 if A is negative.
Hint: In dimension 1 this is easy to prove by elementary calculus techniques. Prove it
in d-dimensions by the same trick as in the previous exercise.
Exercise 3.4.viii.
(1) Lete,...,e, be the standard basis vectors of R” and A, B and C the linear mappings

defined by
Ae. = {el, i=1
i n .
Y1 aj€p i#1,
n .
(3'4.10) Bei — ijl bjej’ 1= 1
e, itl,
Ce. _ el, l = 1
! e +ce, i¥l.
Show that
m .
.. be., i=1
BACe, = 2,1;1 7 ,
ijl(aj,i +cbye; +cibe, i# 1.
fori > 1.

(2) Let L: R" — R” be the linear mapping

n
(3.4.11) Le; = Zé’j),-ej, i=1,..,n.
=1
Show that if £, ; # 0 one can write L as a product, L = BAC, where A, Band C are linear
mappings of the form (B.4.1d).

Hint: First solve the equations
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for j = 1, ..., n. Next solve the equations
b =big
for i > 1. Finally, solve the equations

gj,i = a]-’i + Cibj

fori, j > 1.

(3) Suppose L is invertible. Conclude that A, B and C are invertible and verify that
holds for B and C using the previous exercises in this section.

(4) Show by an inductive argument that holds for A and conclude from
(B4-5)) that it holds for L.

Exercise 3.4.ix. To show that holds for an arbitrary linear mapping L of the
form (B.4.11)) we'll need to eliminate the assumption: £, ; # 0. Show that for some j, ¢, is
nonzero, and show how to eliminate this assumption by considering lej o L where 7, ; is

the transposition 1 < j.

Exercise 3.4.x. Here is an alternative proof of which is shorter than the proof
outlined in but uses some slightly more sophisticated linear algebra.
(1) Prove for linear mappings which are orthogonal, i.e., satisfy L'L = id,,.
Hints:
» Show that L*(x? + -+ + x2) = x3 + -+ + x2.
» Show that L*(dx; A --- A dx,) is equal to dx; A --- A dx, or —dx; A --- A dx,
depending on whether L is orientation-preserving or orinetation reversing. (See

Exercise 1.2.X.)

» Let y be as in [Exercise 3.4.1¥ and let w be the form
w=y(xt+ - +x2)dx; A Adx, .

Show that L*w = w if L is orientation-preserving and L*w = —w if L is orientation
reversing.
(2) Prove for linear mappings which are self-adjoint (satisfy L' = L).
Hint: A self-adjoint linear mapping is diagonizable: there exists an intervertible lin-
ear mapping, M : R” — R" such that

(3.4.12) M™'LMe; = Aie;, i=1,...,n.

(3) Provethatevery invertible linear mapping, L, can be written as a product, L = BC where
B is orthogonal and C is self-adjoint.

Hints:

> Show that the mapping, A = L'L, is self-adjoint and that it is eigenvalues (the A;’s
in pquation (3.4.12)) are positive.

» Show that there exists an invertible self-adjoint linear mapping, C, such that A =
C?and AC = CA.

» Show that the mapping B = LC™! is orthogonal.

3.5. The change of variables formula

Let U and V' be connected open subsets of R". If fU = V is a diffeomorphism, the
determinant of D f(x) at x € U is nonzero, and hence, since D f (x) is a continuous function
of x, its sign is the same at every point. We will say that f is orientation-preserving if this
sign is positive and orientation reversing if it is negative. We will prove below:
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Theorem 3.5.1. The degree of f is +1 if f is orientation-preserving and -1 if f is orientation
reversing.

We will then use this result to prove the following change of variables formula for dif-
feomorphisms.

Theorem 3.5.2. Let ¢: V — R be a compactly supported continuous function. Then

(3.5.3) L}¢°fXdeau2ﬂxD|=J;¢00dy-

Proof of [[heorem 3.5.1. Givenapointa, € U,leta, = —f(a;) and fori =1,2let g;: R" —
R” be the translation, g;(x) = x + a;. By pquation (3.4.2) and Exercise 3.4.1y| the composite
diffeomorphism

(3.5.4) G20 foa
has the same degree as f, so it suffices to prove the theorem for this mapping. Notice however
that this mapping maps the origin onto the origin. Hence, replacing f by this mapping, we
can, without loss of generality, assume that 0 is in the domain of f and that £(0) = 0.

Next notice that if A: R” = R" is a bijective linear mapping the theorem is true for A

(by Exercise 3.4.1X), and hence if we can prove the theorem for A™! o f, will
tell us that the theorem is true for f.In particular, letting A = D f(0), we have

D(A™ o £)(0) = A'Df(0) = id,

where id,, is the identity mapping. Therefore, replacing f by A o f, we can assume that
the mapping f (for which we are attempting to prove [[heorem 3.5.1) has the properties:
f(0) = 0and Df(0) = id,.. Let g(x) = f(x) — x. Then these properties imply that g(0) = 0
and Dg(0) = 0. O

Lemma 3.5.5. There exists a 8 > 0 such that |g(x)| < %lefor |x|] < 6.
Proof. Let g(x) = (g,(x), ..., g,,(x)). Then

%9 (0) = 0;
axj

so there exists a § > 0 such that
dg; 1
—Jt < =
axj (%)) < 2

for |x| < 8. However, by the mean value theorem,
n ag
gix) =Y (o),
! ng ax] ]
for ¢ = tyx, 0 < t; < 1. Thus, for |x| < &,
19,91 < 5 suplx| = ],
S0 )
|g(x)| = sup|g;(x)| < 3 |x] . U
Let p be a compactly supported C* function with 0 < p < 1 and with p(x) = 0 for
|x] = & and p(x) = 1 for |x| < 9 and let f: R” — R” be the mapping
f(x) = x + p(x)g(x) .
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It is clear that

(3.5.6) f(x)=x for|x| =4
and, since f(x) = x + g(x),

. é
(3.5.7) fe) = flx) forfxl <=
In addition, for all x € R™:
(3.5.8) F@I> 3 Il

Indeed, by (:5.6), If(x)l > |x| for |x| > 8, and for |x| < &
|f (0] 2 1x] = p(x)lg(x)]

1
> |x| = |g(x)| = |x| - Elxl
1
= Elxl
by Cemma 353
Now let Q, be the cube Q, = {x € R"||x| < r}, and let Q} == R” ~ Q,. From (§.5.9)
we easily deduce that

(3.5.9) Q) cQy
for all 7, and hence that f is proper. Also notice that for x € Qs,

F1 < 15l + 190l < 2
by [Lemma 3.5.9 and hence
(3.5.10) f_l(Qég) cQs-
We will now prove [Theorem 3.5.1.

Proof of [Theorem 3.5.1. Since f is a diffeomorphism mapping 0 to 0, it maps a neighbor-
hood Uj of 0 in U diffeomorphically onto a neighborhood V;, of 0 in V, and, by shrinking
U, if necessary, we can assume that Uj, is contained in Q4/, and V; contained in Qs/4. Let w
be an n-form with support in V;, whose integral over R" is equal to one. Then f*w is sup-
ported in U, and hence in Q. Also by (B.5.9) f*wis supported in Qg /2- Thus both of these

forms are zero outside Qs/,. However, on Qs/,, f = f by (B.5.7), so these forms are equal
everywhere, and hence

deg(f) = Jf*w = jf*w = deg(f) .

Next let w be a compactly supported n-form with support in Q54/, and with integral
equal to one. Then f*w is supported in Q§ by (8-5.1d), and hence since f(x) = x on Q§, we
have f*w = w. Thus

deg(f) = Jf*w: Jw: 1.
Putting these two identities together we conclude that deg(f) = 1. O

If the function, ¢, in is a C* function, the identity (-5.3) is an im-
mediate consequence of the result above and the identity (B.4.3). If ¢ is not C*, but is just

continuous, we will deduce from the following result.
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Theorem 3.5.11. Let V be an open subset of R". If §: R" — R is a continuous function of
compact support with supp ¢ C V; then for every € > 0 there exists a C*™ function of compact
support, y: R* — Rwithsuppy C V and

sup [y(x) — d(x)| < €.

Proof. Let A be the support of ¢ and let d be the distance in the sup norm from A to the
complement of V. Since ¢ is continuous and compactly supported it is uniformly continu-

ous; so for every € > 0 there existsa § > 0 with § < g such that [¢(x) — ¢(y)| < &€ when
|x — y| < 6. Now let Q be the cube: |x| < § and let p: R” — R be a non-negative C*
function with supp p ¢ Q and

(3.5.12) Jp(y)dy =1.
Set
wu)=jﬂy—ﬂ¢wwy-

By v is a C® function. Moreover, if Ay is the set of points in R? whose
distance in the sup norm from A is < § then for x ¢ Ajand y € A, |x — y| > § and hence

p(y — x) = 0. Thus for x ¢ Ay
[ oy =000y = | pty= 2y =0,

so y is supported on the compact set Ag. Moreover, since § < g, supp y is contained in V.
Finally note that by (.5.12)) and [Exercise 3.4.1y

(3.5.13) Jp(y—x)dy= Ip(y)dy=l

and hence

ww:j¢umw—xMy

SO

wm—wu%:ﬁwm—wwmw—xMy
and

|M@—w@ﬂsﬁwm—wwmw—mwu

But p(y — x) = 0 for |x — y| = &; and |$(x) — ¢(y)| < e for |x — y| < §, so the integrand on
the right is less than

e [ ply-ndy.
and hence by we have
lp(x) —y(x)| <. 0

To prove the identity (5.5.3), let y: R” — R be a C* cut-off function which is one on
a neighborhood V; of the support of ¢ is non-negative, and is compactly supported with
suppy € V, and let

C=Jy(y)dy-

By there exists, for every € > 0, a C* function vy, with support on V; satis-
fying

(3.5.14) lp—yl<—.
2c
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Thus

<

=

U G-yl < [ 16-vip)dy
\% 174

< | vie-vicendy
< i J[y(y)aly < g
SO
&
(3.5.15) HV d(y)dy - JV v(y)dy| < 2

Similarly, the expression

UU(¢ —y)e f()ldet Df(x)] dx

is less than or equal to the integral
JU(Y o (P =) o f(x)| |det Df (x)] dx
and by (8:5.19), [(¢ — y) » f(x)| < £, so this integral is less than or equal to

€
% J(y o f)(x)|det Df(x)| dx
and hence by (B.5.3) is less than or equal to 5. Thus

(3.5.16) UU(¢ o £)(x) | det D f(x)ldx - L o F(0)ldet DF ()] dx| <
Combining (B.5.19), (B.5.16) and the identity

jv v dy = [y F@ldet D@ dx

| ™

we get, forall e > 0,

<e¢

U $(y)dy - j (¢ NX)Idet Df(x)|dx
Vv U
and hence

[stndy = [@e pidernseolax.
Exercises for

Exercise 3.5.i. Let hi: V. — R be a non-negative continuous function. Show that if the
improper integral

jv h(y)dy

is well-defined, then the improper integral

L(h o £)(x)|det D f(x)|dx

is well-defined and these two integrals are equal.
Hint: If (¢;);»; is a partition of unity on V then y; = ¢, o f is a partition of unity on U
and

j ihdy = J yiho £(x)Idet DF(x)ldx .
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Now sum both sides of this identity over i.

Exercise 3.5.ii. Show that the result above is true without the assumption that A is non-
negative.
Hint: h = h, — h_, where h, = max(h, 0) and h_ = max(-h, 0).

Exercise 3.5.iii. Show that in one can allow the function ¢ to be a continu-
ous compactly supported function rather than a C* compactly supported function.

Exercise 3.5.iv. Let H” be the half-space (B.2.12]) and U and V open subsets of R”. Suppose
f: U — V is an orientation-preserving diffeomorphism mapping U n H" onto V N H".
Show that for w € Q(V)

(3.5.17) J ffo= J w.
UnH" VnH"

Hint: Interpret the left and right hand sides of this formula as improper integrals over
U nint(H") and V N int(H").

Exercise 3.5.v. The boundary of H" is the set
oH" == {(0,%,, ..., x,) | (x5, ...,x,) € R"1}
so the map
RS HY, (x,..,x,) & (0,%, .0 X,)
in maps R"! bijectively onto 0H".

(1) Show thatthemap f: U — Vin maps U N 0H" onto V N oH".
(2) LetU’ = ' (U)and V' = "}(V). Conclude from (fi]) that the restriction of f to UnoH"

gives one a diffeomorphism
g:u -V
satistying:
tog=for.
(3) Letpubein Q" 1(V). Conclude from Equations (3.2.14) and [3.5.17):

J g*t*u=J 7
UI VI

and in particular show that the diffeomorphism g: U’ — V' is orientation-preserving.

3.6. Techniques for computing the degree of a mapping

Let U and V be open subsets of R” and f: U — V a proper C* mapping. In this
section we will show how to compute the degree of f and, in particular, show that it is always
an integer. From this fact we will be able to conclude that the degree of f is a topological
invariant of f: if we deform f smoothly, its degree doesn’t change.

Definition 3.6.1. A point x € U is a critical point of f if the derivative
Df(x): R" > R"”
fails to be bijective, i.e., if det(D f(x)) = 0.
We will denote the set of critical points of f by Cy. It is clear from the definition that
this setis a closed subset of U and hence, by Exercise 3.4.fi, f(Cy) is a closed subset of V. We
will call this image the set of critical values of f and the complement of this image the set of

regular values of f. Notice that V ~ f(U) is contained in f(U) ~ f(Cy), soifapointg € V
is not in the image of f, it is a regular value of f “by default’, i.e., it contains no points of
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U in the pre-image and hence, a fortiori, contains no critical points in its pre-image. Notice
also that C; can be quite large. For instance, if c € V and f: U — V is the constant map
which maps all of U onto ¢, then C ¢ = U. However, in this example, f(C f) = {c}, so the set
of regular values of f is V' ~ {c}, and hence (in this example) is an open dense subset of V.
We will show that this is true in general.

Theorem 3.6.2 (Sard). IfU andV are open subsets of R" and f: U — V a proper C*° map,
the set of regular values of f is an open dense subset of V.

We will defer the proof of this to and in this section explore some of its
implications. Picking a regular value g of f we will prove:

Theorem 3.6.3. The set f~(q) is a finite set. Moreover, if f~(q) = {py, ..., p,} there exist
connected open neighborhoods U; of p; inY and an open neighborhood W of q in V' such that:
(1) fori # j the sets U; and U; are disjoint;
() f'*Ww)=U,u--uU,
(3) f maps U; diffeomorphically onto W.
Proof. If p € f~'(q) then, since q is a regular value, p ¢ Cy; s0

Df(p): R" - R"
is bijective. Hence by the inverse function theorem, f maps a neighborhood, U,, of p diffeo-
morphically onto a neighborhood of q. The open sets

{Uylpe f (g}

are a covering of f~1(q); and, since f is proper, f~'(q) is compact. Thus we can extract a
finite subcovering
Uy Up, }

and since p; is the only point in U, which maps onto g, we have that £ ={pp> - PN}

Without loss of generality we can assume that the U,, ’s are disjoint from each other; for,
if not, we can replace them by smaller neighborhoods of the p;’s which have this property.
By [Theorem 3.4.7 there exists a connected open neighborhood W of g in V for which

fw) ¢ U, U--uU,
To conclude the prooflet U; = f~1(W) n Uy, O

The main result of this section is a recipe for computing the degree of f by counting
the number of p;’s above, keeping track of orientation.

Theorem 3.6.4. For each p; € f'(q) let o, = +1if f: U; — W is orientation-preserving
and -1 if f: U; — W is orientation reversing. Then

N
(3.6.5) deg(f) =) o, .
i=1
Proof. Let w be a compactly supported n-form on W whose integral is one. Then
N
de()=J = j w.
«n=| ro=3] s

Since f: U; —» W is a diffeomorphism

J o= ij w = 1,  f isorientation-preserving
w -1, fisnot orientation-preserving .
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Thus deg( f) is equal to the sum (B.6.9). O

>

As we pointed out above, a point g € V can qualify as a regular value of f “by default’,
i.e., by not being in the image of f. In this case the recipe (.6.9) for computing the degree
gives “by default” the answer zero. Let’s corroborate this directly.

Theorem 3.6.6. If f: U — V is not surjective, then deg(f) = 0.

Proof. By Exercise 3.4.11}, V ~ f(U) is open; so if it is nonempty, there exists a compactly
supported n-form w with support in V'~ f(U) and with integral equal to one. Since w = 0
on the image of f, f*w = 0; so

ozj f*w:deg(f)Jw:deg(f). 0
U \%4

Remark 3.6.7. In applications the contrapositive of is much more useful
than the theorem itself.

Theorem 3.6.8. Ifdeg(f) # 0, then f maps U surjectively onto V.
In other words if deg( f) # 0 the equation

fx)=y

has a solution, x € U for every y € V.

We will now show that the degree of f is a topological invariant of f: if we deform f by
a “homotopy” we do not change its degree. To make this assertion precise, let’s recall what
we mean by a homotopy between a pair of C* maps. Let U be an open subset of R, V
an open subset of R”, A an open subinterval of R containing 0 and 1, and f;, ,: U - V
a pair of C* maps. Thena C* map F: U x A — V is a homotopy between f; and f, if

F(x,0) = fy(x) and F(x,1) = f;(x). (See Dehinition 2.6.14.) Suppose now that f; and f; are

proper.

Definition 3.6.9. A homotopy F between f; and f; is a proper homotopy if the map
F':UxA->VxA

defined by (x, t) — (F(x,t),t) is proper.

Note that if F is a proper homotopy between f, and f;, then for every ¢ between 0 and
1, the map
fi: U—>V, filx)=F(x,t)
is proper.
Now let U and V be open subsets of R".
Theorem 3.6.10. If f, and f, are properly homotopic, then deg( f,) = deg(f,).

Proof. Let

@ =¢(y)dy, AN dy,
be a compactly supported n-form on V whose integral over V is 1. The the degree of f, is
equal to

(3.6.11) L $(F,(%,1), ..., F, (x, 1)) det D, F(x, )dx .

The integrand in (B.6.11]) is continuous and for 0 < t < 1 is supported on a compact subset
of U x [0, 1], hence (B.6.11]) is continuous as a function of t. However, as we've just proved,
deg( f,) is integer valued so this function is a constant. g

(For an alternative proof of this result see below.)
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Applications

We'll conclude this account of degree theory by describing a couple applications.

Application 3.6.12 (The Brouwer fixed point theorem). Let B” be the closed unit ball in R":
B'={xeR"||x| <1}.

Theorem 3.6.13. If f: B" — B" is a continuous mapping then f has a fixed point, i.e., maps
some point, x, € B" onto itself.

The idea of the proof will be to assume that there isn’t a fixed point and show that this
leads to a contradiction. Suppose that for every point x € B" we have f(x) # x. Consider
the ray through f(x) in the direction of x:

f(x) +s(x - f(x)), s €[0,00).

This ray intersects the boundary §*~! := 9B" in a unique point y(x) (see below);
and one of the exercises at the end of this section will be to show that the mapping y: B" —

$"! given by x — y(x), is a continuous mapping. Also it is clear from that
y(x) = xif x € "', so we can extend y to a continuous mapping of R” into R" by letting y
be the identity for ||x|| > 1. Note that this extended mapping has the property

lyColl = 1
for all x € R” and

(3.6.14) y(x) =x

for all |lx|| = 1. To get a contradiction we'll show that y can be approximated by a C* map
which has similar properties. For this we will need the following corollary of Theorem 3.5.11].

Lemma 3.6.15. Let U be an open subset of R", C a compact subset of U and ¢: U — Ra
continuous function which is C* on the complement of C. Then for every € > 0, there exists a
C®™ functiony: U — R, such that ¢ — y has compact support and |¢ — y| < e.

Proof. Let p be a bump function which is in Cg°(U) and is equal to 1 on a neighborhood
of C. By there exists a function y, € C5°(U) such that |p¢ — y,| < &. To

complete the proof, let w(1 — p)¢ + v, and note that
p-y=>0-p¢+pd-(1-p)p-yp
=pP - .
By applying to each of the coordinates of the map vy, one obtains a C*
map g: R" — R" such that
lg—yl<e<1

and such that g = y on the complement of a compact set. However, by (5.6.14), this means
that g is equal to the identity on the complement of a compact set and hence (see

Eise 3.6.1¥) that g is proper and deg(g) = 1. On the other hand by (.6.1¢) and (5.6.14) we

have ||g(x)| > 1 —eforall x € R”, s0 0 ¢ im(g) and hence by we have
deg(g) = 0, which provides the desired contradiction.

Application 3.6.16 (The fundamental theorem of algebra). Let

p(z) =2"+a, z2""

+-t+az+a
be a polynomial of degree n with complex coeflicients. If we identify the complex plane

C={z=x+iy|x,y €eR}
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p(x)

Figure 3.6.1. Brouwer fixed point theorem

with R? via the map R?> — C given by (x, y) — z = x + iy, we can think of p as defining a
mapping

p:RESRY, 2z pl2).
We will prove:

Theorem 3.6.17. The mapping p: R* — R? is proper and deg(p) = n.
Proof. Fort € Rlet

n-1
pi2) =(1-0)z"+tp(z) =2"+t ) a;z' .
i=0

We will show that the mapping
g: xR —R?, (z,t) = p,(2)

is a proper homotopy. Let
C= sup la.

0<i<n-1
Then for |z| > 1 we have
-1 -1
lag + -+ +a,_12"| < lagl + lagllz] + -+ + la,_, | |=]"
< Cnlz|*!,
and hence, for |t| < a and |z| = 2aCn,
|pi(2)| = |z|" — aCnlz|"!
> aCnlz|" ! .

If A ¢ Cis compact, then for some R > 0, A is contained in the disk defined by |w| < R,
and hence the set

{z € C|(t, pi(2)) € [-a,a]l x A}
is contained in the compact set
{z € ClaClz|"' <R}.

This shows that g is a proper homotopy.
Thus for each t € R, the map p,: C — Cis proper and

deg(p,) = deg(py) = deg(p) = deg(po)

However, p,: C — C is just the mapping z — 2" and an elementary computation (see
[Exercises 3.6. and .6.v] below) shows that the degree of this mapping is n. O
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In particular for n > 0 the degree of p is nonzero; so by we conclude that
p: C — Cis surjective and hence has zero in its image.

Theorem 3.6.18 (Fundamental theorem of algebra). Every positive-degree polynomial
pz)=2"+a, 12"+ +a,
with complex coefficients has a complex root: p(z,) = 0 for some z, € C.

Exercises for

Exercise 3.6.i. Let W be a subset of R” and let a(x), b(x) and c(x) be real-valued functions
on W of class C". Suppose that for every x € W the quadratic polynomial

a(x)s? + b(x)s + c(x)

has two distinct real roots, s, (x) and s_(x), with s, (x) > s_(x). Prove that s, and s_ are
functions of class C".
Hint: What are the roots of the quadratic polynomial: as* + bs + c?

Exercise 3.6.ii. Show that the function y(x) defined in is a continuous surjec-
tion B" — §*°1,

Hint: y(x) lies on the ray,
f(x)+s(x— f(x)), se€[0,00)
and satisfies [|y(x)|| = 1. Thus
Y(x) = f(x) +5(x = f(x)),
where s, is a non-negative root of the quadratic polynomial
£ () + s = fFDI - 1.
Argue from that this polynomial has to have two distinct real roots.

Exercise 3.6.iii. Show that the Brouwer fixed point theorem isn’t true if one replaces the
closed unit ball by the open unit ball.
Hint: Let U be the open unit ball (i.e., the interior of B"). Show that the map

X

h:U—R", h(x) = ———
1 - [x|?

is a diffeomorphism of U onto R", and show that there are lots of mappings of R” onto R"

which do not have fixed points.

Exercise 3.6.iv. Show that the fixed point in the Brouwer theorem doesn’t have to be an
interior point of B”, i.e., show that it can lie on the boundary.

Exercise 3.6.v. If we identify C with R? via the mapping (x, y) — x + iy, we can think of a
C-linear mapping of C into itself, i.e., a mapping of the form

P cz

for a fixed ¢ € C, as an R-linear mapping of R? into itself. Show that the determinant of this
mapping is |c|?.

Exercise 3.6.vi.
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(1) Let f: C — Cbe the mapping f(z) := z". Show that D f(z) is the linear map
Df(z) = nz"!

given by multiplication by nz"*.
Hint: Argue from first principles. Show that for h € C = R?
(z+h)"-2z"—nz""1h
|k

tends to zero as |h| — 0.

(2) Conclude from that
det(Df(2)) = n?|z|"2 .

(3) Show that at every point z € C ~ {0}, f is orientation preserving.
(4) Show that every point, w € C ~ {0} is a regular value of f and that

f‘l(w) ={z,....2,}

witho, = +1.
(5) Conclude that the degree of f is n.

Exercise 3.6.vii. Prove that the map f from has degree n by deducing this
directly from the definition of degree.
Hints:
» Show that in polar coordinates, f is the map (r,0) — (r",n0).
» Let w be the 2-form w = g(x* + y*)dx A dy, where g(t) is a compactly supported
C® function of t. Show that in polar coordinates w = g(r*)rdr Ad6, and compute
the degree of f by computing the integrals of w and f*w in polar coordinates and
comparing them.

Exercise 3.6.viii. Let U be an open subset of R”, V an open subset of R™, A an open subin-
terval of R containing 0 and 1, f;, f;: U — V a pair of C*® mappings,and F: UxA - V
a homotopy between f;, and f;.

(1) In you proved that if 4 € Q%(V) and dy = 0, then

(3.6.19) fop-fiu=dv
where v is the (k — 1)-form Qu in fquation (2.6.17). Show (by careful inspection of the
definition of Q) that if F is a proper homotopy and u € QX(V) then v € Q¥ 1(U).

(2) Suppose in particular that U and V are open subsets of R” and p is in Q7 (V). Deduce
from that

J fou= j fiu
and deduce directly from the definition of degree that degree is a proper homotopy
invariant.

Exercise 3.6.ix. Let U be an open connected subset of R” and f: U — U a proper C*®
map. Prove that if f is equal to the identity on the complement of a compact set C, then f
is proper and deg(f) = 1.
Hints:
» Show that for every subset A ¢ U, we have f"!(A) ¢ A UC, and conclude from
this that f is proper.
» Use the recipe ([1.6.2)) to compute deg( f) with g € U ~ f(C).
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Exercise 3.6.x. Let (a; j) be an n xn matrix and A: R” — R” the linear mapping associated
with this matrix. Frobenius’ Theorem asserts: If the a; ; are non-negative then A has a non-
negative eigenvalue. In other words there existsav € R"anda A € R, A > 0, such that
Av = Mv. Deduce this linear algebra result from the Brouwer fixed point theorem.

Hints:

» We can assume that A is bijective, otherwise 0 is an eigenvalue. Let S"! be the
(n — 1)-sphere, defined by |x| = 1,and f: $"! — §"! the map,

Ax

Show that f maps the set
Q:={(x5..00%,) €S | x,..00x, 20}

into itself.

» It is easy to prove that Q is homeomorphic to the unit ball B”!, i.e., that there
exists a continuous map g: Q — B"! which is invertible and has a continuous
inverse. Without bothering to prove this fact deduce from it Frobenius’ theorem.

3.7. Appendix: Sard’s theorem

The version of Sard’s theorem stated in is a corollary of the following more general
result.

Theorem 3.7.1. Let U be an open subset of R" and f: U — R" a C® map. Then R" ~ f(Cy)
is dense in R".

Before undertaking to prove this we will make a few general comments about this result.

Remark 3.7.2. If (U,,),,», are open dense subsets of R", the intersection [, U,,, is dense
in R". (This follows from the Baire category theorem; see, for instance, [, Ch. 6 Thm. 34;

11, Thm. 48.2] or Exercise 3.7.1V.)

Remark 3.7.3. If (A,),, is a covering of U by compact sets, O, := R"~ f(C; N A,) is open,
so if we can prove that it is dense then by we will have proved Sard’s theorem.
Hence since we can always cover U by a countable collection of closed cubes, it suffices to
prove: for every closed cube A C U, the subspace R” ~ f(Cy N A) is dense in R".

Remark 3.7.4. Let g: W — U be a diffeomorphism and let 1 = f o g. Then
(3.7.5) f(Cs) =h(Cp)
so Sard’s theorem for h implies Sard’s theorem for f.

We will first prove Sard’s theorem for the set of super-critical points of f, the set:
C={peUIDf(p)=0}.

Proposition 3.7.6. Let A c U be a closed cube. Then the open set R" ~ f(AN Cjuc) is a dense
subset of R".

We'll deduce this from the lemma below.

Lemma 3.7.7. Given € > 0 one can cover f(A N C}) by a finite number of cubes of total
volume less than e.
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Proof. Let the length of each of the sides of A be £. Given § > 0 one can subdivide A into N”
cubes, each of volume (£/N)", such that if x and y are points of any one of these subcubes

(3.7.8) ‘?(x) - %(y) <$.

0x;

Let A;,..., A,, be the cubes in this collection which intersect C}. Then for z; € A; N C},

g—)’:;’_(zo) =0, so for z € A; we have

(3.7.9) <d

9f;
B_xj(z)

by Equation (3.7.8). If x and y are points of A; then by the mean value theorem there exists
a point z on the line segment joining x to y such that

- 0= Y L@ - )
]

j=1

and hence by (3:7.9)

)= 0N <8 Y by =y < nd.
j=1

Thus f (Cf N A;) is contained in a cube B, of volume (716—1\{]Z )n, and f(C N A) is contained in
a union of cubes B; of total volume less than

Y n81’l€n

N'n"—— = n""¢"
so if we choose § such that n"6"¢" < ¢, we're done. O
Proof of Proposition 3.7.4. To prove we have to show that for every point

p € R” and neighborhood, W of p, the set W ~ f (Cjuc N A) is nonempty. Suppose
§
(3.7.10) Wc f(CinA).

Without loss of generality we can assume W is a cube of volume ¢, but the lemma tells us
that f (C} N A) can be covered by a finite number of cubes whose total volume is less than &,
and hence by (B-7.1d) W can be covered by a finite number of cubes of total volume less than

&, so its volume is less than e. This contradiction proves that the inclusion (B.7.1d) cannot
hold. H

Now we prove [FEoTem 3.7
Proof of [Theoreni 3.7.1. Let U ; be the subset of U where % # 0. Then
7

—ct
v=ciu |J Uy,
1<i,j<n
so to prove the theorem it suffices to show that R" ~ f(U; ; N Cy) is dense in R", i.e., it
suffices to prove the theorem with U replaced by U; ;. Let g;: R" = R" be the involution
which interchanges x; and x; and leaves the remaining x;s fixed. Letting f,..,, = 0; fo40;
and U,,, = 0;U,4, we have, for f = f,,, andU = U,

(3.7.11) Zi@) 40
X1
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for all p € U so were reduced to proving for maps f: U — R” having the
property (B.7.11). Let g: U — R” be defined by
(3.7.12) glxys .o x,) = (f1(x), %5, .., %)
Then
g % = fTx = filxy .. x,)
and
det(Dg) = % #0.
0x;

Thus, by the inverse function theorem, g is locally a diffeomorphism at every point p € U.
This means that if A is a compact subset of U we can cover A by a finite number of open
subsets U; C U such that g maps U; diffeomorphically onto an open subset W in R". To
conclude the proof of the theorem we'll show that R” ~ f(C; NU; N A) is a dense subset of

R".Leth: W, — R"bethemaph = fog™!. To prove this assertion it suffices by
to prove that the set R” ~\ h(C,,) is dense in R". This we will do by induction on n. First note

that for n = 1, we have C; = Cjﬁ(, so we've already proved in dimension one.
Now note that by (5.7.12]) we have h*x; = x,, i.e,, h is a mapping of the form

h(xy, ..., x,) = (x1, hy(x), ..., h,(x)) .

Thus if we let
W, = {(xy,...,x,) € R (¢, x5, ..., x,) € W; }
and let h,: W, — R"! be the map

h (x5, ..., x,) = (hy(c, %55 oo X%,)5 ., B (6, %5, 005 X,))

Then

det(Dh,)(x,, ..., x,) = det(Dh)(c, x5, ..., X,,) >
and hence
(3.7.13) (c,x) eW,NC,, & x¢€ Ch, -

Now let p, = (c, x,) be a point in R”. We have to show that every neighborhood V of p,
contains a point p € R”~h(C;,). Let V. ¢ R""! be the set of points x for which (c, x) € V. By
induction V. contains a point x € R""! \ h.(Cy, ) and hence p = (¢, x) is in V by definition

and in R" ~ h(C},) by (B.7.13). O
Exercises for

Exercise 3.7.i. What are the set of critical points and the image of the set of critical points
for the following maps R — R?
(1) The map f,(x) = (x* — 1)
(2) The map f,(x) = sin(x) + x.
(3) The map
0, x<0

fi(x) = { 1

e x, x>0.

Exercise 3.7.ii (Sard’s theorem for affine maps). Let f: R” — R” be an affine map, i.e., a
map of the form

fx) = Alx) + x,
where A: R” — R" is a linear map and x;, € R". Prove Sard’s theorem for f.



Draft: March 28, 2018

§3.7 Appendix: Sard’s theorem 95

Exercise 3.7.iii. Let p: R — Rbea C* function which is supported in the interval (-1/2, 1/2)
and has a maximum at the origin. Let (7;);>; be an enumeration of the rational numbers, and
let f: R — R be the map

flx) =) riplx—i).
i=1

Show that f is a C** map and show that the image of Cy is dense in R.
The moral of this example: Sard’s theorem says that the complement of C is dense in R,
but Cs can be dense as well.

Exercise 3.7.iv. Prove the assertion made in Remark 3.7.4.
Hint: You need to show that for every point p € R" and every neighborhood V of p,

VN[, Uy is nonempty. Construct, by induction, a family of closed balls (By )., such that

» B, CV,
» Biy1 C By

» By €,k Uns
» The radius of By is less than %,

and show that (), By # &.
Exercise 3.7.v. Verify quation (3.7.5).
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CHAPTER 4

Manifolds & Forms on Manifolds

4.1. Manifolds

Our agenda in this chapter is to extend to manifolds the results of and fand
to formulate and prove manifold versions of two of the fundamental theorems of integral
calculus: Stokes’ theorem and the divergence theorem. In this section we'll define what we
mean by the term manifold, however, before we do so, a word of encouragement. Having
had a course in multivariable calculus, you are already familiar with manifolds, at least in
their one and two-dimensional emanations, as curves and surfaces in R?, i.e., a manifold is
basically just an n-dimensional surface in some high dimensional Euclidean space. To make
this definition precise let X be a subset of RY, Y a subset of R” and f: X — Y a continuous
map. We recall:

Definition 4.1.1. The map f is a C*™ map if for every p € X, there exists a neighborhood
Upof pin RY and a C*® map gp+ U, = R" which coincides with f on U, N X.

We also recall:

Theorem 4.1.2. If f: X — Y is a C™ map, there exists a neighborhood U, of X in RN and a
C® map g: U — R" such that g coincides with f on X.

(A proof of this can be found in Appendix 4.)

We will say that f is a diffeomorphism if f is a bijection and f and f~! are both C*®
maps. In particular if Y is an open subset of R", X is an example of an object which we will
call a manifold. More generally:

Definition 4.1.3. Let N and n be nonnegative integers with n < N. A subset X ¢ RY isan
n-manifold if for every p € X there exists a neighborhood V of p in RV, an open subset U
in R”, and a diffeomorphism ¢: U = X NV.

Thus X is an n-manifold if, locally near every point p, X “looks like” an open subset of
R".
Examples 4.1.4.
(1) Graphs of functions: Let U be an open subset of R” and f: U — R a C™ function. Its
graph
Ip={(x f(x)) e R"|x e U}
is an n-manifold in R™*!. In fact the map
¢: U—>R"™, x5 (x, f(x))

is a diffeomorphism of U onto I';. (It's clear that ¢ is a C° map, and it is a diffeomor-
phism since its inverse is the map 7: I'y — U given by 7(x, f) == x, which is also clearly
C*.)

97



98
(2)

(3)

Draft: March 28, 2018

Chapter 4: Manifolds & Forms on Manifolds

Graphs of mappings: More generally if f: U — RFis a C* map, its graph I ¥ is an
n-manifold in R"*,
Vector spaces: Let V be an n- dimensional vector subspace of RN, and (e, ..., e,,) a basis

of V. Then the linear map

n
(4.1.5) ¢:R" >V, (x,...x,) — inei

(4)

(5)

(6)

i=1

is a diffeomorphism of R” onto V. Hence every n-dimensional vector subspace of RY
is automatically an n-dimensional submanifold of RN. Note, by the way, that if V is any
n-dimensional vector space, not necessarily a subspace of RV, the map (f-1.5) gives
us an identification of V' with R". This means that we can speak of subsets of V as
being k-dimensional submanifolds if, via this identification, they get mapped onto k-
dimensional submanifolds of R”. (This is a trivial, but useful, observation since a lot of
interesting manifolds occur “in nature” as subsets of some abstract vector space rather
than explicitly as subsets of some R”. An example is the manifold, O(n), of orthogonal
n x n matrices. This manifold occurs in nature as a submanifold of the vector space of
n by n matrices.)

Affine subspaces of R": These are manifolds of the form p + V, where V' is a vector sub-
space of RN and p is a specified point in RY. In other words, they are diffeomorphic
copies of vector subspaces with respect to the diffeomorphism

. RN ~ RN
7, RT »RY, x—>p+x.

If X is an arbitrary submanifold of RY its tangent space a point p € X, is an example of
a manifold of this type. (We'll have more to say about tangent spaces in Section 4.2.)
Product manifolds: For i = 1,2, let X; be an »;-dimensional submanifold of RY:. Then
the Cartesian product of X, and X,

X, x Xy ={(x;,x,) | x; € X;}
is an (1, + n,)-dimensional submanifold of RN *N2 = RNt x RNz,
We will leave for you to verify this fact as an exercise.
Hint: For p; € X;,i = 1,2, there exists a neighborhood, V;, of p; in R™:, an open set,
U; in R™, and a diffeomorphism ¢: U; —» X; NV,. LetU = U; xU,, V = V| x V, and
X =X; xX,,andlet ¢: U — X NV be the product diffeomorphism, (¢(g,), ¢,(g,))-
The unit n-sphere: This is the set of unit vectors in R"*!:

S"={x e R"™ |x}+- +x2,,=1}.
To show that S” is an n-manifold, let V' be the open subset of R"*! on which x,,, , is

positive. If U is the open unit ballin R” and f: U — Ris the function, f(x) = (1- (3 +
-+ x2))!/2 then §" NV is just the graph I'; of f. Hence we have a diffeomorphism
$:U—->8"nV.
More generally, if p = (xy, ..., x,,;1) is any point on the unit sphere, then x; is nonzero
for some i. If x; is positive, then letting o be the transposition, i <> n+1and f, : R"™*' —
R™*!, the map
fo.(xl, veey xn) = (xo.(l), veesy xo.(n))

one gets a diffeomorphism f ¢ of U onto a neighborhood of p in §” and if x; is negative
one gets such a diffeomorphism by replacing f, by — f,. In either case we have shown

that for every point p in §”, there is a neighborhood of p in §” which is diffeomorphic
toU.
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(7) The 2-torus: In calculus books this is usually described as the surface of rotation in R3
obtained by taking the unit circle centered at the point, (2, 0), in the (x;, x3) plane and
rotating it about the x;-axis. However, a slightly nicer description of it is as the product
manifold S' x S' in R%. (As an exercise, reconcile these two descriptions.)

We'll now turn to an alternative way of looking at manifolds: as solutions of systems of
equations. Let U be an open subset of R and f: U — R* a C* map.

Definition 4.1.6. A point a € R¥ is a regular value of f if for every point p € f~'(a), the
map f is a submersion at p.

Note that for f to be a submersion at p, the differential Df(p): RN — R* has to be
surjective, and hence k has to be less than or equal to N. Therefore this notion of regular
value is interesting only if N > k.

Theorem 4.1.7. Letn := N—k. Ifais aregular value of f, theset X == f~'(a) is an n-manifold.

Proof. Replacing f by 7_, o f we can assume without loss of generality thata = 0. Let p €
£71(0). Since f is a submersion at p, the canonical submersion theorem (see [Theorem B.14)

tells us that there exists a neighborhood O of 0 in RY, a neighborhood Uy, of p in U and a
diffeomorphism g — O = U such that

(4.1.8) feg=m

where 7 is the projection map

RN = RF xR" - Rk (x,y) > x.

Hencen7'(0) = {0}xR" = R” and by Equation (4.1.5)), g maps Onz ' (0) diffeomorphically
onto U, N £~1(0). However, O N 7~ 1(0) is a neighborhood of 0 in R” and U, n f~1(0) is a
neighborhood of pin X, and, as remarked, these two neighborhoods are diffeomorphic. [J

Some examples:

Examples 4.1.9.
(1) The n-sphere: Let
f:R™ SR
be the map,
(X5 oo Xpp1) P> X2 o+ X2, — 1.
Then
Df(x) =2(x15..0s X41)

so, if x # 0, then f is a submersion at x. In particular, f is a submersion at all points x
on the n-sphere

Sn — f—l(o)
so the n-sphere is an n-dimensional submanifold of R"*!.
(2) Graphs:Letg: R" — Rfbea C® map and, as in (@), let

T,={(xy) eR"xR"|y=g(x)}.

We claim that I’ gisan n-dimensional submanifold of R*** = R x R¥.
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Proof. Let
f:R"xRF - Rk
be the map f(x, y) = y — g(x). Then
Df(x,y) = (-Dg(x) idy)

where id, is the identity map of R¥ onto itself. This map is always of rank k. Hence
I'p= £71(0) is an n-dimensional submanifold of R, O

(3) Let M, be the set of all n x n matrices and let &, be the set of all symmetric n x n
matrices, i.e., the set
S, ={AeM,|A=AT}.
The map
A=(a;;) = (A,1810 A1 Ay 15 05 )

gives us an identification

M, = R”
and the map

A=(a;j) = (A115 01 8p05 s Ay B335 - B35 ---)

gives us an identification

S, > R":"
(Note that if A is a symmetric matrix, then g;
Let

,j = @;»so this map avoids redundancies.)
Om)={AeM,|ATA=id,}.

This is the set of orthogonal n x n matrices, and we will leave for you as an exercise to
show that it’s an n(n — 1)/2-manifold.
Hint: Let f: M, — &, bethe map f(A) = ATA - id,,. Then

O(n) = f71(0).

These examples show that lots of interesting manifolds arise as zero sets of submersions
f:U—- RX. This is, in fact, not just an accident. We will show that locally every manifold
arises this way. More explicitly let X ¢ RY be an #n-manifold, p a point of X, U a neighbor-
hood of 0 in R", V a neighborhood of p in RY and ¢: (U,0) = (V N X, p) a diffeomor-
phism. We will for the moment think of ¢ as a C*® map ¢: U — RY whose image happens
to lie in X.

Lemma 4.1.10. The linear map D¢(0) : R — RN is injective.

Proof. Since¢™': V N X = U isadiffeomorphism, shrinking V if necessary, we can assume
that there exists a C* map y: V — U which coincides with ¢ 'on V n X. Since ¢ maps U
onto VN X, yo¢d=¢ ! od¢is the identity map on U. Therefore,

D(y  $)(0) = (Dy)(p)D¢(0) = id,,
by the chain rule, and hence if D$(0)v = 0, it follows from this identity that v = 0. ([
says that ¢ is an immersion at 0, so by the canonical immersion theorem

(see [Theorem B.18) there exists a neighborhood U; of 0 in U, a neighborhood V,, of pin V,
and a diffeomorphism

(4.1.11) g: V,,p) > (U, x RN 0)
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such that g o ¢ = 1, where 1 is, as in [Appendix B, the canonical immersion
(4.1.12) 1:Uy = Uy xRN | x5 (x,0).

By (.1.11)) g maps ¢(U,) diffeomorphically onto «(U,). However, by (4.1.8) and (f.1.11)
«(U,) is defined by the equations, x; = 0,i =n +1,...,N. Hence if g = (g;, ..., gy the set,
¢(U,) =V, N X is defined by the equations

(4.1.13) g;=0,i=n+1,..,N.
Letf = N —n,let
m: RN =R"xR? - R
be the canonical submersion,
T(X]5 e XN) = (Xpats o0 XN)

and let f = m o g. Since g is a diffeomorphism, f is a submersion and (f.1.12)) can be
interpreted as saying that

(4.1.14) VPﬂXszl(O).
Thus to summarize we have proved:

Theorem 4.1.15. Let X be an n-dimensional submanifold of RN and let € = N — n. Then for
every p € X there exists a neighborhood V,, of p in RY and a submersion

f: (Vo p) = (R%,0)
such that X NV, is defined by pquation (4.1.13).

A nice way of thinking about is in terms of the coordinates of the map-
ping, f. More specifically if f = (f,..., f) we can think of f!(a) as being the set of
solutions of the system of equations

fix)=a;, i=1,...,k

and the condition that a be a regular value of f can be interpreted as saying that for every
solution p of this system of equations the vectors

n af
(@df), = Y 2Z(0)dx,
f p ]Ziaxj i

in TyR" are linearly independent, i.e., the system (f.1.14) is an “independent system of
defining equations” for X.

Exercises for
Exercise 4.1.i. Show that the set of solutions of the system of equations
x4+ rx2=1
X+ +x,=0
is an (n — 2)-dimensional submanifold of R".
Exercise 4.1.ii. Let S""! ¢ R” be the (1 — 1)-sphere and let
X, = {x eS8 x; + - +x,=a}.

For what values of a is X, an (n — 2)-dimensional submanifold of $"~!?
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Exercise 4.1.iii. Show that if X; is an n;-dimensional submanifold of R™:, for i = 1,2, then
X, x X, ¢ RN x RM
is an (1, + n,)-dimensional submanifold of RNt x RMz,

Exercise 4.1.iv. Show that the set
X={(,0v) eSS ' xR"|x-v=0}
is a (2n—2)-dimensional submanifold of R” x R”. (Here x-v == Y| x;v; is the dot product.)
Exercise 4.1.v. Let g: R" — R¥bea C® map and let X = T 4 be the graph of g. Prove
directly that X is an n-manifold by proving that the map
Yg: R" > X, x5 (x,g(x)
is a diffeomorphism.
Exercise 4.1.vi. Prove that the orthogonal group O(n) is an n(n — 1)/2-manifold.
Hints:
» Let f: M, — &, be the map
fA)=ATA-id, .
Show that O(n) = £71(0).
» Show that
f(A+eB) = ATA+&(ATB+ BTA) + BB -1id, .

» Conclude that the derivative of f at A is the map given by

(4.1.16) B+— ATB+BTA.

» Let A be in O(n). Show that if C is in &, and B = AC/2 then the map (j.1.16)
maps B onto C.

» Conclude that the derivative of f is surjective at A.

» Conclude that 0 is a regular value of the mapping f.

The next five exercises, which are somewhat more demanding than the exercises above,
are an introduction to Grassmannian geometry.

Exercise 4.1.vii.

(1) Letey,...,e, be the standard basis of R” and let W = span(ey,; ..., e,). Prove that if V
is a k-dimensional subspace of R” and

(4.1.17) Vnw-=0,

then one can find a unique basis of V of the form
¢
(4.1.18) Ui=ei+Zbi)jek+j, izl,...,k,
=1
where £ =n - k.
(2) Let Gy be the set of k-dimensional subspaces of R"” having the property (4.1.17) and
let M, be the vector space of k x € matrices. Show that one gets from the identities

(4-1.18) a bijective map:
(4.1.19) y: Mie — Gy

Exercise 4.1.viii. Let S, be the vector space of linear mappings of R" into itself which are
self-adjoint, i.e., have the property A = AT.



Draft: March 28, 2018

§4.1 Manifolds 103

(1) Givenak-dimensional subspace, V of R"letmry, : R” — R" be the orthogonal projection
of R” onto V. Show that 77y, is in S,, and is of rank k, and show that (1ry,)* = 7y,

(2) Conversely suppose A is an element of S,, which is of rank k and has the property, A> =
A. Show that if V is the image of A in R”, then A = my,.

Definition 4.1.20. Wecallan A € S, of the form A = 7y, above a rank k projection operator.

Exercise 4.1.ix. Composing the map
p:G—S,, Vmy
with the map (j.1.19) we get a map
¢: Mie = S0, d=p-y.
Prove that ¢ is C*.

Hints:
» By Gram-Schmidt one can convert ([f.1.18) into an orthonormal basis

el’B, ceey en’B

of V. Show that the ¢; p’s are C* functions of the matrix B = (b; ;).
» Show that 71y, is the linear mapping

k
UV — Z(U . ei,B)ei)B .
i=1
Exercise 4.1.x. Let V, = span(ey, ..., ;) and let G, = p(Gj,). Show that ¢ maps a neighbor-
hood of V; in M, diffeomorphically onto a neighborhood of 7y, in Gy
Hints: 1y, is in Gy, if and only if V satisfies (f1.17). For 1 <i < k let

k ¢
wi = ﬂv(ez) = Z ai)jej' + Z Ci’rek+r .
j=1 r=1

» Show that if the matrix A = (a; ;) is invertible, 77y, is in G.
» Let O ¢ Gy be the set of all 71y’s for which A is invertible. Show that ¢™: O —
Mo is the map
¢'(my)=B=A"'C
where C = [ci,j].
Exercise 4.1.xi. Let G(k,n) C S, be the set of rank k projection operators. Prove that G(k, n)
is a k€-dimensional submanifold of the Euclidean space §,, = R™.
Hints:
» Show that if V' is any k-dimensional subspace of R” there exists a linear mapping,
A € O(n) mapping V, to V.
» Show that 71y, = Ay A™.
> Let K4 : S, — S, be the linear mapping,

K,(B) = ABA™.
Show that
Kyo¢p: My — S,
maps a neighborhood of V;; in M, diffeomorphically onto a neighborhood of
my in G(k, n).
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Remark 4.1.21. Let Gr(k, n) be the set of all k-dimensional subspaces of R". The identifi-
cation of Gr(k, n) with G(k, n) given by V — m, allows us to restate the result above in the
form.

Theorem 4.1.22. The Grassmannian Gr(k, n) of k-dimensional subspaces of R" is a k€-dimens-
n(n+1)

ional submanifold of S, =R 2 .
Exercise 4.1.xii. Show that Gr(k, n) is a compact submanifold of S,,.
Hint: Show that it’s closed and bounded.

4.2. Tangent spaces

We recall that a subset X of RY is an n-dimensional manifold if for every p € X there
exists an open setU ¢ R",aneighborhood V of pin RY, and a C®-diffeomorphism ¢: U =
XnV.

Definition 4.2.1. We will call ¢ a parametrization of X at p.

Our goal in this section is to define the notion of the tangent space T, X to X at p and
describe some of its properties. Before giving our official definition we’ll discuss some simple
examples.

Example 4.2.2. Let f: R — Rbea C* function and let X = I's be the graph of f.

Figure 4.2.1. The tangent line £ to the graph of f at p,

Then in this figure above the tangent line € to X at p, = (x, y,) is defined by the

equation
Y= Yo = alx = xo)
where a = f'(x,) In other words if p is a point on £ then p = p, + Av, where v, = (1,a)
and A € R. We would, however, like the tangent space to X at p, to be a subspace of the
tangent space to R” at p,, i.e., to be the subspace of the space: T pORZ = {po} x R?, and this
we'll achieve by defining
T, X = {(pg>Avy) [A € R}.
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Example 4.2.3. Let S? be the unit 2-sphere in R®. The tangent plane to S> at p; is usually
defined to be the plane
{po+vlveR andv L p,}.

However, this tangent plane is easily converted into a subspace of TPR3 via the map p,+v —
(po>v) and the image of this map

{(pp>v) v € R3anva_p0}.
will be our definition of TP() sz

Let’s now turn to the general definition. As above let X be an n-dimensional submani-
fold of RN, p a point of X, V a neighborhood of p in RN, U an open set in R" and

¢: (U,q) > (XnV,p)
a parameterization of X. We can think of ¢ as a C* map
¢: (U,q) = (V,p)
whose image happens to lie in X NV and we proved in that its derivative at q
(d¢),: T,R* - T,RY
is injective.
Definition 4.2.4. The tangent space T, X to X at p is the image of the linear map
(d¢),: T,R* - T,RY.
In other words, w € TPRN is in T, X if and only if w = d@,(v) for some v € T,R". More
succinctly,
(4.2.5) T, X = (d(pq)(TqR") .
(Since d¢, is injective, T, X is an n-dimensional vector subspace of TPRN )

One problem with this definition is that it appears to depend on the choice of ¢. To
get around this problem, we'll give an alternative definition of T, X. In we showed that
there exists a neighborhood V of p in RN (which we can without loss of generality take to
be the same as V above) and a C* map
(4.2.6) f: (V,p) — (R,0), wherek=N-n,
such that X NV = £71(0) and such that f is a submersion at all points of X NV, and in
particular at p. Thus

df,: T,RN — T R*
is surjective, and hence the kernel of d f, has dimension n. Our alternative definition of T, X
is
(4.2.7) T,X = ker(dfp) .

Lemma 4.2.8. The spaces (4.2.5) and (g.2.7) are both n-dimensional subspaces ofTPRN, and
we claim that these spaces are the same.

(Notice that the definition (ff.2.7) of T, X does not depend on ¢, so if we can show that
these spaces are the same, the definitions (}§.2.3) and (.2.7)) will depend neither on ¢ nor

on f.)
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Proof. Since ¢(U) is contained in X NV and X NV is contained in f~!(0), f o ¢ = 0, so by
the chain rule
(4.2.9) dfpedp,=d(fo¢),=0.

Hence if v € T,R" and w = d@,(v), df,(w) = 0. This shows that the space (j.2.9) is
contained in the space (g.2.7). However, these two spaces are n-dimensional so they co-
incide. O

From the proof above one can extract a slightly stronger result.

Theorem 4.2.10. Let W be an open subset of R® and h: (W,q) — (RN, p) a C*® map. Sup-
pose h(W) is contained in X. Then the image of the map
. 4 N
dhg: T,R® > T,R
is contained in T, X.
Proof. Let f be the map (f.2.6). We can assume without loss of generality that #(W) is con-

tained in V, and so, by assumption, i(W) c X NV. Therefore, as above, f oh = 0, and hence
dhq(TqRe) is contained in the kernel of d fp. O

This result will enable us to define the derivative of a mapping between manifolds. Ex-

plicitly: Let X be a submanifold of RN, Y a submanifold of R”, and g: (X, p) — (Y, y,)

a C® map. By there exists a neighborhood O of X in RY and a C*® map
g: O — R™ extending to g. We will define

(4.2.11) (dg)p: TPX - TyOY

to be the restriction of the map
(dg),: T,RY - T, R"

to T, X. There are two obvious problems with this definition:

(1) Is the space (dg)P(TPX) contained in T,Y?

(2) Does the definition depend on g?

To show that the answer to (1) is yes and the answer to (2) is no, let

¢: (U,x5) > (XNnV,p)

be a parametrization of X, and let h = g o ¢. Since ¢(U) ¢ X, h(U) c Y and hence by

dh, (T, R") C T, Y.

But by the chain rule

dh, =dg,-dé¢, ,
so by (g.2.5)

(dg,)N(T,X) c T,Y
and

(dg,)(T,X) = (dh),, (T, R")
Thus the answer to (1) is yes, and since h = o ¢ = g o ¢, the answer to (2) is no.
From quations (4.2.9) and [4.2.11) one easily deduces:

Theorem 4.2.12 (Chain rule for mappings between manifolds). Let Z be a submanifold of
Rl andy: (Y, y,) — (Z,z,) a C*® map. Then dy, odg, =d(y e g),.

We will next prove manifold versions of the inverse function theorem and the canonical
immersion and submersion theorems.
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Theorem 4.2.13 (Inverse function theorem for manifolds). Let X andY be n-manifolds and
[+ X =Y aC® map. Suppose that at p € X the map

df,: T,X > T,Y, q:=f(p),

is bijective. Then f maps a neighborhood U of p in X diffeomorphically onto a neighborhood
VofqinY.

Proof. LetU and V be open neighborhoods of pin X andginY andlet ¢, : (U, 0) — (U, p)
and ¥, : (V,,0) — (V,q) be parametrizations of these neighborhoods. Shrinking U, and U
we can assume that f(U) c V. Let

9: Uy, po) = (Vo qo)
be the map v o f o ¢y. Then y, o g = f o ¢, so by the chain rule

(dyp),,  (dg),, = (@), o (ddy),,

Since (dyy)y, and (d¢y),, are bijective it’s clear from this identity that if d f,, is bijective
the same is true for (dg) p,- Hence by the inverse function theorem for open subsets of R",
g maps a neighborhood of p, in U diffeomorphically onto a neighborhood of g, in Vj,.
Shrinking U, and V|, we assume that these neighborhoods are U, and V}, and hence that g is
a diffeomorphism. Thus since f: U — V is the map y;, o g o ¢, it is a diffeomorphism as
well. O

Theorem 4.2.14 (The canonical submersion theorem for manifolds). Let X and Y be man-
ifolds of dimension n and m, where m < n, and let f: X — Y be a C*™ map. Suppose that at
p € X the map

df,: T,X > T,Y, q:= f(p),
is surjective. Then there exists an open neighborhood U of p in X, and open neighborhood, V

of f(U) inY and parametrizations ¢, : (U, 0) — (U, p) and y,: (V,,0) — (V,q) such that
in the square

-1
UO Yo féo Vo

N

U——V

f

the map y;"' o f o ¢, is the canonical submersion .

Proof. Let U and V be open neighborhoods of p and q and ¢,: (U,,0) — (U, p) and
Yy (Vy,0) — (V,q) be parametrizations of these neighborhoods. Composing ¢, and v,
with the translations we can assume that p, is the origin in R" and g, the origin in R™,
and shrinking U we can assume f(U) c V. As above let g: (U,,0) — (V},0) be the map
W' o f o ¢y. By the chain rule

(dy)o © (dg)o = df, = (do)y »

therefore, since (dyy), and (d¢,), are bijective it follows that (dg), is surjective. Hence, by
[[heorem 4.1.2, we can find an open neighborhood U of the origin in R” and a diffeomor-
phism ¢, : (U;,0) > (U,,0) such that g o ¢, is the canonical submersion. Now replace U,

by U, and ¢, by ¢  ¢;. U
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Theorem 4.2.15 (The canonical immersion theorem for manifolds). Let X and Y be mani-
folds of dimension n and m, wheren < m, and f: X =Y a C® map. Suppose that at p € X
the map

df,: T,X > T,Y, q= f(p)

is injective. Then there exists an open neighborhood U of p in X, an open neighborhood V' of
f(U) inY and parametrizations ¢, : (U,y,0) — (U, p) and y,: (V;,0) — (V,q) such that in
the square

-1
UO Yo féo VO

N

U——V

f

the map y;' o f o ¢, is the canonical immersion 1.

Proof. The proof is identical with the proof of except for the last step. In the
last step one converts g into the canonical immersion via a map v, : (V},0) — (V;,0) with
the property g o y; = 1 and then replaces y; by y; - y;. g

Exercises for
Exercise 4.2.i. What is the tangent space to the quadric
Q={(x..ox,) eR"|x, = x4 xf,,l}
at the point (1,0, ...,0,1)?

Exercise 4.2.ii. Show that the tangent space to the (n — 1)-sphere $"! at p is the space of
vectors (p,v) € T,R" satisfying p- v = 0.

Exercise 4.2.iii. Let f: R” — R¥bea C® map andlet X = T r. What is the tangent space
to X at (a, f(a))?

Exercise 4.2.iv. Leta: ! — §"! be the antipodal map o(x) = —x. What is the derivative
ofoat p e S"1?

Exercise 4.2.v. Let X; ¢ RNi,i = 1,2, be an n;-manifold and let p; € X;. Define X to be the
Cartesian product

X, x X, ¢ RNt x RM:
and let p = (py, p,). Show that T X =T, X, & T, X,.

Exercise 4.2.vi. Let X ¢ RY be an n-manifold and for i = 1,2, let ¢,: U; — X NV, be two
parametrizations. From these parametrizations one gets an overlap diagram

N
$THX NV, N V) #2 o XNV, NVy)

(4.2.16) k %

Xnv,nv,
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(1) Let p € XNV andletg; = ¢;'(p). Derive from the overlap diagram (.2.14) an overlap
diagram of linear maps

I LTI

a1 92
d(¢1)ql\ A%
T,RY

(2) Use overlap diagrams to give another proof that T,, X is intrinsically defined.

4.3. Vector fields & differential forms on manifolds

A vector field on an open subset U ¢ R” is a function v which assigns to each p € U an
element v(p) of T,U, and a k-form is a function w which assigns to each p € U an element

w,, of AF (T, U). These definitions have obvious generalizations to manifolds:

Definition 4.3.1. Let X be a manifold. A vector field on X is a function v which assigns to
each p € X an element v(p) of T, X. A k-form is a function w which assigns to each p € X

an element w, of Ak(T;X).

WEe'll begin our study of vector fields and k-forms on manifolds by showing that, like
their counterparts on open subsets of R”, they have nice pullback and pushforward proper-
ties with respect to mappings. Let X and Y be manifolds and f: X — Y a C* mapping.

Definition 4.3.2. Given a vector field v on X and a vector field w on Y, we'll say that v and
w are f-related if for all p € X and q = f(p) we have

(4.3.3) (df)yv(p) = w(q).

In particular, if f is a difftomorphism, and were given a vector field v on X we can
define a vector field w on Y by requiring that for every point g € Y, the identity (.3.3)
holds at the point p = f~'(g). In this case we'll call w the pushforward of by f and denote
itby f,v. Similarly, given a vector field w on Y we can define a vector field v on X by applying
the same construction to the inverse diffeomorphism f™!: Y — X. We will call the vector
field (f7!), w the pullback of w by f (and also denote it by f*w).

For differential forms the situation is even nicer. Just as in we can define the pull-
back operation on forms for any C® map f: X — Y. Specifically: Let w be a k-form on Y.
For every p € X, and g = f(p) the linear map

df,: T,X > T,Y
induces by ([..8-2))a pullback map
@f,)*: ANT}Y) —» ANT;X)
and, as in §2.4, we'll define the pullback f*w of w to X by defining it at p by the identity
(F@)(p) = (@f,) w(g).
The following results about these operations are proved in exactly the same way as in
52.6.

Proposition 4.3.4. Let X, Y, and Z be manifoldsand f: X - Yand g: Y — Z C*™ maps.
Then if w is a k-form on Z

fr@gw=(@g-flw.
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Ifvis a vector field on X and f and g are diffeomorphisms, then
(4.3.5) (e flv=g.(fiv).

Our first application of these identities will be to define what one means by a “C* vector
field” and a “C* k-form”.

Definition 4.3.6. Let X be an n-manifold and U an open subset of X. The setU is a parametriz-
able open set if there exists an open set U in R” and a diffeomorphism ¢, : U, — U.

In other words, U is parametrizable if there exists a parametrization having U as its im-
age. (Note that X being a manifold means that every point is contained in a parametrizable
open set.)

Now let U € X be a parametrizable open set and ¢ : U, — U a parametrization of U.

Definition 4.3.7. A k-form w on U is C* or smooth if ¢gw is a C™.

This definition appears to depend on the choice of the parametrization ¢, but we claim

it does not. To see this let ¢, : U; — U be another parametrization of U and let
v:Uy = U
be the composite map ¢y’ o ¢. Then ¢, = ¢; o ¥ and hence by
$ow =y $iw,

s0 by (2.5.11) ¢§w is C™ if ¢ w is C™. The same argument applied to ' shows that ¢} w
is C® if pfw is C™.

The notion of “C®” for vector fields is defined similarly:

Definition 4.3.8. A vector field v on U is smooth, or simply C*, if ¢gv is C*°.
By dov = Y PIv, so, as above, this definition is independent of the

choice of parametrization.
We now globalize these definitions.

Definition 4.3.9. A k-form w on X is C* if, for every point p € X, w is C* on a neigh-
borhood of p. Similarly, a vector field v on X is C* if, for every point p € X,visC*® ona
neighborhood ofp.

We will also use the identities (}4.3.5)) and (f.3.1§) to prove the following two results.

Proposition 4.3.10. Let X andY be manifolds and f: X — Y a C*™ map. Then ifw is a C*°
k-form onY, the pullback f*w is a C* k-form on X.

Proof. For p e Xandq = f(p)let¢,: Uy — Uand y,: V, = V be parametrizations with
p € Uand g € V. Shrinking U if necessary we can assume that f(U) c V.Let g: Uy — V
be the map g = yy' o f o ¢py. Then Yy o g = f o ¢y, 50 g Wi w = ¢§ f*w. Since w is C*, we
see that 5w is C*, so by we have g*ygw is C*, and hence ¢g f*w is C*°.
Thus by definition f*w is C*° onU. O

By exactly the same argument one proves.

Proposition 4.3.11. Ifw is a C® vector field on'Y and f is a diffeomorphism, then f*wisa
C®™ vector field on X.

Notation 4.3.12.
(1) Well denote the space of C* k-forms on X by Q*(X) .



Draft: March 28, 2018

§4.3 Vector fields & differential forms on manifolds 111

(2) For w € QF(X) we'll define the support of w by

supp(w) = {p € X|w(p) # 0}

and we'll denote by QF(X) ¢ Q%(X) the space of compactly supported k-forms.
(3) For a vector field v on X we'll define the support of v to be the set

supp(v) ={p e X|v(p) #0}.

We will now review some of the results about vector fields and the differential forms
that we proved in and show that they have analogues for manifolds.

Integral curves

Let I ¢ R be an open interval and y: I — X a C*™ curve. For ¢, € I we will call
ii = (p, 1) € T, R the unit vector in T; Rand if p = y(t,) we will call the vector

dy, (i) € T,X
the tangent vector to y at p. If v is a vector field on X we will say that y is an integral curve

ofvifforallt, e I
v(y(ty)) = dy,, (@) .

Proposition 4.3.13. Let X and Y be manifolds and f: X — Y a C*™ map. If v and w are
vector fields on X and Y which are f-related, then integral curves of v get mapped by f onto
integral curves of w.

Proof. Ifthe curve y: I — X is an integral curve of v we have to show that fey: I - Yis
an integral curve of w. If y(t) = p and q = f(p) then by the chain rule

w(g) = df,(w(p)) = df,(dy, (@)
=d(f o)y (@). O

From this result it follows that the local existence, uniqueness and “smooth dependence
on initial data” results about vector fields that we described in are true for vector fields
on manifolds. More explicitly, let U be a parametrizable open subset of X and ¢: Uy — U
a parametrization. Since Uj, is an open subset of R" these results are true for the vector field
w = ¢y v and hence since w and v are ¢,-related they are true for v. In particular:

Proposition 4.3.14 (local existence). For every p € U there exists an integral curve y(t)
defined for —e < t < &, of v with y(0) = p.

Proposition 4.3.15 (local uniqueness). Fori = 1,2, let y;: I; — U be integral curves of v
and let I = I, N I,. Suppose y,(t) = y,(t) for somet € I. Then there exists a unique integral
curve, y: L Ul, > Uwithy=1y,0onl,andy =y, onI,.
Proposition 4.3.16 (smooth dependence on initial data). For every p € U, there exists a
neighborhood O of p in U, an interval (—¢,€) and a C*° map h: O x (—¢,&) — U such that
for every p € O the curve
yp(t) =h(p,t), —e<t<e,

is an integral curve of v with y,(0) = p.

Asin we will say that v is complete if, for every p € X there exists an integral
curve y(t) defined for —co < t < 0o, with y(0) = p. In we showed that one simple

criterium for a vector field to be complete is that it be compactly supported. We will prove
that the same is true for manifolds.

Theorem 4.3.17. If X is compact or, more generally, if v is compactly supported, v is complete.
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Proof. It’s not hard to prove this by the same argument that we used to prove this theorem
for vector fields on R”, but we'll give a simpler proof that derives this directly from the R”
result. Suppose X is a submanifold of RN, Then for p € X,

T,X ¢ T,RY = {(p,v) v e RN},
s0 v(p) can be regarded as a pair (p, v(p)), where v(p) is in RV, Let
(4.3.18) fp: X — RY

be the map f,(p) = v(p). It is easy to check that v is C* if and only if f, is C*. (See
Exercise 4.3.x].) Hence (see [Appendix B)) there exists a neighborhood, O of X and a map
g: — RY extending f,. Thus the vector field w on O defined by w(q) = (g, g(q)) extends
the vector field v to O. In other words if 1: X < O is the inclusion map v and w are s-related.
Thus by Proposition 4.3.13 the integral curves of v are just integral curves of w that are
contained in X.

Suppose now that v is compactly supported. Then there exists a function p € C;°(O)
which is 1 on the support of v, so, replacing w by pw, we can assume that w is compactly
supported. Thus w is complete. Let y(t), defined for —co < t < 00, be an integral curve of
w. We will prove that if y(0) € X, then this curve is an integral curve of v. We first observe:

Lemma 4.3.19. The set of points t € R for which y(t) € X is both open and closed.
Proof of Lemma 4.3.19. If p ¢ supp(v) then w(p) = 0 so if y(t) = p, p(t) is the constant

curve y = p, and there’s nothing to prove. Thus we are reduced to showing that the set

(4.3.20) {t e R|y(t) € supp(v) }

is both open and closed. Since supp(v) is compact this set is clearly closed. To show that it’s
open suppose y(t,) € supp(v). By local existence there exist an interval (—¢ + £y, € + ;) and
an integral curve p, (¢) of v defined on this interval and taking the value y, (t,) = y(¢,) at p.
However since v and w are i-related y; is also an integral curve of w and so it has to coincide
with y on the interval (—¢ + ¢, € + ;). In particular, for t on this interval y(¢) € supp(v) so

the set ([f.3.2d) is open. O

To conclude the proof of we note that since R is connected it follows
that if p(¢,) € X for some t, € Rthen y(t) € X for allt € R, and hence y is an integral curve
of v. Thus in particular every integral curve of v exists for all time, so v is complete. O

Since w is complete it generates a one-parameter group of diffeomorphisms g,: O = O,
defined for —co < t < 00, having the property that the curve

9:(p) = yp(f), —c0<t<o00
is the unique integral curve of w with initial point y,(0) = p. Butif p € X this curve is an
integral curve of v, so the restriction
fie = gilx

is a one-parameter group of diffeomorphisms of X with theproperty that for p € X the
curve

fi(p) =y,(t), —oc0<t<o0

is the unique integral curve of v with initial point y,(0) = p.
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The exterior differentiation operation

Let wbea C*™ k-form on X and U ¢ X a parametrizable open set. Given a parametriza-
tion ¢, : Uy — U we define the exterior derivative dw of w on X by the formula

(4.3.21) dw = (¢y") d¢gw .

(Notice that since Uy, is an open subset of R"” and ¢jw a k-form on Uy, the “d” on the right is
well-defined.) We claim that this definition does not depend on the choice of parametriza-
tion. To see this let ¢, : U; — U be another parametrization of U and let : U, — U, be
the diffeomorphism ¢7' o ¢,. Then ¢, = ¢, o v and hence

déow = dy*$piw =y ddpjw
= ¢5(¢1") " djw
$O
(") dpyw = (¢7") djw
as claimed. We can, therefore, define the exterior derivative dw globally by defining it to be
equal to ([£.3.21)) on every parametrizable open set.

Its easy to see from the definition ([f.3.21)) that this exterior differentiation operation
inherits from the exterior differentiation operation on open subsets of R" the properties
(R:4.3) and (p.4.4) and that for zero forms, i.e., C* functions f : X — R, df is the “intrinsic”
df defined in Pection 2.1, i.e., for p € X, df, is the derivative of f

df,: T,X >R
viewed as an element of A (T X). Let’s check that it also has the property (2.6:12).

Theorem 4.3.22. Let X and Y be manifolds and f: X — Y a C® map. Then for v € Q*(Y)
we have

fdw) =d(f*w).

Proof. For every p € X we'll check that this equality holds in a neighborhood of p. Let
q = f(p) and let U and V be parametrizable neighborhoods of p and g. Shrinking U if
necessary we can assume f(U) ¢ V. Given parametrizations

¢: U, - U
and
y: Vg -V
we get by composition a map
g:Uy—> Vo, g=ylofod
with the property w o g = f o ¢. Thus
¢*d(f*w) =d¢* f*w (by definition of d)
=d(f o $)*w
=d(ye.g)w
=dg*(y*w)
- grd¢*o  (by B61))
=gy dw (by definition of d)
=¢" frdw.
Henced f*w = f*dw. O
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The interior product and Lie derivative operation
Given a k-form w € Q%(X) and a C* vector field v we will define the interior product
(4.3.23) o € 2F1(X),
as in §2.5, by setting
(Lyw),, = Ly(p)@p
and the Lie derivative L,w € QF(X) by setting
(4.3.24) Lw:=1,dw+d,w.

It’s easily checked that these operations satisfy [Properties 2.5.3 and Properties 2.5.1d (since,
just as in §2.9), these identities are deduced from the definitions (.3.23) and (§.3.3) by purely
formal manipulations). Moreover, if v is complete and

fi:rX—>X, —co<t<oo

is the one-parameter group of diffeomorphisms of X generated by v the Lie derivative op-
eration can be defined by the alternative recipe

d
3.2 Lw=—f‘w
(4.3.25) o= fi .
as in (2.6.27)). (Just as in one proves this by showing that the operation ([f.3.29) has
satisfies and hence that it agrees with the operation (|4.3.24) provided the

two operations agree on zero-forms.)

Exercises for

Exercise 4.3.i. Let X C R? be the paraboloid defined by x; = x? + x5 and let w be the vector

field
0
w:= xla—x1 +x28_xz +2x38_x3 .
(1) Show that w is tangent to X and hence defines by restriction a vector field v on X.
(2) What are the integral curves of v?

Exercise 4.3.ii. Let S? be the unit 2-sphere, x7 + x3 + x3 = 1, in R’ and let w be the vector

field
_ 0 d
w = xla_xz - xza—x1 .
(1) Show that w is tangent to S%, and hence by restriction defines a vector field v on 2.
(2) What are the integral curves of v?

Exercise 4.3.iii. Asin let S? be the unit 2-sphere in R* and let w be the vector
field

0 ( 0 0 5} >
W= — —x; | X =—— + X, — + X3 —
0x; 0x; 0x, 0x;3
(1) Show that w is tangent to S* and hence by restriction defines a vector field v on S%.
(2) What do its integral curves look like?

Exercise 4.3.iv. Let S be the unit circle, x{ + x3 = 1, in R? and let X = S x §! in R* with
defining equations

x+x3-1=0

hi

fh=x3+xi-1=0.
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(1) Show that the vector field
0 0 ( 0 0 >
wW=x—-X—+A|xy— —x35— | ,
0x, 0x,
A € R, is tangent to X and hence defines by restriction a vector field v on X.

(2) What are the integral curves of v?
(3) ShowthatL, f; =0.

Exercise 4.3.v. For the vector field v in [Exercise 4.3.1Y, describe the one-parameter group
of diffeomorphisms it generates.

Exercise 4.3.vi. Let X and vbe asin[Exercise 4.3.Jandlet f : R? — X bethe map flx,x,) =
(%1, Xy, x3 + x3). Show that if u is the vector field,

0
Wy P
1 2

then f,u =v.
Exercise 4.3.vii. Let X be a submanifold of X in RY and let v and w be the vector fields on

X and U. Denoting by ¢ the inclusion map of X into U, show that v and w are i-related if
and only if w is tangent to X and its restriction to X is v.

Exercise 4.3.viii. Let X be a submanifold of RN and U an open subset of RY containing X,
and let v and w be the vector fields on X and U. Denoting by « the inclusion map of X into
U, show that v and w are i-related if and only if w is tangent to X and its restriction to X is
v.

Exercise 4.3.ix. An elementary result in number theory asserts:

Theorem 4.3.26. A number A € R is irrational if and only if the set
{m+An|mmneZ}

is a dense subset of R.

Let v be the vector field in Exercise 4.3.1y. Using prove that if A is irra-
tional then for every integral curve y(t), defined for —co < t < 00, of v the set of points on
this curve is a dense subset of X.

Exercise 4.3.x. Let X be an n-dimensional submanifold of RY. Prove that a vector field v
on X is C* if and only if the map (}.3.1§) is C*°.

Hint: Let U be a parametrizable open subset of X and ¢: U, — U a parametrization of
U. Composing ¢ with the inclusion map 1: X — RN one getsamap to¢: U — RN, Show
that if

N Sl
¢ v_zviaxj

then )
DY o,

where fi, ..., fy are the coordinates of the map f, and ¢, ..., ¢, the coordinates of 1 o ¢.

Exercise 4.3.xi. Let v be a vector field on X andlet ¢: X — Rbe a C* function. Show that
if the function

Ly¢ = 1,d¢

is zero ¢ is constant along integral curves of v.
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Exercise 4.3.xii. Suppose that¢: X — Ris proper. Show that if L,¢ = 0, v is complete.
Hint: For p € X let a = ¢(p). By assumption, ¢_1(a) is compact. Let p € C3°(X) be a
“bump” function which is one on ¢! (a) and let w be the vector field pv. By [Theorem 4.3.17,
w is complete and since
Ly = lpvd¢ = pt,d¢p =0
¢ is constant along integral curves of w. Let y(t), —co < t < 00, be the integral curve of w
with initial point y(0) = p. Show that y is an integral curve of v.

4.4. Orientations

The last part of will be devoted to the “integral calculus” of forms on mani-
folds. In particular we will prove manifold versions of two basic theorems of integral calculus
on R”, Stokes’ theorem and the divergence theorem, and also develop a manifold version
of degree theory. However, to extend the integral calculus to manifolds without getting in-
volved in horrendously technical “orientation” issues we will confine ourselves to a special
class of manifolds: orientable manifolds. The goal of this section will be to explain what this
term means.

Definition 4.4.1. Let X be an n-manifold. An orientation of X is a rule for assigning to each
p € X an orientation of T, X.

Thus by one can think of an orientation as a “labeling” rule which, for
every p € X, labels one of the two components of the set A”(T; X)~1{0} by A”(Tp* X),,which

we'll henceforth call the “plus” part of A"(Tp* X), and the other component by A" (TP* X)),
which we’ll henceforth call the “minus” part of A"(T; X).

Definition 4.4.2. An orientation of a manifold X is smooth, or simply C*, if for every
p € X, there exists a neighborhood U of p and a non-vanishing n-form w € *(U) with the
property

w, € A"(Tq* X),
for every g € U.

Remark 4.4.3. If were given an orientation of X we can define another orientation by as-
signing to each p € X the opposite orientation to the orientation we already assigned, i.e.,
by switching the labels on A" (Tp* ). and A”(T; )_. We will call this the reversed orientation
of X. We will leave for you to check as an exercise that if X is connected and equipped with
a smooth orientation, the only smooth orientations of X are the given orientation and its
reversed orientation.

Hint: Given any smooth orientation of X the set of points where it agrees with the given
orientation is open, and the set of points where it does not is also open. Therefore one of
these two sets has to be empty.

Note thatif w € *(X) is a non-vanishing n-form one gets from w a smooth orientation
of X by requiring that the “labeling rule” above satisfy
w, € A"(Tp* X),
for every p € X. If w has this property we will call w a volume form. It’s clear from this defi-

nition that if w; and w, are volume forms on X then w, = f, ;w, where f, | is an everywhere
positive C* function.

Example 4.4.4. Let U be an open subset R”. We will usually assign to U its standard orien-
tation, by which we will mean the orientation defined by the n-form dx; A --- A dx,,.
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Example 4.4.5. Let f: RY — R be a C*® map. If zero is a regular value of f, the set

X = f71(0) is a submanifold of RN of dimension n := N —k (by [[heorem 4.2.13). Moreover,
for p € X, T, X is the kernel of the surjective map

df,: T,RN — Ty R*
so we get from d f, a bijective linear map
(4.4.6) TPRN/TPX — TORk .

As explained in Example 4.4.4, TPRN and T,R* have “standard” orientations, hence if we
require that the map (j.4.6) be orientation preserving, this gives TPRN /T, X an orientation

and, by [Theorem 1.9.9, gives T, X an orientation. It’s intuitively clear that since d f,, varies
smoothly with respect to p this orientation does as well; however, this fact requires a proof,
and we'll supply a sketch of such a proof in the exercises.

Example 4.4.7. A special case of is the n-sphere
S ={(x1s e Xpyy) € RT x4 oo+ 2, =11,
which acquires an orientation from its defining map f : R"*! — R given by
JIETSF PN I

Example 4.4.8. Let X be an oriented submanifold of RY. For every p € X, T, X sits inside
TPRN as a vector subspace, hence, via the identification TPRN = RY, one can think of T,X
as a vector subspace of RY. In particular from the standard Euclidean inner product on RY
one gets, by restricting this inner product to vectors in T, X, an inner product

B,: T,XxT,X —>R

on T, X. Let 0, be the volume element in A"(T; X) associated with B,, (see Exercise 1.9.X)
and let 0 = o be the non-vanishing #n-form on X defined by the assignment

pro,.
In the exercises at the end of this section we’ll sketch a proof of the following.

Theorem 4.4.9. The form oy is C* and hence, in particular, is a volume form. (We will call
this form the Riemannian volume form.)

Example 4.4.10 (Mobius strip). The Mobius strip is a surface in R® which is not orientable.
It is obtained from the rectangle

R:=1[0,1]x(-1,1)={(x,y) e R* |0<x<land - 1< y<1}

by gluing the ends together in the wrong way, i.e., by gluing (1, y) to (0, —y). It is easy to see
that the Mobius strip cannot be oriented by taking the standard orientation at p = (1,0) and
moving it along the line (£,0), 0 < t < 1 to the point (0, 0) (which is also the point p after
we have glued the ends of the rectangle together).

We'll next investigate the “compatibility” question for diffeomorphisms between ori-
ented manifolds. Let X and Y be n-manifolds and f: X > Y a diffeomorphism. Suppose
both of these manifolds are equipped with orientations. We will say that f is orientation
preserving if for all p € X and q = f(p), the linear map

dfp: TPX — TqY
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is orientation preserving. It’s clear that if w is a volume form on Y then f is orientation
preserving if and only if f*w is a volume form on X, and from (1.9.5) and the chain rule
one easily deduces the following theorem.

Theorem 4.4.11. If Z is an oriented n-manifold and g: Y — Z a diffeomorphism, then if
both f and g are orientation preserving, sois g o f.

If f: X > Y is a difftomorphism then the set of points p € X at which the linear map
df,: T,X > TY, q=f(p),

is orientation preserving is open, and the set of points at which is orientation reversing is
open as well. Hence if X is connected, d f,, has to be orientation preserving at all points or
orientation reversing at all points. In the latter case we'll say that f is orientation reversing.
If U is a parametrizable open subset of X and ¢: U, — U a parametrization of U we'll
say that this parametrization is an oriented parametrization if ¢ is orientation preserving
with respect to the standard orientation of U, and the given orientation on U. Notice that
if this parametrization isn’t oriented we can convert it into one that is by replacing every
connected component V;, of U, on which ¢ isn’t orientation preserving by the open set

(4.4.12) VE = (s x,) € R (s eeer X, 15 —,) € Vy }
and replacing ¢ by the map

(4.4.13) Yy, oo X,) = (XY, oo Xy 1 —X,) -

If ¢;: U; — U,i = 0,1, are oriented parametrizations of U and y: U, — Uj is the
diffeomorphism ¢! o ¢, then by the theorem above v is orientation preserving or in other
words

(4.4.14) det (?) >0

Xj

at every point on U,.
WEe'll conclude this section by discussing some orientation issues which will come up
when we discuss Stokes” theorem and the divergence theorem in §4.6. First a definition.

Definition 4.4.15. An open subset D of X is a smooth domain if

(1) The boundary 0D is an (n — 1)-dimensional submanifold of X, and
(2) The boundary of D coincides with the boundary of the closure of D.
Examples 4.4.16.

(1) Then-ball, x7 + --- + x2 < 1, whose boundary is the sphere, x} + -+ + x2 = 1.

n
(2) The n-dimensional annulus,
l<x?+-+x2<2
whose boundary consists of the union of the two spheres

{xf+-~-+xfl:1

x4+ x2=2.

(3) Let S"! be the unit sphere, x? + --- + x3 = 1 and let D = R" ~ §""!. Then the boundary
of D is $"~! but D is not a smooth domain since the boundary of its closure is empty.
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(4) The simplest example of a smooth domain is the half-space
H" ={(x},...,x,) € R"|x; <0}
whose boundary
oH" = {(x},...,x,) € R"|x; =0}
we can identify with R"™! via the map R""! — 0H" given by
(x5 .e0r %) P (0,5, ..., %,,) -
We will show that every bounded domain looks locally like this example.

Theorem 4.4.17. Let D be a smooth domain and p a boundary point of D. Then there exists
a neighborhood U of p in X, an open set U, in R", and a diffeomorphism y: U, = U such
that w maps Uy N H" onto U N D.

Proof. Let Z := 0D. First we prove the following lemma.
Lemma 4.4.18. Forevery p € Z there exists an open set U in X containing p and a parametriza-
tion
1//: UO -U
of U with the property
(4.4.19) y(U,noH") =UNZ.
Proof. Since X is locally diffeomorphic at p to an open subset of R” so it suffices to prove

this assertion for X = R". However, if Z is an (n — 1)-dimensional submanifold of R” then

by there exists, for every p € Z, a neighborhood U of p in R” and a function
¢ € C*°(U) with the properties

(4.4.20) xeUNZ < ¢x)=0
and
(4.4.21) dg, # 0.

Without loss of generality we can assume by that
0
2pr+o.
X1
Henceif p: U — R” is the map
(4.4.22) plxis .. x,) = (P(x), x5, ..., X,,)

(dp),, is bijective, and hence p is locally a diffeomorphism at p. Shrinking U we can assume
that p is a diffeomorphism of U onto an open set U,. By (.4.2d) and (.4.22)) p mapsU N Z
onto U, N 9H" hence if we take y to be p?, it will have the property (§-4.19). O

We will now prove [Theorem 4.4.9. Without loss of generality we can assume that the
open set U, in is an open ball with center at g € 0H" and that the diffeomor-
phism ¥ maps g to p. Thus for ! (U N D) there are three possibilities:

(i) v (UnD) = (R"-0H") NU,.
(i) y{UNnD)=R"-H)NU,.
(iii)) v H(UnD)=H"NU,.
However, (f) is excluded by the second hypothesis in and if (ff) occurs we

can rectify the situation by composing ¢ with the map (x;, ..., x,) — (-x;,%,,...,x,). O
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Definition 4.4.23. We will call an open set U with the properties above a D-adapted parame-
trizable open set.

We will now show that if X is oriented and D ¢ X is a smooth domain then the bound-
ary Z = 0D of D acquires from X a natural orientation. To see this we first observe:

Lemma 4.4.24. The diffeomorphism y: Uy, > U in can be chosen to be

orientation preserving.
Proof. If it is not, then by replacing y with the diffeomorphism

VL o ) = (X s Xy —X,)
we get a D-adapted parametrization of U which is orientation preserving. (See (f.4.12)-
(E213)) 0

Let V, = U, NR™! be the boundary of U, N H". The restriction of v to Vj, is a diffeomor-
phism of V;, onto U N Z, and we will orient U N Z by requiring that this map be an oriented
parametrization. To show that this is an “intrinsic” definition, i.e., does not depend on the
choice of y. We'll prove:

Theorem 4.4.25. Ify;: U; — U, i = 0, 1, are oriented parametrizations of U with the property
y;: UnH"->UND
the restrictions of y; to U; N R"! induce compatible orientations on U N X.

Proof. To prove this we have to prove that the map ¢7' o ¢y, restricted to U N 9H” is an
orientation preserving diffeomorphism of U, N R""! onto U; N R"™!. Thus we have to prove
the following:

Proposition 4.4.26. Let U, and U, be open subsets of R" and f: U, — U, an orientation
preserving diffeomorphism which maps Uy, N H" onto U; N H". Then the restriction g of f to
the boundary Uy N R"™ of Uy N H" is an orientation preserving diffeomorphism

g: Uy nR" 5 U nR*L.

Let f(x) = (f1(x), ..., f,(x)). By assumption f,(x,, ..., x,,) is less than zero if x; is less
than zero and equal to zero if x; is equal to zero, hence

0
(4.4.27) i(0, XpeenXy) 20
0x,
and 5
i(0, Xp5 e X,) =0
axi
for i > 1 Moreover, since g is the restriction of f to theset x; =0
of da:
a—f(o,xz, v Xy,) = a—i’(xz, e X7)

j j
for i, j > 2. Thus on the set defined by x; = 0 we have
(4.4.28) det(%) = %det<%) .
ox; 0x4 ox;
Since f is orientation preserving the left hand side of is positive at all
points (0, x5, ..., x,) € Uy N R"! hence by (f.4.27) the same is true for S—Q and det (%).
7

Thus g is orientation preserving. O
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Remark 4.4.29. Foran alternative proof of this result see Exercise 3.2.vii] and [Exercise 3.6.1V.

We will now orient the boundary of D by requiring that for every D-adapted parametriz-
able open set U the orientation of Z coincides with the orientation of UNZ that we described
above. We will conclude this discussion of orientations by proving a global version of

sition 4.4.26.

Proposition 4.4.30. Fori = 1,2, let X; be an oriented manifold, D; ¢ X; a smooth domain
and Z; == 0D; its boundary. Then if f is an orientation preserving diffeomorphism of (X, D;)
onto (X,, D,) the restriction g of f to Z, is an orientation preserving diffeomorphism of Z,
onto Z,.

Proof. LetU bean open subsetof X; and¢: U, — U an oriented D, -compatible parametriza-
tion of U. Thenif V = f(U) themap f¢: U — V isan oriented D,-compatible parametriza-
tion of V and hence g: U N Z, — V N Z, is orientation preserving. O

Exercises for

Exercise 4.4.i. Let V be an oriented n-dimensional vector space, B an inner product on V'
ande;,...,e, € V an oriented orthonormal basis. Given vectors vy, ..., v,, € V, show that if

(4.4.31) bi,j = B(Ui) Uj)

and

™=

Ui = a]’)ie]‘ 5

j=1

the matrices A = (a; ;) and B = (b, ;) satisty the identity:
B=ATA
and conclude that det(B) = det(A)?. (In particular conclude that det(B) > 0.)
Exercise 4.4.ii. Let V and W be oriented n-dimensional vector spaces. Suppose that each
of these spaces is equipped with an inner product, and lete,,...,e, € Vand f;,.... f, € W

be oriented orthonormal bases. Show that if A: W — V is an orientation preserving linear
mapping and A f; = v; then

1
A*voly = (det(b; ;) voly,
where vol, = ef A -+ Aey, voly = fi" A--- A f,7 and (b; ;) is the matrix (f.4.31).
Exercise 4.4.iii. Let X be an oriented n-dimensional submanifold of R”, U an open subset
of X, U, an open subset of R”, and ¢: U, — U an oriented parametrization. Let ¢, ..., py
be the coordinates of the map
Uy —» U< RN,

the second map being the inclusion map. Show that if ¢ is the Riemannian volume form on
X then

¢*o = (det((/),-’j))% dx, A+ Adx,

where
S 96y 3¢
K 0Pk .
A = forl<i,j<n.
(a2 i k;axi ox; U

Conclude that o is a smooth n-form and hence that it is a volume form.
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Hint: For p € U, and q = ¢(p) apply Exercise 4.4.[i withV = T, X, W = T,R", A =
(d¢bandvi=(d¢%<§%)#
Exercise 4.4.iv. Given a C*™ function f: R — R, its graph
X =TIy ={(x, f(x)) e RxR|x eR}
is a submanifold of R? and
¢:R—- X, x (x, f(x))

is a diffeomorphism. Orient X by requiring that ¢ be orientation preserving and show that
if o is the Riemannian volume form on X then

1
2\ 2
¢*o = <1+<ﬂ> ) dx.
dx
Hint:
Exercise 4.4.v. Givena C® function f: R" — Rthe graph I' of f is a submanifold of R™!
and
(4.4.33) ¢:R" > X, x = (x, f(x))

is a diffeomorphism. Orient X by requiring that ¢ is orientation preserving and show that
if 0 is the Riemannian volume form on X then

. "o\ \?
¢a:<1+;<a—£>>dx1/\---/\dxn.
Hints:

» Letv = (¢, ...,¢,) € R" Show that if C: R" — R s the linear mapping defined
by the matrix (c,-c]-) then Cv = (Z:‘:1 ciz)v andCw=0ifw-v=0.

» Conclude that the eigenvaluesof Care A; = Y ¢ and A, = --- = A

» Show that the determinant of I+ Cis 1 + Y c7.

» Compute the determinant of the matrix ({f.4.32]) where ¢ is the mapping (1.4.33).

Exercise 4.4.vi. Let V be an oriented N-dimensional vector space and ¢; € V*,i =1,...,k,
k linearly independent vectors in V*. Define

L:V >Rk

=0.

n

to be the map v — (€,(v), ..., £, (v)).

(1) Show that L is surjective and that the kernel W of L is of dimensionn = N — k.
(2) Show that one gets from this mapping a bijective linear mapping

(4.4.34) V/W — RF

and hence from the standard orientation on R an induced orientation on V/W and on
w.
Hint: [Exercise 1.2.vill and [Theorem 1.9.9.
(3) Let w be an element of AN(V*). Show that there exists a 4 € A"(V*) with the property

(4.4.35) N NG Ap=w.

Hint: Choose an oriented basis, e, ..., ey of V such thatw = ef A---Aey and ¢; = ¢]
fori=1,...,k,andletpy =¢/ 1 A--- Ney.
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(4) Show that if v is an element of A”"(V™) with the property
LN NG AV=0

then there exist elements, v;, of A""!(V*) such that

V=Z€,~/\vi.

Hint: Same hint as in part ().
(5) Show thatif y; and y, are elements of A”(V*) with the property (4.4.35) and:: W -V
is the inclusion map then *py; = 1" p,.
Hint: Let v = y; — u,. Conclude from part (ff) that :*v = 0.
(6) Conclude that if y is an element of A"(V™) satistying (4.4.35) the element, o = 1*p, of
A™M(W?™) is intrinsically defined independent of the choice of .
(7) Show that o lies in A*(W™),.

Exercise 4.4.vii. Let U be an open subset of RY and f: U — R¥ a C* map. If zero is a
regular value of f, the set, X = £71(0) is a manifold of dimension n = N — k. Show that this
manifold has a natural smooth orientation.

Some suggestions:

» Let f = (f},..., fr) and let
dfy Ao Adf =) frdx;

summed over multi-indices which are strictly increasing. Show that for every p €
X fi(p) # 0 for some multi-index, I = (iy,...,4), 1 <i; <--- <f < N.
» Let ] = (jis .5 ju)» 1 < j; <+ < j, < N be the complementary multi-index to I,
ie., j, # i, for all ¥ and s. Show that
dfy N Ndfi Ndxp = £ fidx; A Ndxy
and conclude that the n-form
Y= tidx]
1
is a C* n-form on a neighborhood of p in U and has the property:

dfin--NdfiNp=dx; N Ndxy .
» Lets: X — U be the inclusion map. Show that the assignment
pr(Fw),
defines an intrinsic nowhere vanishing n-form o € Q"(X) on X.

» Show that the orientation of X defined by ¢ coincides with the orientation that
we described earlier in this section.

Exercise 4.4.viii. Let S” be the n-sphere and 1: " — R™"! the inclusion map. Show that

ifw € Q"(R™1) is the n-form w = Z?:ll(—l)i_lxidxl A A El}i A -+ Adx,.,, the n-form

*w € Q"(S") is the Riemannian volume form.
Exercise 4.4.ix. Let S"*! be the (1 + 1)-sphere and let
ST = {(x1 s Xyy) €S X, <0}

be the lower hemisphere in $"**.

(1) Prove that S"*! is a smooth domain.
(2) Show that the boundary of S**! is §".
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(3) Show that the boundary orientation of S” agrees with the orientation of §" in
Eise .4.vil

4.5. Integration of forms on manifolds

In this section we will show how to integrate differential forms over manifolds. In what
follows X will be an oriented n-manifold and W an open subset of X, and our goal will be
to make sense of the integral

(4.5.1) Iww

where w is a compactly supported n-form. We'll begin by showing how to define this integral
when the support of w is contained in a parametrizable open set U. Let U, be an open subset
of R" and ¢, : U, — U a parametrization. As we noted in we can assume without loss
of generality that this parametrization is oriented. Making this assumption, we’ll define

(4.5.2) wa = on Prw

where W, = ¢, (U N W). Notice that if ¢*w = fdx; A --- A dx,, then, by assumption, f is
in C§°(U,). Hence since

J ¢3w=j Fdx,...dx,
Wo Wo

and since f is a bounded continuous function and is compactly supported the Riemann
integral on the right is well-defined. (See [Appendix B.) Moreover, if ¢, : U; — U is another
oriented parametrization of U and y: U, — U, is the map y = ¢ o ¢, then ¢ = ¢; o v,

so by
pow =y diw.
Moreover, by (|4.3.18) v is orientation preserving. Therefore since
Wy =y(Wp) = ¢ (UNW)
tells us that

(4.5.3) le Piw = on Prw.

Thus the definition (j4.5.2)) is a legitimate definition. It does not depend on the parametriza-
tion that we use to define the integral on the right. From the usual additivity properties
of the Riemann integral one gets analogous properties for the integral (ff.5.2). Namely for
w;,w, € QNU),

(4.5.4) Jw(wl +w,) = JW w; + JW W,

and forw € Qf(U) andc € R
J cw:cj w.
w w

We will next show how to define the integral ([4.5.1)) for any compactly supported n-
form. This we will do in more or less the same way that we defined improper Riemann inte-
grals in [Appendix B: by using partitions of unity. We'll begin by deriving from the partition
of unity theorem in a manifold version of this theorem.
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Theorem 4.5.5. Let

(456) U= {le}leI

be a covering of X be open subsets. Then there exists a family of functions p; € C°(X), for
i > 1, with the properties

(1) p;=0.
(2) For every compact set C C X there exists a positive integer N such that ifi > N we have
supp(p;) N C = &.

(3) Xy pi=1.
(4) Foreveryi > 1 there exists an index o € I such that supp(p;) C U,,.

Remark 4.5.7. Conditions ([)-(f]) say that the p;’s are a partition of unity and () says that
this partition of unity is subordinate to the covering (f.5.).

Proof. For each p € X and for some U, containing a p choose an open set O,, in RY with
p € O, and with

(4.5.8) O,NXcU,.

Let O = {,cx O, and let p; € C3°(O), for i = 1, be a partition of unity subordinate to
the covering of O by the O,’s. By (4.5.8) the restriction p; of p; to X has compact support
and it is clear that the p;’s inherit from the p;’s the properties ({)-(4). O

Now let the covering (f.5.4) be any covering of X by parametrizable open sets and let
p; € C°(X), fori > 1 be a partition of unity subordinate to this covering. Given w € Q7 (X)
we will define the integral of w over W by the sum

[ee]

(4.5.9) Y jw piw .

i=1
Note that since each p; is supported in some U, the individual summands in this sum are
well-defined and since the support of w is compact all but finitely many of these summands
are zero by part (B)) of [Theorem 4.5.3. Hence the sum itself is well-defined. Let’s show that
this sum does not depend on the choice of U and the p;’s. Let U’ be another covering of X
by parametrizable open sets and (p;) ;»; a partition of unity subordinate to U !. Then

o (o0

(4.5.10) > pr}w = ZJ ZP}P#" = i <§prfpiw>

=1 j=1 W i= j=1 \i=1

by Equation (4.5.4). Interchanging the orders of summation and resuming with respect to

the j’s this sum becomes
[e¢] [e¢]
Y[ Y pipw
i=1 W j=1

or
(o)
ZJ piw .
i=1 W
Hence
(o) o0
!
Y[ po=Y J i,
i=1 -[W g i=1 ‘W l

so the two sums are the same.
From fquations (4.5.4) and [4.5.9) one easily deduces:
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Proposition 4.5.11. For w;,w, € QF(X),

J w1+w2=J (,()1+J wy
w w w

and forw € Q}(X) andc € R
J cwzcj w.
w w

The definition of the integral ([4.5.1)) depends on the choice of an orientation of X, but
it’s easy to see how it depends on this choice. We pointed out in that if X is
connected, there is just one way to orient it smoothly other than by its given orientation,
namely by reversing the orientation of T, X at each point p and it’s clear from the definitions
(.5.9) and (jg.5.9) that the effect of doing this is to change the sign of the integral, i.e., to
change jX wto— IX w.

In the definition of the integral ([.5.1]) we have allowed W to be an arbitrary open subset
of X but required w to be compactly supported. This integral is also well-defined if we allow
w to be an arbitrary element of 2"(X) but require the closure of W in X to be compact. To
see this, note that under this assumption the sum (j.5.§) is still a finite sum, so the definition
of the integral still makes sense, and the double sum on the right side of (fg.5.1d) is still a
finite sum so it’s still true that the definition of the integral does not depend on the choice
of partitions of unity. In particular if the closure of W in X is compact we will define the
volume of W to be the integral,

VOI(W) = J Oyol >
w

where 0, is the Riemannian volume form and if X itself is compact we'll define its volume
to be the integral

vol(X) = J -
X
WEe'll next prove a manifold version of the change of variables formula (B.5.3).

Theorem 4.5.12 (change of variables formula). Let X' and X be oriented n-manifolds and
f: X' — X an orientation preserving diffeomorphism. If W is an open subset of X and
W' = f"Y (W), then

(4.5.13) le frw= jww
for all w € QX(X).

Proof. By (it.5.9) the integrand of the integral above is a finite sum of C* forms, each of
which is supported on a parametrizable open subset, so we can assume that w itself as this
property. Let V be a parametrizable open set containing the support of wandlet¢p,: U = V
be an oriented parameterization of V. Since f is a diffecomorphism its inverse exists and is
a diffeomorphism of X onto X;. Let V' == f(V)and ¢} == f ' o . Then ¢ : U = V' is
an oriented parameterization of V'. Moreover, f o ¢ = ¢, so if W = ¢y (W) we have

Wo = (@) (f ' (W) = (gp)~ (W)
and by the chain rule we have

P = (f > $)"@ = ($)" f*w

hence

wa - on $iw= on(gb(’))*(f*w) - JW’ o 0
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As an exercise, show that if f: X’ — X is orientation reversing

(4.5.14) J’WI ffo=- wa .

We'll conclude this discussion of “integral calculus on manifolds” by proving a prelim-
inary version of Stokes’ theorem.

Theorem 4.5.15. If p is in Q" (X) then

J du=0.
b

Proof. Let (p;);»; be a partition of unity with the property that each p; is supported in a
parametrizable open set U; = U. Replacing u by p;u it suffices to prove the theorem for
p e QN U). Let ¢: Uy — U be an oriented parametrization of U. Then

Jy du= |, o= awr=o

by [Theorem 3.3.1] 0
Exercises for

Exercise 4.5.i. Let f: R" — Rbea C* function. Orient the graph X := I'; of f by requiring
that the diffeomorphism
¢:R" > X, x— (x, f(x))

be orientation preserving. Given a bounded open set U in R” compute the Riemannian
volume of the image

Xy = $(U)
of U in X as an integral over U.

Hint: Exercise 4.4,

Exercise 4.5.ii. Evaluate this integral for the open subset X;; of the paraboloid defined by

x; = X7 + x3, where U is the disk x? + x3 < 2.

Exercise 4.5.ifi. In let1: X < R™! be the inclusion map of X onto R"*'.

(1) Ifw € Q"(R™?) is the n-form x,,,;dx; A -+ A dx,,, what is the integral of /*w over the
set X;;? Express this integral as an integral over U.

(2) Same question for w = x2,;dx; A -+ Adx,,.

(3) Same question for w = dx; A -+ Adx,,.

Exercise 4.5.iv. Let f: R"” — (0, +00) be a positive C* function, U a bounded open subset

of R”, and W the open set of R"*! defined by the inequalities

0 <X,y < flx1,..0x%,)

and the condition (x, ..., x,) € U.

(1) Express the integral of the (n+ 1)-form w = x,,,;dx; A--- Adx,_; over W as an integral
over U.

(2) Same question for w = x2,,dx; A -+ Adx,,;.

(3) Same question for w = dx; A --- Adx,,.

Exercise 4.5.v. Integrate the “Riemannian area” form

x,dxy Ndxs + x,dxs Adx; + x3dx; Adx,

over the unit 2-sphere S2. (See [Exercise 4.4.vii}.)
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Hint: An easier problem: Using polar coordinates integrate w = x3dx; A dx, over the
hemisphere defined by x; = /1 — x? — x3, where x} + x3 < 1.

Exercise 4.5.vi. Let a be the one-form Y, y,dx; in andlet p(¢),0 <t <1,
be a trajectory of the Hamiltonian vector field (:8.2)). What is the integral of « over y(¢)?

4.6. Stokes’ theorem & the divergence theorem

Let X be an oriented n-manifold and D ¢ X a smooth domain. We showed in that
0D acquires from D a natural orientation. Hence if 1: 0D — X is the inclusion map and p
is in Q! (X), the integral
[
oD

Theorem 4.6.1 (Stokes’ theorem). For y € Q],f‘l(X) we have

(4.6.2) LD fu= JD du.

Proof. Let (p;);»; be a partition of unity such that for each i, the support of p; is contained
in a parametrizable open set U; = U of one of the following three types:

(a) U cint(D).

(b) U c ext(D).

(c) There exists an open subset U, of R” and an oriented D-adapted parametrization

is well-defined. We will prove:

¢:Uy>U.

Replacing y by the finite sum Y ;) p; it suffices to prove (j.6.2) for each p;u separately. In
other words we can assume that the support of y itself is contained in a parametrizable open
set U of type (H), (), or (§). But if U is of type (H)

J = ] =] e
D U X

and *p = 0. Hence the left hand side of is zero and, by [Theorem 4.5.15,

the right hand side is as well. If U is of type () the situation is even simpler: *y is zero

and the restriction of y to D is zero, so both sides of are automatically zero.
Thus one is reduced to proving ([4.6.2) when U is an open subset of type (d). In this case the
restriction of the map (4.6.2)) to U, N 0H" is an orientation preserving diffeomorphism

(4.6.3) y:UyNnoH" - UNZ
and
(464) [Z o l// = ¢ o anfl

where the maps ¢ = 1, and
anfl . RVl*l —> Rﬂ

are the inclusion maps of Z into X and 9H" into R”. (Here we're identifying 9H" with R"1.)

Thus
I du = J ¢ du = J d¢™u
D H" H"
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and by (£6:4)
J izZh = J yrizp
z R™!
= J g1 "
Rn—l
= J Ll’inq(p*ﬂ .
oH"

Thus it suffices to prove Stokes’ theorem with y replaced by ¢* , or, in other words, to prove
Stokes’ theorem for H"; and this we will now do.

Theorem 4.6.5 (Stokes’ theorem for H"). Let

B

=Y (=1 fidx, A Adx; A Adx,
i=1

1

Then
n af
du=) —tdx; A---Nd
[’l ;axi X1 xn

and

n

9f;

dy = J —tdx, - dx, .

J n ; H" axi "

We will compute each of these summands as an iterated integral doing the integration

with respect to dx; first. For i > 1 the dx; integration ranges over the interval —oco < x; < co
and hence since f; is compactly supported

J %dxi = filxps o0 Xp e Xy,) S 0.
—c0 O0X;

On the other hand the dx; integration ranges over the interval —co < x; < 0 and

X;=—00

0
J %dxl :f(O,xZ,...,xn)-

—o0 0x;

Thus integrating with respect to the remaining variables we get
(4.6.6) J du = j F(0, %30 00 3,) sy A e A dlx,
H" Rn—l

On the other hand, since ig.-1x; = 0 and 1.1 x; = x; fori > 1,

g1t = £1(0, %5, ..o x,) dxy A - ANdx,

s0
(4.6.7) J Ign1 = J f(0,%xy, ..., x,)dxy A -+ Adx,
R*1 R
Hence the two sides, (.6.4) and (4.6.7), of Stokes’ theorem are equal. O

One important variant of Stokes’ theorem is the divergence theorem: Let w be in Q7 (X)
and let v be a vector field on X. Then

Lw=1dw+d,w=d,w,

hence, denoting by 1, the inclusion map of Z into X we get from Stokes’ theorem, with
Y= lyw:
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Theorem 4.6.8 (divergence theorem for manifolds).

JD Lw= L 17 (1,w) .

If D is an open domain in R” this reduces to the usual divergence theorem of multi-
variable calculus. Namely if w = dx; A -+ Adx, andv =Y, via%_ then by (p.5.14)
Lydx, A -+ Ndx, = div(v)dx; A -+ Ndx,

where
n
ov;

div(v) = 3
Xi

i=1
Thus if Z = 0D and 15, is the inclusion Z — R”,
(4.6.9) J div(v)dx = J B (ydx, A e Adx,).
D Z

>

The right hand side of this identity can be interpreted as the “flux” of the vector field v
through the boundary of D. To see thislet f: R” — Rbe a C* defining function for D, i.e.,
a function with the properties

peD < f(p)<0

anddf, # 0if p € oD. This second condition says that zero is a regular value of f and
hence that Z := 0D is defined by the non-degenerate equation:

(4.6.10) peZ < f(p)=0.

Let w be the vector field
-1
[ (of >2 5 of, 0
w= <Z<ax, > Zaxi axi ’

i=1 i=1
In view of ([£.6.1d), this vector field is well-defined on a neighborhood U of Z and satisfies
Ldf =1.
Now note that sinced f Adx; A--- A dx,, =0
0=1,(df Ndxy A+ Ndx,,)

= (,df)dxy N Ndx, —df Ndx A--- Ndx,

=dx; AN Ndx, —df Nidxy A Ndx,,
hence letting v be the (n — 1)-form 1,,dx; A -+ A dx,, we get the identity
(4.6.11) dx; N Ndx,=df Av
and by applying the operation ¢, to both sides of ([4.6.11)) the identity
(4.6.12) Ldxy N Ndx, = (L, f)v—df Ayv.
Let v, = ;v be the restriction of v to Z. Since 1, = 0, 1;d f = 0 and hence by (.6.12)

17(,dx; A -~ Ndx,) = 17(Ly, vy,

and the formula ([f.6.9) now takes the form

(4.6.13) J-D div(v)dx = Jz L,fv,
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where the term on the right is by definition the flux of v through Z. In calculus books this
is written in a slightly different form. Letting

o (3())

(86 (G5-30)

and ¥ = (vy, ...,v,) we have

and letting

LUVZ = (ﬁ . 6)0’2

and hence
(4.6.14) j div(v)dx = J 7)oy .
D Z

In three dimensions o7, is just the standard “infinitesimal element of area” on the surface Z
and n,, the unit outward normal to Z at p, so this version of the divergence theorem is the
version one finds in most calculus books.

As an application of Stokes™ theorem, we'll give a very short alternative proof of the
Brouwer fixed point theorem. As we explained in the proof of this theorem basically
comes down to proving the following theorem.

Theorem 4.6.15. Let B" be the closed unit ball in R" and S*™" its boundary. Then the identity
map idg.1 on 8! cannot be extended to a C*® map f: B" — S"7L.

Proof. Suppose that f is such a map. Then for every (n — 1)-form y € Q" 1(S"1),

(4.6.16) Ln d(f*u) = Ln_l(lsnfl)*f*#-

Butd(f*u) = f*(du) = Osince pisan (n—1)-form and S" ! isan (n—1)-manifold, and since
f is the identity map on S""!, (15, )" f 1= (foig1)"p = p. Thus forevery y € Qs
says that the integral of y over S*™! is zero. Since there are lots of (n — 1)-
forms for which this is not true, this shows that a map f with the property above cannot
exist. g

Exercises for
Exercise 4.6.i. Let B" be the open unit ball in R” and S"™! the unit (n — 1)-sphere. Show
that vol(S"™!) = nvol(B").
Hint: Apply Stokes” theorem to the (n — 1)-form

n
Y= Z(—l)i’lxidxl Ao Ndx; Ao Adx,
i=1

and note by that u is the Riemannian volume form of §"*.
Exercise 4.6.ii. Let D ¢ R” be a smooth domain. Show that there exists a neighborhood U
of dD in R” and a C* defining function g: U — R for D with the properties:

(1) peUnDifandonlyif g(p) <0,
(2) anddg, #0ifpe Z
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Hint: Deduce from that a local version of this result is true. Show that
you can cover Z by a family U = {U,},; of open subsets of R"” such that for each there
exists a function g, : U, — R with the properties () and (g)). Now let (p;);»; be a partition
of unity subordinate to U and let g = Y ;°, Piga, Where supp(p;) C U,.

Exercise 4.6.iii. In suppose Z is compact. Show that there exists a global
defining function f: R” — R for D with properties ([]) and (f]).

Hint: Let p € Ci°(U) be a function such that 0 < p(x) < 1forall x € U and p is
identically 1 on a neighborhood of Z, and replace g by the function

p(x)g(x) +(1-p(x)), x€R*'~D
f(x) = g(x)) X € aD
p(x) — (1 - p(x))g(x), x €int(D).
Exercise 4.6.iv. Show that the form L, fv, in does not depend on what

choice we make of a defining function f for D.
Hints:

> Show that if g is another defining function then, at p € Z, df, = Adg,,, where A
is a positive constant.

» Show that if one replaces d fp by (dg) b the first term in the product (L, f)( Pz,
changes by a factor A and the second term by a factor 1/A.

Exercise 4.6.v. Show that the form v is intrinsically defined in the sense that if v is any
(n — 1)-form satisfying Equation (4.6.11), then v, = 17 v.
Hint: Exercise 4.5:v1

Exercise 4.6.vi. Show that the form o, in is the Riemannian volume form
on Z.

Exercise 4.6.vii. Show that the (n — 1)-form

n
p=(cd+ -+ x2)™" Z(—l)”lx,dxl A Adx, Ao dx,

r=1

is closed and prove directly that Stokes’ theorem holds for the annulus @ < x7 + -+ x2 < b
by showing that the integral of u over the sphere, x? + --- + x2 = a, is equal to the integral
over the sphere, x? + - + x2 = b.

Exercise 4.6.viii. Let f: R”™' — Rbe an everywhere positive C* function and let U be a
bounded open subset of R ™!, Verify directly that Stokes’ theorem is true if D is the domain
defined by
0<x, < flx,0x%,.1) > (Xp5..0%,.1) €U
and p an (n — 1)-form of the form
O(xy, e x,)dx] A - Ndx,_y
where ¢ is in Cg°(R").
Exercise 4.6.ix. Let X be an oriented n-manifold and v a vector field on X which is complete.
Verify that for w € Q! (X)
J Lw=0
b

(1) Directly by using the divergence theorem.

in the following ways:
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fore- .

where f,: X — X, —00 <t < 00, is the one-parameter group of diffeomorphisms of X
generated by v.

(2) Indirectly by showing that

Exercise 4.6.x. Let X be an oriented n-manifold and D ¢ X a smooth domain whose closure
is compact. Show that if Z := 9D is the boundary of D and g: Z — Z a diffeomorphism g
cannot be extended to a smoothmap f: D — Z.

4.7. Degree theory on manifolds

In this section we'll show how to generalize to manifolds the results about the “degree”
of a proper mapping that we discussed in [Chapter 3. We'll begin by proving the manifold

analogue of [Theorem 3.3.1].

Theorem 4.7.1. Let X be an oriented connected n-manifold and w € QF(X) a compactly
supported n-form. Then the following are equivalent

(1) [jw=0.
(2) w = du for some p € Q" 1(X).

Proof. We have already verified the assertion (g) = (fi]) (see [[heorem 4.5.15), so what is left
to prove is the converse assertion. The proof of this is more or less identical with the proof

of the “(i)) =(F)” part of [[heorem 3.2.2;

Step 1. Let U be a connected parametrizable open subset of X. If w € QI (U) has property (),
then w = du for some u € QF(U).

Proof of Bfep 1. Let ¢: Uy — U be an oriented parametrization of U. Then

[

and since UO is a connected open subset of R, ¢*w = dv for some v € Q"' (U,) by [Theo] -
Fem 3.3.1. Let = (¢ 1) *v. Then dy = (¢ ™) *dv = w.

Step 2. Fix a base point p, € X and let p be any point of X. Then there exists a collection
of connected parametrizable open sets W, ..., Wy with p, € W, and p € Wy such that for
1 <i < N -1, the intersection W; N W, is non-empty.

Proof of Bfep 4. The set of points, p € X, for which this assertion is true is open and the set
for which it is not true is open. Moreover, this assertion is true for p = p,. O

Step 3. We deduce from a slightly stronger result. Introduce an equivalence
relation on O} (X) by declaring that two n-forms w,, w, € QX(X) are equivalent if w, — w, €
dQ" 1 (X). Denote this equivalence relation by a w; ~ w,.

We will prove:

Theorem 4.7.2. For w, and w, € Q}(X) the following are equivalent:

(1) IX w; = IX w,

(2) w; ~ w,.



Draft: March 28, 2018

134 Chapter 4: Manifolds & Forms on Manifolds

Applying this result to a form w € QF(X) whose integral is zero, we conclude that
w ~ 0, which means that w = du for some y € Q"!(X). Hence implies
[[heorem 4.7.1. Conversely, if IX w; = IX w,, then fx(w1 - w,) = 0,50 w; —w, = dy for
some y € 07(X). Hence implies [heorem 4.7
Step 4. By a partition of unity argument it suffices to prove [[heorem 4.7.4 for w, € QX(U;)
and w, € QL(U,) where U, and U, are connected parametrizable open sets. Moreover, if the
integrals of w, and w, are zero then w; = dy; for some p; € QF(U;) by Btep 1, so in this case,
the theorem is true. Suppose on the other hand that

J wI:J w,=c#0.
X X

Then dividing by ¢, we can assume that the integrals of w, and w, are both equal to 1.

Step 5. Let Wy, ..., Wy be, as in a sequence of connected parametrizable open sets with
the property that the intersections, W, NU,, Wy NU, and W;NW,4, fori = 1,...,N—1, areall
non-empty. Select n-forms, ay € QLU NW)), ayy € LWy NU,) and o; € QLW N W),
fori=1,...,N — 1, such that the integral of each «; over X is equal to 1 By we see that

is true for Uy, U, and the Wy, ..., Wy, hence is true for Uy, U,
and the W, ..., Wy, so

Wy~ 0y ~ Gy~ Ay~ Wy

and thus w, ~ w,. O

Just as in (B.4.2) we get as a corollary of the theorem above the following “definition-
theorem” of the degree of a differentiable mapping:

Theorem 4.7.3. Let X andY be compact oriented n-manifolds and let Y be connected. Given a
proper C*® mapping, f: X — Y, there exists a topological invariant deg( f) with the defining

property:
(4.7.4) JX fFw = deg(f) L w.

Proof. As in the proof of pick an n-form w, € Q7 (Y) whose integral over ¥
is one and define the degree of f to be the integral over X of f*w, i.e., set

(4.7.5) deg(f) = .[x frwy .
Now let w be any n-form in Q}(Y) and let
(4.7.6) c:= j w.

Y

Then the integral of w — cw,, over Y is zero so there exists an (n — 1)-form p € Q" (Y) for
which w - cwy = dy. Hence f*w = cf*wy +df*u, so

JX Fro= CJX Frwy = deg(f) Lw

by equations (4.7.5) and [4.7.6) O

It’s clear from the formula (ff.7.4) that the degree of f is independent of the choice of
w,. (Just apply this formula to any w € Q7(Y) having integral over Y equal to one.) It’s also
clear from (j.7.4) that “degree” behaves well with respect to composition of mappings:
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Theorem 4.7.7. Let Z be an oriented, connected n-manifold and g: Y — Z a proper C*
map. Then

(4.7.8) deg(g o f) = deg(f) deg(g) .
Proof. Letw € OF(Z) be a compactly supported form with the property that IZ w = 1. Then

deglge f) = [ (g = f*eg'w=degs) | g
= deg(f) deg(g) . O

We will next show how to compute the degree of f by generalizing to manifolds the
formula for deg( f) that we derived in §3.6.

Definition 4.7.9. A point p € X is a critical point of f if the map
(4.7.10) dfp: T, X — Typ,)Y
is not bijective.

We'll denote by Cy the set of all critical points of f,and we'll call a point g € Y a critical
value of f ifitis in the image f(Cy) of C; under f and a regular value if its not. (Thus the
set of regular values is the set Y ~ f(Cy).) If g is a regular value, then as we observed in
fion 3.6, the map (§.7.19) is bijective for every p € f~'(q) and hence by [[heorem 4.2.13, f
maps a neighborhood U, of p diffeomorphically onto a neighborhood V,, of g. In particular,
U,nf “1(q) = p. Since f is proper the set f~!(q) is compact, and since the sets U, area
covering of f~1(g), this covering must be a finite covering. In particular, the set f~!(g) itself
has to be a finite set. As in we can shrink the U,’s so as to insure that they have the
following properties:

(1) EachU,, is a parametrizable open set.
(ii) U, N U, is empty for p # p'.
(iii) f(U,) = f(U,) =V forall pand p'.
(iv) V is a parametrizable open set.

@ S0V = Upesq Up:

To exploit these properties let w be an n-form in QF (V') with integral equal to 1. Then
by (®):

deg(f) = j g = j .
@)= ] ra=3| rro
But f: U, > Visa diffeomorphism, hence by (j.5.13) and (f.5.14)

7l

if f+ U, — V is orientation preserving and

[ 7o

if f: U, — V is orientation reversing. Thus we have proved:

Theorem 4.7.11. The degree of f is equal to the sum
(4.7.12) deg(f) = Z oy

pef ()
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where 0, = +1 if the map (4.7.1d) is orientation preserving and o, = -1 if the map (4.7.1d)

is orientation reversing.

We will next show that Sard’s Theorem is true for maps between manifolds and hence
that there exist lots of regular values. We first observe that if U is a parametrizable open
subset of X and V' a parametrizable open neighborhood of f(U) in Y, then Sard’s Theorem
is true for the map f: U — V since, up to diffeomorphism, U and V are just open subsets
of R". Now let g be any point in Y, let B be a compact neighborhood of g, and let V be a
parametrizable open set containing B. Then if A = £ !(B) it follows from
that A can be covered by a finite collection of parametrizable open sets, Uj, ..., Uy such that
f(U;) ¢ V. Hence since Sard’s Theorem is true for each of the maps f: U; — V and f~(B)
is contained in the union of the U;’s we conclude that the set of regular values of f intersects
the interior of B in an open dense set. Thus, since q is an arbitrary point of Y, we have proved:

Theorem 4.7.13. If X and Y are n-manifolds and f : X — Y is a proper C* map the set of
regular values of f is an open dense subset of Y.

Since there exist lots of regular values the formula (.7.12)) gives us an effective way
of computing the degree of f. We'll next justify our assertion that deg( f) is a topological

invariant of f. To do so, let’s generalize to manifolds.
Definition 4.7.14. Let X and Y be manifolds and f,, f; : X — Y be C* maps. A C* map
(4.7.15) F: Xx[0,1] Y

is a homotopy between f, and f; if for all x € X we have F(x,0) = f,(x) and F(x, 1) = f(x).
Moreover, if f, and f; are proper maps, the homotopy, F, is a proper homotopy if F is proper
as a C® map, i.e., for every compact set C of Y, F~!(C) is compact.

Let’s now prove the manifold analogue of [Theorem 3.6.1d.

Theorem 4.7.16. Let X and Y be oriented n-manifolds and assume that Y is connected. If
for fo: X — Y are proper maps and the map (4.7.8) is a proper homotopy, then deg(f,) =

deg(f,).

Proof. Let wbe an n-form in Q7 (Y) whose integral over Y is equal to 1, and let C := supp(w)
be the support of w. Then if F is a proper homotopy between f, and f;, the set, F~!(C), is
compact and its projection on X

(4.7.17) {x e X|(x,t) € FF}(C) for somet € [0,1] }

is compact. Let f,: X — Y be the map: f,(x) = F(x,t). By our assumptions on F, f, is a
proper C* map. Moreover, for all ¢ the n-form f,"w is a C* function of t and is supported
on the fixed compact set (f.7.17). Hence it’s clear from the definitions of the integral of a
form and f, that the integral
[
X

is a C™ function of t. On the other hand this integral is by definition the degree of f, and

hence by [[heorem 4.7.3, deg(f,) is an integer, so it does not depend on ¢t. In particular,
deg(fo) = deg(f1)- O

Exercises for

Exercise 4.7.i. Let f: R — R be the map x — x". Show that deg(f) = 0 if nis even and 1
ifnis odd.
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Exercise 4.7.ii. Let f: R — R be the polynomial function,

1

fxX)=x"+ax"" +--+a, x+a,,

where the a;’s are in R. Show that if # is even, deg(f) = 0 and if n is odd, deg(f) = 1.

Exercise 4.7.iii. Let S' be the unit circle in the complex plane and let f: S! — S! be the

map € ¢N?, where N ias a positive integer. What is the degree of f?

Exercise 4.7.iv. Let S""! be the unit sphere in R” and : $"! — §"! the antipodal map

x — —x. What is the degree of 07

Exercise 4.7.v. Let A € O(n) be an orthogonal #n x n matrix and let
fu: S gl

be the map x — Ax. What is the degree of f,?

Exercise 4.7.vi. A manifold Y is contractable if for some point p, € Y, the identity map of
Y onto itself is homotopic to the constant map f, : Y — Y given by f, (y) = p,. Show
that if Y is an oriented contractable n-manifold and X an oriented connected n-manifold
then for every proper mapping f: X — Y we have deg(f) = 0. In particular show that if
n > 0and Y is compact then Y cannot be contractable.

Hint: Let f be the identity map of Y onto itself.

Exercise 4.7.vii. Let X and Y be oriented connected n-manifolds and f: X — Y a proper
C® map. Show that if deg(f) # 0, then f is surjective.

Exercise 4.7.viii. Using Sard’s Theorem prove that if X and Y are manifolds of dimension
kand ¢, withk < £and f: X — Y is a proper C* map, then the complement of the image
of X in Y is open and dense.

Hint: Let r := £ — k and apply Sard’s Theorem to the map

g: Xx8 =Y, g(x,a) = f(x).

Exercise 4.7.ix. Prove that the 2-sphere S? and the torus S! x S! are not diffeomorphic.

4.8. Applications of degree theory

The purpose of this section will be to describe a few typical applications of degree theory
to problems in analysis, geometry, and topology. The first of these applications will be yet
another variant of the Brouwer fixed point theorem.

Application 4.8.1. Let X be an oriented (n + 1)-dimensional manifold, D ¢ X a smooth
domain and Z := 9D the boundary of D. Assume that the closure D = ZUD of D is compact
(and in particular that X is compact).

Theorem 4.8.2. LetY be an oriented connected n-manifold and f: Z — 'Y a C* map. Sup-
pose there exists a C* map F: D — Y whose restriction to Z is f. Then deg(f) = 0.

Proof. Let pbe an element of Q7(Y). Then dy = 0, so dF*u = F*dy = 0. On the other hand
ifi: Z — X is the inclusion map,

by Stokes’ theorem since F o 1 = f. Hence deg( f) has to be zero. O
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Application 4.8.3 (a non-linear eigenvalue problem). This application is a non-linear gen-
eralization of a standard theorem in linear algebra. Let A: R” — R" be a linear map. If n is
even, A may not have real eigenvalues. (For instance for the map

AR >R, (x,9) = (-y,%)
the eigenvalues of A are +v/~1.) However, if 7 is odd it is a standard linear algebra fact that

there exists a vector, v € R” ~ {0}, and a A € R such that Av = Av. Moreover replacing v
by |—Z| one can assume that |v| = 1. This result turns out to be a special case of a much more

general result. Let "' be the unit (n — 1)-sphere in R” and let f: $"! — R" be a C* map.
Theorem 4.8.4. There exists a vector v € S" and a number A € R such that f(v) = Av.

Proof. The proof will be by contradiction. If the theorem isn't true the vectors v and f(v),
are linearly independent and hence the vector

(4.8.5) g) = f(v) - (f(v) - v)v
is nonzero. Let
(v)
8. hv) = L2
(4.8.6) (v) 9]

By (1.8.9)-(1.8-6), [v| = |h(v)| = 1and v h(v) = 0, i.e., v and h(v) are both unit vectors and
are perpendicular to each other. Let

(4.8.7) Ye: S8 0<t<1
be the map
(4.8.8) y:(v) = cos(mt)v + sin(mt)h(v) .

For t = 0 this map is the identity map and for ¢ = 1, it is the antipodal map o(v) = v, hence
(.87) asserts that the identity map and the antipodal map are homotopic and therefore
that the degree of the antipodal map is one. On the other hand the antipodal map is the
restriction to $"~! of the map (x,, ..., x,,) + (=X, ..., —x,,) and the volume form w on §""!
is the restriction to $*! of the (n — 1)-form

n
(4.8.9) Y (1) xdo A Adx Ao A,

i=1

If we replace x; by —x; in the sign of this form changes by (-1)" hence

0*w = (~1)"w. Thus if n is odd, o is an orientation reversing diffeomorphism of $"~! onto
§"1, so its degree is —1, and this contradicts what we just deduced from the existence of the

homotopy (4.89). O

From this argument we can deduce another interesting fact about the sphere $"™! when
n— 1is even. For v € $"! the tangent space to $" ! at v is just the space,

T, ! ={(v,w)|lweR"andv-w =0},
so a vector field on $"~! can be viewed as a function g: "' — R” with the property
glw)-v=0

forall v € §"L. If this function is nonzero at all points, then, letting h be the function (j.8.4),
and arguing as above, we're led to a contradiction. Hence we conclude:

Theorem 4.8.10. Ifn— 1 is even and v is a vector field on the sphere S*™', then there exists a
point p € S"! at which v(p) = 0.
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Note that if 7 — 1 is odd this statement is not true. Thevector field
0 0 d 0

Xio -~ Xt Xy T Xy
0x, 0x; 0x,,, 0X5,_1

is a counterexample. It is nowhere vanishing and at p € $"! is tangent to S"*.

Application 4.8.11 (The Jordan-Brouwer separation theorem). Let X be a compact ori-
ented (n— 1)-dimensional submanifold of R”. In this subsection of we'll outline a proof
of the following theorem (leaving the details as a string of exercises).

Theorem 4.8.12. If X is connected, the complement of R" ~ X of X has exactly two connected
components.

This theorem is known as the Jordan-Brouwer separation theorem (and in two dimen-
sions as the Jordan curve theorem). For simple, easy to visualize, submanifolds of R" like the
(n — 1)-sphere this result is obvious, and for this reason it’s easy to be misled into thinking
of it as being a trivial (and ot very interesting) result. However, for submanifolds of R” like
the curve in R? depicted in the it's much less obvious. (In ten seconds or less: is
the point p in this figure inside this curve or outside?)

To determine whether a point p € R”~ X is inside X or outside X, one needs a topolog-
ical invariant to detect the difference; such an invariant is provided by the winding number.

Definition 4.8.13. For p € R" ~ X let

Vp: X — N
be the map
x-p
(x) = —=—.
Oy

The winding number W (X, p) of X about p is the degree
W(X, p) = deg(yp) .

We show below that W(X, p) = 0if p is outside, and if p is inside X, then W(X, p) = +1
(depending on the orientation of X). Hence the winding number tells us which of the two
components of R” ~ X the point p is contained in.

Exercises for

Exercise 4.8.i. Let U be a connected component of R” ~ X. Show that if p, and p, are in U,
W(X, po) = W(X, py).
Hints:
» First suppose that the line segment,
pr=1-t)py+tp,, 0<t<1
lies in U. Conclude from the homotopy invariance of degree that
W(X, po) = W(X, p) = W(X, py) .
» Show that there exists a sequence of points q;,...,qy € U, with g, = p, and

qn = P1> such that the line segment joining g; to g;,; is in U.

Exercise 4.8.ii. Let X be a connected (n — 1)-dimensional submanifold of R”. Show that
R” ~ X has at most two connected components.
Hints:

» Show that if g is in X there exists a small e-ball B,(q) centered at g such that
B,(g) — X has two components. (See [Theorem 4.2.13|.
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» Show that if p is in R” \ X, there exists a sequence ¢, ...,qy € R” ~ X such that
q1 = P> qn € B(g) and the line segments joining g; to g;,; are in R” ~ X.

Exercise 4.8.iii. For v € $""!, show that x € X is in y};l (v) if and only if x lies on the ray
(4.8.14) p+tv, 0<t<o0.
Exercise 4.8.iv. Let x € X be a point on this ray. Show that
(4.8.15) (@dyp): T,X = T,8""
is bijective if and only if v ¢ T, X, i.e., if and only if the ray (4.8.14) is not tangent to X at x.
Hint:y,: X — §"~1 is the composition of the maps
Tyt X ->R"~{0}, x—>x-p,

and

m: R*~ {0} - §*!, yHL.
|yl

Show that if 7(y) = v, then the kernel of (dm) g is the one-dimensional subspace of R”
spanned by v. Conclude that if y = x — pand v = y/|y| the composite map

(dy,), = (dn), * (dr,),

is bijective if and only if v ¢ T, X.

Exercise 4.8.v. From [Exercises 4.8.11] and [{.8.1Y deduce that v is a regular value of Vp if
and only if the ray (§.8.14) intersects X in a finite number of points and at each point of
intersection is not tangent to X at that point.

Exercise 4.8.vi. In show that the map (j.8:13) is orientation preserving if

the orientations of T, X and v are compatible with the standard orientation of T, R". (See

Exercise 1.6.1.)

Exercise 4.8.vii. Conclude that deg(yp) counts (with orientations) the number of points
where the ray ([.8.14) intersects X.

Exercise 4.8.viii. Let p; € R” ~ X be a point on the ray (§.8.14). Show thatifv € " ' isa
regular value of y,,, it is a regular value of y, and show that the number

deg(y,) — deg(y, ) = W(X, p) - W(X, py)

counts (with orientations) the number of points on the ray lying between p and p;.
Hint: [Exercises 4.8.V and .8.vil.

Exercise 4.8.ix. Let x € X be a point on the ray (4.8.14). Suppose x = p + tv. Show that if
€ is a small positive number and

pr=p+tteu
then
WX, p)=W(X,p)+£1,

and from conclude that p, and p_ lie in different components of R” ~ X. In
particular conclude that R” ~ X has exactly two components.
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Exercise 4.8.x. Finally show that if p is very large the difference

p
()__> EX:
ypx |p| X

is very small, i.e., y,, is not surjective and hence the degree of y,, is zero. Conclude that for
p € R"~ X, pisin the unbounded component of R” ~ X if W(X, p) = 0 and in the bounded
component if W(X, p) = +1 (the “+” depending on the orientation of X).

Remark 4.8.16. The proof of Jordan-Brouwer sketched above gives us an effective way of
deciding whether the point p in [Figure 4.8.2, is inside X or outside X. Draw a non-tangential
ray from p. If it intersects X in an even number of points, p is outside X and if it intersects
X is an odd number of points p inside.

inside

outside

Figure 4.8.1. A Jordan curve with p inside of the curve and g outside

Application 4.8.17 (The Gauss-Bonnet theorem). Let X ¢ R” be a compact, connected, ori-
ented (n —1)-dimensional submanifold. By the Jordan-Brouwer theorem X is the boundary
of abounded smooth domain, so for each x € X there exists a unique outward pointing unit
normal vector n,.. The Gauss map

p: X — §+1

is the map x + n,. Let o be the Riemannian volume form of "', or, in other words, the
restriction to §*7! of the form,

n
Y (D) xdxy A Adx Ao A,
i=1

and let o be the Riemannian volume form of X. Then for each p € X

(4.8.18) (Y*U)p = K(P)(Ux)q

where K(p) is the scalar curvature of X at p. This number measures the extent to which
“X is curved” at p. For instance, if X,, is the circle, |x| = a in R?, the Gauss map is the map
p — pla, so for all p we have K, (p) = 1/a, reflecting the fact that for a < b, X, is more
curved than X,

The scalar curvature can also be negative. For instance for surfaces X in R?, K(p) is
positive at p if X is convex at p and negative if X is convex—concave at p. (See
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and below. The surface in is convex at p, and the surface in is

convex-concave.)

|
—_— .

Figure 4.8.2. Positive scalar curvature at p

|
_— .

Figure 4.8.3. Negative scalar curvature at p

Let vol(S"!) be the Riemannian volume of the (1 — 1)-sphere, i.e., let

vol(s1) = 22
I'(n/2)
(where I' is the Gamma function). Then by ([f.8:1§) the quotient
j Koy
vol(§*1)

is the degree of the Gauss map, and hence is a topological invariant of the surface of X. For

| q

surface X of genus g the sphere S

(4.8.19)

Figure 4.8.4. The Gauss map from a surface of genus g to the sphere
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n = 3 the Gauss-Bonnet theorem asserts that this topological invariant is just 1 — g where
g is the genus of X or, in other words, the “number of holes” gives a pictorial
proof of this result. (Notice that at the points p;, ..., p, the surface X is convex-concave so
the scalar curvature at these points is negative, i.e., the Gauss map is orientation reversing.
On the other hand, at the point p,, the surface is convex, so the Gauss map at this point is
orientation preserving.)

4.9. The index of a vector field

Let D be a bounded smooth domain in R” and v = Y"_ | v,0/9x; a C™ vector field de-
fined on the closure D of D. We will define below a topological invariant which, for “generic”
v’s, counts (with appropriate +-signs) the number of zeros of v. To avoid complications we’ll
assume v has no zeros on the boundary of D.

Definition 4.9.1. Let 0D be the boundary of D and let
fy: 0D — st

be the mapping

. v(p)
P

where v(p) = (v,(p), ..., v,(p)). The index of v with respect to D is by definition the degree
of f,.

We'll denote this index by ind(v, D) and as a first step in investigating its properties
we'll prove:

Theorem 4.9.2. Let D; be a smooth domain in R" whose closure is contained in D. Then
ind(v, D) = ind(v, D,)

provided that v has no zeros in the set D ~ D, .

Proof. Let W = D ~ D,. Then the map f,: 0D — S"! extends to a C* map

F:W -8t pH—v(P) .
lu(p)l
Moreover,

oW =X UXy
where X is the boundary of D with its natural boundary orientation and X7 is the boundary
of D; with its boundary orientation reversed. Let w be an element of Q" !(S""!) whose
integral over $" ! is 1. Then if f = f, and f; = (f,), are the restrictions of F to X and X
we get from Stokes’ theorem (and the fact that dw = 0) the identity

0= JWF*dw = JWdF*w
- [ - sr=dentn e,

Hence
ind(v, D) = deg(f) = deg(f;) = ind(v,D) . O



Draft: March 28, 2018

144 Chapter 4: Manifolds & Forms on Manifolds

Suppose now that v has a finite number of isolated zeros p;, ..., py in D. Let B,(p;) be
the open ball of radius € with center at p;. By making & small enough we can assume that
each of these balls is contained in D and that they’re mutually disjoint. We will define the

local index ind(v, p;) of v at p; to be the index of v with respect to B,(p;). By

these local indices are unchanged if we replace € by a smaller ¢, and by applying this theorem
to the domain

k
Dl = U BPi(s)
i=1

we get, as a corollary of the theorem, the formula

k
(4.9.3) ind(v, D) = ) ind(v, p;)

i=1
which computes the global index of v with respect to D in terms of these local indices.

Let’s now see how to compute these local indices. Let’s first suppose that the point p = p;
is at the origin of R”. Then near p = 0

v=uv, +0v
where

0
U =0y, = Z a;,iXi .
1<i,j<n Xj

the a; ;’s being constants and
n
0
u= 2 igg
=1 ]
where the f;;’s vanish to second order near zero, i.e., satisfy

(4.9.4) |£,; (0l < ClxI?
for some constant C > 0.

Definition 4.9.5. We'll say that the point p = 0 is a non-degenerate zero of v is the matrix
A=(a; j) is non-singular.

This means in particular that

(4.9.6) >

form some constant C; > 0. Thus by (4.9.4) and ([.9.6) the vector field
v,=v,+tv, 0<t<1

has no zeros in the ball B,(0), other than the point p = 0 itself, provided that ¢ is small
enough. Therefore if we let X, be the boundary of B,(0) we get a homotopy

F: X, x [0,1] — st , (1) - fv,(x)

between the maps f, : X, — S"1and f,: X, — S, thus by [Theorem 4.7.14 we see that
deg(f,) = deg(f,,lm). Therefore,

(4.9.7) ind(v, p) = ind(vy,, p) -
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We have assumed in the above discussion that p = 0, but by introducing at p a translated
coordinate system for which p is the origin, these comments are applicable to any zero p of
v. More explicitly if ¢, ..., ¢, are the coordinates of p then as above

v=uvy, +v
where
d
Vjin = Z ai,j(xi - Ci)_a
1<i,j<n Xj

and v’ vanishes to second order at p, and if p is a non-degenerate zero of g, i.e., if the matrix
A = (a; ;) is non-singular, then exactly the same argument as before shows that

ind(v, p) = ind(vy,, p) .
We will next prove:

Theorem 4.9.8. If p is a non-degenerate zero of v, the local index ind(v, p) is +1 or —1 de-
pending on whether the determinant of the matrix, A = (a, ;) is positive or negative.

Proof. As above we can, without loss of generality, assume that p = 0. By (4.9.7) we can
assume v = vy,. Let D be the domain defined by

n n 2
(4.9.9) Z ( ai’jxi) <1,
1

j=1 \i=

and let X := 9D be its boundary. Since the only zero of v, inside this domain is p = 0 we

get from (f4.9.3) and ([1.9.4) that
ind(v, p) = ind(vy,, p) = ind(vy,, D) .

Moreover, the map
Jo, 0 X — N

is, in view of ([1.9.9)), just the linear map v — Au, restricted to X. In particular, since A is
a diffeomorphism, this mapping is a diffeomorphism as well, so the degree of this map is
+1 or —1 depending on whether this map is orientation preserving or not. To decide which
of these alternatives is true let w = Y (—=1)'x;dx; A -+ A dx; A --- dx,, be the Riemannian
volume form on §"*~! then

J fop, @ = deg(f,,, ) vol(S"™).
X

Since v is the restriction of A to X. By Stokes’ theorem this is equal to
J A¥dw = nJ A¥dx, N--- Ndx,
D D

— ndet(A) J dx, A Adox,
D
= ndet(A) vol(D)
which gives us the formula

ndet Avol(D)

d ,D) =
eg(fvzm ) Vol(Sn_l)
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We'll briefly describe the various types of non-degenerate zeros that can occur for vector
fields in two dimensions. To simplify this description a bit we’ll assume that the matrix

A= (“11 a12>
41 92
is diagonalizable and that its eigenvalues are not purely imaginary. Then the following five

scenarios can occur:

(1) The eigenvalues of A are real and positive. In this case the integral curves of vy, in a neigh-
borhood of p look like the curves in and hence, in a small neighborhood

Figure 4.9.1. Real and positive eigenvalues

of p, the integral sums of v itself look approximately like the curve in [Figure 4.9.1]

(2) The eigenvalues of A are real and negative. In this case the integral curves of vy, look like
the curves in [Figure 4.9.1, but the arrows are pointing into p, rather than out of p, i.e.,

Figure 4.9.2. Real and negative eigenvalues

(3) The eigenvalues of A are real, but one is positive and one is negative. In this case the

integral curves of vy, look like the curves in [Figure 4.9.3.

(4) The eigenvalues of A are complex and of the form a + N~b, with a positive. In this case
the integral curves of vy, are spirals going out of p as in [Figure 4.9.4.

(5) The eigenvalues of A are complex and of the form a + Vb, with a negative. In this case
the integral curves are as in but are spiraling into p rather than out of p.

Definition 4.9.10. Zeros of v of types ([]) and (|f) are called sources; those of types (£]) and
(B) are called sinks and those of type (f) are called saddles.
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Figure 4.9.3. Real eigenvalues, one positive and one negative

Figure 4.9.4. Complex eigenvalues of the form a + V-b, with a positive.

Thus in particular the two-dimensional version of fquation (4.9.3) tells us:

Theorem 4.9.11. If the vector field v on D has only non-degenerate zeros then ind(v, D) is
equal to the number of sources plus the number of sinks minus the number of saddles.



Draft: March 28, 2018



Draft: March 28, 2018

CHAPTER s

Cohomology via forms

5.1. The de Rham cohomology groups of a manifold

In the last four chapters we've frequently encountered the question: When is a closed
k-form on an open subset of RN (or, more generally on a submanifold of RN) exact? To inves-
tigate this question more systematically than we've done heretofore, let X be an n-manifold
and let

ZK(X) = {w e OX(X)|dw =0}
and

BX(X) = d(21(X0)) ¢ Q4X)
be the vector spaces of closed and exact k-forms. Since B¥(X) is a vector subspace of ZK(X),
we can form the quotient space

H(X) = Z*(X)/B*(X) ,

and the dimension of this space is a measure of the extent to which closed forms fail to be
exact. We will call this space the k™ de Rham cohomology group of the manifold X. Since
the vector spaces ZK(X) and B¥(X) are both infinite dimensional in general, there is no
guarantee that this quotient space is finite dimensional, however, we'll show later in this
chapter that it is in a lot of interesting cases.

The spaces H*(X) also have compactly supported counterparts. Namely let

ZE(X) = {w € O5(X)|dw = 0}
and
BE(X) = d(QF(X)) ¢ O5(X) .
Then as above B¥(X) is a vector subspace of Z¥(X) and the vector space quotient
HE(X) = ZEO/BE(X)

is the k™ compactly supported de Rham cohomology group of X.

Given a closed k-form w € Z¥(X) we will denote by [w] the image of w in the quotient
space H*(X) = Z¥(X)/B*(X) and call [w] the cohomology class of w. We will also use the
same notation for compactly supported cohomology. If w is in Z*(X) well denote by [w]
the cohomology class of w in the quotient space H, f(X ) = Zf(X )/ Bf(X ).

Some cohomology groups of manifolds we've already computed in the previous chap-
ters (although we didn't explicitly describe these computations as “computing cohomol-
ogy”). We'll make a list below of some of the properties that we have already discovered
about the de Rham cohomology of a manifold X:

(1) If X is connected, H°(X) = R. To see this, note that a closed zero form is a function
f € C*°(X) having the property d f = 0, and if X is connected the only such functions
are constants.

149
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(2) If X is connected and non-compact H(X) = 0. To see this, note that if f is in C$°(X)
and X is non-compact, f has to be zero at some point, and hence ifd f = 0, then f has
to be identically zero.

(3) If X is n-dimensional,

X)) =0kX)=0
for k < 0 or k > n, hence
H*(X) =HX) =0
fork <Oork > n.
(4) If X is an oriented, connected n-manifold, the integration operation is a linear map

(5.1.1) L: ONX)—R

and, by [[Theorem 4.8.2}, the kernel of this map is B}'(X). Moreover, in degree n, Z"(X) =
0OF(X) and hence by the definition of H' i‘(X ) as the quotient Zf(X) / Bf(X), we get from

(5-1-1) a bijective map
(512) I HI(X) = R.

In other words H?(X) = R.

(5) Let U be a star-shaped open subset of R”. In Exercises 2.6.1¥ to p.6.vi] we sketched a
proof of the assertion: For k > 0 every closed form w € Z*(U) is exact. Translating this
assertion into cohomology language, we showed that H*(U) = 0 for k > 0.

(6) LetU c R" be an open rectangle. In [Exercises 3.2.1V to B.2.vi] we sketched a proof of the
assertion: If w € Q’C‘(U) is closed and k is less than #, then w = dy for some (k- 1)-form
€ QF1(U). Hence we showed HX(U) = 0 for k < n.

(7) Poincaré lemma for manifolds: Let X be an n-manifold and w € ZK(X), k > 0 a closed
k-form. Then for every point p € X there exists a neighborhood U of p and a (k — 1)-
form p € QY (U) such that w = dp on U. To see this note that for open subsets of R”
we proved this result in and since X is locally diffeomorphic at p to an open
subset of R” this result is true for manifolds as well.

(8) Let X be the unit sphere S” in R**!, Since §" is compact, connected and oriented H%(S") =
H"(S") =R.

We will show that for k #,0,n
H*SM =0.

To see this let w € QF(S") be a closed k-form and let p=1(0,...,0,1) € S” be the “north
pole” of §”. By the Poincaré lemma there exists a neighborhood U of pin §” andak—1-
form u € QX' (U) with w = du on U. Let p € C°(U) be a “bump function” which is
equal to one on a neighborhood U;, of U in p. Then

(5.1.3) w, =w-—dpu

is a closed k-form with compact support in §” ~ {p}. However stereographic projection
gives one a diffeomorphism

¢: R" — 5"~ {p}

(see [Exercise 5.1.]), and hence ¢*w, is a closed compactly supported k-form on R” with
support in a large rectangle. Thus by (5.1.3) ¢*w = dv, for some v € Q5 1(R"), and by
613

(5.1.4) w=d(pp+ ("))
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with (¢71)*v € ng‘l(S” ~{p}h c Qk(S™), so we've proved that for 0 < k < nevery closed
k-form on S” is exact.

We will next discuss some “pullback” operations in de Rham theory. Let X and Y be
manifolds and f: X — Y a C*® map. For w € Q¥(Y), df*w = f*dw, so if w is closed, f*w
is as well. Moreover, if w = dy, f*w = df*u, so if w is exact, f*w is as well. Thus we have
linear maps

o ZkY) - ZMX)
and
(5.1.5) f: BEY) - BA(X)
and composing f*: Z*(Y) — Z*(X) with the projection

m: ZKX) - ZK(X)/B*(X)

we get a linear map
(5.1.6) ZKY) - HNX) .
In view of (5.1.5), B¥(Y) is in the kernel of this map, so by one gets an

induced linear map

4 HY(Y) - H*(Y),
such that %o 77 is the map (5.1.4). In other words, if w is a closed k-form on Y, then f* has
the defining property

(5.1.7) fHol = [f*w].

This “pullback” operation on cohomology satisfies the following chain rule: Let Z be a
manifold and g: Y — Z a C® map. Then if w is a closed k-form on Z

(geflw=f"g'w
by the chain rule for pullbacks of forms, and hence by (.1.7)
(5.1.8) (g° HYw] = fHg*w]).

The discussion above carries over verbatim to the setting of compactly supported de
Rham cohomology: If f: X — Y is a proper C® map f induces a pullback map on coho-
mology

fH: HEY) - HYX)
andif f: X - Yand g: Y — Z are proper C* maps then the chain rule (5.1.§) holds for
compactly supported de Rham cohomology as well as for ordinary de Rham cohomology.
Notice also that if f: X — Y is a diffeomorphism, we can take Z to be X itself and g to be
£, and in this case the chain rule tells us that the induced maps maps f*: H*(Y) — H*(Y)
and fIi : H’C‘(Y) — Hf(X) are bijections, i.e., H*(X) and H*(Y) and Hf(X) and H’C‘(Y) are
isomorphic as vector spaces.

We will next establish an important fact about the pullback operation f*; we'll show
that it's a homotopy invariant of f. Recall that two C* maps

(5.1.9) fofir XY
are homotopic if there exists a C* map
F: Xx[0,1] »Y
with the property F(p,0) = f,(p) and F(p,1) = f;(p) for all p € X. We will prove:
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Theorem 5.1.10. If the maps (5.1.9) are homotopic then, for the maps they induce on coho-
mology

(5.1.11) féI :fln.

Our proof of this will consist of proving this for an important special class of homo-
topies, and then by “pullback” tricks deducing this result for homotopies in general. Let v
be a complete vector field on X and let

i X—>X, —oc0o<t<oo
be the one-parameter group of diffeomorphisms that v generates. Then
F:Xx[0,1] - X, F(p,t) = fi(p),

is a homotopy between f;, and f;, and we’ll show that for this homotopic pair (f.1.11) is
true.

Proof. Recall that for w € QkK(X)
d .,
arl’e

and more generally for all t we have

=L, = ndw + di,w
#=0

d oy do |
lie= gfie| =g el

d * L%
=£ftfsw

= ffL,w
= ffdw+dff L.

*d *
=O—ff A

s s=0

Thus if we set
Quw = fl1,w

we get from this computation:

d s

af w = th + Qtdw
and integrating over 0 < f < I:

(5.1.12) filw— fyfw=dQuw + Qdw
where Q: QF(Y) — QF1(X) is the operator

1
Quw = Jo Q.wdt .

The identity (5.1.11)) is an easy consequence of this “chain homotopy” identity. If w is in
ZK(X), then dw = 0, so

filw— fow=dQuw
and

o) - fllo) = [ffo- ffw] =0. O

We'll now describe how to extract from this result a proof of for any
pair of homotopic maps. We'll begin with the following useful observation.
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Proposition 5.1.13. If f, f;: X — Y are homotopic C* mappings, then there exists a C*°
map
F: XxR—-Y

such that the restriction of F to X x [0, 1] is a homotopy between f, and f.

Proof. Let p € Ci°(R), p = 0, be a bump function which is supported on the interval [4—11, %]

and is positive at t = % Then
t
_ LOO p(s)ds
(oe]
f_oo p(s)ds
is a function which is zero on the interval (—oo, 4—11], is 1 on the interval [%, 00), and, for all ¢,
lies between 0 and 1. Now let

x(@®)

G: Xx[0,1] =Y
be a homotopy between f; and f; and let F: X x R — Y be the map
(5.1.14) F(x,t) = G(x, (1)) .
This is a C* map and since
F(x,1) = G(x, x(1)) = G(x,1) = f1(x),

and
F(x’ 0) = G(X, X(O)) = G(x’ 0) = fO(x) >
it gives one a homotopy between f; and f;. O

We're now in position to deduce from the version of this result that we

proved above.
Proof of [[heorer 5.1.19. Let
i XXR—->XxR, —oco<t<o0
be the one-parameter group of diffeomorphisms
Y (x,a) = (x,a +1t)

and let v = 9/0t be the vector field generating this group. For a k-form u € QF(X x R), we
have by (5.1.12)) the identity

YiH—You=dlu+Tdy

where

1
(5.1.15) T'y= L Vi (tajaept)dlt -

Now let F, as in Proposition 5.1.13, be a C* map

F: XxR—-Y

whose restriction to X x [0, 1] is a homotopy between f; and f;. Then for w € Q¥(Y)
Yy F*w -y F*w = dI'F*u+ I'F*du
by the identity (5.1.14). Now let 1: X — X x R be the inclusion p — (p,0), and note that
(Foyren(p) = F(p,1) = fi(p)

and

(F oy 1)(p) = F(p,0) = fo(p)
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ie,
Foyoi=f
and
Foyyor=fo.
Thus

o -y Fro) = flo- fio
and on the other hand by (5.1.19)
FPfFrw -y F*w) = di'TF*w+ " TF*dw .
Letting
Q: O4Y) - ()
be the “chain homotopy” operator
(5.1.16) Qw:=1"TFw
we can write the identity above more succinctly in the form
(5.1.17) fifw- fyw=dQw + Qdw

and from this deduce, exactly as we did earlier, the identity (5.1.11)).
This proof can easily be adapted to the compactly supported setting. Namely the oper-

ator (5.1.16) is defined by the integral

1
(5.1.18) Quw = L Y (1o Frw)dt .

Hence if w is supported on a set A in Y, the integrand of (f.1.17) at t is supported on the set
(5.1.19) {pe X[F(p,t) e A},
and hence Qu is supported on the set

n(F~1(A) N X x [0,1])

where 7r: X x [0, 1] — X is the projection map 7(p,t) = p. [l

Suppose now that f, and f; are proper mappings and
G: Xx[0,1] »Y

a proper homotopy between f; and f;, i.e., a homotopy between f, and f; which is proper
as a C*® map. Then if F is the map (5.1.14) its restriction to X x [0, 1] is also a proper map,
so this restriction is also a proper homotopy between f, and f,. Hence if w is in Q¥(Y) and
A is its support, the set (f.1.19) is compact, so Qu is in Q’C‘_I(X). Therefore all summands
in the “chain homotopy” formula (5.1.17) are compactly supported. Thus we've proved:

Theorem 5.1.20. If f,, f;: X — Y are proper C* maps which are homotopic via a proper
homotopy, the induced maps on cohomology

fa b HEY) - HEOO

are the same.
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We'll conclude this section by noting that the cohomology groups H*(X) are equipped
with a natural product operation. Namely, suppose w; € QX (X), i = 1,2, is a closed form
and that ¢; = [w;] is the cohomology class represented by w;. We can then define a product
cohomology class ¢, - ¢, in H¥1*K2(X) by the recipe
(5.1.21) €1 ¢ = [w Aw,].

To show that this is a legitimate definition we first note that since w, is closed
d(w, Aw,) = dw, Aw, + (-1)M1w, A dwo, =0,

s0 w; A w, is closed and hence does represent a cohomology class. Moreover if we replace
w; by another representative w; + dy; = w' of the cohomology class ¢;, then

Wi Awy =w; Aw, + dyy Aw, .
But since w, is closed,

duy Aw, = d(py Awy) + (1R Adw,
=d(p N w,)

S0

Wl Awy = 0] Aw, +d(py A w,)
and [w] A w,] = [w; A w,]. Similarly (§.1.21)) is unchanged if we replace w, by w, + dy,,
so the definition of (5.1.21)) depends neither on the choice of w; nor w, and hence is an

intrinsic definition as claimed.
There is a variant of this product operation for compactly supported cohomology classes,

and we'll leave for you to check that it’s also well defined. Suppose ¢, is in H5(X)and ¢, isin
H*(X) (i.e., ¢, is a compactly supported class and c, is an ordinary cohomology class). Let
w; be a representative of ¢, in OF (X) and w, a representative of ¢, in %2(X). Then w, A w,

is a closed form in QF**2(X) and hence defines a cohomology class

(5.1.22) €16 = [w) A w,y]

in HE™ (X). We'll leave for you to check that this is intrinsically defined. We'll also leave
for you to check that (5.1.22) is intrinsically defined if the roles of ¢; and c, are reversed, i.e.,

ifc; isin H*(X) and ¢, in Hfz(X) and that the products (5.1.21) and (.1.22)) both satisfy

¢ -y = (~1)Fkag, ¢ .
Finally we note that if Y is another manifold and f: X — Y a C* map then for w, € Q*1(Y)
and w, € Qk(Y)
frloynwy) = ffop A frw,
by (p.6.8) and hence if w; and w, are closed and ¢; = [w;], then

(5.1.23) fﬁ(cl 6) = fﬁﬁ 'fncz .
Exercises for

Exercise 5.1.i (stereographic projection). Let p € S§” be the point p = (0, ...,0, 1). Show
that for every point x = (xy, ..., x,,;) of S ~ {p} the ray

tx+(1-t)p, t>0

intersects the plane x,,,; = 0 in the point

p(x) = [CT.

~ Xn+1
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and that the map y: §" ~ {p} — R" is a diffeomorphism.
Exercise 5.1.ii. Show that the operator
Q: 24Y) - 1)
in the integrand of pquation (5.1.18), i.e., the operator
Qi = " y{ (1g/50) F*

has the following description. Let p be a point of X and let g = f,(p). The curve s — f,(p)
passes through g at time s = t. Let u(q) € T,Y be the tangent vector to this curve at £. Show
that

(5.1.24) (Qu)(p) = (df ) ptoig@q -

Exercise 5.1.iii. Let U be a star-shaped open subset of R”, i.e., a subset of R” with the prop-
erty that for every p € U theray {tp|0 <t <1}isinU.

(1) Let v be the vector field
- 0
V=) X;—
i:zl '0x;
and y,: U — U the map p + tp. Show that for every k-form w € Q¥(U)
w = dQw + Qdw

where

voodt
Quw = J Vi lyw— .
0 t

(2) Show thatifw = ) ; a;(x)dx; then
(5.1.25) Qu = Z <J fk_l(—l)’_lx,-ral(tx)dt) dx;.
Lr
wheredx; =dx; N+ A 3;1} A-eedxg,

Exercise 5.1.iv. Let X and Y be oriented connected n-manifolds, and f: X — Y a proper
map. Show that the linear map L defined by the commutative square

ftt
H{(Y) — H{(X)

Iylz {Ix

is multiplication by deg( f).

Exercise 5.1.v. A homotopy equivalence between X and Y is a pair of maps f: X — Y and
g:Y — Xsuchthatgeo f = idy and f o g = idy. Show that if X and Y are homotopy
equivalent their cohomology groups are the same “up to isomorphism’, i.e., f and g induce
inverse isomorphisms fII - H*(Y) - H*(X) and g11 . H*(X) — H*(Y).

Exercise 5.1.vi. Show that R” \ {0} and $""! are homotopy equivalent.

Exercise 5.1.vii. What are the cohomology groups of the n-sphere with two points deleted?
Hint: The n-sphere with one point deleted is homeomorphic to R".
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Exercise 5.1.viii. Let X and Y be manifolds and f,, f;, f,: X — Y three C* maps. Show
that if f; and f; are homotopic and f; and f, are homotopic then f; and f, are homotopic.
Hint: The homotopy (B.1.7) has the property that

F(p,t) = fi(p) = fo(p)
for0<t< 411 and
F(p.t) = f(p) = fi(p)
for % < t < 1. Show that two homotopies with these properties: a homotopy between f;

and f; and a homotopy between f; and f,, are easy to “glue together” to get a homotopy
between f; and f,.

Exercise 5.1.ix.

(1) Let X be an n-manifold. Given points py, p;, P, € X, show that if p, can be joined to p,
byaC™ curvey,: [0,1] — X, and p, canbejoined to p, byaC® curvey,: [0,1] — X,
then p, can be joined to p, by a C* curve, y: [0,1] — X.

Hint: A C*™ curve, y: [0,1] — X, joining p, to p, can be thought of as a homotopy
between the maps
Ypo : * > X, * > P
and
Vp, : * > X, x> py
where # is the zero-dimensional manifold consisting of a single point.

(2) Show that if a manifold X is connected it is arc-wise connected: any two points can by

joined by a C* curve.

Exercise 5.1.x. Let X be a connected n-manifold and w € Q!(X) a closed one-form.

(1) Show thatif y: [0,1] — X is a C*™ curve there exists a partition:
0=agy<a;<--<a,=1
of the interval [0, 1] and open sets U, ..., U, in X such that y ([a;_;,4;]) € U; and such
that w|Ui is exact.
(2) In part () show that there exist functions f; € C*(U;) such that wly, = d f; and

fi(¥(@)) = fir (v(ay)).
(3) Show that if p; and p, are the end points of y

1
1) = filpo) = | 7.

(4) Let
(5.1.26) Ps: [0,1] > X, 0<s<1
be a homotopic family of curves with y,(0) = p, and y,(1) = p;. Prove that the integral

1
J ysw
0
is independent of s,.
Hint: Let sy be a point on the interval, [0, 1]. For y = y, choose a;’s and f;’s as in
parts (a)-(b) and show that for s close to sy, y;[a;_,a;] € U;.

(5) A connected manifold X is simply connected if for any two curves y,,y;: [0,1] — X
with the same end-points p, and p;, there exists a homotopy (5.1.22) with y,(0) = p,
and y,(1) = p,,i.e., y, can be smoothly deformed into y; by a family of curves all having
the same end-points. Prove the following theorem.
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Theorem 5.1.27. If X is simply-connected, then H'(X) = 0.

Exercise 5.1.xi. Show that the product operation (5.1.21)) is associative and satisfies left and
right distributive laws.

Exercise 5.1.xii. Let X be a compact oriented 2n-dimensional manifold. Show that the map
B: H"(X) x H*(X) — R
defined by
Bl(cy,¢5) = Ix(c; - ¢3)

is a bilinear form on H"(X) and that B is symmetric if # is even and alternating if » is odd.

5.2. The Mayer-Vietoris Sequence

In this section we'll develop some techniques for computing cohomology groups of
manifolds. (These techniques are known collectively as “diagram chasing” and the mastering
of these techniques is more akin to becoming proficient in checkers or chess or the Sunday
acrostics in the New York Times than in the areas of mathematics to which they’re applied.)
Let C° C',C?, ... be vector spaces and d: C' — C'™*! a linear map. The sequence of vector
spaces and maps

(5.2.1) [N o IR I

is called a cochain complex, or simply a complex, if d* = 0, i.e., if for a € C*, d(da) = 0. For
instance if X is a manifold the de Rham complex

(5.2.2) QX - 0'(x) L ) b

is an example of a complex, and the complex of compactly supported de Rham forms
(5.2.3) Q°x) -5 alx) L A(x) L

is another example. One defines the cohomology groups of the complex (5.2.1)) in exactly
the same way that we defined the cohomology groups of the complexes (5.2.2)) and (5.2.3)

in 5.1 Let

ZF = ker(d: C* - C**) ={aeCF|da=0}
and

Bk — dckfl

i.e., let a be in BX if and only if a = db for some b € C*"!. Then da = d?b = 0, s0 B* is a
vector subspace of Z¥, and we define H*(C) — the k'™ cohomology group of the complex
(B.2:1) — to be the quotient space
(5.2.4) H*(C) = ZF/Bk .
Given ¢ € Z¥ we will, as in §5.1, denote its image in H*(C) by [c] and we'll call ¢ a represen-

tative of the cohomology class [c].
We will next assemble a small dictionary of “diagram chasing” terms.

Definition 5.2.5. Let V;,,V},V,, ... be vector spaces and «;: V; — V; linear maps. The
sequence

%o % %)
Vo — Vi — V, — .-

is an exact sequence if, for each i, the kernel of «;, ; is equal to the image of «;.
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For example the sequence (5.2.1) is exact if Z; = B; for all i, or, in other words, if
H'(C) = 0 for all i. A simple example of an exact sequence that we'll encounter a lot below
is a sequence of the form

ay x
00—V, —V, >V, —0,
i.e., a five term exact sequence whose first and last terms are the vector space, V, =V, = 0,

and hence ) = a3 = 0. This sequence is exact if and only if the following conditions hold:

(1) « is injective,
(2) the kernel of «, equals the image of «, and
(3) « is surjective.

We will call an exact sequence of this form a short exact sequence. (We'll also encounter
a lot below an even shorter example of an exact sequence, namely a sequence of the form

0_)V1LV2_)0.

This is an exact sequence if and only if «, is bijective.)
Another basic notion in the theory of diagram chasing is the notion of a commutative
diagram. The square diagram of vector spaces and linear maps

AN

A
C

—>gD

-

commutesif jo f = goi, and a more complicated diagram of vector spaces and linear maps
like the diagram

Al—)AZ_)A:‘}

R

B, —— B, —— B,

1]

Cl—)C2—>C3

commutes if every sub-square in the diagram commutes.
We now have enough “diagram chasing” vocabulary to formulate the Mayer-Vietoris
theorem. For r = 1,2, 3 let

d

(5.2.6) Cc? % C! d d

—)Cf—)

be a complex and, for fixed k, let

(5.2.7) 0—ckLckLck—o
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be a short exact sequence. Assume that the diagram below commutes:

00—kt ikt T,k 0
|
d d d
l
0——C —i sk —ji—ck——o
I
d d d
l
0 Cllc+1 i C’2c+1 - C’3€+1 0

That is, assume that in the left hand squares, di = id, and in the right hand squares, dj = jd.
The Mayer-Vietoris theorem addresses the following question: If one has information

about the cohomology groups of two of the three complexes (5.2.9), what information about
the cohomology groups of the third can be extracted from this diagram? Let us first observe
that the maps i and j give rise to mappings between these cohomology groups. Namely, for
r = 1,2,3 let Z¥ be the kernel of the map d: C¥ — C*!, and BF the image of the map
d: CF! — CF. Since id = di, i maps Bf into BY and Z¥ into Z%, therefore by (5.2.9) it gives
rise to a linear mapping

iy: HX(C)) - HX(G,) .
Similarly since jd = dj, j maps Bj into B and Z% into Z%, and so by (5.2.4) gives rise to a
linear mapping

jy: HXC,) — HNG;) .
Moreover, since j o i = 0 the image of iy is contained in the kernel of j;. We'll leave as an
exercise the following sharpened version of this observation:

Proposition 5.2.8. The kernel of j; equals the image of iy, i.e., the three term sequence

(5.2.9) HK(C,) -5 HNC,) 5 HK(Cy)
is exact.

Since (5.2.7) is a short exact sequence one is tempted to conjecture that (5.2.9) is also
a short exact sequence (which, if it were true, would tell us that the cohomology groups
of any two of the complexes (5.2.6) completely determine the cohomology groups of the
third). Unfortunately, this is not the case. To see how this conjecture can be violated Let us
try to show that the mapping j; is surjective. Let cX be an element of Z% representing the
cohomology class [c5] in H3(C;). Since (5.2.7) is exact there exists a c§ in C§ which gets
mapped by j onto c&, and if c§ were in Z% this would imply

jylc5) = [jc5] =[],
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i.e., the cohomology class [c5] would be in the image of jy- However, since there’s no reason

for ¢k to be in Z, there’s also no reason for [c5] to be in the image of jg- What we can say,

however, is that jdc§ = djc§ = dck = 0 since & is in Z%. Therefore by the exactness of

(5-2-7) in degree k + 1 there exists a unique element ¢<*! in C¥*! with proper
g q prop
(5.2.10) dck = ickt!

Moreover, since
0 = d(dck) = di(cF*?) = idck!
and i is injective, dcf*! = 0, i.e,,

(5 2. 11) k+1 Zk+1

Thus via (5.2.19) and (5.2.11)) we've converted an element c§ of Z% into an element cf*! of
Zk+1 and hence set up a correspondence

(5.2.12) ke zk - ke Zk

Unfortunately this correspondence isn't, strictly speaking, a map of Z§ into 7K1 the cf in
(-2.12)) isn't determined by c& alone but also by the choice we made of c&. Suppose, how-
ever, that we make another choice of a c§ with the property j(ck) = c&. Then the difference
between our two choices is in the kernel of j and hence, by the exactness of (5.2.6) at level
k, is in the image of i. In other words, our two choices are related by

(Cz)new = (Clzc)old + I(le)
for some c]f in C¥, and hence by (5.2.1d)
(Cllﬁl)new = (CIICJrl)old + dCIf .

Therefore, even though the correspondence (5.2.12)) isn’t strictly speaking a map it does give
rise to a well-defined map

Zk Hk+1(cl) , C3 [C3+1]

Moreover, if ¢§ is in B’;, ie.,ck =dck! for some c3 Le ckt then by the exactness of (5.2.6)
atlevel k—1,c5™ = j(c5™!) for some ¢! € C¥' and hence ¢k = j(dc5=2). In other words we
can take the c§ above to be dc5~! in which case the cf*! in equation (F.2.19) is just zero. Thus
the map (f.2.12) maps B to zero and hence by gives rise to a well-defined
map
8: H*(C;) —» H*'(C))

mapping [c§] — [cF*!]. We will leave it as an exercise to show that this mapping measures
the failure of the arrow j; in the exact sequence (g.2.9) to be surjective (and hence the failure
of this sequence to be a short exact sequence at its right end).

Proposition 5.2.13. The image of the map jy : H*(C,) — HN(C;) is equal to the kernel of
the map 8 : H*(C;) — H*(C)).

Hmt Suppose that in the correspondence (m) &l in B, Then k1 = dck for
some c¥ in C¥. Show that j(c5 — i(cK)) = ¥ and d(c§ - i(cF)) = 0, i.e., c§ - 1(c1) is in Z and
hence Js [c’zc - i(c’f)] = [c§].

Let us next explore the failure of the map iy : H k1 (C) - H kel (C,), to be injective. Let

&1 be in Z¥*! and suppose that its cohomology class, [c¥*1],
Thls translates into the statement

(5.2.14) i(ckHly = dck

gets mapped by i, into zero.
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for some c5 € C5. Moreover since dc = i(ck*?), j(dck) = 0. But if
(5:2.15) c§ = j(c5)

then dck = dj(c5) = j(dck) = ji(cF*1)) = 0, s0 ¢ is in Z%, and by (5.2.19), (5-2.19) and the
definition of §

[ck*1] = 8[ch].
In other words the kernel of the map iy : H kel (C)) - H el (C,) is contained in the image of

the map 8 : H*(C;) — H*"!(C,). We will leave it as an exercise to show that this argument
can be reversed to prove the converse assertion and hence to prove

Proposition 5.2.16. The image of the map 8: H*(C,) — H"*\(C,) is equal to the kernel of
the map iy : H**1(C,) —» H*!(C,).

Putting together the Propositions 5.2.8, 5.2.13 and .2.16 we obtain the main result of
this section: the Mayer-Vietoris theorem. The sequence of cohomology groups and linear
maps

(5.2.17) PN H*C,) R Hk(Cz) LN H*(C;) 9, HY(C)) N
is exact.

Remark 5.2.18. To see an illuminating real world example of an application of these ideas,
we strongly recommend that our readers stare at with gives a method for com-
puting the de Rham cohomology of the n-sphere S” in terms of the de Rham cohomologies
of 8" ~{(0, ...,0,1)} and 8" ~ {(0, ..., 0, —1)} via an exact sequence of the form (5.2.17).

33

Remark 5.2.19. In view of the “:--™s this sequence can be a very long sequence and is com-
monly referred to as the long exact sequence in cohomology associated to the short exact
sequence of complexes (5.2.7).

Before we discuss the applications of this result, we will introduce some vector space
notation. Given vector spaces V; and V,, we'll denote by V; @ V, the vector space sum of V;
and V,, i.e., the set of all pairs

(U uy) » u; €V,
with the addition operation
(up, uy) + (V) +0,) = (U + v, uy +0,)
and the scalar multiplication operation
Auy,u,) = (Auy, Au,) .

Now let X be a manifold and let U; and U, be open subsets of X. Then one has a linear map

i: QKU UU,) - OFU) @ OF(U,)
defined by
(5.2.20) w — (wly,, wly,)
where wly, is the restriction of w to U;. Similarly one has a linear map

J: Q" Uy) e MU, - XU, nU,)
defined by

(wy, wy) wllUanz - ‘U2|U1r1U2 .
We claim:
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Theorem 5.2.21. The sequence
0 — ONU, NU,) -5 0FU) 8 QXU,) -5 KU, nU,) — 0.

is a short exact sequence.

Proof. If the right hand side of (5.2.2d) is zero, w itself has to be zero so the map (5.2.2d) is
injective. Moreover, if the right hand side of (5.2)) is zero, w; and w, are equal on the overlap,
U, NU,, so we can glue them together to get a C* k-form on U, U U, by setting w = w, on
U, and w = w, on U,. Thus by (5.2:29) i(w) = (w;, w,), and this shows that the kernel of j is
equal to the image of i. Hence to complete the proof we only have to show that j is surjective,
i.e., that every form w on *(U, NU,) can be written as a difference, w, [U; NU, — w,|U; NU,,
where w, is in Q*(U,) and w, in in Q¥(U,). To prove this we'll need the following variant of
the partition of unity theorem.

Theorem 5.2.22. There exist functions, ¢, € CP°(U, UU,), « = 1,2, such that support ¢, is
contained in U, and ¢, + ¢, = 1.

Before proving this Let us use it to complete our proof of [Theorem 5.2.21. Given w €
QKU NU,) let

, U, nU.
(5.2.23) w, = 20, onU, 2

0, onU; ~U, N0,
and let

—-b;w, onU, NU.
(5.2.24) w, = 2 ! 2

0, OnUz\Uanz.

Since ¢, is supported on U, the form defined by (§.2:23) is C*® on U, and since ¢, is sup-
ported on U, the form defined by (5.2:24) is C* on U, and since ¢; + ¢, = 1, w; — w, =
(¢ +¢)w =won U, NU,. O

Proof of [Theorem 5.2.24. Let p; € Cg°(U, UU,),i = 1,2,3, ... be a partition of unity subordi-
nate to the cover {U;, U,} of U; UU, and let ¢; be the sum of the p;’s with support on U; and

¢, the sum of the remaining p;s. It’s easy to check (using part (f) of Theorem 4.6.1)) that ¢,

is supported in U,, and (using part (f) of [[heorem 4.6.1)) that ¢, + ¢, = 1. O
Now let
(5.2.25) 0—ct -4l -4 4,

be the de Rham complex of U; U U,, let

(5.2.26) 0— -4 ¢l -4, 24,
be the de Rham complex of U; N U,, and let
(5.2.27) 0—c -4l 424,

be the vector space direct sum of the de Rham complexes of U; and U,, i.e., the complex
whose k' term is

Ck = QK U)) @ QO (U,)
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with d: C5 — C5*! defined to be the map d(u;, u,) = (duy, du,). Since CK = QX (U, U U,)
and C¥ = QF(U, N U,) we have, by [Theorem 5.2.21, a short exact sequence
0 ckck ko,
and it’s easy to see that i and j commute with the d’s:
di=idanddj = jd .

Hence we're exactly in the situation to which Mayer—Vietoris applies. Since the cohomology
groups of the complexes (5.2.29) and (.2.26) are the de Rham cohomology groups H k U, u
U,) and H*(U, N U,), and the cohomology groups of the complex (5.2.27) are the vector

space direct sums, H k U)eH k(UZ), we obtain from the abstract Mayer-Vietoris theorem,
the following de Rham theoretic version of Mayer-Vietoris.

Theorem 5.2.28. LettingU = U, UU, and V = U, N U, one has a long exact sequence in de
Rham cohomology:

o 2 HRUY 25 HEUY) @ HEU,) 25 HEV) -5 HELYU) 2 -

This result also has an analogue for compactly supported de Rham cohomology. Let

(5.2.29) i: QKU nU,) - HYU) @ QFU,)
be the map
i(w) = (w;, w,)
where
(5.2.30) w0 = {w, on U nU,
0, on U~U/NU,.

(Since w is compactly supported on U; N U, the form defined by isaC®
form and is compactly supported on U;.) Similarly, let

j: QLU @ OFHU,) - QEU, ULy
be the map
Jj(wy, wy) = @) — @,
where:

~ _ Jw, on U

@i {0, on (U,UU,)-U,.

As above it’s easy to see that i is injective and that the kernel of j is equal to the image of i.
Thus if we can prove that j is surjective we’ll have proved

Theorem 5.2.31. The sequence
0 — ONU, NU,) -5 0kUy) @ QFU,) -5 kU, nU,) — 0.
is a short exact sequence.

Proof. To prove the surjectivity of j we mimic the proof above. Given w € QX(U, UU,), let

W = 91’1‘0|U1
and
Wy = —¢pwly, -

Then by (5.2.3d) we have thatw = j(w,, w,). O
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Thus, applying Mayer-Vietoris to the compactly supported versions of the complexes
(5-2.4), we obtain the following theorem.

Theorem 5.2.32. LettingU = U, UU, and V = U, N U, there exists a long exact sequence in
compactly supported de Rham cohomology

w2 HRU) S HEU) @ HYWU,) 2 BEV) - BRMYU) S

Exercises for
Exercise 5.2.i. Prove Proposition 5.2.8.

Exercise 5.2.ii. Prove Proposition 5.2.13.

Exercise 5.2.iii. Prove [Proposition 5.2.16.

Exercise 5.2.iv. Show that if U;,U, and U; N U, are non-empty and connected the first
segment of the Mayer—Vietoris sequence is a short exact sequence

0 — HU, UU,) - H(U,) @ H'(U,) 2% HO(U, NU,) — 0.

Exercise 5.2.v. Let X = §" and let U, and U, be the open subsets of S” obtained by removing

from S” the points, p; = (0,...,0,1) and p, = (0, ...,0,-1).

(1) Using stereographic projection show that U; and U, are diffeomorphic to R".

(2) Show that U, UU, = S" and U, NU, is homotopy equivalent to $"~*. (See [Exercise 5.1.1.)
Hint: U; N U, is diffeomorphic to R” ~ {0}.

(3) Deduce from the Mayer-Vietoris sequence that H'*(S") = H'(S"™!) fori > 1.

(4) Using part () give an inductive proof of a result that we proved by other means in

Section 5.1: H*(S") = 0 for 1 < k < .

Exercise 5.2.vi. Using the Mayer—Vietoris sequence of with cohomology re-
placed by compactly supported cohomology show that

{R, k=1,n

n

HYR"~ {0
el op 0, otherwise.

Exercise 5.2.vii. Let n a positive integer and let

fn—l

0—>V1i>V2—>~-—>Vn_1—>Vn—>0
be an exact sequence of finite dimensional vector spaces. Prove that Y\ dim(V}) = 0.

5.3. Cohomology of Good Covers

In this section we will show that for compact manifolds (and for lots of other manifolds
besides) the de Rham cohomology groups which we defined in are finite dimensional
vector spaces and thus, in principle, “computable” objects. A key ingredient in our proof of
this fact is the notion of a good cover of a manifold.

Definition 5.3.1. Let X be an n-manifold, and let U = {U,},.; be an open cover of X. Then
U is a good cover if for every finite set of indices ay, ..., . € I the intersection U, N-+-NU,,
is either empty or is diffeomorphic to R".

One of our first goals in this section will be to show that good covers exist. We will
sketch below a proof of the following.
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Theorem 5.3.2. Every manifold admits a good cover.
The proof involves an elementary result about open convex subsets of R”.

Proposition 5.3.3. A bounded open convex subset U c R" is diffeomorphic to R".

A proof of this will be sketched in [Exercises 5.3.1 to 5.3.1¥. One immediate consequence

of is an important special case of [[heorem 5.3.2.
Theorem 5.3.4. Every open subset U of R" admits a good cover.

Proof. For each p € U let U, be an open convex neighborhood of p in U (for instance an
e-ball centered at p). Since the intersection of any two convex sets is again convex the cover,

{Uy} peu is @ good cover by Proposition 5.3.3. O
For manifolds the proof of is somewhat trickier. The proof requires a

manifold analogue of the notion of convexity and there are several serviceable candidates.
The one we will use is the following. Let X ¢ RY be an n-manifold and for p € X let T,X

be the tangent space to X at p. Recalling that T, X sits inside TPRN and that
T,RY = {(p,v)[v e RV}

we get a map
TPX<—>TPRN - RN, (p,x) = p+x,
and this map maps T, X bijectively onto an n-dimensional “affine” subspace L, of RY which

is tangent to X at p. Let m,: X — L, be, as in the figure below, the orthogonal projection
of X onto Ly,

p ﬂp(x )

Figure 5.3.1. The orthogonal projection of X onto L,

Definition 5.3.5. An open subset V of X is convex if for every p € V themapm,: X — L,
maps V diffeomorphically onto a convex open subset of L,,.

It’s clear from this definition of convexity that the intersection of two open convex sub-
sets of X is an open convex subset of X and that every open convex subset of X is diffeo-
morphic to R”. Hence to prove it suffices to prove that every point p € X is
contained in an open convex subset U, of X. Here is a sketch of how to prove this. In the
figure above let B*(p) be the ball of radius & about p in L, centered at p. Since L, and T,
are tangent at p the derivative of 77, at p is just the identity map, so for & small 77, maps a

p
neighborhood, Uy; of p in X diffeomorphically onto B*(p). We claim:

Proposition 5.3.6. For ¢ small, U;; is a convex subset of X.
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Intuitively this assertion is pretty obvious: if g is in U; and ¢ is small the map

-1

B ue 4 p
P p q

is to order &* equal to the identity map, so it’s intuitively clear that its image is a slightly
warped, but still convex, copy of B*(p). We won't, however, bother to write out the details
that are required to make this proof rigorous.

A good cover is a particularly good “good cover” if it is a finite cover. We'll codify this
property in the definition below.

Definition 5.3.7. An n-manifold X is said to have finite topology if X admits a finite cov-
ering by open sets Uy, ..., Uy with the property that for every multi-index, I = (i}, ..., i),
1<i, <i, - <ig <N, the set

(5.3.8) Up=U, n---nU,
is either empty or is diffeomorphic to R".

If X is a compact manifold and U = {U,},.; is a good cover of X then by the Heine-
Borel theorem we can extract from U a finite subcover Uy, ..., Uy, where

Uy =U,,, forap,..,ay €1,
hence we conclude:
Theorem 5.3.9. Every compact manifold has finite topology.

More generally, for any manifold X, let C be a compact subset of X. Then by Heine-
Borel we can extract from the cover U a finite subcollection Uy, ..., Uy, where

Ui=U,, foray,...ay €1,
that covers C, hence letting U := U, U -+ U Uy, we've proved:

Theorem 5.3.10. If X is an n-manifold and C a compact subset of X, then there exists an open
neighborhood U of C in X with finite topology.

We can in fact even strengthen this further. Let U, be any open neighborhood of C in
X. Then in the theorem above we can replace X by U to conclude:

Theorem 5.3.11. Let X be a manifold, C a compact subset of X, and Uy an open neighborhood
of C in X. Then there exists an open neighborhood U of C in X, U contained in Uy, so that U
has finite topology.

We will justify the term “finite topology” by devoting the rest of this section to proving.

Theorem 5.3.12. Let X be an n-manifold. If X has finite topology the de Rham cohomology
groups H(X), for k = 0,...,n, and the compactly supported de Rham cohomology groups
HX(X), for k = 0,...,n are finite dimensional vector spaces.

The basic ingredients in the proof of this will be the Mayer-Vietoris techniques that we
developed in and the following elementary result about vector spaces.

Lemma 5.3.13. Let V|, V,, and V; be vector spaces and
B
(5.3.14) Vi =5V, =V,

an exact sequence of linear maps. Then if V| and V5 are finite dimensional, so is V.
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Proof. Since Vj is finite dimensional, the im(f3) is of finite dimension k. Hence there exist
vectors vy, ..., U € V, such that

im(f) = span(B(vy), ..., B(vy)) -

Nowletv € V,. Then 3(v) is a linear combination S(v) = Zle ¢;B(v;), wherecy, ..., ¢ €
R. So

(5.3.15) v=v- Zcivi

is in the kernel of 3 and hence, by the exactness of (5.3.14), in the image of . But V; is finite
dimensional, so im(«) is finite dimensional. Letting vy, ..., v, be a basis of im(«) we can
by (5.3.15)) writt vasasumv = )", ¢;v;. In other words vy, ..., v,,, is a basis of V. O
Proof of [[heorem 5.3.4. Our proof will be by induction on the number of open sets in a good
cover of X. More specifically, let

(Z/[ = {Ul’ ""UN}

be a good cover of X. If N = 1, X = U, and hence X is diffeomorphic to R", so H*(X) = 0
for k > 0, and H(X) = R, so the theorem is certainly true in this case. Let us now prove
it’s true for arbitrary N by induction. Let U := U, U --- U Uy. Then U is a submanifold of X,
and, thinking of U as a manifold in its own right, {U,, ..., Uy} is a good cover of U involving
only N — 1 sets. Hence the cohomology groups of U are finite dimensional by the induction
hypothesis. The manifold U N U, has a good cover given by {U N U,, ...,U N Uy}, so by the
induction hypothesis the cohomology groups of UNU, are finite-dimensional. To prove that
the theorem is true for X we note that X = U; U U, and and the Mayer-Vietoris sequence
gives an exact sequence

H*'\(U, nU) - HFX) A, H*U,) ® H*(U) .

Since the right-hand and left-hand terms are finite dimensional it follows from
that the middle term is also finite dimensional. O

The proof works practically verbatim for compactly supported cohomology. For N =1
HE(X) = HE(Uy) = HERY)

so all the cohomology groups of H*(X) are finite in this case, and the induction “N - 1” =
“N” follows from the exact sequence

HEU)) ® HEU) 5 HEX) -2 HE'(U, nU).

Remark 5.3.16. A careful analysis of the proof above shows that the dimensions of the
vector spaces H*(X) are determined by the intersection properties of the open sets U;, i.e.,
by the list of multi-indices I for which th intersections (5.3.8) are non-empty.

This collection of multi-indices is called the nerve of the cover U, and this remark
suggests that there should be a cohomology theory which has as input the nerve of U and
as output cohomology groups which are isomorphic to the de Rham cohomology groups.
Such a theory does exist, and we further address it in §5.8. (A nice account of it can also be
found in [(3, Ch. 5]).
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Exercises for
Exercise 5.3.i. Let U be a bounded open subset of R”. A continuous function
y: U — [0, 00)

is called an exhaustion function if it is proper as a map of U into [0, 00); i.e., if, for every
a > 0,y '([0,a]) is compact. For x € U let

dx)=inf{|x-y||y e R"-U},
i.e., let d(x) be the “distance” from x to the boundary of U. Show that d(x) > 0 and that d(x)

is continuous as a function of x. Conclude that ¥, = 1/d is an exhaustion function.

Exercise 5.3.ii. Show that there exists a C* exhaustion function, ¢,: U — [0, 00), with the

property ¢, > w3 where v, is the exhaustion function in [Exercise 5.3..
Hints: Fori = 2,3, ... let

C={xeU|t<dx <}
and

U={xeU|X <dx) <51}
Let p; € C°(U;), p; = 0, be a “bump” function which is identically one on C; and let ¢, =
Yo epi+ 1
Exercise 5.3.iii. Let U be a bounded open convex subset of R” containing the origin. Show
that there exists an exhaustion function

y:U—-R, y(0)=1,

having the property that y is a monotonically increasing function of t along the ray, x,
0 <t <1, forall points x € U.
Hints:
» Let p(x), 0 < p(x) < 1, be a C* function which is one outside a small neighbor-
hood of the origin in U and is zero in a still smaller neighborhood of the origin.
Modify the function, ¢, in the previous exercise by setting ¢(x) = p(x)¢,(x) and
let
! ds
¥(x) = J $s0) B 41
0 S
Show thatfor0 <t <1

dy
—(tx) = ¢(tx)/t
o (tx) = ¢(tx)/
and conclude from that y is monotonically increasing along the

ray, tx,0 <t < 1.
» Show thatfor0 <e< 1,
y(x) = ed(y)

where y is a point on the ray, tx, 0 < ¢t < 1 a distance less than &|x| from X.
» Show that there exist constants, C, and C,, C; > 0 such that

Yl = L

(Take € to be equal to %d(x)/|x|.)
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Exercise 5.3.iv. Show that every bounded, open convex subset, U, of R” is diffeomorphic
toR".
Hints:

» Let y(x) be the exhaustion function constructed in and let
f:U—->R"

be the map: f(x) = y(x)x. Show that this map is a bijective map of U onto R".
» Show that forx e Uandv € R”

df)v=yx)v+dy,(v)x
and conclude that d f,, is bijective at x, i.e., that f is locally a diffeomorphism of a
neighborhood of x in U onto a neighborhood of f(x) in R".
> Putting these together show that f is a diffeomorphism of U onto R”.

Exercise 5.3.v. Let U C R be the union of the open intervals, k < x < k + 1, k an integer.
Show that U does not have finite topology.

Exercise 5.3.vi. Let V C R? be the open set obtained by deleting from R? the points, p, =
(0, n), for every integer n. Show that V does not have finite topology.

Hint: Let y,, be a circle of radius % centered about the point p,,. Using
and show that there exists a closed smooth one-form, w,, on V with the property that

_[y"wnzland_[men:Oform;&n.

Exercise 5.3.vii. Let X be an n-manifold and U = {U,,U,} a good cover of X. What are the
cohomology groups of X if the nerve of this cover is:

(1) {15 {2}

(2) {1} {2} {1,2}.

Exercise 5.3.viii. Let X be an n-manifold and U = {U;,U,,Us} a good cover of X. What
are the cohomology groups of X if the nerve of this cover is:

(1) {1}, {2}, {3}.

(2) {1}, {2} {3}, {1,2}.

(3) {1}, {2} {3}, {1,2}, {1, 3}

(4) {1}, {2}, {3}, {1,2}, {1,3}, {2, 3}.

(5) {1}, {2}, {3}, {1,2}, {1, 3}, {2,3}, {1,2,3}.

Exercise 5.3.ix. LetS! be the unit circle in R? parametrized by arc length: (x, y) = (cos 6, sin 6).
Let U, be the set: 0 < 6 < Z, U, the set: 7 < 6 < 2, and U; the set: - % < 0 < .

(1) Show that the U;’s are a good cover of S'.
(2) Using the previous exercise compute the cohomology groups of S'.

Exercise 5.3.x. Let S? be the unit 2-sphere in R®. Show that the sets
U; = {(x1,%5,%3) € S| x; >0}

i=1,2,3and
Ui = {(xl)xz)x3) € Sz |xl~_3 < 0} s
i =4,5,6, are a good cover of S>. What is the nerve of this cover?

Exercise 5.3.xi. Let X and Y be manifolds. Show that if they both have finite topology, their
product X x Y does as well.

Exercise 5.3.xii.
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(1) Let X beamanifoldandletU, ..., Uy, bea good cover of X. Show that U, xR, ..., Uy xR
is a good cover of X x R and that the nerves of these two covers are the same.

(2) ByRemarkss.3.16,
H*(X xR) = H*(X) .
Verify this directly using homotopy techniques.
(3) More generally, show that for all £ > 0
H*(X x R®) = H*(X)

(a) by concluding that this has to be the case in view of the Remark 5.3.16,
(b) and by proving this directly using homotopy techniques.

5.4. Poincaré duality

In this chapter we've been studying two kinds of cohomology groups: the ordinary de
Rham cohomology groups H and the compactly supported de Rham cohomology groups
HF. 1t turns out that these groups are closely related. In fact if X is a connected oriented
n-manifold and has finite topology, then H”¥(X) is the vector space dual of H*(X). We
give a proof of this later in this section, however, before we do we need to review some basic
linear algebra.

Given finite dimensional vector spaces V and W, a bilinear pairing between V and W
is a map

(5.4.1) B:VxW —>R

which is linear in each of its factors. In other words, for fixed w € W, the map
¢,: V>R, v Blv,w)

is linear, and for v € V, the map
¢,: W—>R, wm B(,w)

is linear. Therefore, from the pairing (5.4.1) one gets a map

(5.4.2) Lg: WoV*, we g,

and since £, + ¢, (v) = B(v,w; + w,) = €, 1y, (), this map is linear. We'll say that (5.4.1)
is a non-singular pairing if (5.4.2) is bijective. Notice, by the way, that the roles of V and
W can be reversed in this definition. Letting B¥(w, v) := B(v, w) we get an analogous linear
map

Lg::V — w*
and in fact
(5.4.3) (Lg: (0)(w) = (Lg(w))(v) = B(v,w) .
Thus if

p: Vo (V**

is the canonical identification of V with (V*)* given by the recipe

p)(€) = £(v)
forv € V and £ € V*, we can rewrite more suggestively in the form
(5.4-4) Lps = Ly

i.e., Lz and Ly are just the transposes of each other. In particular Ly is bijective if and only
if Lg; is bijective.
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Let us now apply these remarks to de Rham theory. Let X be a connected, oriented
n-manifold. If X has finite topology the vector spaces, HC"_k(X) and H*(X) are both finite
dimensional. We will show that there is a natural bilinear pairing between these spaces, and
hence by the discussion above, a natural linear mapping of H*(X) into the vector space dual
of H""1(X). To see this let ¢, be a cohomology class in H”¥(X) and ¢, a cohomology class
in H*(X). Then by (5.1.23) their product ¢, - ¢, is an element of H”(X), and so by (5.1.3) we
can define a pairing between c; and ¢, by setting
(5.4.5) B(cy,¢,) = Ix(cq - ¢cy) -

Notice thatifw; € Q?’k(X )and w, € QF(X) are closed forms representing the cohomology
classes ¢; and c,, respectively, then by (5.1.22)) this pairing is given by the integral

B(cy,¢,) = J w; A w, .
X
We'll next show that this bilinear pairing is non-singular in one important special case:
Proposition 5.4.6. If X is diffeomorphic to R" the pairing defined by (5.4.5) is non-singular.
Proof. To verify this there is very little to check. The vector spaces H*(R") and H" *(R")
are zero except for k = 0, so all we have to check is that the pairing
H*(X) x H'(X) - R

is non-singular. To see this recall that every compactly supported #n-form is closed and that
the only closed zero-forms are the constant functions, so at the level of forms, the pairing

(5-4.9) is just the pairing

Q' X)xR—>R, (wc) HCJ w,
b
and this is zero if and only if ¢ is zero or w is in Q"' (X). Thus at the level of cohomology
this pairing is non-singular. U
We will now show how to prove this result in general.
Theorem 5.4.7 (Poincaré duality). Let X be an oriented, connected n-manifold having finite
topology. Then the pairing (5.4.5) is non-singular.

The proof of this will be very similar in spirit to the proof that we gave in the last sec-
tion to show that if X has finite topology its de Rham cohomology groups are finite dimen-
sional. Like that proof, it involves Mayer-Vietoris plus some elementary diagram-chasing.
The “diagram-chasing” part of the proof consists of the following two lemmas.

Lemma 5.4.8. Let V,, V, and V; be finite dimensional vector spaces, and let
vy, Sy
be an exact sequence of linear mappings. Then the sequence of transpose maps
V3* ﬁ_) Vz* 06_*) Vl*
is exact.
Proof. Given a vector subspace, W,, of V,, let
Wit ={€eV)|e(w)=0forallweW}.

We'll leave for you to check that if W, is the kernel of 8, then W;" is the image of 8* and that
if W, is the image of a, W;" is the kernel of a*. Hence if f = im(«), im(B*) = ker(a*). O
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Lemma 5.4.9 (5-lemma). Consider a commutative diagram of vector spaces

B, B B, B B, Bs B, Bs B,
|
(5.4.10) yll Yzl 73 lw PS
L
Al o A2 o, A3 o A4 oy A5 :

satisfying the following conditions:

(1) All the vector spaces are finite dimensional.

(2) The two rows are exact.

(3) The linear maps, y,, V5, Y4 and ys are bijections.

Then the map y; is a bijection.

Proof. We'll show that y; is surjective. Given a; € Aj; there exists a b, € B, such that
y4(by) = a3(a3) since y, is bijective. Moreover, ys(f,(by)) = a4(at3(a3)) = 0, by the exactness
of the top row. Therefore, since ys is bijective, ,(by) = 0, so by the exactness of the bottom
row b, = f35(b;) for some b; € B, and hence

a3(y3(03)) = y4(Bs(b3)) = y4(by) = a3(as) .

Thus a3(a; — y3(bs)) = 0, so by the exactness of the top row

a3 = y3(bs) = «,(ay)
for some a, € A,. Hence by the bijectivity of y, there exists a b, € B, with a, = y,(b,), and
hence

a3 = 13(b3) = &3 (ay) = a,(y2(b2) = y3(B,(b,)) -

Thus finally

a3 = y3(bs + B,(b,)) -
Since a; was any element of A; this proves the surjectivity of y;.

One can prove the injectivity of y; by a similar diagram-chasing argument, but one can

also prove this with less duplication of effort by taking the transposes of all the arrows in

(5-4.1d) and noting that the same argument as above proves the surjectivity of y; : A —
B3. O

To prove we apply these lemmas to the diagram below. In this diagram
U, and U, are open subsets of X, M = U, U U,, we write U, , := U; N U,, and the vertical

arrows are the mappings defined by the pairing (5.4.5)). We will leave for you to check that
this is a commutative diagram “up to sign”. (To make it commutative one has to replace
some of the vertical arrows, y, by their negatives: —y.) This is easy to check except for the
commutative square on the extreme left. To check that this square commutes, some serious
diagram-chasing is required.

o — H¥Y(M) —— HNU,,) —— HYU) @ HYU,) —— HYM) — -

] | |

N Hn—(k—l)(M)* N Hn—k(ULZ)* > Hn—k(Ul)* @Hn_k(Uz)* — Hn—k(M)* e

By Mayer-Vietoris the bottom row of the diagram is exact and by Mayer-Vietoris and
the top row of the diagram is exact. Hence we can apply the “five lemma” to
the diagram to conclude:
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Lemma 5.4.11. If the maps

H*U) - H U)*
defined by the pairing (5.4.5)) are bijective for U,,U, and U, , = U, NU,, they are also bijective
for M =U, UU,.

Thus to prove we can argue by induction as in §5.3. Let U}, U,, ..., Uy
be a good cover of X. If N = 1, then X = U, and, hence, since U, is diffeomorphic to
R”, the map (5.4.12)) is bijective by [Proposition 5.4.9. Now Let us assume the theorem is
true for manifolds involving good covers by k open sets where k is less than N. Let U’ =
U, U - UUy_; and U"” = Uy. Since

U'nU"=U,nUyU---UUy_; NUy
it can be covered by a good cover by k open sets, k < N, and hence the hypotheses of the

lemma are true for U’, U"” and U’ N U”. Thus the lemma says that (f.4.13) is bijective for
the union X of U' and U". O

Exercises for

Exercise 5.4.i (proper pushforward for compactly supported de Rham cohomology). Let
X be an m-manifold, Y an n-manifold and f: X — Y a C* map. Suppose that both of
these manifolds are oriented and connected and have finite topology. Show that there exists
a unique linear map

(5.4.12) fi: HZ"’k(X) — Hg"k(Y)
with the property
(5.4.13) By(fic1>c;) = Bx(cy, fFey)

forallc, € Hg”’k(X) andc, € H*(Y). (In this formula By is the bilinear pairing (§.4.9) on
X and By is the bilinear pairing (5.4.9) on Y.)

Exercise 5.4.ii. Suppose that the map f in is proper. Show that there exists a
unique linear map

fi: H"*(X) - H'k(Y)
with the property
By(ci, fie) = (DM By (fler,¢y)
forall ¢; € HX(Y) and ¢, € H"*(X), and show that, if X and Y are compact, this mapping
is the same as the mapping f; in [Exercise 5.4.].

Exercise 5.4.iii. Let U be an open subset of R” and let f: U x R — U be the projection,
f(x,t) = x. Show that there is a unique linear mapping

f.: QKU xR) - QkU)
with the property

(5.4.14) J;; fouAv = JUXR;,t/\f*v

forall u € Q’C‘“(U x R) and v € Q" *(U).
Hint: Let xy, ..., x,, and t be the standard coordinate functions on R" x R. By
every (k + 1)-form w € QX*1(U x R) can be written uniquely in “reduced form” as

asum

w= Zfldt/\dxl + Zg,dx]
I J
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over multi-indices, I and J, which are strictly increasing. Let

foo= ; (Lﬁ(x, t)dt> dx; .

Exercise 5.4.iv. Show that the mapping f, in satisfies f,dw = df, w.
Exercise 5.4.v. Show that if w is a closed compactly supported (k + 1)-form on U x R then
[fiw] = filw]

where f; is the mapping (5.4.13) and f, the mapping (5.4.14).
Exercise 5.4.vi.
(1) Let U be an open subset of R” and let f: U x R® — U be the projection, f(x,t) = x.
Show that there is a unique linear mapping
fo: QU xR - QFU)
with the property

J f*(,t/\v:J' Un f*v
U UxR?

forall u € Q’C‘”(U x RY) and v € Q"% (U).

Hint: plus induction on £.
(2) Show that for w € QF(U x R)

df,w= f,dw.
(3) Show that if w is a closed, compactly supported (k + €)-form on X x R¢
[fiw] = filw]

where f,: H**(U x R®) — H¥(U) is the map (5.2.13).

Exercise 5.4.vii. Let X be an n-manifold and Y an m-manifold. Assume X and Y are com-
pact, oriented and connected, and orient X x Y by giving it its natural product orientation.
Let

f: XxY>Y
be the projection map f(x, y) = y. Given

we X xY)
and p €Y, let
(5.4.15) frw(p) = jX o,

where pr X > X xYis the inclusion map zp(x) = (x, p).

(1) Show that the function f,w defined by is C®, i.e., is in Q°(Y).
(2) Show that if w is closed this function is constant.
(3) Show that if w is closed

[few] = filw]
where f,: H(X xY) — H’(Y) is the map (5.4.13).
Exercise 5.4.viii.

(1) Let X bean n-manifold which is compact, connected and oriented. Combining Poincaré

duality with show that
HM(X x R®) = HK(X) .
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(2) Show, moreover, that if f: X x RY - X is the projection f(x,a) = x, then
fir HE4(X x RY) — HE(X)
is a bijection.
Exercise 5.4.ix. Let X and Y be as in Exercise 5.4.]. Show that the pushforward operation
(b-4.13)) satisfies the projection formula
filer- frey) = file) -z,
forc, € H’C‘(X) and ¢, € HY(Y).

5.5. Thom classes & intersection theory

Let X be a connected, oriented n-manifold. If X has finite topology its cohomology
groups are finite-dimensional, and since the bilinear pairing B defined by (f.4.5) is non-
singular we get from this pairing bijective linear maps

(5.5.1) Lg: H'8(X) - H*(X)*
and
(5.5.2) Ly: H"*(X) > Hf(X)* .

In particular, if £: H*(X) — Ris a linear function (i.e., an element of H*(X)*), then by
(5-5.1) we can convert £ into a cohomology class

(5.5.3) Lg' (&) € H (X)),

and similarly if £,: H*(X) — R is a linear function, we can convert it by (5.5.3) into a
cohomology class
(Ly)7N(e) e H"*(X) .
One way that linear functions like this arise in practice is by integrating forms over
submanifolds of X. Namely let Y be a closed oriented k-dimensional submanifold of X.
Since Y is oriented, we have by (5.1.2)) an integration operation in cohomology

Iy: HYY) - R,
and since Y is closed the inclusion map iy of Y into X is proper, so we get from it a pullback
operation on cohomology
i+ HE(X) — HE(Y)
and by composing these two maps, we get a linear map ¢y = Iy o 1111,: HXX) — R.The
cohomology class
Ty = L' (&y) € HE(X)
associated with £y is called the Thom class of the manifold Y and has the defining property

(5.5.4) B(Ty,¢) = Iy (o)
for ¢ € H¥(X). Let us see what this defining property looks like at the level of forms. Let

7y € Q"*(X) be a closed k-form representing Ty. Then by (5.4.5), the formula (5.5.4) for
¢ = [w], becomes the integral formula

(5.5.5) I Ty Aw = J Gw.
b'¢ Y
In other words, for every closed form w € Q77%(X), the integral of w over Y is equal to

the integral over X of 7y A w. A closed form 7y with this “reproducing” property is called a
Thom form for Y. Note that if we add to 7y an exact (n — k)-form y € dQ"*1(X), we get
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another representative 7y + p of the cohomology class Ty, and hence another form with this
reproducing property. Also, since pquation (5.5.5) is a direct translation into form language

of quation (5.5.4), any closed (n — k)-form 7y with the reproducing property (5.5.9) is a
representative of the cohomology class Ty .

These remarks make sense as well for compactly supported cohomology. Suppose Y is
compact. Then from the inclusion map we get a pullback map

b HYX) - H5(Y)
and since Y is compact, the integration operation Iy is a map H*(Y) — R, so the composi-
tion of these two operations is a map,
¢y H(X) > R
which by (B.5.3) gets converted into a cohomology class
Ty = Lg'(¢y) € HIM(X) .

Moreover, if 7y € Q" ¥(X) is a closed form, it represents this cohomology class if and only
it it has the reproducing property

(5.5.6) J- TYAw=J Iy w
X Y

for closed forms w € Q" %(X). (There’s a subtle difference, however, between formula (X))
and formula (5.5.6). In (5.5.5)) w has to be closed and compactly supported and in (5.5.6) it
just has to be closed.)

As above we have a lot of latitude in our choice of 7y: we can add to it any element of
dQ%1(X). One consequence of this is the following.

Theorem 5.5.7. Given a neighborhood U of Y in X, there exists a closed form 7y € Q' *(U)
with the reproducing property

(5.5.8) J Ty Aw = J Fw
U Y

for all closed forms w € QF(U).

Hence, in particular, 7y has the reproducing property (5.5.6) for all closed forms w €
"7k(X). This result shows that the Thom form 7y can be chosen to have support in an
arbitrarily small neighborhood of Y.

Proof of [[heorem 5.5.7. By [[heorem 5.3.d we can assume that U has finite topology and
hence, in our definition of 7y, we can replace the manifold X by the open submanifold U.
This gives us a Thom form 7y with support in U and with the reproducing property (5.5.9)
for closed forms w € Q" *(U). O

Let us see what Thom forms actually look like in concrete examples. Suppose Y is de-
fined globally by a system of ¢ independent equations, i.e., suppose there exists an open
neighborhood O of Y in X, a C® map f: O — R’, and a bounded open convex neighbor-
hood V of the origin in R" satisfying the following properties.

Properties 5.5.9.

(1) The origin is a regular value of f.
(2) f‘l(\_/) is closed in X.
(3) Y = f70).
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Then by () and (B)) Y is a closed submanifold of O and by () it’s a closed submanifold
of X. Moreover, it has a natural orientation: For every p € Y the map

df,: T,X — T,R

is surjective, and its kernel is T,Y, so from the standard orientation of T,R one gets an
orientation of the quotient space

T,X/T,Y
and hence since T, X is oriented, one gets by an orientation on T,Y. (See

Example 4.4.9.) Now let 4 be an element of Q¢(X). Then f*u is supported in f~!(V) and
hence by property (P]) we can extend it to X by setting it equal to zero outside O. We will
prove:

Theorem 5.5.10. Ifjvy =1, then f*u is a Thom form forY.

To prove this we'll first prove that if f*u has property (B.5.5) for some choice of y it has
this property for every choice of p.

Lemma 5.5.11. Let y; and p, be forms in Q4(V) such that JV U = JV U, = 1. Then for every
closed k-form v € Q’C‘(X) we have

J- f*#l/\vzj- frumnv.
e X

Proof. By [Theorem 3.2.3, y; — i, = df3 for some B € Q71(V), hence, since dv = 0
(fr =) Av=df* frv=d(f BAv).

Therefore, by Stokes theorem, the integral over X of the expression on the left is zero. [
Now suppose p = p(xy, ..., Xp)dx; A -+- Adx,, for pin C§°(V). Fort < 1let
x
He=tp (71
This form is supported in the convex set tV, so by
J frmny= J fruny
X X

for all closed forms v € QF(X). Hence to prove that f*u has the property (5.5.9), it suffices
to prove that

(5.5.12) lime*MtAv = J V.
Y

t—0

X,
,...,T"’)dxl A dxp .

We prove this by proving a stronger result.
Lemma 5.5.13. The assertion (5.5.12) is true for every k-form v € Q(X).

Proof. The canonical sumbersion theorem (see [[heorem B.17) says that for every p € Y
there exists a neighborhood U,, of p in Y, a neighborhood, W of 0 in R", and an orientation
preserving diffeomorphism y: (W,0) — (U, p) such that

(5.5.14) fey=m

where 77: R" — R is the canonical submersion, 7(x,, ..., X,) = (x,, ..., X,). Let U be the
cover of O by the open sets, O ~ Y and the U, ’s. Choosing a partition of unity subordinate
to this cover it suffices to verify (5.5.12) for v in QFO~Y)and vin Q’C‘(Up). Let us first
suppose v is in QX(O ~ Y). Then f(supp v) is a compact subset of R® ~ {0} and hence for ¢
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small f(supp v) is disjoint from tV, and both sides of (5.5.12)) are zero. Next suppose that v
is in Q’(f(UP). Then y*v is a compactly supported k-form on W so we can write it as a sum

y*v = h(x)dx;, hy € CE(W)
I

the I's being strictly increasing multi-indices of length k. Let I, = (€ + 1, ¢, + 2, ..., n). Then

oo X
Y e

(5.5.15) n*ptt/\l//*v:tep< . , )hlo(xl,...,xn)dx,/\-‘-dxn

and by (5.5.14)
VI AV) =T AT
and hence since v is orientation preserving

Jf*‘ut/\v=J' f*ytAv=teJ p(ﬁ,...,ﬁ>hl (x5 ..o X, )dx
X U R" t t 0

P
= J Py «oos Xp)hy (X1 oo 1, Xpis - oos X,y )X
RH

and the limit of this expression as f tends to zero is

Jp(xl, oo XNy (0,000, Xp, 15 s X, )Xy -0 dX,

or
(5.5.16) JhI(O, e 0, X0 15 e X)) AXpyq - dX,

This, however, is just the integral of y*v over the set 77! (0)NW. By (5.5.12), w maps 7' (0)n
W diffeomorphically onto Y N U, and by our recipe for orienting Y this diffeomorphism is

an orientation-preserving diffeomorphism, so the integral (5.5.16) is equal to IY v. O

We'll now describe some applications of Thom forms to topological intersection theory.
Let Y and Z be closed, oriented submanifolds of X of dimensions k and £ where k + £ = n,
and Let us assume one of them (say Z) is compact. We will show below how to define an
intersection number 1(Y, Z), which on the one hand will be a topological invariant of Y’
and Z and on the other hand will actually count, with appropriate +-signs, the number of
points of intersection of Y and Z when they intersect non-tangentially. (Thus this notion is
similar to the notion of the degree deg(f) for a C* mapping f. On the one hand deg( f)
is a topological invariant of f. It's unchanged if we deform f by a homotopy. On the other
hand if g is a regular value of f, then deg( f) counts with appropriate +-signs the number of
points in the set f_1 (9.

We'll first give the topological definition of this intersection number. This is by the for-
mula

(5.5.17) I(Y, Z) = B(Ty, T;)

where Ty € H¢(X) and T, € Hf(X) and B is the bilinear pairing (5.4.9)). If 7y € Q4X)
and 7, € QF(X) are Thom forms representing Ty and T, (5.5.17) can also be defined as the
integral

IY,Z2) = J Ty ATy
X
or by (5.5.9), as the integral over Y,

(5.5.18) I(Y,Z) = L 5Ty
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or, since 7y A T, = (=1)¥¢7, A Ty, as the integral over Z
I(X,Y) = (~1)ke J STy
z
In particular
1(Y,2) = (-D)X1(Z,Y).
As atest case for our declaring I(Y, Z) to be the intersection number of Y and Z we will first
prove:

Proposition 5.5.19. IfY and Z do not intersect, then I(Y, Z) = 0.

Proof. 1fY and Z don’t intersect then, since Y is closed, U = XY is an open neighborhood
of Z in X, therefore since Z is compact there exists by a Thom form 7, €
Qf(U). Thus 157, = 0, and so by (5.5.18) we have I(Y, Z) = 0. O

We'll next indicate how one computes I(Y, Z) when Y and Z intersect “non-tangentially”,
or, to use terminology more in current usage, when their intersection is transversal. Recall
that at a point of intersection, p € Y N Z, T,)Y and T,Z are vector subspaces of T, X.

Definition 5.5.20. Y and Z intersect transversally if for every p € Y N Z we have
I,YNT,Z=0.
Sincen =k + ¢ =dimT,Y + dimT,Z = dim T}, X, this condition is equivalent to

(5.5.21) TPX =T,YoT,Z,

i.e., every vector, u € TPX, can be written uniquely as a sum, u = v + w, with v € TPY and
w € T,Z. Since X, Y and Z are oriented, their tangent spaces at p are oriented, and we'll
say that these spaces are compatibly oriented if the orientations of the two sides of (5.5.21))
agree. (In other words if vy, ..., v is an oriented basis of T,,Y and wy, ..., w, is an oriented
basis of T, Z, the n vectors, vy, ..., U, Wy, ..., Wy, are an oriented basis of T, X.) We will define

the local intersection number 1,(Y, Z) of Y and Z at p to be equal to +1 if X, Y, and Z are
compatibly oriented at p and to be equal to —1 if they’re not. With this notation we’ll prove:

Theorem 5.5.22. IfY and Z intersect transversally then Y N Z is a finite set and

1(Y,2)= ) I,Y,2).
peYnz

To prove this we first need to show that transverse intersections look nice locally.

Theorem 5.5.23. IfY and Z intersect transversally, then for every p € Y N Z, there exists
an open neighborhood V,, of p in X, an open neighborhood U,, of the origin in R", and an
orientation-preserving diffeomorphism y,: V,, = U, which maps V,, N Y diffeomorphically
onto the subset of U,, defined by the equations: x; = -+ = x, = 0, and maps V 0 Z onto the
subset of U,, defined by the equations: x,, = -+- = x,, = 0.

Proof. Since this result is a local result, we can assume that X = R" and hence by
that there exists a neighborhood V), of p in R" and submersions f: (V,, p) —

(R%,0) and g: (V,,p) — (R¥, 0) with the properties
(5.5.24) V,nY = f70)
and

(5.5.25) V,NnZ=g7"0).
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Moreover, by (f.3.9) T,Y = (d fp)_l(O) and T,Z = (d gp)_l(O). Hence by (5.5.21)), the equa-

tions

(5.5.26) df,(v) = dg,) =0

forv € T, X imply that v = 0. Now let y,,: V,, — R" be the map
(f9): V, > RExRE=R".

Then by (5:5.28), dy,, is bijective, therefore, shrinking V), if necessary, we can assume that
v, maps V,, diffeomorphically onto a neighborhood U,, of the origin in R", and hence by

(5.5.24) and (5.5.235))), ¥, maps V,,NY onto the set: x; = -+ = x, = 0 and maps V,NZ onto
the set: x,,; = -+ = x,, = 0. Finally, if y isn’t orientation preserving, we can make it so by
composing it with the involution, (x,, ..., x,) — (x1, %, ..., X,_1, —X,,). ]

From this result we deduce:

Theorem 5.5.27. IfY and Z intersect transversally, their intersection is a finite set.

Proof. By the only point of intersection in V), is p itself. Moreover, since Y
is closed and Z is compact, Y’ N Z is compact. Therefore, since the Vs cover Y N Z we can

extract a finite subcover by the Heine-Borel theorem. However, since no two Vs cover the
same point of Y N Z, this cover must already be a finite subcover. O

We will now prove [[heorem 5.5.22.
Proof of [Theorem 5.5.24. Since Y is closed, the map 1,: Y < X is proper, so by
there exists a neighborhood U of Z in X such that UNY is contained in the union

of the open sets V,, above. Moreover by we can choose 7 to be supported
in U and by we can assume that U has finite topology, so we're reduced to
proving the theorem with X replaced by U and Y replaced by Y N U. Let

o=Un|]V,,
peX
let f: O — R be the map whose restriction to V, NU is 7 o y, where 7t is, as in

fion (5.5.14), the canonical submersion of R” onto R, and finally let V be a bounded con-
vex neighborhood of RY, whose closure is contained in the intersection of the open sets,
o y,(V, N U). Then f71(V) is a closed subset of U, so if we replace X by U and Y by

Y NU, the data (f, O, V) satisfy Properties 5.5.9. Thus to prove it suffices by
to prove this theorem with

Ty =0,(Y) fu
on V, N O where 6,(Y) = +1 or —1 depending on whether the orientation of Y NV, in
coincides with the given orientation of Y or not. Thus

1(Y,Z) = (-D¥1(Z,Y)
= (1)K Z o,(Y) JZ i u

peX

= T o) [, vimu

= T, | oypen).

peX
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But 7 o y,, o 1, maps an open neighborhood of p in U, N Z diffeomorphically onto V, and
p is compactly supported in V, so since IV =1,

(wovy o) u=0,(2) | u=0,2),
JZnUP Vpolz) #= 0% v H=%
where 0,(Z) = +1 or —1 depending on whether 77 o y, ° 1 is orientation preserving or not.

Thus finally

I(Y,2) = ) (-)¥o,(Y)o,(2).
peX

We will leave as an exercise the task of unraveling these orientations and showing that

(-0, (Y)o,(Z) = 1,(Y, Z)

and hence that I(Y, Z) = ZpeX 1,(Y,2). O
Exercises for

Exercise 5.5.i. Let X be a connected oriented n-manifold, W a connected oriented £-dimensional
manifold, f: X - W aC® map, and Y a closed submanifold of X of dimension k := n — €.
Suppose Y is a “level set” of the map f, i.e., suppose that g is a regular value of f and that

Y = £71(q). Show that if i is in Qf(Z) and its integral over Z is 1, then one can orient Y so

that 7y = f*p is a Thom form for Y.

Hint: Theorem 5.5.13.

Exercise 5.5.ii. In show that if Z ¢ X is a compact oriented £-dimensional
submanifold of X then

I(Y,Z) = (1) deg(f o 1) .

Exercise 5.5.iii. Let g, be another regular value of the map f: X — W andletY; = f~!(qg).
Show that

1Y, 2) = I(Y,,Z).

Exercise 5.5.iv.

(1) Show that if g is a regular value of the map f o1,: Z — W, then Z and Y intersect
transversally.

(2) Show that this is an “if and only if” proposition: If Y and Z intersect transversally, then
q is a regular value of the map f o ,.

Exercise 5.5.v. Suppose ¢ is a regular value of the map f o1,. Show that pisinY n Z ifand
only if p is in the preimage (f ©1,)7*(q) of g and that

I,(X,Y) = (-1)¥0,

where o, is the orientation number of the map f o1, at p, i.e, 0, = 1if f o1, is orientation-
preserving at p and o, = —1if f o1, is orientation-reversving at p.

Exercise 5.5.vi. Suppose the map f: X — W is proper. Show that there exists a neighbor-
hood, V, of g in W having the property that all points of V are regular values of f.

Hint: Since q is a regular value of f there exists, for every p € f'(g) a neighborhood
U, of p on which f is a submersion. Conclude, by [Theorem 3.4.7, that there exists a neigh-
borhood V of g with (V) ¢ Upe s Up-



Draft: March 28, 2018

§5.6 The Lefschetz Theorem 183

Exercise 5.5.vii. Show that in every neighborhood V; of gin V there exists a point g; whose
preimage

Y, = fay)
intersects Z transversally. Conclude that one can “deform Y an arbitrarily small amount so
that it intersects Z transversally”.

Hint: plus Sard’s theorem.

Exercise 5.5.viii (Intersection theory for mappings). Let X be an oriented, connected -
manifold, Z a compact, oriented £-dimensional submanifold, ¥ an oriented manifold of
dimension k :==n —€and f: Y — X a proper C* map. Define the intersection number of
f with Z to be the integral

I(f,2) = L Fr,.

(1) Show that I(f, Z) is a homotopy invariant of f, i.e., show that if f;, f;: ¥ — X are
proper C* maps and are properly homotopic, then

I(f0,2) = I(f1,2) .

(2) Show thatif Y is a closed submanifold of X of dimensionk =n—-¢€andsy: Y — Xis
the inclusion map, then I(1y, Z) = I(Y, Z).

Exercise 5.5.ix.

(1) Let X be an oriented connected n-manifold and let Z be a compact zero-dimensional
submanifold consisting of a single point z, € X. Show that if ¢ is in Q7 (X) then pis a
Thom form for Z if and only if its integral is 1.

(2) LetY be an oriented n-manifold and f: Y — X a C* map. Show that for Z = {z,} as
in part (1)) we have I(f, Z) = deg(f).

5.6. The Lefschetz Theorem

In this section we'll apply the intersection techniques that we developed in toa
concrete problem in dynamical systems: counting the number of fixed points of a differen-
tiable mapping. The Brouwer fixed point theorem, which we discussed in 3.6, told us that
a C® map of the unit ball into itself has to have at least one fixed point. The Lefschetz the-
orem is a similar result for manifolds. It will tell us that a C* map of a compact manifold
into itself has to have a fixed point if a certain topological invariant of the map, its global
Lefschetz number, is nonzero.

Before stating this result, we will first show how to translate the problem of counting
fixed points of a mapping into an intersection number problem. Let X be an oriented com-
pact n-manifold and f: X — X a C* map. Define the graph of f in X x X to be the
set

I'y ={(x f(x)|xe X} cXxX.

It’s easy to see that this is an #n-dimensional submanifold of X x X and that this manifold is
diffeomorphic to X itself. In fact, in one direction, there is a C* map

(5.6.1) Vi X oIy, xe (x, f(x)),
and, in the other direction, a C* map
n:Ff_)Xy (x)f(x))ny

and it’s obvious that these maps are inverses of each other and hence diffeomorphisms. We
will orient I'y by requiring that y; and 7 be orientation-preserving diffeomorphisms.
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An example of a graph is the graph of the identity map of X onto itself. This is the
diagonal in X x X
A={(x,x)|xe X} cXxX

and its intersection with I [ is the set
I'ynA={(x,x)| f(x) =x},

which is just the set of fixed points of f. Hence a natural way to count the fixed points of f is
as the intersection number of I'y and A in X x X. To do so we need these three manifolds to
be oriented, but, as we noted above, I'y and A acquire orientations from the identifications
(5.6.1) and, as for Xx X, we'll give it its natural orientation as a product of oriented manifolds.

(SeeF4.3.)
Definition 5.6.2. The global Lefschetz number of f is the intersection number

L(f) = 1T}, 4) .

In this section we'll give two recipes for computing this number: one by topological
methods and the other by making transversality assumptions and computing this number
asa sum of local intersection numbers via [Theorem 5.5.22. We first show what one gets from
the transversality approach.

Definition 5.6.3. The map f: X — X is a Lefschetz map, or simply Lefschetz, if I'y and A
intersect transversally.

Let us see what being Lefschetz entails. Suppose p is a fixed point of f. Then at the point
q=(p,p)of I'y
(5.6.4) T,(Tp) = (dyp),T,X = {(w,df, () | € T,X}
and, in particular, for the identity map,
Tq(A) ={(v,v)|ve TPX} .

Therefore, if Aand I’ ¢ are to intersect transversally, the intersection of Tq(l" f) n Tq (A) inside
Tq(X x X) has to be the zero space. In other words if

(5.6.5) (v, df,(v)) = (v,v)
then v = 0. But the identity (5.6.9) says that v is a fixed point of d f,, so transversality at p
amounts to the assertion
dfp(v)=v — v=0,
or in other words the assertion that the map
(5.6.6) (idTpX —dfp): T,X - T,X
is bijective.
Proposition 5.6.7. The local intersection number 1,(I's, A) is 1 if (5.6.9) is orientation-preserving
and -1 otherwise.

In other words Ip(Ff, A) is the sign of det(idTPX —dfp).

Proof. To prove this letey, ..., e, be an oriented basis of T, X and let

(5.6.8) dfyle) = ae;.
j:l
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Now set v; := (¢;,0) € Tq(X x X) and w; = (0,¢;) € Tq(X x X). Then by the definition of
the product orientation on X x X, we have that (v, ...,v,, w;, ..., w,) is an oriented basis

oqu(X x X), and by (5.6.4)
(UI+Z;.’:1aj),-wj,. U, +Z] | AjaW )

is an oriented basis of T,y and v, + w,,...,v, + w, is an oriented basis of T,A. Thus
I1,(I't, A) = £1, depending on whether or not the basis

(01 + Z;l:l AW ... Uy + Z] 1 AjnW)> Vg + Wy ..Uy +wn)
of T,(X x X) is compatibly oriented with the basis (). Thus I oI, 4) = +1, the sign
depending on whether the determinant of the 2n x 21 matrix relating these two bases:

id, A
pi= (idn idn>

is positive or negative, where A = (a; ;). However, by the block matrix determinant formula,
we see that to see that
det(P) = det(id, —~Aid;," id,)) det(id,) = det(id,, —A)

hence by (5.6.8) we see that det(P) = det(id, —-d fp). (If you are not familiar with this, it is
easy to see that by elementary row operations P can be converted into the matrix

id, A
0 id,-A
apply Exercise 18.vi. 0

Let us summarize what we have shown so far.

Theorem 5.6.9. A f: X — X, is a Lefschetz map if and only if for every fixed point p of f,
the map
is bijective. Moreover for Lefschetz maps f we have

L(f) = Z Lp(f)
P=fp)
where L,(f) = +1 zfidTpX —df, is orientation-preserving and L,(f) = -1 lfidTpX —df, is
orientation-reversing.

We'll next describe how to compute L( f) as a topological invariant of f. Let I, be the
inclusion map of I’y into X x X and let T, € H"(X x X) be the Thom class of A. Then by
(5 8

L(f) = IFf(tffTA)

and hence since the mapping y;: X — X x X defined by (5.6.1) is an orientation-preserving
diffeomorphism of X = I'; we have

(5.6.10) L(f) = Ix(yfTyp) -

To evaluate the expression on the right we'll need to know some facts about the cohomology
groups of product manifolds. The main result on this topic is the Kiinneth theorem, and we’ll
take up the formulation and proof of this theorem in [5.7. First, however, we'll describe a
result which follows from the Kiinneth theorem and which will enable us to complete our
computation of L(f).
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Letr; and 7, be the projection of X x X onto its first and second factors, i.e., fori = 1,2
let

m XxX—>X
be the projection 7;(x;, x,) := x;. Then by we have
(5.6.11) Ty g = idy
and
(5.6.12) Ty Yp = f.

Lemma 5.6.13. If w; and w, are in " (X) then

(5.6.14) J-XXX W, ATy w, = (JX w1> (L w2> .

Proof. By a partition of unity argument we can assume that w; has compact support in a
parametrizable open set, V;. Let U; be an open subset of R” and ¢, : U; — V; an orientation-
preserving diffeomorphism. Then

dfw = p;dx; A+ Ndx,
with p; € C§°(U;), so the right hand side of (5.6.14) is the product of integrals over R™:

(5.6.15) (L pl(x)dx> (L pz(x)dx) .

Moreover, since X x X is oriented by its product orientation, the map
v:U xU, -V, xV,
is given by (x, y) — (¢;(x) $,(y)) is an orientation-preserving diffeomorphism and since
oy =¢;
V(i) ATy w)) = drwy A drw,
=p(x)p(¥)dx; A~ ANdx, Ndy, A --- Ndy,

and hence the left hand side of (5.6.14) is the integral over R*" of the function, p; (x)p,( y)
and therefore, by integration by parts, is equal to the product (5.6.13).

As a corollary of this lemma we get a product formula for cohomology classes.
Lemma 5.6.16. Ifc, and c, are in H"*(X) then
Ipux(micy - m36)) = Ix(e)Ix(c,) -

Now let dj. == dim H*(X) and note that since X is compact, Poincaré duality tells us
that d;, = d, when € = n — k. In fact it tells us even more. Let y&, ..., y’ék be a basis of H*(X).
Then, since the pairing (5.4.5)) is non-singular, there exists for £ = n — k a “dual” basis

vf , j=1,...d,
of H¢(X) satisfying
(5.6.17) Ty (uk -vf) =6;;.
Lemma 5.6.18. The cohomology classes
ﬂ%vf'ngyi‘, k+€=n

fork=0,...,nand1 < r,s < dy, are a basis for H*(X x X).
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This is the corollary of the Kiinneth theorem that we alluded to above (and whose proof
we'll give in [5.7). Using these results we prove the following.

Theorem 5.6.19. The Thom class T, € H"(X x X) is given explicitly by the formula

dk
(5.6.20) T, = Z (-1)¢ Z nM . ngvf’.
k+é=n i=1

Proof. We have to check that for every cohomology class c € H"(X x X), the class T, defined
by (5-6.29) has the reproducing property

(5.6.21) Lux(Ty - ©) = I (o)
where 1 is the inclusion map of A into X x X. However the map
Pa: X > XxX, x (x,x)

is an orientation-preserving diffeomorphism of X onto 4, so it suffices to show that

(5.6.22) Iyx(Ty-c) = IX(VAﬁC)
and by it suffices to verify (5.6.22)) for ¢’s of the form

_ 4.tk
C =TV, U -

The product of this class with a typical summand of (5.6.2d), for instance, the summand
(5.6.23) (—l)elrrﬁyf-" ‘ﬂgvf’ , kK +¢' =n,
is equal, up to sign to,
KoL k.o
ﬂi{“i “Vr 'T[g.‘"s Vi
Notice, however, that if k # k' this product is zero: For k < k', k' + € is greater than k + £
and hence greater than n. Therefore
! !
i v e HEH(X)
is zero since X is of dimension #, and for k > k', €' is greater than € and i - v¢ is zero for
the same reason. Thus in taking the product of T, with ¢ we can ignore all terms in the sum
except for the terms, k' = k and £’ = ¢. For these terms, the product of (5.6.23) with c is

(1)t ot - .

(Exercise: Check this. Hint: (—l)e(—l)e2 = 1.) Thus
d
Ty-c= (DY mhu v mbul - vf

i=1

and hence by Lemma 5.6.13 and (5.6.17)

dk
Iux(Ty - €) = (DK I (uf - vOIx (uf - vF)

i=1
dk
k
=(-1) ¢ Z 61',1'81',5
i=1

= (-1)¥s, ;.
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On the other hand for ¢ = ngvf . ng uk

4 k
yic = yartve - yinbuk

= (y - )iy - ya) it

=i uf
since

T -VA =T - Yy = idy .
So

Ix(y30) = I (v - ) = (-8,
by (5-6.17). Thus the two sides of (§.6.21)) are equal. O
We're now in position to compute L(f) , i.e., to compute the expression Ix(y;T,) on

the right hand side of (5.6.1d). Since v%, ..., vﬁe is a basis of H(X) the linear mapping
(5.6.24) fH: HY(X) —» HY(X)
can be described in terms of this basis by a matrix [ ffj] with the defining property

dl.’
fiof = 3 o
j=1

Thus by pquations (5.6.11), [5.6.12) and [5.6.20) we have

e
ViTa=v; Y (~DF Y miuk - mivf

k+€=n i=1

d,
= Y CDEY Gyl Gy v

k+€=n i=1
dy
= 2 D YU
k+€=n i=1
dy
= 2 DY St
k+€=n i=1
Thus by (5.6.17)
L} Ta) = Y (D° Y fhilx(uf-vf)
k+€=n 1<i,j<d,
= 2 D ) Sy
k+é=n 1<i,j<d,

n dp
=Y D) i
=0 i=1

But Z?ﬁ 1 f,el is just the trace of the linear mapping (5.6.24) (see Exercise 5.6.xi]), so we end
up with the following purely topological prescription of L( f).

Theorem 5.6.25. The Lefschetz number L( f) is the alternating sum

L(f) = Y (-1 te(f* | HE (X))
=0
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where tr(f*| H (X)) is the trace of the map f*: H*(X) — H!(X).

Exercises for
Exercise 5.6.i. Show thatif f;: X — X and f;: X — X are homotopic C* mappings
L(fo) = L(f))-
Exercise 5.6.ii.
(1) The Euler characteristic x(X) of X is defined to be the intersection number of the diag-
onal with itself in X x X, i.e., the “self-intersection” number
X(X) = 1(A,A) = Ixyx(Ty, Ty) -

Show that ifa C* map f: X — X is homotopic to the identity, then L(f) = x(X).
(2) Show that

n
X(X) = ) (-1)f dim HY(X) .
=0
(3) Show that if X is an odd-dimensional (compact) manifold, then y(X) = 0.
Exercise 5.6.iii.
(1) Let S” be the unit n-sphere in R"*!. Show that if g: §" — §" is a C® map, then
L(g) = 1+ (-1)" deg(g) -
(2) Conclude that if deg(g) # (—=1)"*!, then g has to have a fixed point.
Exercise 5.6.iv. Let f be a C* mapping of the closed unit ball B**! into itself and let
g: S* — S" be the restriction of f to he boundary of B"*!. Show that if deg(g) # (=1)"*!
then the fixed point of f predicted by Brouwer’s theorem can be taken to be a point on the
boundary of B"*!.
Exercise 5.6.v.
(1) Show thatif g: 8" — §” is the antipodal map g(x) := —x, then deg(g) = (=1L,
(2) Conclude that the result in is sharp. Show that the map
f: Bn+1 _)BnJrl) f(x)=—x,
has only one fixed point, namely the origin, and in particular has no fixed points on the

boundary.

Exercise 5.6.vi. Let v be a vector field on a compact manifold X. Since X is compact, v
generates a one-parameter group of diffeomorphisms

(5.6.26) fi: X—>X, —c0o<t<00.

(1) Let X, be the set of fixed points of f,. Show that this set contains the set of zeros of v,
i.e., the points p € X where v(p) = 0.

(2) Suppose that for some ¢y, f; is Lefschetz. Show that for all £, f, maps %, into itself.

(3) Show that for |t| < €, € small, the points of z,, are fixed points of f,.

(4) Conclude that Z,, 1s equal to the set of zeros of v.

(5) In particular, conclude that for all f the points of %, are fixed points of f;.

Exercise 5.6.vii.
(1) Let V be a finite dimensional vector space and
Ft): Vo>V, —co<t<oo

a one-parameter group of linear maps of V onto itself. Let A = ’2—15(0) and show that

F(t) = exp tA. (See [Exercise 2.2.viii.)
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(2) Show thatifidy, —F(ty): V — V is bijective for some f,, then A: V — V is bijective.
Hint: Show that if Av = 0 for some v € V — {0}, F(t)v = v.

Exercise 5.6.viii. Let v be a vector field on a compact manifold X and let (5.6.26) be the
one-parameter group of diffeomorphisms generated by v. If v(p) = 0 then by part (fi) of

[Exercise 5.6.vi, p is a fixed point of f, for all t.
(1) Show that
(df): T,X > T,X
is a one-parameter group of linear mappings of T, X onto itself.
(2) Conclude from that there exists a linear map
(5.6.27) Ly(p): T,X = T,X
with the property
exptL,(p) = (dft)p .

Exercise 5.6.ix. Suppose f; is a Lefschetz map for some t,. Let a = t,/N where N is a
positive integer. Show that f,, is a Lefschetz map.
Hints:

» Show that
fo = fao o fa=fo

(i.e., f, composed with itself N times).
» Show that if p is a fixed point of f,, it is a fixed pointof f, .
» Conclude from that the fixed points of f, are the zeros of v.
» Show that if p is a fixed point of f,,
(dfto)p = (dfa)ll;] .
» Conclude that if (dfa)Pv = v for somev € T, X~ {0}, then (dfto)PU =

Exercise 5.6.x. Show that for all £, L(f;) = x(X).
Hint: Exercise 5.6

Exercise 5.6.xi (Hopf Theorem). A vector field v on a compact manifold X is a Lefschetz
vector field if for some t, € R the map f; is a Lefschetz map.

(1) Show that if v is a Lefschetz vector field then it has a finite number of zeros and for each

zero p the linear map (5.6.27) is bijective.
(2) For azero p of vlet 0,(v) = +1 if the map (5.6.27) is orientation-preserving and let

0,(v) = 1 if itss orientation-reversing. Show that

XX)= ) o,).

v(p)=0
Hint: Apply the Lefschetz theorem to f,, a = t,/N, N large.

Exercise 5.6.xii (review of the trace). For A = (a; j) an 7 X n matrix define

n
tr(A) = Z ai’l‘ .
i=1

(1) Show that if A and B are n X n matrices
tr(AB) = tr(BA) .
(2) Show that if B is an invertible # x n matrix
tr(BAB™!) = tr(A) .
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(3) Let V be and n-dimensional vector space and L: V' — V a linear map. Fix a basis
vy, ...,U, of V and define the trace of L to be the trace of A where A is the defining
matrix for L in this basis, i.e.,

n

Lvi = Z aj’ivj .

j=1

Show that this is an intrinsic definition not depending on the basis vy, ..., v,,.

5.7. The Kiinneth theorem

Let X be an n-manifold and Y an r-dimensional manifold, both of these manifolds
having finite topology. Let

m: XxY - X
be the projection map 7(x, y) = x and
pr XxY Y

the projection map (x, y) — y. Since X and Y have finite topology their cohomology groups
are finite dimensional vector spaces. For 0 < k < n let

uk, 1<i<dimH*X),
be a basis of H*(X) and for 0 < € < r let

vi, 1< j<dimHY(Y)

be a basis of H®(Y). Then for k + £ = m the product, nﬁyf-‘ . pﬁvf, isin H™(X x Y). The
Kiinneth theorem asserts

Theorem 5.7.1. The product manifold X x Y has finite topology and hence the cohomology
groups H™ (X x Y) are finite dimensional. Moreover, the products overk + € = m

(5.7.2) nn//tf-‘ . p”vf , 0<i<dimH*X), 0< j< dim H(Y),
are a basis for the vector space H™ (X x Y).

The fact that X x Y has finite topology is easy to verify. If U}, ..., Uy, is a good cover of
XandVy, ..., Vy,isagood cover of Y the products of these open sets U; x Vj, for 1 <i < M
and 1 < j < N is a good cover of X x Y: For every multi-index I, Uj is either empty or
diffeomorphic to R", and for every multi-index J, V; is either empty or diffeomorphic to R",
hence for any product multi-index (1, J), the product U; xV} is either empty or diffeomorphic
to R"” x R". The tricky part of the proof is verifying that the products from (f.7.2) are a basis
of H™(X x Y), and to do this it will be helpful to state the theorem above in a form that
avoids our choosing specified bases for H k(X) and H(Y). To do so we'll need to generalize
slightly the notion of a bilinear pairing between two vector space.

Definition 5.7.3. Let V}, V, and W be finite dimensional vector spaces. A map B: V; xV, —
W of sets is a bilinear map if it is linear in each of its factors, i.e., for v, € V, the map

v, € V] = B(vy,0,)
is a linear map of V; into W and for v, € V] so is the map

v, € V, = B(vy,v,) .
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Its clear that if B, and B, are bilinear maps of V; x V, into W and A, and A, are real

numbers the function
AMB +AM,B, : Vi xV, - W

is also a bilinear map of V; x V, into W, so the set of all bilinear maps of V| x V, into W
forms a vector space. In particular the set of all bilinear maps of V; x V, into R is a vector
space, and since this vector space will play an essential role in our intrinsic formulation of
the Kiinneth theorem, we'll give it a name. We'll call it the tensor product of Vi and V5" and
denote it by V;* ® V;*. To explain where this terminology comes from we note that if £, and
¢, are vectors in V;* and V" then one can define a bilinear map

£,88,: Vi xV, > R
by setting (¢, ® £,)(v;,v,) = £;(v;)€,(v,). In other words one has a tensor product map:
(5.7.4) Vi XV - VeV

mapping (¢, £,) to £; ® £,. We leave for you to check that this is a bilinear map of V;* x V¥
into V;* ® V" and to check as well

Proposition 5.7.5. If €], ..., &, is a basis of Vi and €1, ..., €, is a basis of V5" then €] ® €3, for
l1<i<mandl < j<mn,isabasisof Vi @ V5.

Hint: It V| and V, are the same vector space you can find a proof of this in and the
proof is basically the same if they’re different vector spaces.

Corollary 5.7.6. Let V| and V, be finite-dimensional vector spaces. Then
dim(V}* ® V5') = dim(V}") dim(V;") = dim(V;) dim(V,) .
We'll now perform some slightly devious maneuvers with “duality” operations. First
note that for any finite dimensional vector space V, the evaluation pairing
VxV* >R, (v,8)— £v)
is a non-singular bilinear pairing, so, as we explained in it gives rise to a bijective linear
mapping

(5.7.7) V — (V9)*.
Next note that if
(5.7.8) L:VixV, > W

is a bilinear mapping and £: W — R a linear mapping (i.e., an element of W*), then the
composition of £ and L is a bilinear mapping

¢oL:V,xV, >R

and hence by definition an element of V;* ® V;*. Thus from the bilinear mapping (5.7.§) we
get a linear mapping

(5.7.9) WS VieV;).
We'll now define a notion of tensor product for the vector spaces V; and V, themselves.

Definition 5.7.10. The vector space V; ® V,, is the vector space dual of V* ® V', i.e., is the
space

(5.7.11) VeV, = (Vi eV,)*.
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One implication of (f.7.11)) is that there is a natural bilinear map
(5.7.12) VixV,->V®V,.
(In (§.7-4) replace V; by V;* and note that by (5.7.7) (V;*)* = V;.) Another is the following:

Proposition 5.7.13. Let L be a bilinear map of V| x V, into W. Then there exists a unique
linear map

#:vieVv, - W
with the property
(5.7.14) L#(v; ® vy) = L(vy,v,)
where v, ® v, is the image of (v,, v,) with respect to (5.7.12).

Proof. Let I* be the transpose of the map I} in (B.7-9) and note that by (5.7.7) (W*)* =
w. O

Notice that by Proposition 5.7.13 the property (5.7.14) is the defining property of L¥;
it uniquely determines this map. (This is in fact the whole point of the tensor product con-
struction. Its purpose is to convert bilinear maps, which are not linear, into linear maps.)

After this brief digression (into an area of mathematics which some mathematicians
unkindly refer to as “abstract nonsense”), let us come back to our motive for this digression:
an intrinsic formulation of the Kiinneth theorem. As above let X and Y be manifolds of
dimension n and r, respectively, both having finite topology. For k+¢ = m one has a bilinear
map

H*(X) x HY(Y) > H"(X x Y)

mapping (c;,¢,) to m*¢; - p*c,, and hence by Proposition 5.7.13 a linear map

(5.7.15) H*(X)® HY(Y) > H"(X xY).

Let
HP'(X xY) = P HYX) e HA(Y).

k+€=m

The maps (5.7.15) can be combined into a single linear map
(5.7.16) H'(XxY) > H"(X xY)
and our intrinsic version of the Kiinneth theorem asserts the following.

Theorem 5.7.17. The map (5.7.16) is bijective.

Here is a sketch of how to prove this. (Filling in the details will be left as a series of
exercises.) Let U be an open subset of X which has finite topology and let

H'(U) = P HYU)e H'(Y)
k+€=m
and
Hy(U) = H"(U xY).

As we've just seen there’s a Kiinneth map

k: H'(U) = Hy'(U).
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Exercises for
Exercise 5.7.i. Let U; and U, be open subsets of X, both having finite topology, and let

U = U, U U,. Show that there is a long exact sequence:
L HU) — HU) @ HIU) — HIU, 0 Uy) 2 HIU) — e
Hint: Take the usual Mayer-Vietoris sequence
o 25 HRU) — H*U,) @ HYU,) — HYU, nU,) - H*'(U) —> -,
tensor each term in this sequence with H €(Y), and sum over k + £ = m.

Exercise 5.7.ii. Show that for , there is a similar sequence.
Hint: Apply Mayer-Vietoris to the open subsets U; x Y and U, x Y of M.

Exercise 5.7.iii. Show that the diagram below commutes:

5 HIU) — HPU) @ HY(Uy) — HY(U N, > HU) — -

L HPU) — HUY) @ HI(U,) — HE(U, nUy) -2 HIPHU) — -

(This looks hard but is actually very easy: just write down the definition of each arrow in the
language of forms.)

Exercise 5.7.iv. Conclude from that if the Kiinneth map is bijective for U},
U, and U; N U, it is bijective for U.

Exercise 5.7.v. Prove the Kiinneth theorem by induction on the number of open sets in a
good cover of X. To get the induction started, note that

HFR" xY) = HY(Y) .
(See [Exercise 5.3.xi.)

5.8. Cech Cohomology
We pointed out at the end of that if a manifold X admits a finite good cover
U={U,....,Uz},

then in principle its cohomology can be read off from the intersection properties of the U;’.
In this section we'll explain in more detail how to do this. More explicitly, we will show how
to construct from the intersection properties of the U;’s a sequence of cohomology groups
H*(U;R), and we will prove that these Cech cohomology groups are isomorphic to the de
Rham cohomology groups of X. (However we will leave for the reader a key ingredient in
the proof: a diagram chasing argument that is similar to the diagram chasing arguments that
were used to prove the Mayer-Vietoris theorem in and the five lemma in §5.4.)
We will denote by N k(U) the set of all multi-indices

T=(igy..0ri) > 1 <igy..rip <d
with the property that the intersection
UI = Uio n---NU.

B3



Draft: March 28, 2018

§5.8 Cech Cohomology 195

is nonempty. (For example, for 1 < i < d, the multi-indexI = (iy, ..., ;) withiy = -+ =i, =i
is in N¥(U) since U; = U,.) The disjoint union N(U) := [, N*(U) is called the nerve of
the cover U and N*(U) is the k-skeleton of the nerve N(U). Note that if we delete i, from
a multi-index I = (i, ..., i) in NkU), ie., replace I by

L= gy oo iy gobppts oo i) >
then I, € N*"1(U).

We now associate a cochain complex to N(U) by defining CK(U;R) to be the finite
dimensional vector space consisting of all (set-theoretic) maps c: N¥(U) — R:
CH(UsR) = {c: N"(U) - R},

with addition and scalar multiplication of functions. Define a coboundary operator

§: CY(U;R) —» CK(U;R)
by setting

k
(5.8.1) S(e)D) = Y (-1Yel,).

r=0

We claim that § actually is a coboundary operator, i.e., § e § = 0. To see this, we note that
for c € C*"1(U;R) and I € N¥(U), by (5.81) we have

k+1

SBeN) = Y (-1)"8(e)(T,)
r=0

k+1
=Y (-1 (Z(—nsc(zm) + Z(—I)SIC(I,,S)> :
r=0

s<r s>r

Thus the term c(I, ;) occurs twice in the sum, but occurs once with opposite signs, and hence
8(8(c))I) = 0.

The cochain complex
(5.8.2) 0 — C%(UsR) -5 CH(WUR) S - % CH(UsR) s -
is called the Cech cochain complex of the cover U. The Cech cohomology groups of the cover
U are the cohomology groups of the Cech cochain complex:

ker(6: CK(U;R) — CH*1(U;R))
im(8: CK1(U;R) — CK(U;R))

The rest of the section is devoted to proving the following theorem:

H*(U;R) =

Theorem 5.8.3. Let X be a manifold and U a finite good cover of X. Then for all k > 0 we
have isomorphisms

H*(U;R) = H*X) .

Remarks 5.8.4.

(1) The definition of H*(U; R) only involves the nerve N(U) of this cover so
is in effect a proof of the claim we made above: the cohomology of X is in principle deter-
mined by the intersection properties of the U;.

(2) gives us another proof of an assertion we proved earlier: if X admits a
finite good cover the cohomology groups of X are finite-dimensional.
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The proof of will involve an interesting de Rham theoretic generalization
of the Cech cochain complex (5.8-2). Namely, for k and £ nonnegative integers we define a
Cech cochain of degree k with values in Q° to be a map ¢ which assigns each I € N¥(U) an
¢-form c(I) € Q4(U;).

The set of these cochains forms an infinite dimensional vector space CH(U; QF). We
will show how to define a coboundary operator

8: CK N (U0 — CH(U; Q)

similar to the Cech coboundary operator (5.81)). To define this operator, let I € N' k(U) and
forO<r <klety,: QE(UL) — QY(U;) be the restriction map defined by

W oy, .

(Note that the restiction wly, is well-defined since U; ¢ U .) Thus given a Cech cochain
¢ € CFY(U; Q%) we can, mimicking (5.8.1), define a Cech cochain 8(c) € C*(U;Qf) by
setting

k

k
(5.8.5) 8 = Y p(e,) = Y eIy, -
r=0

r=0
In other words, except for the y,’s the definition of this cochain is formally identical with
the definition (5.8.1]). We leave it as an exercise that the operators

&: CFH (U Q) - CH(U; )
satisfy 8 o8 = 0.8

Thus, to summarize, for every nonnegative integer £ we have constructed a Cech cochain
complex with values in Q°

(5.8.6) 0 — CO(U; 0 % clu; 0 - o S SRz f) S
Our next task in this section will be to compute the cohomology of the complex (5.8.6). We'll
begin with the 0" cohomology group of (5.8.9), i.e., the kernel of the coboundary operator
§: CUU; QY — CH(U; ).
An element ¢ € CO(U; Q) is, by definition, a map which assigns to each i € {1,...,d} an
element c(i) = w; of QY(U)).
Now let I = (i, i;) be an element of N'(U). Then, by definition, U, NU; is nonempty

and

8(e)I) = y;,w;, — Vi, @i, -
Thus &(c) = 0 if and only if

@i |y, nu, = @i lu, ro,
for all I € N'(U). This is true if and only if each £-form w; € Q°(U;) is the restriction to U,
of a globally defined £-form w onU; U --- UU,; = X. Thus

ker(8: CO(U; Q) — CH(U; Q%)) = QX)) .

Inserting Qf(X) into the sequence (5.8.6) we get a new sequence
(5.8.7) 0 — QF(X) — CUU Q) 5 - 5 CHUQY) = -
and we prove:

Hint: Except for keeping track of the y,’s the proof is identical to the proof of the analogous result for the
coboundary operator (§.8.1)).
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Theorem 5.8.8. Let X be a manifold and ‘U a finite good cover of X. Then for each nonnegative
integer €, the sequence (5.8.7) is exact.

We've just proved that the sequence (5.8.7) is exact in the first spot. To prove that (5.8.7)
is exact in its k"™ spot, we will construct a chain homotopy operator
Q: CH(U Q) — M (1;01)
with the property that

(5.8.9) 0Q(c) +Qd(c) = ¢
for all ¢ € CH(U; Q). To define this operator we'll need a slight generalization of
Fem 5:3.23,

Theorem 5.8.10. Let X be a manifold with a finite good cover {U,, ..., Uy}. Then there exist
functions ¢, ..., o5 € C°(X) such that supp(p;) C U; fori=1,...,N and Zf\ll ¢, =1

Proof of [Theorem 5.8.1d. Let (p;);»;, where p; € C5°(X), be a partition of unity subordinate
to the cover U and let ¢, be the sum of the p;’s with support in U;:

¢, = Z pj-

=1
supp(p;)CU,
Deleting those p; such that supp(p;) ¢ U; from the sequence (p;);>;, we get a new sequence
(p!)i>1- Let ¢, be the sum of the pj’s with support in U;:
¢, = z pi -
=1
supp(p})cU,
Now we delete those p; such that supp(pj) ¢ U, from the sequence (p{);»; and construct
¢; by the same method we used to construct ¢, and ¢,, and so on. g

Now we define the operator Q and prove [[Theorem 5.8.§.

Proof of [Theorent 5.8.8. To define the operator (5.8.9) let ¢ € C*(U; QF). Then we define
Qc € CFY(U; Q5 by defining its value at I ¢ N*1(I) to be

d
Qc(l) = Y ¢ic(isigy ...rig_1) »
i=0

where I = (i, ..., i;_;) and the i summand on the right is defined by be equal to 0 when U;n
U; is empty and defined to be the product of the function ¢; and the €-form c(i, i, ..., i_;)
when U; NUj is nonempty. (Note that in this case, the multi-index (i, ig, ..., i_;) is in N¥(U)
and so by definition c(i, i, ..., ix_; ) is an element of Q°(U; N U;). However, since ¢; is sup-
ported on U;, we can extend the £-form ¢;c(i, iy, ...,i,_;) ti U; by setting it equal to zero
outside of U; N U;.)

To prove (.8.9) we note that for ¢ € CH(U; OF) we have

d
QB¢c(ig, ..., i) = Y Oc(isigs ..rix)

i=1

so by (5.8-9) the right hand side is equal to

d d k
(5.8.11) Y biyiclios i) + ). D (1, cliigy ooy onriy)
i=1

i=1 s=0
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where (i, i, ..., I, ..., i) is the multi-index (4, i, ..., i) with i; deleted. Similarly,

k
0Qc(igs -.orig) = Y (=193 Qcligy .. or iy ..riy)

s=0

d k
- Z Z(_l)s¢iYisC(i’ Bgs evrbgy oenrdg) «

i=1s=0
However, this is the negative of the second summand of (5.8.11)); so, by adding these two
summands we get

d
(QSc +8QC) gy - ix) = Y. $yyiclips ...»if)
i=1

and since Zil ¢; = 1, this identity reduced to
(Qdc +6Qe)(I) = c(I),

or, since I € N¥(U) is any element, Qdc + 6Qc = c.

Finally, note the is an immediate consequence of the existence of this
chain homotopy operator. Namely, if ¢ € C*(U; Q) is in the kernel of 8, then

¢ =Q4(c) +6Q(c) = 6Q(c) ,

so ¢ is in the image of 8 : CK"1(U; Q) — CH(U; QF). O

To prove [Theorem 5.8.3, we note that in addition to the exact sequence

0 — QX)) — CUU; Q%) - o S Rz 8 S

we have another exact sequence
(5.8.12)

0 — CHUR) <5 KUY 5 R0 5 - 5 R ) 5
where the d’s are defined as follows: given ¢ € Cr(U; Of) and T € N*(U), we have that
c(I) € Q(U;) and d(c(I)) € Q1 (U;), and we define d(c) € C*(U; Q%) to be the map
given by

I— d(c(I)).
It is clear from this definition that d(d(c)) = 0 so the sequence

(5.8.13) k%) L ks Q') L - L ko) L -

is a complex and the exactness of this sequence follows from the fact that, since U is a good
cover, the sequence

QU) L o) L - L o) L -

is exact. Moreover, if ¢ € CK(U;Q°) and dc = 0, then for every I € N*(U), we have
dc(I) = 0, i.e., the 0-form c(I) in Q°(U;) is constant. Hence the map given by I — ¢(I) is
just a Cech cochain of the type we defined earlier, i.e., a map N¥(U) — R. Therefore, the
kernel of this map d : CHU; Q%) — CF(U; Q1) is C°(U; R); and, adjoining this term to the
sequence (5.8.13) we get the exact sequence (5.8.12)).

Lastly we note that the two operations we've defined above, the d operation

d: CHU; Qf) — CF(u; Y
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and the § operation & Cru; 0 - CHY(U; QF), commute. ie., for ¢ € CE(U; QF) we
have

(5.8.14) ddc =dbc.

Proofof. ForI € Nk+l(,Ll)

k
dc(I) = Y (-1)y,e(l,),

r=0

soifc(l,) = w; € Q°(U; ), then

k
(D) = Y (-1 @y Iy,
r=0

and
k
ds(I) = Y dw |y, = dde(I). m

r=0

Putting these results together we get the following commutative diagram:

d
0 —— Q*(X) —— CO(U; %) —25 CY(U; %) —2 CHU; P) —— -
d d d d
0 —— 0'(X) — C"(U; Q") —— CH U Q) —— C(U Q) — -
d d d d

0 —— Q°(X) — CUU; Q%) —5— CHU; Q) ——> CHU Q) —— -

0 ——— C(U;R) —5— CYU;R) —5— CH(UsR) —— -

0 0 0

In this diagram all columns are exact except for the extreme left and column, which is the
usual de Rham complex, and all rows are exact except for the bottom row which is the usual
Cech cochain complex.

Exercises for
Exercise 5.8.i. Deduce from this diagram that if a manifold X admits a finite good cover
U, then HX(U;R) = H*(X).
Hint: Let ¢ € Q*1(X) be a form such that dc = 0. Show that one can, by a sequence of
“chess moves” (of which the first few stages are illustrated in the (5.8.19) below), convert ¢
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into an element & of CK*1(U; R) satisfying §(¢) = 0

c Ck+1,0
dI
Ck,o 5 Ck’l
d]
Ck—l,l S Ck—l,Z
(5.8.15)
d
Ck—2,2 5 Ck—2,3
d[
ck-33 .
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APPENDIX a

Bump Functions & Partitions of Unity

We will discuss in this section a number of “global to local” techniques in multi-variable
calculus: techniques which enable one to reduce global problems on manifolds and large
open subsets of R” to local problems on small open subsets of these sets. Our starting point
will be the function p on R defined by

1
ex, x>0

0, x<0,

(a.1) plx) = {

which is positive for x positive, zero for x negative and everywhere C*. (We will sketch a
proof of this last assertion at the end of this appendix). From p one can construct a number
of other interesting C* functions.

Example A.2. For a > 0 the function p(x) + p(a — x) is positive for all x so the quotient
p.(x) of p(x) by this function is a well-defined C* function with the properties:

pa(x) =0, forx <0
0<p(x)<1
pPa(x) =1, forx>a.

Example A.3. Let I be the open interval (a, b), and p; the product of p(x — a) and p(b — x).
Then p;(x) is positive for x € I and zero on the complement of I.

Example A.4. More generallylet I, ..., I, be open intervals and let Q = I; x --- X I, be the
open rectangle in R” having these intervals as sides. Then the function

Po(x) = pr (x1) - pp (%)
is a C* function on R” that’s positive on Q and zero on the complement of Q.
Using these functions we will prove:

Lemma A.5. Let C be a compact subset of R" and U an open set containing C. Then there
exists function ¢ € Cg°(U) such that

¢(x) =0, forallx eU
¢(x) >0, forxeC.

Proof. For each p € Clet Q, be an open rectangle with p € Q, and C_QP c U.The Q,’s cover
C; so, by Heine-Borel there exists a finite subcover Q, , ..., Q,, . Nowlet ¢ := Zf\:] 1PQ, O

This result can be slightly strengthened. Namely we claim:
Theorem A.6. There exists a function v € C°(U) such that0 <y < landy = 1onC.

201
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Proof. Let¢beasin and let a > 0 be the greatest lower bound of the restriction
of ¢ to C. Then if p, is the function in the function p, o ¢ has the properties
indicated above. O

Remark A.7. The function v in this theorem is an example of a bump function. If one wants
to study the behavior of a vector field v or a k-form w on the set C, then by multiplying v
(or ) by y one can, without loss or generality, assume that v (or w) is compactly supported
on a small neighborhood of C.

Bump functions are one of the standard tools in calculus for converting global problems
to local problems. Another such tool is partitions of unity.

Let U be an open subset of R” and U = {U,},; a covering of U by open subsets (in-
dexed by the elements of the index set I). Then the partition of unity theorem asserts:

Theorem A.8. There exists a sequence of functions py, p,, ... € Co°(U) such that

(1) p;=0

(2) Foreveryithereisan o € I with p; € C*(U,)

(3) For every p € U there exists a neighborhood U, of p in U and an N, > 0 such that
piIUp =0foru> N,

(4) Xpi=1

Remark A.9. Because of item ([) the sum in item (l) is well defined. We will derive this
result from a somewhat simpler set theoretical result.

Theorem A.10. There exists a countable covering of U by open rectangles (Q;);»; such that

(1) C_Q,- cU _

(2) Foreachithereisan o € I withQ; c U,

(3) Forevery p € U there exists a neighborhood Uy, of p in U and N, > 0 such that Q; nU,,
is empty fori > N,

We first note that implies [[heorem 4.8 To see this note that the func-
tions pg, in above have all the properties indicated in except for
property (). Moreover since the Q;’s are a covering of U the sum Y -, pq, is everywhere
positive. Thus we get a sequence of p;’s satistying ([])-(lf) by taking p; to be the quotient of
pq, by this sum.

Proof of [[heorem A.1d. Let d(x,U°) be the distance of a point x € U to the complement
U¢:=R"~UofU in R”, and let A, be the compact subset of U consisting of points, x € U,
satisfying d(x,U) > 1/r and |x| < r. By Heine-Borel we can find, for each r, a collection of
openrectangles,Q, ;,i = 1, ..., N,, such that ar)i is contained in int(A,,;~A,_,) and in some
U, and such that the Q;, r’s are a covering of A, ~int(A,_,). Thus the Q, ;s have the properties
listed in [Theorem A.1d, and by relabelling, i.e., setting Q; = Qy; for 1 <i < N;, Q4 = Qy

for 1 <i < N,, etc., we get a sequence, Q;, Q,, ... with the desired properties. O

Applications
We will next describe a couple of applications of [[heorem A.1d.

Application A.11 (Improper integrals). Let f: U — R be a continuous function. We will
say that f is integrable over U if the infinite sum

[ee]

(112) Y | piserax

i=1 JU
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converges and if so we will define the improper integral of f over U to be the sum

(e}

(A.13) Z J pi(x) f(x)dx

i=1°U
(Notice that each of the summands in this series is the integral of a compactly supported
continuous function over R” so the individual summands are well-defined. Also it’s clear
that if f itself is a compactly supported function on R”, (.12)) is bounded by the integral of
| f| over R", so for every f € C, (R") the improper integral of f over U is well-defined.)

Application A.14 (An extension theorem for C* maps). Let X be a subset of R” and f :
X — R™ a continuous map. We will say that f is C* if, for every p € X, there exists an
open neighborhood, U, of p in R and a C* map, g, : U, — R" such that g, = f on
U,nX.

p

Theorem A.15 (Extension Theorem). If f: X — R™ is C* there exists an open neighbor-
hoodU of X inR" and a C*® map g: U — R, such that g = f on X.

Proof. LetU = pex Up and let (p;);, be a partition of unity subordinate to the covering
U = {U,}pex of U. Then, for each i, there exists a p such that the support of p; is contained
inU,. Let

0,3 - {” 900 X< U

0 xeUj.
> p
Then g = Y7, g; is well defined by item (§) of and the restriction of g to X is
given by Y°, p; f, which is equal to f. O

Exercises for
Exercise A.i. Show that the function ([o.1) is C*°.
Hints:

(1) From the Taylor series expansion

©  k
x
X — N
¢ ,;) Kl
conclude that for x > 0
xk+n
* > :
(k+mn)!
(2) Replacing x by 1/x conclude that for x > 0,
1 1
x5 = .
e = (n + k)! xmtk

(3) From this inequality conclude that for x > 0,
e < (n + k)lx™k
(4) Let f,(x) be the function
exx", x>0

Sl = {0, x<0.
Conclude from () that for x > 0,

fulx) < (n+k)1xk
for all k
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(5) Conclude that f,, is C! differentiable.

(6) Show that
d
afn = fn+2 - nfn+1

(7) Deduce by induction that the f,’s are C" differentiable for all » and .

Exercise A.ii. Show that the improper integral (o.13) is well-defined independent of the
choice of partition of unity.
Hint: Let (p]) j»; be another partition of unity. Show that (&:13) is equal to

Z Z L pi(x)p; (x) f (x)dx .

i=1 j=1
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The Implicit Function Theorem

Let U be an open neighborhood of the origin in R” and let f,, ..., fi be C* functions
on U with the property f,(0) = --- = f;(0) = 0. Our goal in this appendix is to prove the
following implicit function theorem.

Theorem B.1. Suppose the matrix
i
(5.2) (3]
is non-singular. Then there exists a neighborhood Uy of 0 in R” and a diffeomorphism g : (U, 0) —
(U, 0) of U, onto an open neighborhood of 0 in U such that
g fi=x;,i=1..,k

and
g*xj =x;, j=k+1,..,n.

Remarks B.3.
(1) Let g(x) = (g;(x), ..., g,(x)). Then the second set of equations just say that
9i(xp .. X,) = X;

for j = k+1,...,n, so the first set of equations can be written more concretely in the

form

(B.4) Fi(g1(xps o X)) oo G (X1 oo X)) Xp 15 0 X)) = X;
fori=1,..., k.

(2) Letting y; = g;(x,, ..., x,,) the equations (B.4) become

(B.5) Jiyi oo Yio Xy -0 %) = X

Hence what the implicit function theorem is saying is that, modulo the assumption (B.2))
the system of equations (B.3) can be solved for the y;’s in terms of the x;s.
(3) By alinear change of coordinates:
k
X; Zamxr, i=1,...,k

r=1
we can arrange without loss of generality for the matrix (B.2) to be the identity matrix,
ie.,

(B.6) %(0)=8i-,1si,jsk.
0x; "
Our proof of this theorem will be by induction on k.
First, let’s suppose that k = 1 and, for the moment, also suppose that n = 1. Then the
theorem above is just the inverse function theorem of freshman calculus. Namely if £(0) = 0
and d f /dx(0) = 1, there exists an interval (a, b) about the origin on which d f /dx is greater

205



Draft: March 28, 2018

206 Appendix B: The Implicit Function Theorem

than 1/2, so f is strictly increasing on this interval and its graph looks like the curve in the
figure below with ¢ = f(a) < —3aandd = f(b) > 1b.

Figure B.1. The implicit function theorem

The graph of the inverse function g: [c,d] — [a, b] is obtained from this graph by just
rotating it through ninety degrees, i.e., making the y-axis the horizontal axis and the x-axis
the vertical axis. (From the picture it’s clear that y = f(x) &= x=g(y) &= f(g(»y)) =
»)

Most elementary text books regard this intuitive argument as being an adequate proof
of the inverse function theorem; however, a slightly beefed-up version of this proof (which is
completely rigorous) can be found in [12], Ch. 12]. Moreover, as Spivak points out in [12, Ch.
12], if the slope of the curve in the figure above at the point (x, y) is equal to A the slope of
the rotated curve at (y, x) is 1/A, so from this proof one concludes that if y = f(x)

(2.7) Z—i(y) - (%(x))l - <%<g(y)))l .

Since f is a continuous function, its graph is a continuous curve and, therefore, since the
graph of g is the same curve rotated by ninety degrees, g is also a continuous functions.
Hence by (B-), g is also a C! function and hence by (B-7), g is a C* function, etc. In other
words g is in C*([c, d]).

Let’s now prove that the implicit function theorem with k = 1 and n arbitrary. This
amounts to showing that if the function f in the discussion above depends on the param-
eters, Xx,,...x, in a C* fashion, then so does its inverse g. More explicitly let’s suppose
f(xy, ..., x,) is a C* function on a subset of R” of the form [a, b] x V where V is a compact,
convex neighborhood of the origin in R" and satisfies 0 f /0x; > % on this set. Then by the
argument above there exists a function, g = g(y, x,, ..., x,,) defined on the set [a/2,b/2] xV
with the property

(B.8) f(x1%0,.0%) =y &= gy, %y, ..%,) =X .

Moreover by (B.7) g is a C* function of y and

0 0 -
(B9) a_g(y’xZ)u-’xn) = _f(xl)x2a--')xn) !
Y 0x,
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at x; = g(y). In particular, since 22
0< a_g <2
dy
and hence
(B.10) 19y, %55 000y X,) = g(3, X5 oo x,)| < 21y =y

for points y and y' in the interval [a/2, b/2].

The k = 1 case of is almost implied by (B-§) and (B.d) except that we must
still show that g is a C* function, not just of y, but of all the variables, y, x,, ..., x,,, and this
we'll do by quoting another theorem from freshman calculus (this time a theorem from the
second semester of freshman calculus).

Theorem B.11 (Mean Value Theorem in # variables). Let U be a convex open set in R" and
f: U — RaC® function. Then for a,b € U there exists a point ¢ on the line interval joining
a to b such that

n

=Y Y ot~ q
SO - f@) = 3 2o =0

Proof. Apply the one-dimensional mean value theorem to the function
h(t) = f((1 —t)a +tb). O

Let’s now show that the function g in (B.§) is a C* function of the variables, y and x,.
To simplify our notation we'll suppress the dependence of f on xs,...,x, and write f as
f(x;,x,) and g as g(y, x,). For h € (¢, ¢), € small, we have

y = f(g(y,x, + h), x, + h) = f(g(y,x2), %,) »

and, hence, setting x| = gy, x, + h), x; = g(y, x,) and xj = x, + h, we get from the mean
value theorem

0= f(x},x5) — f(x1,%,)
_ s_f@)(x; )+ Lo - %)
X1 ax2

and therefore

9 9
(B.12) gy, x, +h) — gy, x,) = <—a—f(c)> —f(c)h
X, 0x,
for some ¢ on the line segment joining (x;, x,) to (x1, x3). Letting h tend to zero we can draw
from this identity a number of conclusions:

(1) Since f is a C* function on the compact set [a,b] x V its derivatives are bounded on
this set, so the right hand side of (B.12)) tends to zero as & tends to zero, i.e., for fixed y,
g is continuous as a function of x,.

(2) Now divide the right hand side of (B.12]) by i and let /1 tend to zero. Since g is continuous
in x,, the quotient of (B.12]) by & tends to its value at (x;, x,). Hence for fixed y f is
differentiable as a function of x, and

of

0 ! )
(B.13) %(y,xz) = <a_x1> (xl,xz)a—i;(xl,xz)

where x; = g(y, x,).
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(3) Moreover, by the inequality (B.1d) and the triangle inequality

l9(y",x3) = g(y, )| < |g(y', x3) = g(y, )| + 1g(y, x3) = gy, x,)]
<2ly" =yl +1g(y, %) — g(y, x,)1
hence g is continuous as a function of y and x,.
(4) Hence by (B-9) and (B-13), g is a C! function of y and x,, and hence ...

In other words g is a C*™ function of y and x,. This argument works, more or less
verbatim, for more than two x;’s and proves that g is a C* function of y, x,, ..., x,,. Thus

with f = fiand g = g, is proved in the special case k = 1.
Proof of fork > 1. We'll now prove for arbitrary k by induction

on k. By induction we can assume that there exists a neighborhood Uy, of the origin in R”
and a C* diffeomorphism ¢: (Uj,0) — (U, 0) such that
(B.14) ¢ fi=x
for2 <i<kand
(B.15) ¢ x; = x;
for j=1and k + 1 < j < n. Moreover, by (B.6)
k

e =¥ Uiy 0 4 0)= % -
<8x1¢ fl) 0) = 1; 0x, (O)E)xi $:(0) = ox, !

since ¢; = ¢*x,; = x,. Therefore we can apply [[heorem B.1], with k = 1, to the function, ¢* f;,

to conclude that there exists a neighborhood U, of the origin in R” and a diffeomorphism
y: (Up,0) — (U{,0) such that y*¢* f; = x; and y*¢*x; = x; for 1 < i < n. Thus by (B.14)
Yy  f; = v*x; = x; for 2 < i < k, and by (B.13) w*gb*xj = 1//*xj =xjfork+1<j<n
Hence if we let g = ¢ o y we see that:

g fi=@ew) fi=y ¢ fi=x
fori <i<kand

g xj=(eoy)x; =y P'x; = x;
fork+1<j<n. O

WEe'll derive a number of subsidiary results from [Theorem B.1|. The first of these is the

n-dimensional version of the inverse function theorem:

Theorem B.16. LetU andV be open subsets of R and ¢: (U, p) — (V,q) a C* map. Suppose
that the derivative of ¢ at p

D¢(p): R* - R”
is bijective. Then ¢ maps a neighborhood of p in U diffeomorphically onto a neighborhood of
qinV.
Proof. By pre-composing and post-composing ¢ by translations we can assume that p =
q=0.Let¢ = (f},..., f,,). Then the condition that D¢(0) be bijective is the condition that

the matrix (B.2]) be non-singular. Hence, by [[heorem B.1, there exists a neighborhood V}, of
0 in V, a neighborhood U, of 0 in U, and a diffeomorphism g: V;; — U, such that

g fi=x
fori = 1,...,n. However, these equations simply say that g is the inverse of ¢, and hence
that ¢ is a diffeomorphism. O
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A second result which we'll extract from is the canonical submersion the-

orem.

Theorem B.17. Let U be an open subset of R" and ¢: (U, p) — (RK,0) a C® map. Suppose
¢ is a submersion at p, i.e., suppose its derivative

D¢(p): R" — RF

is onto. Then there exists a neighborhood V of p in U, a neighborhood U, of the origin in R”,
and a diffeomorphism g: (U,,0) — (V, p) such that the map ¢ o g: (U,,0) — (R",0) is the
restriction to U, of the canonical submersion:

m: R" 5 R m(xy,..0x,) = (X )

Proof. Let ¢ = (f;, ..., f). Composing ¢ with a translation we can assume p = 0 and by a
permutation of the variables x, ..., x,, we can assume that the matrix (B.2)) is non-singular.
By we conclude that there exists a diffeomorphism g: (U, 0) < (U, p) with
the properties g* f; = x; fori = 1, ..., k, and hence,

bog(xy,....x,) = (X1, .., %) . O

As a third application of [[Theorem B. we'll prove a theorem which is similar in spirit to
eorem B.17, the canonical immersion theorem.

Theorem B.18. Let U be an open neighborhood of the origin in R* and ¢: (U,0) — (R, p)
a C*™ map. Suppose that the derivative of ¢ at 0

D¢(0): RF — R"
is injective. Then there exists a neighborhood Uy of 0 in U, a neighborhood V of p in R", and
a diffeomorphism.

v:V - Uy xR"*
such that the map v o ¢: U, — U, x R" K is the restriction to U, of the canonical immersion

1: RF - RF x R"F | Wxp, X)) = (%15 .., %, 0,...,0)
Proof. Let¢ = (fy,..., f,). By a permutation of the f;’s we can arrange that the matrix
[20)], 124j<k
is non-singular and by composing ¢ with a translation we can arrange that p = 0. Hence by
the map
x: (U,0) = (R50) x = (fi(x), ..., fi(x)

maps a neighborhood Uj of 0 diffeomorphi