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CHAPTER 3

INTEGRATION OF FORMS

3.1 Introduction

The change of variables formula asserts that if U and V are open
subsets of R

n and f : U → V a C1 diffeomorphism then, for every
continuous function, ϕ : V → R the integral

∫

V
ϕ(y) dy

exists if and only if the integral

∫

U
ϕ ◦ f(x)|detDf(x)| dx

exists, and if these integrals exist they are equal. Proofs of this can
be found in [?], [?] or [?]. This chapter contains an alternative proof
of this result. This proof is due to Peter Lax. Our version of his
proof in §3.5 below makes use of the theory of differential forms;
but, as Lax shows in the article [?] (which we strongly recommend as
collateral reading for this course), references to differential forms can
be avoided, and the proof described in§3.5 can be couched entirely
in the language of elementary multivariable calculus.

The virtue of Lax’s proof is that is allows one to prove a version
of the change of variables theorem for other mappings besides dif-
feomorphisms, and involves a topological invariant, the degree of a
mapping, which is itself quite interesting. Some properties of this in-
variant, and some topological applications of the change of variables
formula will be discussed in §3.6 of these notes.

Remark 3.1.1. The proof we are about to describe is somewhat
simpler and more transparent if we assume that f is a C∞ diffeo-
morphism. We’ll henceforth make this assumption.
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3.2 The Poincaré lemma for compactly supported forms

on rectangles

Let ν be a k-form on R
n. We define the support of ν to be the closure

of the set

{x ∈ R
n , νx 6= 0}

and we say that ν is compactly supported if supp ν is compact. We
will denote by Ωk

c (R
n) the set of all C∞ k-forms which are compactly

supported, and if U is an open subset of R
n, we will denote by

Ωk
c (U) the set of all compactly supported k-forms whose support is

contained in U .
Let ω = f dx1 ∧ · · · ∧ dxn be a compactly supported n-form with

f ∈ C∞
0 (Rn). We will define the integral of ω over R

n:

∫

Rn

ω

to be the usual integral of f over R
n

∫

Rn

f dx .

(Since f is C∞ and compactly supported this integral is well-defined.)
Now let Q be the rectangle

[a1, b1] × · · · × [an, bn] .

The Poincaré lemma for rectangles asserts:

Theorem 3.2.1. Let ω be a compactly supported n-form, with suppω ⊆
IntQ. Then the following assertions are equivalent:

a.
∫
ω = 0.

b. There exists a compactly supported (n−1)-form, µ, with suppµ ⊆
IntQ satisfying dµ = ω.

We will first prove that (b)⇒( a). Let

µ =

n∑

i=1

fi dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn ,
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(the “hat” over the dxi meaning that dxi has to be omitted from the
wedge product). Then

dµ =

n∑

i=1

(−1)i−1 ∂fi

∂xi
dx1 ∧ . . . ∧ dxn ,

and to show that the integral of dµ is zero it suffices to show that
each of the integrals

(2.1)i

∫

Rn

∂f

∂xi
dx

is zero. By Fubini we can compute (2.1)i by first integrating with
respect to the variable, xi, and then with respect to the remaining
variables. But ∫

∂f

∂xi
dxi = f(x)

∣∣∣∣
xi=bi

xi=ai

= 0

since fi is supported on U .
We will prove that (a) ⇒ (b) by proving a somewhat stronger

result. Let U be an open subset of R
m. We’ll say that U has property

P if every form, ω ∈ Ωm
c (U) whose integral is zero in dΩm−1

c (U).
We will prove

Theorem 3.2.2. Let U be an open subset of R
n−1 and A ⊆ R an

open interval. Then if U has property P , U ×A does as well.

Remark 3.2.3. It’s very easy to see that the open interval A itself
has property P . (See exercise 1 below.) Hence it follows by induction
from Theorem 3.2.2 that

IntQ = A1 × · · · ×An, Ai = (ai, bi)

has property P , and this proves “(a) ⇒ (b)”.

To prove Theorem 3.2.2 let (x, t) = (x1, . . . , xn−1, t) be product
coordinates on U × A. Given ω ∈ Ωn

c (U × A) we can express ω
as a wedge product, dt ∧ α with α = f(x, t) dx1 ∧ · · · ∧ dxn−1 and
f ∈ C∞

0 (U ×A). Let θ ∈ Ωn−1
c (U) be the form

(3.2.1) θ =

(∫

A
f(x, t) dt

)
dx1 ∧ · · · ∧ dxn−1 .

Then ∫

Rn−1

θ =

∫

Rn

f(x, t) dx dt =

∫

Rn

ω
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so if the integral of ω is zero, the integral of θ is zero. Hence since U
has property P , β = dν for some ν ∈ Ωn−1

c (U). Let ρ ∈ C∞(R) be a
bump function which is supported on A and whose integral over A
is one. Setting

κ = −ρ(t) dt ∧ ν

we have
dκ = ρ(t) dt ∧ dν = ρ(t) dt ∧ θ ,

and hence

ω − dκ = dt ∧ (α − ρ(t)θ) = dt ∧ u(x, t) dx1 ∧ · · · ∧ dxn−1

where

u(x, t) = f(x, t) − ρ(t)

∫

A
f(x, t) dt

by (3.2.1). Thus

(3.2.2)

∫
u(x, t) dt = 0 .

Let a and b be the end points of A and let

(3.2.3) v(x, t) =

∫ t

a
i(x, s) ds .

By (3.2.2) v(a, x) = v(b, x) = 0, so v is in C∞
0 (U ×A) and by (3.2.3),

∂v/∂t = u. Hence if we let γ be the form, v(x, t) dx1 ∧ · · · ∧ dxn−1,
we have:

dγ = u(x, t) dx ∧ · · · ∧ dxn−1 = ω − dκ

and

ω = d(γ + κ) .

Since γ and κ are both in Ωn−1
c (U × A) this proves that ω is in

dΩn−1
c (U ×A) and hence that U ×A has property P .

Exercises for §3.2.

1. Let f : R → R be a compactly supported function of class
Cr with support on the interval, (a, b). Show that the following are
equivalent.
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(a)
∫ b
a f(x) dx = 0.

(b) There exists a function, g : R → R of class Cr+1 with support
on (a, b) with dg

dx = f .

Hint: Show that the function

g(x) =

∫ x

a
f(s) ds

is compactly supported.

2. Let f = f(x, y) be a compactly supported function on R
k ×R

ℓ

with the property that the partial derivatives

∂f

∂xi
(x, y) , i = 1, . . . , k ,

and are continuous as functions of x and y. Prove the following “dif-
ferentiation under the integral sign” theorem (which we implicitly
used in our proof of Theorem 3.2.2).

Theorem 3.2.4. The function

g(x) =

∫
f(x, y) dy

is of class C1 and

∂g

∂xi
(x) =

∫
∂f

∂xi
(x, y) dy .

Hints: For y fixed and h ∈ R
k,

fi(x+ h, y) − fi(x, y) = Dxfi(c)h

for some point, c, on the line segment joining x to x+ c. Using the
fact that Dxf is continuous as a function of x and y and compactly
supported, conclude:

Lemma 3.2.5. Given ǫ > 0 there exists a δ > 0 such that for |h| ≤ δ

|f(x+ h, y) − f(x, y) −Dxf(x, c)h| ≤ ǫ|h| .
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Now let Q ⊆ R
ℓ be a rectangle with supp f ⊆ R

k × Q and show
that

|g(x + h) − g(x) −

(∫
Dxf(x, y) dy

)
h| ≤ ǫ vol (Q)|h| .

Conclude that g is differentiable at x and that its derivative is
∫
Dxf(x, y) dy .

3. Let f : R
k × R

ℓ → R be a compactly supported continuous
function. Prove

Theorem 3.2.6. If all the partial derivatives of f(x, y) with respect
to x of order ≤ r exist and are continuous as functions of x and y
the function

g(x) =

∫
f(x, y) dy

is of class Cr.

4. Let U be an open subset of R
n−1, A ⊆ R an open interval

and (x, t) product coordinates on U × A. Recall (§2.2) exercise 5)
that every form, ω ∈ Ωk(U ×A), can be written uniquely as a sum,
ω = dt∧α+β where α and β are reduced, i.e., don’t contain a factor
of dt.

(a) Show that if ω is compactly supported on U ×A then so are
α and β.

(b) Let α =
∑

I

fI(x, t) dxI . Show that the form

(3.2.4) θ =
∑

I

(∫

A
fI(x, t) dt

)
dxI

is in Ωk−1
c (U).

(c) Show that if dω = 0, then dθ = 0. Hint: By (3.2.4)

dθ =
∑

I,i

(∫

A

∂fI

∂xi
(x, t) dt

)
dxi ∧ dxI

=

∫

A
(dUα) dt

and by (??) dUα =
dβ

dt
.
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5. In exercise 4 show that if θ is in dΩk−1(U) then ω is in dΩk
c (U).

Hints:

(a) Let θ = dν, with ν = Ωk−2
c (U) and let ρ ∈ C∞(R) be a bump

function which is supported on A and whose integral over A is
one. Setting k = −ρ(t) dt ∧ ν show that

ω − dκ = dt ∧ (α− ρ(t)θ) + β

= dt ∧ (
∑

I

uI(x, t) dxI) + β

where

uI(x, t) = fI(x, t) − ρ(t)

∫

A
fI(x, t) dt .

(b) Let a and b be the end points of A and let

vI(x, t) =

∫ t

a
uI(x, t) dt .

Show that the form
∑
vI(x, t) dxI is in Ωk−1

c (U ×A) and that

dγ = ω − dκ− β − dUγ .

(c) Conclude that the form ω − d(κ+ γ) is reduced.

(d) Prove: If λ ∈ Ωk
c (U ×A) is reduced and dλ = 0 then λ = 0.

Hint: Let λ =
∑
gI(x, t) dxI . Show that dλ = 0 ⇒

∂

∂t
gI(x, t) = 0

and exploit the fact that for fixed x, gI(x, t) is compactly sup-
ported in t.

6. Let U be an open subset of R
m. We’ll say that U has property

Pk, for k < n, if every closed k-form, ω ∈ Ωk
c (U), is in dΩk−1

c (U).
Prove that if the open set U ⊆ R

n−1 in exercise 3 has property Pk

then so does U ×A.

7. Show that if Q is the rectangle [a1, b1] × · · · × [an, bn] and U =
IntQ then u has property Pk.

8. Let H
n be the half-space

(3.2.5) {(x1, . . . , xn) ; x1 ≤ 0}
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and let ω ∈ Ωn
c (R) be the n-form, f dx1∧· · ·∧ dxn with f ∈ C∞

0 (Rn).
Define:

(3.2.6)

∫

Hn

ω =

∫

Hn

f(x1, . . . , xn) dx1 · · · dxn

where the right hand side is the usual Riemann integral of f over
H

n. (This integral makes sense since f is compactly supported.) Show
that if ω = dµ for some µ ∈ Ωn−1

c (Rn) then

(3.2.7)

∫

Hn

ω =

∫

Rn−1

ι∗µ

where ι : R
n−1 → R

n is the inclusion map

(x2, . . . , xn) → (0, x2, . . . , xn) .

Hint: Let µ =
∑

i fi dx1 ∧ · · · d̂xi · · · ∧ dxn. Mimicking the “(b) ⇒
(a)” part of the proof of Theorem 3.2.1 show that the integral (3.2.6)
is the integral over R

n−1 of the function

∫ 0

−∞

∂f1

∂x1
(x1, x2, . . . , xn) dx1 .

3.3 The Poincaré lemma for compactly supported forms

on open subsets of Rn

In this section we will generalize Theorem 3.2.1 to arbitrary con-
nected open subsets of R

n.

Theorem 3.3.1. Let U be a connected open subset of R
n and let ω

be a compactly supported n-form with suppω ⊂ U . The the following
assertions are equivalent,

a.
∫
ω = 0.

b. There exists a compactly supported (n−1)-form, µ, with suppµ ⊆
U and ω = dµ.

Proof that (b) ⇒ (a). The support of µ is contained in a large
rectangle, so the integral of dµ is zero by Theorem 3.2.1.
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Proof that (a) ⇒ (b): Let ω1 and ω2 be compactly supported n-
forms with support in U . We will write

ω1 ∼ ω2

as shorthand notation for the statement: “There exists a compactly
supported (n−1)-form, µ, with support in U and with ω1−ω2 = dµ.”,
We will prove that (a) ⇒ (b) by proving an equivalent statement:
Fix a rectangle, Q0 ⊂ U and an n-form, ω0, with suppω0 ⊆ Q0 and
integral equal to one.

Theorem 3.3.2. If ω is a compactly supported n-form with suppω ⊆
U and c =

∫
ω then ω ∼ cω0.

Thus in particular if c = 0, Theorem 3.3.2 says that ω ∼ 0 proving
that (a) ⇒ (b).

To prove Theorem 3.3.2 let Qi ⊆ U , i = 1, 2, 3, . . ., be a collection
of rectangles with U = ∪IntQi and let ϕi be a partition of unity
with suppϕi ⊆ IntQi. Replacing ω by the finite sum

∑m
i=1 ϕiω, m

large, it suffices to prove Theorem 3.3.2 for each of the summands
ϕiω. In other words we can assume that suppω is contained in one
of the open rectangles, IntQi. Denote this rectangle by Q. We claim
that one can join Q0 to Q by a sequence of rectangles as in the figure
below.

Q
0

Q

Lemma 3.3.3. There exists a sequence of rectangles, Ri, i = 0, . . . ,
N + 1 such that R0 = Q0, RN+1 = Q and IntRi ∩ IntRi+1 is non-
empty.

Proof. Denote by A the set of points, x ∈ U , for which there exists a
sequence of rectangles, Ri, i = 0, . . . , N + 1 with R0 = Q0, with x ∈
IntRN+1 and with IntRi ∩ IntRi+1 non-empty. It is clear that this
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set is open and that its complement is open; so, by the connectivity
of U , U = A.

To prove Theorem 3.3.2 with suppω ⊆ Q, select, for each i, a
compactly supported n-form, νi, with supp νi ⊆ IntRi ∩ IntRi+1

and with
∫
νi = 1. The difference, νi − νi+1 is supported in IntRi+1,

and its integral is zero; so by Theorem 3.2.1, νi ∼ νi+1. Similarly,
ω0 ∼ ν1 and, if c =

∫
ω, ω ∼ cνN . Thus

cω0 ∼ cν0 ∼ · · · ∼ cνN = ω

proving the theorem.

3.4 The degree of a differentiable mapping

Let U and V be open subsets of R
n and R

k. A continuous mapping,
f : U → V , is proper if, for every compact subset, B, of V , f−1(B) is
compact. Proper mappings have a number of nice properties which
will be investigated in the exercises below. One obvious property
is that if f is a C∞ mapping and ω is a compactly supported k-
form with support on V , f∗ω is a compactly supported k-form with
support on U . Our goal in this section is to show that if U and V
are connected open subsets of R

n and f : U → V is a proper C∞

mapping then there exists a topological invariant of f , which we
will call its degree (and denote by deg(f)), such that the “change of
variables” formula:

(3.4.1)

∫

U
f∗ω = deg(f)

∫

V
ω

holds for all ω ∈ Ωn
c (V ).

Before we prove this assertion let’s see what this formula says in
coordinates. If

ω = ϕ(y) dy1 ∧ · · · ∧ dyn

then at x ∈ U

f∗ω = (ϕ ◦ f)(x) det(Df(x)) dx1 ∧ · · · ∧ dxn ;

so, in coordinates, (3.4.1) takes the form

(3.4.2)

∫

V
ϕ(y) dy = deg(f)

∫

U
ϕ ◦ f(x) det(Df(x)) dx .
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Proof of 3.4.1. Let ω0 be an n-form of compact support with suppω0

⊂ V and with
∫
ω0 = 1. If we set deg f =

∫
U f

∗ω0 then (3.4.1) clearly
holds for ω0. We will prove that (3.4.1) holds for every compactly
supported n-form, ω, with suppω ⊆ V . Let c =

∫
V ω. Then by

Theorem 3.1 ω−cω0 = dµ, where µ is a completely supported (n−1)-
form with suppµ ⊆ V . Hence

f∗ω − cf∗ω0 = f∗ dµ = d f∗µ ,

and by part (a) of Theorem 3.1
∫

U
f∗ω = c

∫
f∗ω0 = deg(f)

∫

V
ω .

We will show in § 3.6 that the degree of f is always an integer
and explain why it is a “topological” invariant of f . For the moment,
however, we’ll content ourselves with pointing out a simple but useful
property of this invariant. Let U , V andW be connected open subsets
of R

n and f : U → V and g : V →W proper C∞ mappings. Then

(3.4.3) deg(g ◦ f) = deg(g) deg(f) .

Proof. Let ω be a compactly supported n-form with support on W .
Then

(g ◦ f)∗ω = g∗f∗ω ;

so
∫

U
(g ◦ f)∗ω =

∫

U
g∗(f∗ω) = deg(g)

∫

V
f∗ω

= deg(g) deg(f)

∫

W
ω .

From this multiplicative property it is easy to deduce the following
result (which we will need in the next section).

Theorem 3.4.1. Let A be a non-singular n × n matrix and fA :
R

n → R
n the linear mapping associated with A. Then deg(fA) = +1

if detA is positive and −1 if detA is negative.

A proof of this result is outlined in exercises 5–9 below.
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Exercises for §3.4.

1. Let U be an open subset of R
n and ϕi, i = 1, 2, 3, . . ., a partition

of unity on U . Show that the mapping, f : U → R defined by

f =

∞∑

k=1

kϕk

is a proper C∞ mapping.

2. Let U and V be open subsets of R
n and R

k and let f : U → V
be a proper continuous mapping. Prove:

Theorem 3.4.2. If B is a compact subset of V and A = f−1(B)
then for every open subset, U0, with A ⊆ U0 ⊆ U , there exists an
open subset, V0, with B ⊆ V0 ⊆ V and f−1(V0) ⊆ U0.

Hint: Let C be a compact subset of V with B ⊆ IntC. Then the
set, W = f−1(C) − U0 is compact; so its image, f(W ), is compact.
Show that f(W ) and B are disjoint and let

V0 = IntC − f(W ) .

3. Show that if f : U → V is a proper continuous mapping and X
is a closed subset of U , f(X) is closed.

Hint: Let U0 = U −X. Show that if p is in V − f(X), f−1(p) is
contained in U0 and conclude from the previous exercise that there
exists a neighborhood, V0, of p such that f−1(V0) is contained in U0.
Conclude that V0 and f(X) are disjoint.

4. Let f : R
n → R

n be the translation, f(x) = x + a. Show that
deg(f) = 1.

Hint: Let ψ : R → R be a compactly supported C∞ function. For
a ∈ R, the identity

(3.4.4)

∫
ψ(t) dt =

∫
ψ(t− a) dt

is easy to prove by elementary calculus, and this identity proves the
assertion above in dimension one. Now let

(3.4.5) ϕ(x) = ψ(x1) . . . ϕ(xn)

and compute the right and left sides of (3.4.2) by Fubini’s theorem.
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5. Let σ be a permutation of the numbers, 1, . . . , n and let fσ :
R

n → R
n be the diffeomorphism, fσ(x1, . . . , xn) = (xσ(1), . . . , xσ(n)).

Prove that deg fσ = sgn(σ).

Hint: Let ϕ be the function (3.4.5). Show that if ω is equal to
ϕ(x) dx1 ∧ · · · ∧ dxn, f∗ω = (sgn σ)ω.

6. Let f : R
n → R

n be the mapping

f(x1, . . . , xn) = (x1 + λx2, x2, . . . , xn).

Prove that deg(f) = 1.

Hint: Let ω = ϕ(x1, . . . , xn) dx1 ∧ . . . ∧ dxn where ϕ : R
n → R is

compactly supported and of class C∞. Show that
∫
f∗ω =

∫
ϕ(x1 + λx2, x2, . . . , xn) dx1 . . . dxn

and evaluate the integral on the right by Fubini’s theorem; i.e., by
first integrating with respect to the x1 variable and then with respect
to the remaining variables. Note that by (3.4.4)

∫
f(x1 + λx2, x2, . . . , xn) dx1 =

∫
f(x1, x2, . . . , xn) dx1 .

7. Let f : R
n → R

n be the mapping

f(x1, . . . , xn) = (λx1, x2, . . . , xn)

with λ 6= 0. Show that deg f = +1 if λ is positive and −1 if λ is
negative.

Hint: In dimension 1 this is easy to prove by elementary calculus
techniques. Prove it in d-dimensions by the same trick as in the
previous exercise.

8. (a) Let e1, . . . , en be the standard basis vectors of R
n and A,

B and C the linear mappings

Ae1 = e, Aei =
∑

j

aj,iej , i > 1

Bei = ei , i > 1 , Be1 =

n∑

j=1

bjej(3.4.6)

Ce1 = e1 , Cei = ei + cie1 , i > 1 .
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Show that

BACe1 =
∑

bjej

and

BACei =
n∑

j

= (aj,i + cibj)ej + cib1e1

for i > 1.

(b)

(3.4.7) Lei =
n∑

j=1

ℓj,iej , i = 1, . . . , n .

Show that if ℓ1,1 6= 0 one can write L as a product, L = BAC, where
A, B and C are linear mappings of the form (3.4.6).

Hint: First solve the equations

ℓj,1 = bj

for j = 1, . . . , n, then the equations

ℓ1,i = b1ci

for i > 1, then the equations

ℓj,i = aj,i + cibj

for i, j > 1.

(c) SupposeL is invertible. Conclude thatA,B and C are invertible
and verify that Theorem 3.4.1 holds for B and C using the previous
exercises in this section.

(d) Show by an inductive argument that Theorem 3.4.1 holds for
A and conclude from (3.4.3) that it holds for L.

9. To show that Theorem 3.4.1 holds for an arbitrary linear map-
ping, L, of the form (3.4.7) we’ll need to eliminate the assumption:
ℓ1,1 6= 0. Show that for some j, ℓj,1 is non-zero, and show how to
eliminate this assumption by considering fσ ◦L where σ is the trans-
position, 1 ↔ j.
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10. Here is an alternative proof of Theorem 4.3.1 which is shorter
than the proof outlined in exercise 9 but uses some slightly more
sophisticated linear algebra.

(a) Prove Theorem 3.4.1 for linear mappings which are orthogonal,
i.e., satisfy LtL = I.

Hints:

i. Show that L∗(x2
1 + · · · + x2

n) = x2
1 + · · · + x2

n.

ii. Show that L∗(dx1 ∧ · · · ∧ dxn) is equal to dx1 ∧ · · · ∧ dxn or
−dx1 ∧ · · · ∧ dxn depending on whether L is orientation preserving
or orinetation reversing. (See § 1.2, exercise 10.)

iii. Let ψ be as in exercise 4 and let ω be the form

ω = ψ(x2
1 + · · · + x2

n) dx1 ∧ · · · ∧ dxn .

Show that L∗ω = ω if L is orientation preserving and L∗ω = −ω if
L is orientation reversing.

(b) Prove Theorem 3.4.1 for linear mappings which are self-adjoint
(satisfy Lt = L). Hint: A self-adjoint linear mapping is diagonizable:
there exists an intervertible linear mapping, M : R

n → R
n such that

(3.4.8) M−1LMei = λiei , i = 1, . . . , n .

(c) Prove that every invertible linear mapping, L, can be written
as a product, L = BC where B is orthogonal and C is self-adjoint.

Hints:

i. Show that the mapping, A = LtL, is self-adjoint and that it’s
eigenvalues, the λi’s in 3.4.8, are positive.

ii. Show that there exists an invertible self-adjoint linear mapping,
C, such that A = C2 and AC = CA.

iii. Show that the mapping B = LC−1 is orthogonal.

3.5 The change of variables formula

Let U and V be connected open subsets of R
n. If f : U → V is a

diffeomorphism, the determinant of Df(x) at x ∈ U is non-zero, and
hence, since it is a continuous function of x, its sign is the same at
every point. We will say that f is orientation preserving if this sign
is positive and orientation reversing if it is negative. We will prove
below:
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Theorem 3.5.1. The degree of f is +1 if f is orientation preserving
and −1 if f is orientation reversing.

We will then use this result to prove the following change of vari-
ables formula for diffeomorphisms.

Theorem 3.5.2. Let ϕ : V → R be a compactly supported continu-
ous function. Then

(3.5.1)

∫

U
ϕ ◦ f(x)|det(Df)(x)| =

∫

V
ϕ(y) dy .

Proof of Theorem 3.5.1. Given a point, a1 ∈ U , let a2 = −f(a1) and
for i = 1, 2, let gi : R

n → R
n be the translation, gi(x) = x + ai. By

(3.4.1) and exercise 4 of § 4 the composite diffeomorphism

(3.5.2) g2 ◦ f ◦ g1

has the same degree as f , so it suffices to prove the theorem for this
mapping. Notice however that this mapping maps the origin onto
the origin. Hence, replacing f by this mapping, we can, without loss
of generality, assume that 0 is in the domain of f and that f(0) = 0.

Next notice that if A : R
n → R

n is a bijective linear mapping the
theorem is true for A (by exercise 9 of § 3.4), and hence if we can
prove the theorem for A−1 ◦ f , (3.4.1) will tell us that the theorem
is true for f . In particular, letting A = Df(0), we have

D(A−1 ◦ f)(0) = A−1Df(0) = I

where I is the identity mapping. Therefore, replacing f by A−1f ,
we can assume that the mapping, f , for which we are attempting to
prove Theorem 3.5.1 has the properties: f(0) = 0 and Df(0) = I.
Let g(x) = f(x)− x. Then these properties imply that g(0) = 0 and
Dg(0) = 0.

Lemma 3.5.3. There exists a δ > 0 such that |g(x)| ≤ 1
2 |x| for

|x| ≤ δ.

Proof. Let g(x) = (g1(x), . . . , gn(x)). Then

∂gi

∂xj
(0) = 0 ;
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so there exists a δ > 0 such that
∣∣∣∣
∂gi

∂xj
(x)

∣∣∣∣ ≤
1

2

for |x| ≤ δ. However, by the mean value theorem,

gi(x) =
∑ ∂gi

∂xj
(c)xj

for c = t0x, 0 < t0 < 1. Thus, for |x| < δ,

|gi(x)| ≤
1

2
sup |xi| =

1

2
|x| ,

so

|g(x)| = sup |gi(x)| ≤
1

2
|x| .

Let ρ be a compactly supported C∞ function with 0 ≤ ρ ≤ 1
and with ρ(x) = 0 for |x| ≥ δ and ρ(x) = 1 for |x| ≤ δ

2 and let

f̃ : R
n → R

n be the mapping

(3.5.3) f̃(x) = x+ ρ(x)g(x) .

It’s clear that

(3.5.4) f̃(x) = x for |x| ≥ δ

and, since f(x) = x+ g(x),

(3.5.5) f̃(x) = f(x) for |x| ≤
δ

2
.

In addition, for all x ∈ R
n:

(3.5.6) |f̃(x)| ≥
1

2
|x| .

Indeed, by (3.5.4), |f̃(x)| ≥ |x| for |x| ≥ δ, and for |x| ≤ δ

|f̃(x)| ≥ |x| − ρ(x)|g(x)|

≥ |x| − |g(x)| ≥ |x| −
1

2
|x| =

1

2
|x|
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by Lemma 3.5.3.
Now let Qr be the cube, {x ∈ R

n , |x| ≤ r}, and let Qc
r = R

n−Qr.
From (3.5.6) we easily deduce that

(3.5.7) f̃−1(Qr) ⊆ Q2r

for all r, and hence that f̃ is proper. Also notice that for x ∈ Qδ,

|f̃(x)| ≤ |x| + |g(x)| ≤
3

2
|x|

by Lemma 3.5.3 and hence

(3.5.8) f̃−1(Qc
3

2
δ
) ⊆ Qc

δ .

We will now prove Theorem 3.5.1. Since f is a diffeomorphism
mapping 0 to 0, it maps a neighborhood, U0, of 0 in U diffeomor-
phically onto a neighborhood, V0, of 0 in V , and by shrinking U0 if
necessary we can assume that U0 is contained in Qδ/2 and V0 con-
tained in Qδ/4. Let ω be an n-form with support in V0 whose integral
over R

n is equal to one. Then f∗ω is supported in U0 and hence in
Qδ/2. Also by (3.5.7) f̃∗ω is supported in Qδ/2. Thus both of these

forms are zero outside Qδ/2. However, on Qδ/2, f̃ = f by (3.5.5), so
these forms are equal everywhere, and hence

deg(f) =

∫
f∗ω =

∫
f̃∗ω = deg(f̃) .

Next let ω be a compactly supported n-form with support in Qc
3δ/2

and with integral equal to one. Then f̃∗ω is supported in Qc
δ by

(3.5.8), and hence since f(x) = x on Qc
δ f̃

∗ω = ω. Thus

deg(f̃) =

∫
f∗ω =

∫
ω = 1 .

Putting these two identities together we conclude that deg(f) = 1.
Q.E.D.

If the function, ϕ, in Theorem 3.5.2 is a C∞ function, the iden-
tity (3.5.1) is an immediate consequence of the result above and the
identity (3.4.2). If ϕ is not C∞, but is just continuous, we will deduce
Theorem 3.5.2 from the following result.
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Theorem 3.5.4. Let V be an open subset of R
n. If ϕ : R

n → R is
a continuous function of compact support with suppϕ ⊆ V ; then for
every ǫ > 0 there exists a C∞ function of compact support, ψ : R

n →
R with suppψ ⊆ V and

sup |ψ(x) − ϕ(x)| < ǫ .

Proof. Let A be the support of ϕ and let d be the distance in the
sup norm from A to the complement of V . Since ϕ is continuous and
compactly supported it is uniformly continuous; so for every ǫ > 0
there exists a δ > 0 with δ < d

2 such that |ϕ(x) − ϕ(y)| < ǫ when
|x− y| ≤ δ. Now let Q be the cube: |x| < δ and let ρ : R

n → R be a
non-negative C∞ function with supp ρ ⊆ Q and

(3.5.9)

∫
ρ(y) dy = 1 .

Set

ψ(x) =

∫
ρ(y − x)ϕ(y) dy .

By Theorem 3.2.5 ψ is a C∞ function. Moreover, if Aδ is the set of
points in R

d whose distance in the sup norm from A is ≤ δ then for
x /∈ Aδ and y ∈ A , |x − y| > δ and hence ρ(y − x) = 0. Thus for
x /∈ Aδ

∫
ρ(y − x)ϕ(y) dy =

∫

A
ρ(y − x)ϕ(y) dy = 0 ,

so ψ is supported on the compact set Aδ. Moreover, since δ < d
2 ,

suppψ is contained in V . Finally note that by (3.5.9) and exercise 4
of §3.4:

(3.5.10)

∫
ρ(y − x) dy =

∫
ρ(y) dy = 1

and hence

ϕ(x) =

∫
ϕ(x)ρ(y − x) dy

so

ϕ(x) − ψ(x) =

∫
(ϕ(x) − ϕ(y))ρ(y − x) dy

and
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|ϕ(x) − ψ(x)| ≤

∫
|ϕ(x) − ϕ(y)| ρ(y − x) dy .

But ρ(y−x) = 0 for |x−y| ≥ δ; and |ϕ(x)−ϕ(y)| < ǫ for |x−y| ≤ δ,
so the integrand on the right is less than

ǫ

∫
ρ(y − x) dy ,

and hence by (3.5.10)

|ϕ(x) − ψ(x)| ≤ ǫ .

To prove the identity (3.5.1), let γ : R
n → R be a C∞ cut-off

function which is one on a neighborhood, V1, of the support of ϕ, is
non-negative, and is compactly supported with suppγ ⊆ V , and let

c =

∫
γ(y) dy .

By Theorem 3.5.4 there exists, for every ǫ > 0, a C∞ function ψ,
with support on V1 satisfying

(3.5.11) |ϕ− ψ| ≤ ǫ
2c .

Thus

∣∣∣
∫

V
(ϕ− ψ)(y) dy

∣∣∣ ≤

∫

V
|ϕ− ψ|(y) dy

≤

∫

V
γ|ϕ − ψ|(xy) dy

≤ ǫ
2c

∫
γ(y) dy ≤ ǫ

2

so

(3.5.12)
∣∣∣
∫

V
ϕ(y) dy −

∫

V
ψ(y) dy

∣∣∣ ≤ ǫ
2 .

Similarly, the expression

∣∣∣
∫

U
(ϕ− ψ) ◦ f(x)|detDf(x)| dx

∣∣∣
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is less than or equal to the integral

∫

U
γ ◦ f(x)|(ϕ− ψ) ◦ f(x)| |detDf(x)| dx

and by (3.5.11), |(ϕ−ψ) ◦ f(x)| ≤ ǫ
2c , so this integral is less than or

equal to

ǫ
2c

∫
γ ◦ f(x)|detDf(x)| dx

and hence by (3.5.1) is less than or equal to ǫ
2 . Thus

(3.5.13)
∣∣∣
∫

U
ϕ ◦ f(x) |detDf(x)|dx−

∫

U
ψ ◦ f(x)|detDf(x)| dx

∣∣∣∣∣ ≤
ǫ
2 .

Combining (3.5.12), (3.5.13) and the identity

∫

V
ψ(y) dy =

∫
ψ ◦ f(x)|detDf(x)| dx

we get, for all ǫ > 0,

∣∣∣
∫

V
ϕ(y) dy −

∫

U
ϕ ◦ f(x)|detDf(x)| dx

∣∣∣ ≤ ǫ

and hence
∫
ϕ(y) dy =

∫
ϕ ◦ f(x)|detDf(x)| dx .

Exercises for §3.5

1. Let h : V → R be a non-negative continuous function. Show
that if the improper integral

∫

V
h(y) dy

is well-defined, then the improper integral

∫

U
h ◦ f(x)|detDf(x)| dx

is well-defined and these two integrals are equal.
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Hint: If ϕi, i = 1, 2, 3, . . . is a partition of unity on V then ψi =
ϕi ◦ f is a partition of unity on U and

∫
ϕihdy =

∫
ψi(h ◦ f(x))|detDf(x)| dx .

Now sum both sides of this identity over i.

2. Show that the result above is true without the assumption that
h is non-negative.

Hint: h = h+ − h−, where h+ = max(h, 0) and h− = max(−h, 0).

3. Show that, in the formula (3.4.2), one can allow the function,
ϕ, to be a continuous compactly supported function rather than a
C∞ compactly supported function.

4. Let H
n be the half-space (??) and U and V open subsets of

R
n. Suppose f : U → V is an orientation preserving diffeomorphism

mapping U ∩ H
n onto V ∩ H

n. Show that for ω ∈ Ωn
c (V )

(3.5.14)

∫

U∩Hn

f∗ω =

∫

V ∩Hn

ω .

Hint: Interpret the left and right hand sides of this formula as im-
proper integrals over U ∩ Int H

n and V ∩ Int H
n.

5. The boundary of H
n is the set

bHn = {(0, x2, . . . , xn) , (x2, . . . , xn) ∈ R
n}

so the map

ι : R
n−1 → H

n , (x2, . . . , xn) → (0, x2, . . . , xn)

in exercise 9 in §3.2 maps R
n−1 bijectively onto bHn.

(a) Show that the map f : U → V in exercise 4 maps U ∩ bHn

onto V ∩ bHn.

(b) Let U ′ = ι−1(U) and V ′ = ι−1(V ). Conclude from part (a)
that the restriction of f to U ∩ bHn gives one a diffeomorphism

g : U ′ → V ′

satisfying:

(3.5.15) ι · g = f · ι .
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(c) Let µ be in Ωn−1
c (V ). Conclude from (3.2.7) and (3.5.14):

(3.5.16)

∫

U ′

g∗ι∗µ =

∫

V ′

ι∗µ

and in particular show that the diffeomorphism, g : U ′ → V ′,
is orientation preserving.

3.6 Techniques for computing the degree of a mapping

Let U and V be open subsets of R
n and f : U → V a proper C∞

mapping. In this section we will show how to compute the degree
of f and, in particular, show that it is always an integer. From this
fact we will be able to conclude that the degree of f is a topological
invariant of f : if we deform f smoothly, its degree doesn’t change.

Definition 3.6.1. A point, x ∈ U , is a critical point of f if the
derivative

Df(x) : R
n → R

n

fails to be bijective, i.e., if det(Df(x)) = 0.

We will denote the set of critical points of f by Cf . It’s clear from
the definition that this set is a closed subset of U and hence, by
exercise 3 in §3.4, f(Cf ) is a closed subset of V . We will call this
image the set of critical values of f and the complement of this image
the set of regular values of f . Notice that V − f(U) is contained in
f − f(Cf ), so if a point, g ∈ V is not in the image of f , it’s a
regular value of f “by default”, i.e., it contains no points of U in
the pre-image and hence, a fortiori, contains no critical points in its
pre-image. Notice also that Cf can be quite large. For instance, if c is
a point in V and f : U → V is the constant map which maps all of U
onto c, then Cf = U . However, in this example, f(Cf ) = {c}, so the
set of regular values of f is V − {c}, and hence (in this example) is
an open dense subset of V . We will show that this is true in general.

Theorem 3.6.2. (Sard’s theorem.)
If U and V are open subsets of R

n and f : U → V a proper C∞

map, the set of regular values of f is an open dense subset of V .

We will defer the proof of this to Section 3.7 and, in this section,
explore some of its implications. Picking a regular value, q, of f we
will prove:
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Theorem 3.6.3. The set, f−1(q) is a finite set. Moreover, if f−1(q) =
{p1, . . . , pn} there exist connected open neighborhoods, Ui, of pi in Y
and an open neighborhood, W , of q in V such that:

i. for i 6= j Ui and Uj are disjoint;

ii. f−1(W ) =
⋃
Ui,

iii. f maps Ui diffeomorphically onto W .

Proof. If p ∈ f−1(q) then, since q is a regular value, p /∈ Cf ; so

Df(p) : R
n → R

n

is bijective. Hence by the inverse function theorem, f maps a neigh-
borhood, Up of p diffeomorphically onto a neighborhood of q. The
open sets

{Up , p ∈ f−1(q)}

are a covering of f−1(q); and, since f is proper, f−1(q) is compact;
so we can extract a finite subcovering

{Upi
, i = 1, . . . , N}

and since pi is the only point in Upi
which maps onto q, f−1(q) =

{p1, . . . , pN}.
Without loss of generality we can assume that the Upi

’s are disjoint
from each other; for, if not, we can replace them by smaller neighbor-
hoods of the pi’s which have this property. By Theorem 3.4.2 there
exists a connected open neighborhood, W , of q in V for which

f−1(W ) ⊂
⋃
Upi

.

To conclude the proof let Ui = f−1(W ) ∩ Upi
.

The main result of this section is a recipe for computing the de-
gree of f by counting the number of pi’s above, keeping track of
orientation.

Theorem 3.6.4. For each pi ∈ f−1(q) let σpi
= +1 if f : Ui →W is

orientation preserving and −1 if f : Ui →W is orientation reversing.
Then

(3.6.1) deg(f) =

N∑

i=1

σpi
.
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Proof. Let ω be a compactly supported n-form on W whose integral
is one. Then

deg(f) =

∫

U
f∗ω =

N∑

i=1

∫

Ui

f∗ω .

Since f : Ui →W is a diffeomorphism

∫

Ui

f∗ω = ±

∫

W
ω = +1 or − 1

depending on whether f : Ui → W is orientation preserving or not.
Thus deg(f) is equal to the sum (3.6.1).

As we pointed out above, a point, q ∈ V can qualify as a regular
value of f “by default”, i.e., by not being in the image of f . In this
case the recipe (3.6.1) for computing the degree gives “by default”
the answer zero. Let’s corroborate this directly.

Theorem 3.6.5. If f : U → V isn’t onto, deg(f) = 0.

Proof. By exercise 3 of §3.4, V − f(U) is open; so if it is non-empty,
there exists a compactly supported n-form, ω, with support in V −
f(U) and with integral equal to one. Since ω = 0 on the image of f ,
f∗ω = 0; so

0 =

∫

U
f∗ω = deg(f)

∫

V
ω = deg(f) .

Remark: In applications the contrapositive of this theorem is much
more useful than the theorem itself.

Theorem 3.6.6. If deg(f) 6= 0 f maps U onto V .

In other words if deg(f) 6= 0 the equation

(3.6.2) f(x) = y

has a solution, x ∈ U for every y ∈ V .
We will now show that the degree of f is a topological invariant of

f : if we deform f by a “homotopy” we don’t change its degree. To
make this assertion precise, let’s recall what we mean by a homotopy
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between a pair of C∞ maps. Let U be an open subset of R
m, V an

open subset of R
n, A an open subinterval of R containing 0 and 1, and

fi : U → V , i = 0, 1, C∞ maps. Then a C∞ map F : U ×A→ V is a
homotopy between f0 and f1 if F (x, 0) = f0(x) and F (x, 1) = f1(x).
(See Definition ??.) Suppose now that f0 and f1 are proper.

Definition 3.6.7. F is a proper homotopy between f0 and f1 if the
map

(3.6.3) F ♯ : U ×A→ V ×A

mapping (x, t) to (F (x, t), t) is proper.

Note that if F is a proper homotopy between f0 and f1, then for
every t between 0 and 1, the map

ft : U → V , ft(x) = Ft(x)

is proper.
Now let U and V be open subsets of R

n.

Theorem 3.6.8. If f0 and f1 are properly homotopic, their degrees
are the same.

Proof. Let

ω = ϕ(y) d y1 ∧ · · · ∧ d yn

be a compactly supported n-form on X whose integral over V is 1.
The the degree of ft is equal to

(3.6.4)

∫

U
ϕ(F1(x, t), . . . , Fn(x, t)) detDxF (x, t) dx .

The integrand in (3.6.4) is continuous and for 0 ≤ t ≤ 1 is supported
on a compact subset of U × [0, 1], hence (3.6.4) is continuous as a
function of t. However, as we’ve just proved, deg(ft) is integer valued
so this function is a constant.

(For an alternative proof of this result see exercise 9 below.) We’ll
conclude this account of degree theory by describing a couple appli-
cations.

Application 1. The Brouwer fixed point theorem
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Let Bn be the closed unit ball in R
n:

{x ∈ R
n , ‖x‖ ≤ 1} .

Theorem 3.6.9. If f : Bn → Bn is a continuous mapping then f
has a fixed point, i.e., maps some point, x0 ∈ Bn onto itself.

The idea of the proof will be to assume that there isn’t a fixed
point and show that this leads to a contradiction. Suppose that for
every point, x ∈ Bn f(x) 6= x. Consider the ray through f(x) in the
direction of x:

f(x) + s(x− f(x)) , 0 ≤ s <∞ .

This intersects the boundary, Sn−1, of Bn in a unique point, γ(x),
(see figure 1 below); and one of the exercises at the end of this section
will be to show that the mapping γ : Bn → Sn−1, x → γ(x), is a
continuous mapping. Also it is clear from figure 1 that γ(x) = x if
x ∈ Sn−1, so we can extend γ to a continuous mapping of R

n into
R

n by letting γ be the identity for ‖x‖ ≥ 1. Note that this extended
mapping has the property

(3.6.5) ‖γ(x)‖ ≥ 1

for all x ∈ R
n and

(3.6.6) γ(x) = x

for all ‖x‖ ≥ 1. To get a contradiction we’ll show that γ can be
approximated by a C∞ map which has similar properties. For this
we will need the following corollary of Theorem 3.5.4.

Lemma 3.6.10. Let U be an open subset of R
n, C a compact subset

of U and ϕ : U → R a continuous function which is C∞ on the
complement of C. Then for every ǫ > 0, there exists a C∞ function,
ψ : U → R, such that ϕ− ψ has compact support and |ϕ− ψ| < ǫ.

Proof. Let ρ be a bump function which is in C∞
0 (U) and is equal to

1 on a neighborhood of C. By Theorem 3.5.4 there exists a function,
ψ0 ∈ C∞

0 (U) such that |ρϕ − ψ0| < ǫ. Let ψ = (1 − ρ)ϕ + ψ0, and
note that

ϕ− ψ = (1 − ρ)ϕ+ ρϕ− (1 − ρ)ϕ− ψ0

= ρϕ− ψ0 .
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By applying this lemma to each of the coordinates of the map, γ,
one obtains a C∞ map, g : R

n → R
n such that

(3.6.7) ‖g − γ‖ < ǫ < 1

and such that g = γ on the complement of a compact set. How-
ever, by (3.6.6), this means that g is equal to the identity on the
complement of a compact set and hence (see exercise 9) that g is
proper and has degree one. On the other hand by (3.6.8) and (3.6.6)
‖g(x)‖ > 1−ǫ for all x ∈ R

n, so 0 /∈ Im g and hence by Theorem 3.6.4,
deg(g) = 0. Contradiction.

x
f(x)

(x)

Figure 3.6.1.

Application 2. The fundamental theorem of algebra

Let p(z) = zn+an−1z
n−1+ · · ·+a1z+a0 be a polynomial of degree

n with complex coefficients. If we identify the complex plane

C = {z = x+ iy ; x, y ∈ R}

with R
2 via the map, (x, y) ∈ R

2 → z = x+ iy, we can think of p as
defining a mapping

p : R
2 → R

2 , z → p(z) .
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We will prove

Theorem 3.6.11. The mapping, p, is proper and deg(p) = n.

Proof. For t ∈ R

pt(z) = (1 − t)zn + tp(z)

= zn + t
n−1∑

i=0

aiz
i .

We will show that the mapping

g : R × R
2 → R

2 , z → pt(z)

is a proper homotopy. Let

C = sup{|ai| , i = 0, . . . , n− 1} .

Then for |z| ≥ 1

|a0 + · · · + an−1z
n−1| ≤ |a0| + |a1||z| + · · · + |an−1| |z|

n−1

≤ C|z|n−1 ,

and hence, for |t| ≤ a and |z| ≥ 2aC,

|pt(z)| ≥ |z|n − aC|z|n−1

≥ aC|z|n−1 .

If A is a compact subset of C then for some R > 0, A is contained
in the disk, |w| ≤ R and hence the set

{z ∈ C , (pt(z), t) ∈ A× [−a, a]}

is contained in the compact set

{z ∈ C , aC|z|n−1 ≤ R} ,

and this shows that g is a proper homotopy. Thus each of the map-
pings,

pt : C → C ,

is proper and deg pt = deg p1 = deg p = deg p0. However, p0 : C → C

is just the mapping, z → zn and an elementary computation (see
exercises 5 and 6 below) shows that the degree of this mapping is n.
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In particular for n > 0 the degree of p is non-zero; so by Theo-
rem 3.6.4 we conclude that p : C → C is surjective and hence has
zero in its image.

Theorem 3.6.12. (fundamental theorem of algebra)
Every polynomial,

p(z) = zn + an−1z
n−1 + · · · + a0 ,

with complex coefficients has a complex root, p(z0) = 0, for some
z0 ∈ C.

Exercises for §3.6

1. Let W be a subset of R
n and let a(x), b(x) and c(x) be real-

valued functions on W of class Cr. Suppose that for every x ∈ W
the quadratic polynomial

(*) a(x)s2 + b(x)s + c(x)

has two distinct real roots, s+(x) and s−(x), with s+(x) > s−(x).
Prove that s+ and s− are functions of class Cr.

Hint: What are the roots of the quadratic polynomial: as2+bs+c?

2. Show that the function, γ(x), defined in figure 1 is a continuous
mapping of Bn onto S2n−1. Hint: γ(x) lies on the ray,

f(x) + s(x− f(x)) , 0 ≤ s <∞

and satisfies ‖γ(x)‖ = 1; so γ(x) is equal to

f(x) + s0(x− f(x))

where s0 is a non-negative root of the quadratic polynomial

‖f(x) + s(x− f(x))‖2 − 1 .

Argue from figure 1 that this polynomial has to have two distinct
real roots.
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3. Show that the Brouwer fixed point theorem isn’t true if one
replaces the closed unit ball by the open unit ball. Hint: Let U be
the open unit ball (i.e., the interior of Bn). Show that the map

h : U → R
n , h(x) =

x

1 − ‖x‖2

is a diffeomorphism of U onto R
n, and show that there are lots of

mappings of R
n onto R

n which don’t have fixed points.

4. Show that the fixed point in the Brouwer theorem doesn’t have
to be an interior point of Bn, i.e., show that it can lie on the bound-
ary.

5. If we identify C with R
2 via the mapping: (x, y) → z = x+ iy,

we can think of a C-linear mapping of C into itself, i.e., a mapping
of the form

z → cz , c ∈ C

as being an R-linear mapping of R
2 into itself. Show that the deter-

minant of this mapping is |c|2.

6. (a) Let f : C → C be the mapping, f(z) = zn. Show that

Df(z) = nzn−1 .

Hint: Argue from first principles. Show that for h ∈ C = R
2

(z + h)n − zn − nzn−1h

|h|

tends to zero as |h| → 0.

(b) Conclude from the previous exercise that

detDf(z) = n2|z|2n−2 .

(c) Show that at every point z ∈ C−0, f is orientation preserving.

(d) Show that every point, w ∈ C − 0 is a regular value of f and
that

f−1(w) = {z1, . . . , zn}

with σzi
= +1.

(e) Conclude that the degree of f is n.
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7. Prove that the map, f , in exercise 6 has degree n by deducing
this directly from the definition of degree. Some hints:

(a) Show that in polar coordinates, f is the map, (r, θ) → (rn, nθ).

(b) Let ω be the two-form, g(x2+y2) dx∧ dy, where g(t) is a com-
pactly supported C∞ function of t. Show that in polar coordinates,
ω = g(r2)r dr ∧ dθ, and compute the degree of f by computing the
integrals of ω and f∗ω, in polar coordinates and comparing them.

8. Let U be an open subset of R
n, V an open subset of R

m, A an
open subinterval of R containing 0 and 1, fi : U → V i = 0, 1, a pair
of C∞ mappings and F : U ×A→ V a homotopy between f0 and f1.

(a) In §2.3, exercise 4 you proved that if µ is in Ωk(V ) and dµ = 0,
then

(3.6.8) f∗0µ− f∗1µ = dν

where ν is the (k − 1)-form, Qα, in formula (??). Show (by careful
inspection of the definition of Qα) that if F is a proper homotopy
and µ ∈ Ωk

c (V ) then ν ∈ Ωk−1
c (U).

(b) Suppose in particular that U and V are open subsets of R
n

and µ is in Ωn
c (V ). Deduce from (3.6.8) that

∫
f∗0µ =

∫
f∗1µ

and deduce directly from the definition of degree that degree is a
proper homotopy invariant.

9. Let U be an open connected subset of R
n and f : U → U

a proper C∞ map. Prove that if f is equal to the identity on the
complement of a compact set, C, then f is proper and its degree is
equal to 1. Hints:

(a) Show that for every subset, A, of U , f−1(A) ⊆ A ∪ C, and
conclude from this that f is proper.

(b) Let C ′ = f(C). Use the recipe (1.6.1) to compute deg(f) with
q ∈ U − C ′.

10. Let [ai,j] be an n × n matrix and A : R
n → R

n the linear
mapping associated with this matrix. Frobenius’ theorem asserts: If
the ai,j’s are non-negative then A has a non-negative eigenvalue. In
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other words there exists a v ∈ R
n and a λ ∈ R, λ ≥ 0, such that

Av = λv. Deduce this linear algebra result from the Brouwer fixed
point theorem. Hints:

(a) We can assume that A is bijective, otherwise 0 is an eigenvalue.
Let Sn−1 be the (n − 1)-sphere, |x| = 1, and f : Sn−1 → Sn−1 the
map,

f(x) =
Ax

‖Ax‖
.

Show that f maps the set

Q = {(x1, . . . , xn) ∈ Sn−1 ; xi ≥ 0}

into itself.

(b) It’s easy to prove that Q is homeomorphic to the unit ball
Bn−1, i.e., that there exists a continuous map, g : Q→ Bn−1 which is
invertible and has a continuous inverse. Without bothering to prove
this fact deduce from it Frobenius’ theorem.

3.7 Appendix: Sard’s theorem

The version of Sard’s theorem stated in §3.5 is a corollary of the
following more general result.

Theorem 3.7.1. Let U be an open subset of R
n and f : U → R

n a
C∞ map. Then R

n − f(Cf ) is dense in R
n.

Before undertaking to prove this we will make a few general com-
ments about this result.

Remark 3.7.2. If On, n = 1, 2, are open dense subsets of R
n, the

intersection ⋂

n

On

is dense in R
n. (See [?], pg. 200 or exercise 4 below.)

Remark 3.7.3. If An, n = 1, 2, . . . are a covering of U by compact
sets, On = R

n−f(Cf ∩An) is open, so if we can prove that it’s dense
then by Remark 3.7.2 we will have proved Sard’s theorem. Hence
since we can always cover U by a countable collection of closed cubes,
it suffices to prove: for every closed cube, A ⊆ U , R

n − f(Cf ∩A) is
dense in R

n.
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Remark 3.7.4. Let g : W → U be a diffeomorphism and let h =
f ◦ g. Then

(3.7.1) f(Cf ) = h(Ch)

so Sard’s theorem for g implies Sard’s theorem for f .

We will first prove Sard’s theorem for the set of super-critical
points of f , the set:

(3.7.2) C♯
f = {p ∈ U , Df(p) = 0} .

Proposition 3.7.5. Let A ⊆ U be a closed cube. Then the open set
R

n − f(A ∩ C♯
f ) is a dense subset of R

n.

We’ll deduce this from the lemma below.

Lemma 3.7.6. Given ǫ > 0 one can cover f(A ∩ C♯
f ) by a finite

number of cubes of total volume less than ǫ.

Proof. Let the length of each of the sides of A be ℓ. Given δ > 0 one

can subdivide A into Nn cubes, each of volume,

(
ℓ

N

)n

, such that

if x and y are points of any one of these subcubes

(3.7.3)

∣∣∣∣
∂fi

∂xj
(x) −

∂fi

∂xj
(y)

∣∣∣∣ < δ .

Let A1, . . . , Am be the cubes in this collection which intersect C♯
f .

Then for z0 ∈ Ai ∩ C
♯
f ,

∂fi

∂xj
(z0) = 0, so for z ∈ Ai

(3.7.4)

∣∣∣∣
∂fi

∂xj
(z)

∣∣∣∣ < δ

by (3.7.3). If x and y are points of Ai then by the mean value theorem
there exists a point z on the line segment joining x to y such that

fi(x) − fi(y) =
∑ ∂fi

∂xj
(z)(xj − yj)

and hence by (3.7.4)

(3.7.5) |fi(x) − fi(y)| ≤ δ
∑

|xi − yi| ≤ nδ
ℓ

N
.
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Thus f(Cf ∩Ai) is contained in a cube, Bi, of volume

(
n
δℓ

N

)n

, and

f(Cf ∩A) is contained in a union of cubes, Bi, of total volume less
that

Nnnn δ
nℓn

Nn
= nnδnℓn

so if w choose δnℓn < ǫ, we’re done.

Proof. To prove Proposition 3.7.5 we have to show that for every
point p ∈ R

n and neighborhood, W , of p, W − f(C♯
f ∩ A) is non-

empty. Suppose

(3.7.6) W ⊆ f(C♯
f ∩A) .

Without loss of generality we can assume W is a cube of volume ǫ,
but the lemma tells us that f(C♯

f ∩ A) can be covered by a finite
number of cubes whose total volume is less than ǫ, and hence by
(3.7.6) W can be covered by a finite number of cubes of total volume
less than ǫ, so its volume is less than ǫ. This contradiction proves
that the inclusion (3.7.6) can’t hold.

To prove Theorem 3.7.1 let Ui,j be the subset of U where
∂fi

∂xj
6= 0.

Then

U =
⋃
Ui,j ∪ C

♯
f ,

so to prove the theorem it suffices to show that R
n − f(Ui,j ∩Cf ) is

dense in R
n, i.e., it suffices to prove the theorem with U replaced by

Ui,j. Let σi : R
n × R

n be the involution which interchanges x1 and
xi and leaves the remaining xk’s fixed. Letting fnew = σifoldσj and
Unew = σjUold, we have, for f = fnew and U = Unew

(3.7.7)
∂f1

∂x1
(p) 6= 0 for all p ∈ U}

so we’re reduced to proving Theorem 3.7.1 for maps f : U → R
n

having the property (3.7.6). Let g : U → R
n be defined by

(3.7.8) g(x1, . . . , xn) = (f1(x), x2, . . . , xn) .
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Then

g∗x1 = f∗x1 = f1(x1, . . . , xn)(3.7.9)

and

det(Dg) =
∂f1

∂x1
6= 0 .(3.7.10)

Thus, by the inverse function theorem, g is locally a diffeomorphism
at every point, p ∈ U . This means that if A is a compact subset of
U we can cover A by a finite number of open subsets, Ui ⊂ U such
that g maps Ui diffeomorphically onto an open subset Wi in R

n. To
conclude the proof of the theorem we’ll show that R

n−f(Cf∩Ui∩A)
is a dense subset of R

n. Let h : Wi → R
n be the map h = f ◦ g−1.

To prove this assertion it suffices by Remark 3.7.4 to prove that the
set

R
n − h(Ch)

is dense in R
n. This we will do by induction on n. First note that for

n = 1, Cf = C♯
f , so we’ve already proved Theorem 3.7.1 in dimension

one. Now note that by (3.7.8), h∗x1 = x1, i.e., h is a mapping of the
form

(3.7.11) h(x1, . . . , xn) = (x1, h2(x), . . . , hn(x)) .

Thus if we let Wc be the set

(3.7.12) {(x2, . . . , xn) ∈ R
n−1 ; (c, x2, . . . , xn) ∈Wi}

and let hc : Wc → R
n−1 be the map

(3.7.13) hc(x2, . . . , xn) = (h2(c, x2, . . . , xn), . . . , hn(c, x2, . . . , xn)) .

Then

(3.7.14) det(Dhc)(x2, . . . , xn) = det(Dh)(c, x2, . . . , xn)

and hence

(3.7.15) (c, x) ∈Wi ∩ Ch ⇔ x ∈ Chc
.

Now let p0 = (c, x0) be a point in R
n. We have to show that every

neighborhood, V , of p0 contains a point p ∈ R
n − h(Ch). Let Vc ⊆

R
n−1 be the set of points, x, for which (c, x) ∈ V . By induction Vc

contains a point, x ∈ R
n−1 −hc(Chc

) and hence p = (c, x) is in V by
definition and in R

n − h(Cn) by (3.7.15).
Q.E.D.
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Exercises for §3.7

1. (a) Let f : R → R be the map f(x) = (x2 − 1)2. What is the
set of critical points of f? What is its image?

(b) Same questions for the map f(x) = sinx+ x.

(c) Same questions for the map

f(x) =

{
0, x ≤ 0

e−
1

x , x > 0
.

2. Let f : R
n → R

n be an affine map, i.e., a map of the form

f(x) = A(x) + x0

where A : R
n → R

n is a linear map. Prove Sard’s theorem for f .

3. Let ρ : R → R be a C∞ function which is supported in the
interval

(
−1

2 ,
1
2

)
and has a maximum at the origin. Let r1, r2, . . . ,

be an enumeration of the rational numbers, and let f : R → R be
the map

f(x) =

∞∑

i=1

riρ(x− i) .

Show that f is a C∞ map and show that the image of Cf is dense in
R. (The moral of this example: Sard’s theorem says that the com-
plement of Cf is dense in R, but Cf can be dense as well.)

4. Prove the assertion made in Remark 3.7.2. Hint: You need to
show that for every point p ∈ R

n and every neighborhood, V , of p,⋂
On ∩ V is non-empty. Construct, by induction, a family of closed

balls, Bk, such that

(a) Bk ⊆ V

(b) Bk+1 ⊆ Bk

(c) Bk ⊆
⋂

n≤k

On

(d) radius Bk <
1
k

and show that the intersection of the Bk’s is non-empty.

5. Verify (3.7.1).


