Homework Assignment 4 18.952

Problem 1, Section 4.1, exercises 7-12

Problem 2, Exercises:

- 1. In section 4.1, exercise 8, let $A_t \in S_n$ be a family of linear mappings depending smoothly on t and satisfying $A_t^2 = A_t$. Show that if $A_0 = A$ and $B = \frac{d}{dt}A_t(t=0)$ then BA + AB = B.
- 2. Conclude from this that if V is the kernel of A and W the kernel of I A, then B maps V into W and W into V.
- 3. Let $\langle v, w \rangle$ be the Euclidean inner product on \mathbb{R}^n . Show that since B is in $S_n, \langle Bv, w \rangle = \langle v, Bw \rangle$ for all $v \in V$ and $w \in W$, and conclude that B is determined by its restitution to V.
- 4. Show that if A is in G(k, n), the tangent space to G(k, n) at A is Hom(V, W).