Chapter 2

Differential Forms

2.1.1. Vector fields and one-forms

The goal of this chapter is to generalize to n dimensions the basic operations of three dimensional vector calculus: div, curl and grad. The "div", and "grad" operations have fairly straight-forward generalizations, but the "curl" operation is more subtle. For vector fields it doesn't have any obvious generalization, however, if one replaces vector fields by a closely related class of objects, differential forms, then not only does it have a natural generalization but it turns out that div, curl and grad are all special cases of a general operation on differential forms called exterior differentiation.

In this section we will discuss the simplest, easiest to understand, examples of differential forms: differential one-forms, and show that they can be regarded as dual objects to vector fields. We begin by fixing some notation.

Given $p \in \mathbb{R}^{n}$ we define the tangent space to \mathbb{R}^{n} at p to be the set of pairs

$$
\begin{equation*}
T_{p} \mathbb{R}^{n}=\{(p, \mathrm{v})\} ; \quad \mathrm{v} \in \mathbb{R}^{n} \tag{2.1.1}
\end{equation*}
$$

The identification

$$
\begin{equation*}
T_{p} \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad(p, \mathrm{v}) \rightarrow \mathrm{v} \tag{2.1.2}
\end{equation*}
$$

makes $T_{p} \mathbb{R}^{n}$ into a vector space. More explicitly, for $\mathrm{v}, \mathrm{v}_{1}$ and $\mathrm{v}_{2} \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$ we define the addition and scalar multiplication operations on $T_{p} \mathbb{R}^{n}$ by the recipes

$$
\left(p, \mathrm{v}_{1}\right)+\left(p, \mathrm{v}_{2}\right)=\left(p, \mathrm{v}_{1}+\mathrm{v}_{2}\right)
$$

and

$$
\lambda(p, \mathrm{v})=(p, \lambda \mathrm{v})
$$

Let U be an open subset of \mathbb{R}^{n} and $\varphi: U \rightarrow \mathbb{R}^{m}$ a C^{1} map. We recall that the derivative

$$
D \varphi(p): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

of φ at p is the linear map associated with the $m \times n$ matrix

$$
\left[\frac{\partial \varphi_{i}}{\partial x_{j}}(p)\right] .
$$

It will be useful to have a "base-pointed" version of this definition as well. Namely, if $q=\varphi(p)$ we will define

$$
d \varphi_{p}: T_{p} \mathbb{R}^{n} \rightarrow T_{q} \mathbb{R}^{m}
$$

to be the map

$$
\begin{equation*}
d \varphi_{p}(p, \mathrm{v})=(q, D \varphi(p) \mathrm{v}) . \tag{2.1.3}
\end{equation*}
$$

It's clear from the way we've defined vector space structures on $T_{p} \mathbb{R}^{n}$ and $T_{q} \mathbb{R}^{m}$ that this map is linear.

Suppose that the image of φ is contained in an open set, V, and suppose $\psi: V \rightarrow \mathbb{R}^{k}$ is a C^{1} map. Then the "base-pointed"" version of the chain rule asserts that

$$
\begin{equation*}
d \psi_{q} \circ d \varphi_{p}=d(\psi \circ \varphi)_{p} \tag{2.1.4}
\end{equation*}
$$

(This is just an alternative way of writing $D \psi(q) D \varphi(p)=D(\psi \circ$ $\varphi)(p)$.)

Another important vector space for us will be the vector space dual of $T_{p} \mathbb{R}^{n}$: the cotangent space to \mathbb{R}^{n} at p. This space we'll denote by $T_{p}^{*} \mathbb{R}^{n}$, i.e., we'll set

$$
T_{p}^{*} \mathbb{R}^{n}=:\left(T_{p} \mathbb{R}^{n}\right)^{*}
$$

Elements of this vector space come up in vector calculus as derivatives of functions. Namely if U is an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}$ a \mathcal{C}^{∞} function, the linear map

$$
d f_{p}: T_{p} \mathbb{R}^{n} \rightarrow T_{a} \mathbb{R}, \quad a=f(p),
$$

composed with the map

$$
T_{a} \mathbb{R} \rightarrow \mathbb{R}, \quad(a, c) \rightarrow c
$$

gives one a linear map of $T_{p} \mathbb{R}^{n}$ into \mathbb{R}. (To avoid creating an excessive amount of fussy notation we'll continue to denote this map by $d f_{p}$.) Since it is a linear map, it is by definition an element of $T_{p}^{*} \mathbb{R}^{n}$, and we'll call this element the derivative of f at p.

Example. Let $f=x_{i}$, the $i^{\text {th }}$ coordinate function on \mathbb{R}^{n}. Then the derivatives

$$
\begin{equation*}
\left(d x_{i}\right)_{p} \quad i=1, \ldots, n \tag{2.1.5}
\end{equation*}
$$

are a basis of the vector space, $T_{p}^{*} \mathbb{R}^{n}$. We will leave the verification of this as an exercise. (Hint: Let

$$
\delta_{j}^{i}= \begin{cases}1, & i=j \\ 0, & i=j\end{cases}
$$

and let

$$
e_{i}=\left(\delta_{1}^{i}, \ldots, \delta_{n}^{i}\right) \quad i=1, \ldots, n,
$$

a "one" in the $i^{\text {th }}$ slot and zeroes in the remaining slots. These are the standard basis vectors of \mathbb{R}^{n}, and from the formula, $\left(D x_{i}\right)_{p} e_{j}=\delta_{j}^{i}$ it is easy to see that the $\left(d x_{i}\right)_{p}$'s are the basis of $T_{p}^{*} \mathbb{R}^{n}$ dual to the basis, $\left(p, e_{i}\right), i=1, \ldots, n$ of $T_{p} \mathbb{R}^{n}$.) To have a consistent notation for these two sets of basis vectors we'll introduce the notation

$$
\begin{equation*}
\left(p, e_{i}\right)=\left(\frac{\partial}{\partial x_{i}}\right)_{p} . \tag{2.1.6}
\end{equation*}
$$

(Some other notation which will be useful is the following. If U is an open subset of \mathbb{R}^{n} and p a point of U we'll frequently write $T_{p} U$ for $T_{p} \mathbb{R}^{n}$ and $T_{p}^{*} U$ for $T_{p}^{*} \mathbb{R}^{n}$ when we want to emphasize that the phenomenon we're studying is taking place in U.)

We will now explain what we mean by the terms: vector field and one-form.

Definition 2.1.1. A vector field, v, on U is a mapping which assigns to each $p \in U$ an element, $v(p)$ of $T_{p}^{*} U$.

Thus $v(p)$ is a pair $(p, \mathrm{v}(p))$ where $\mathrm{v}(p)$ is an element of \mathbb{R}^{n}. From the coordinates, $\mathrm{v}_{i}(p)$, of $\mathrm{v}(p)$ we get functions

$$
\mathrm{v}_{i}: U \rightarrow \mathbb{R}, \quad p \rightarrow \mathrm{v}_{i}(p)
$$

and we'll say that v is a \mathcal{C}^{∞} vector field if these are \mathcal{C}^{∞} functions. Note that by (2.1.6)

$$
\begin{equation*}
v(p)=\sum \mathrm{v}_{i}(p)\left(\frac{\partial}{\partial x_{i}}\right)_{p} . \tag{2.1.7}
\end{equation*}
$$

Examples.

1. The vector field,

$$
\left(\frac{\partial}{\partial x_{i}}\right)_{p}
$$

This vector field we'll denote by $\frac{\partial}{\partial x_{i}}$.
2. Sums of vector fields: Let v_{1} and v_{2} be vector fields on U. Then $v_{1}+v_{2}$ is the vector field,

$$
p \in U \rightarrow v_{1}(p)+v_{2}(p) .
$$

3. The multiple of a vector field by a function: Given a vector field, v on U and a function $f: U \rightarrow \mathbb{R} f v$ is the vector field

$$
p \in U \rightarrow f(p) v(p) .
$$

4. The vector field defined by (2.1.7): By 1-3, we can write this vector field as the sum

$$
\begin{equation*}
v=\sum \mathrm{v}_{i} \frac{\partial}{\partial x_{i}} \tag{2.1.8}
\end{equation*}
$$

The definition of one-form is more or less identical with the definition of vector field except that we now require our "mapping" to take its values in $T_{p}^{*} U$ rather than $T_{p} U$.
Definition 2.1.2. A one-form, μ, on U is a mapping which assigns to each $p \in U$ and element $\mu(p)$ of $T_{p}^{*} U$

Examples.

1. Let f be a \mathcal{C}^{∞} function on U. Then, for each p, the derivative, $d f_{p}$, is an element of $T_{p}^{*} U$ and hence the mapping

$$
d f: p \in U \rightarrow d f_{p}
$$

is a one-form on U. We'll call $d f$ the exterior derivative of f.
2. In particular for each coordinate function, x_{i}, we get a one-form $d x_{i}$.
3. If μ_{1} and μ_{2} are one-forms on U, their sum, $\mu_{1}+\mu_{2}$, is the one-form

$$
p \in U \rightarrow\left(\mu_{1}\right)_{p}+\left(\mu_{2}\right)_{p} .
$$

4. If f is a \mathcal{C}^{∞} function on U and μ a one-form, the multiple of μ by $f, f \mu$, is the one-form

$$
p \in U \rightarrow f(p) \mu_{p}
$$

5. Given a one-form, μ, and a point $p \in U$ we can write μ_{p} as a sum

$$
\mu_{p}=\sum f_{i}(p)\left(d x_{i}\right)_{p}, \quad f_{i}(p) \in \mathbb{R},
$$

since the $\left(d x_{i}\right)_{p}$'s are a basis of $T_{p}^{*} U$. Hence

$$
\mu=\sum f_{i} d x_{i}
$$

where the f_{i} 's are the functions, $p \in U \rightarrow f_{i}(p)$. We'll say that μ is \mathcal{C}^{∞} if the f_{i} 's are \mathcal{C}^{∞}.

Exercise: Show that the one-form, $d f$, in Example 1 is given by

$$
\begin{equation*}
d f=\sum \frac{\partial x}{\partial x_{i}} d x_{i} . \tag{2.1.9}
\end{equation*}
$$

Remark.

Superficially the definitions (2.1.1) and (2.1.2) look similar. However, we'll learn by the end of this chapter that the objects they define have very different properties. In fact we'll see an inkling of this difference in the definition (2.1.11) below.

Let V be an open subset if \mathbb{R}^{n} and $\varphi: U \rightarrow V$ a \mathcal{C}^{∞} map. Then for $p \in U$ and $q \in \varphi(p)$ we have a map

$$
\left.d \varphi_{p}: T_{p} U \rightarrow T_{q} V\right)
$$

and hence a transpose map

$$
\begin{equation*}
\left(d \varphi_{p}\right)^{*}: T_{q}^{*} V \rightarrow T_{p}^{*} U . \tag{2.1.10}
\end{equation*}
$$

Thus if ν is a one-form on V, we can define a one-form, $\varphi^{*} \nu$, on U by setting

$$
\begin{equation*}
\varphi^{*} \nu_{p}=(d \varphi)_{p}^{*} \nu_{q} \tag{2.1.11}
\end{equation*}
$$

for all $p \in U$. The form defined by this recipe is called the pull-back of ν by φ. In particular, if f is a \mathcal{C}^{∞} function on V and $\nu=d f$

$$
\begin{aligned}
\left(\varphi^{*} d f\right)_{p} & =\left(d \varphi_{p}\right)^{*} d f_{q} \\
& =\left(d f_{q}\right) \circ d \varphi_{p}=d(f \circ \varphi)_{p}
\end{aligned}
$$

by (2.1.11) and the chain rule. Hence if we define $\varphi^{*} f$ (the "pull-back of f by φ ") to be the function, $f \circ \varphi$, we get from this computation the formula

$$
\begin{equation*}
\varphi^{*} d f=d \varphi^{*} f \tag{2.1.12}
\end{equation*}
$$

More generally let

$$
\nu=\sum_{i=1}^{m} f_{i} d x_{i}
$$

$f_{i} \in \mathcal{C}^{\infty}(V)$, be any \mathcal{C}^{∞} one-form on U. The by (2.1.11)

$$
\left(\varphi^{*} \nu\right)_{p}=\sum f_{i}(q) d\left(x_{i} \circ \varphi\right)_{p} .
$$

Exercise: Deduce from this that

$$
\begin{equation*}
\varphi^{*} \nu=\sum \varphi^{*} f_{i} d \varphi_{i} \tag{2.1.13}
\end{equation*}
$$

where $\varphi_{i}=x_{i} \circ \varphi, \quad i=1, \ldots, n$, is the $i^{\text {th }}$ coordinate of φ.

Remark.

The pull-back operation (2.1.11) and its generalization to k-forms (see $\S 2.6$) will play a fundamental role in what follows. No analogue of this operation exists for vector fields, but in the next section we'll show that there is a weak substitution: a "push-forward operation", $\varphi_{*} v$, for vector fields on U. This operation, however, can only be defined if $m=n$ and φ is a diffeomorphism.

Another important operation on one-forms is the interior product operation. Let v be a vector field on U. Then, given a one-form, μ, on U, we can define a function

$$
\iota(v) \mu: U \rightarrow \mathbb{R}
$$

by setting

$$
\begin{equation*}
\iota(v) \mu(p)=\mu_{p}(v(p)) . \tag{2.1.14}
\end{equation*}
$$

Notice that the right hand side makes sense since $v(p)$ is in $T_{p} U$ and μ_{p} in its vector space dual, $T_{p}^{*} U$. We'll leave for you to check that if

$$
v=\sum v_{i} \frac{\partial}{\partial x_{i}}
$$

and

$$
\mu=\sum f_{i} d x_{i}
$$

the function, $\iota(v) \mu$ is just the function, $\sum v_{i} f_{i}$. Hence if v and μ are \mathcal{C}^{∞}, this function is as well. In particular, for $f \in \mathcal{C}^{\infty}(U)$

$$
\begin{equation*}
\iota(v) d f=\sum v_{i} \frac{\partial f}{\partial x_{i}} \tag{2.1.15}
\end{equation*}
$$

Definition 2.1.3. The expression (2.1.15) is called the Lie derivative of f by v and denoted $L_{v} f$.

Exercise:

Check that for $f_{i} \in \mathcal{C}^{\infty}(U), i=1,2$

$$
\begin{equation*}
L_{v}\left(f_{1} f_{2}\right)=f_{2} L_{v} f+f_{1} L_{v} f_{2} . \tag{2.1.16}
\end{equation*}
$$

Exercises for $\S 2.1$

1. Verify that the co-vectors, (2.1.5) are a basis of $T_{p}^{*} U$.
2. Verify (2.1.9).
3. Verify (2.1.13).
4. Verify (2.1.16).
5. Let U be an open subset of \mathbb{R}^{n} and v_{1} and v_{2} vector fields on U. Show that there is a unique vector field, w, on U with the property

$$
L_{w} \varphi=L_{v_{1}}\left(L_{v_{2}} \varphi\right)-L_{v_{2}}\left(L_{v_{1}} \varphi\right)
$$

for all $\varphi \in \mathcal{C}^{\infty}(U)$.
6. The vector field w in exercise 5 is called the Lie bracket of the vector fields v_{1} and v_{2} and is denoted $\left[v_{1}, v_{2}\right]$. Verify that "Lie bracket" satisfies the identities

$$
\left[v_{1}, v_{2}\right]=-\left[v_{2}, v_{1}\right]
$$

and

$$
\left[v_{1}\left[v_{2}, v_{3}\right]\right]+\left[v_{2}\left[v_{3}, v_{1}\right]\right]+\left[v_{3}\left[v_{1}, v_{2}\right]\right]=0 .
$$

Hint: Prove analogous identities for $L_{v_{1}}, L_{v_{2}}$ and $L_{v_{3}}$.
7. Let $v_{1}=\partial / \partial x_{i}$ and $v_{2}=\sum g_{j} \partial / \partial x_{j}$. Show that

$$
\left[v_{1}, v_{2}\right]=\sum \frac{\partial}{\partial x_{i}} g_{i} \frac{\partial}{\partial x_{j}}
$$

8. Let v_{1} and v_{2} be vector field and f a \mathcal{C}^{∞} function. Show that

$$
\left[v_{1}, f v_{2}\right]=L_{v_{1}} f v_{2}+f\left[v_{1}, v_{2}\right]
$$

9. Let U be an open subset of \mathbb{R}^{n} and let $\gamma:[a, b] \rightarrow U, t \rightarrow$ $\left(\gamma_{1}(t), \ldots, \gamma_{n}(t)\right)$ be a C^{1} curve. Given $\omega=\sum f_{i} d x_{1} \in \Omega^{1}(U)$, define the line integral of ω over γ to be the integral

$$
\int_{\gamma} \omega=\sum_{i=1}^{n} \int_{a}^{b} f_{i}(\gamma(t)) \frac{d \gamma_{i}}{d t} d t
$$

Show that if $\omega=d f$ for some $f \in \mathcal{C}^{\infty}(U)$

$$
\int_{\gamma} \omega(\gamma(b))-f(\gamma(a)) .
$$

In particular conclude that if γ is a closed curve, i.e., $\gamma(a)=\gamma(b)$, this integral is zero.
10. Let

$$
\omega=\frac{x_{1} d x_{2}-x_{2} d x_{1}}{x_{1}^{2}+x_{2}^{2}} \in \Omega^{1}\left(\mathbb{R}^{2}-\{0\}\right),
$$

and let $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}-\{0\}$ be the closed curve, $t \rightarrow(\cos t \sin t)$. Compute the line integral, $\int_{\gamma} \omega$, and show that it's not zero. Conclude that ω can't be " d " of a function, $f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2}-\{0\}\right)$.
11. Let f be the function

$$
f\left(x_{2}, x_{2}\right)= \begin{cases}\arctan \frac{x_{2}}{x_{1}} & x_{1}>0 \\ \frac{\pi}{2}, x_{1}=0 & x_{2}>0 \\ \arctan \frac{x_{2}}{x_{1}}+\pi & x_{1}<0\end{cases}
$$

where, we recall: $-\frac{\pi}{2} \arctan <\frac{\pi}{2}$. Show that this function is \mathcal{C}^{∞} and that $d f$ is the 1 -form, ω, in the previous exercise. Why doesn't this contradict what you proved in exercise 16 ?

2.2 Integral curves of vector fields

In this section we'll discuss some properties of vector fields which we'll need for the manifold segment of these notes. We'll begin by generalizing to n-dimensions the calculus notion of an "integral curve" of a vector field. Let U be an open subset of \mathbb{R}^{n} and let

$$
v=\sum f_{i} \frac{\partial}{\partial x_{i}}
$$

be a \mathcal{C}^{∞} vector field on U.
Definition 2.2.1. A C^{1} curve $\gamma:(a, b) \rightarrow U, \gamma(t)=\left(\gamma(t), \ldots \gamma_{n}(t)\right)$, is an integral curve of v if, for all $a<t<b$ and $p=\gamma(t)$

$$
\left(p, \frac{d \gamma}{d t}(t)\right)=v(p)
$$

i.e., the condition for $\gamma(t)$ to be an integral curve of v is that it satisfy the system of differential equations

$$
\begin{equation*}
\frac{d \gamma_{i}}{d t}(t)=v_{i}(\gamma(t)), \quad i=1, \ldots, n \tag{2.2.1}
\end{equation*}
$$

We will quote without proof a number of basic facts about systems of ordinary differential equations of the type (2.2.1). (A source for these results that we highly recommend is Birkoff-Rota, Ordinary Differential Equations, Chapter 6.)
Theorem 2.2.2. (Existence).
Given a point $p_{0} \in U$ and $b \in \mathbb{R}$, there exists an interval $I=$ $(b-T, b+T)$, a neighborhood, U_{0}, of p_{0} in U and for every $p \in U_{0}$ an integral curve, $\gamma_{p}: I \rightarrow U$ with $\gamma_{p}(b)=p$.

Theorem 2.2.3. (Uniqueness).
Let $\gamma_{i}: I_{i} \rightarrow U, i=1,2$, be integral curves. If $a \in I_{1} \cap I_{2}$ and $\gamma_{1}(a)=\gamma_{2}(a)$ then $\gamma_{1} \equiv \gamma_{2}$ on $I_{1} \cap I_{2}$ and the curve $\gamma: I_{1} \cup I_{2} \rightarrow U$ defined by

$$
\gamma(t)= \begin{cases}\gamma_{1}(t), & t \in I_{1} \\ \gamma_{2}(t), & t \in I_{2}\end{cases}
$$

is an integral curve.
Theorem 2.2.4. (Smooth dependence on initial data).
Let V be an open subset of $U, I \subseteq \mathbb{R}$ an open interval, $a \in I$ a point in this interval and $h: V \times I \rightarrow U$ a mapping with the properties:
(i) $h(p, a)=p$.
(ii) For all $p \in V$ the curve

$$
\gamma_{p}: I \rightarrow U \quad \gamma_{p}(t)=h(p . t)
$$

is an integral curve of v.
Then the mapping, h is \mathcal{C}^{∞}.
One important feature of the system (2.2.1) is that it is an autonomous system of differential equations: the function, $v_{i}(x)$, is a function of x alone, it doesn't depend on t. One consequence of this is the following:

Theorem 2.2.5. Let $I=(a, b)$ and for $c \in \mathbb{R}$ let $I_{c}=(a-c, b-c)$. Then if $\gamma: I \rightarrow U$ is an integral curve, the reparametrized curve

$$
\begin{equation*}
\gamma_{c}: I_{c} \rightarrow U, \quad \gamma_{c}(t)=\gamma(t+c) \tag{2.2.2}
\end{equation*}
$$

is an integral curve.
We recall that a C^{1}-function $\varphi: U \rightarrow \mathbb{R}$ is an integral of the system (2.1.10) if for every integral curve $\gamma(t)$, the function $t \rightarrow \varphi(\gamma(t))$ is constant. This is true if and only if for all t and $p=\gamma(t)$

$$
0=\frac{d}{d t} \varphi(\gamma(t))=(D \varphi)_{p}\left(\frac{d \gamma}{d t}\right)=(D \varphi)_{p}(\mathrm{v})
$$

where $(p, \mathrm{v})=v(p)$. But by (2.1.6) the term on the right is $L_{v} \varphi(p)$. Hence we conclude

Theorem 2.2.6. $\varphi \in C^{1}(U)$ is an integral of the system (2.2.1) if and only
$L_{v} \varphi=0$.
We'll say that v is complete if, for every $p \in U$, there exists an integral curve, $\gamma: \mathbb{R} \rightarrow U$ with $\gamma(0)=p$, i.e., for every p there exists an integral curve that starts at p and exists for all time. To see what "completeness" involves, we recall that an integral curve

$$
\gamma:[0, b) \rightarrow U
$$

with $\gamma(0)=p$, is called maximal if it can't be extended to an interval $\left[0, b^{\prime}\right), b^{\prime}>b$. We claim that for such integral curves either
i. $b=+\infty$
or
ii. $|\gamma(t)| \rightarrow+\infty$ as $t \rightarrow b$
or
iii. the limit set of

$$
\{\gamma(t), \quad 0 \leq t, b\}
$$

contains points on the boundary of U.
Proof. Suppose that none of these assertions are true. Then there exists a sequence, $0<t_{i}<t, i=1,2, \ldots$, such that $t_{i} \rightarrow b$ and $\gamma\left(t_{i}\right) \rightarrow p_{0} \in U$. Let U_{0} be a neighborhood of p_{0} with the properties described in the existence theorem 2.2.2. Then for i large $\gamma\left(t_{i}\right)$ is in U_{0} and $\epsilon=b-t_{i}<T$. Thus letting $p=\gamma\left(t_{i}\right)$, there exists an integral curve of v,

$$
\gamma_{p}(t),-T+b<t<T+b
$$

with $\gamma_{p}(b)=p$. By reparametrization the curve

$$
\begin{equation*}
\gamma_{p}(t+\epsilon),-T+b-\epsilon<t<T+b-\epsilon \tag{2.2.3}
\end{equation*}
$$

is an integral curve of v. Moreover, $\gamma_{p}\left(t_{i}+\epsilon\right)=\gamma_{p}(b)=p$, so by the uniqueness theorem 2.2 .3 the curve (2.2.9) coincides with $\gamma(t)$ on the interval $-T+b<t<b$ and hence $\gamma(t)$ can be extended to the interval $0<t<b+T-\epsilon$ by setting it equal to (2.2.9) on $b \leq t<b+T-\epsilon$. This contradicts the maximality of γ and proves the theorem.

Hence if we can exclude ii. and iii. we'll have shown that an integral curve with $\gamma(0)=p$ exists for all positive time. A simple criterion for excluding ii. and iii. is the following.

Lemma 2.2.7. The scenarios ii. and iii. can't happen if there exists a proper C^{1}-function, $\varphi: U \rightarrow \mathbb{R}$ with $L_{v} \varphi=0$.

Proof. $L_{v} \varphi=0$ implies that φ is constant on $\gamma(t)$, but if $\varphi(p)=c$ this implies that the curve, $\gamma(t)$, lies on the compact subset, $\varphi^{-1}(c)$, of U; hence it can't "run off to infinity" as in scenario ii. or "run off to the boundary" as in scenario iii.

Applying a similar argument to the interval $(-b, 0]$ we conclude:
Theorem 2.2.8. Suppose there exists a proper C^{1}-function, $\varphi: U \rightarrow$ \mathbb{R} with the property $L_{v} \varphi=0$. Then v is complete.

Example.

Let $U=\mathbb{R}^{2}$ and let v be the vector field

$$
v=x^{3} \frac{\partial}{\partial y}-y \frac{\partial}{\partial x} .
$$

Then $\varphi(x, y)=2 y^{2}+x^{4}$ is a proper function with the property above.
Another hypothesis on v which excludes ii. and iii. is the following. We'll define the support of v to be the closure of the set

$$
\{q \in U, \quad v(q) \neq 0\},
$$

and will say that v is compactly supported if this set is compact. We will prove

Theorem 2.2.9. If v is compactly supported it is complete.
Proof. Notice first that if $v(p)=0$, the constant curve, $\gamma_{0}(t)=p$, $-\infty<t<\infty$, satisfies the equation

$$
\frac{d}{d t} \gamma_{0}(t)=0=v(p)
$$

so it is an integral curve of v. Hence if $\gamma(t),-a<t<b$, is any integral curve of v with the property, $\gamma\left(t_{0}\right)=p$, for some t_{0}, it has
to coincide with γ_{0} on the interval, $-a<t<b$, and hence has to be the constant curve, $\gamma(t)=p$, on this interval.

Now suppose the support, A, of v is compact. Then either $\gamma(t)$ is in A for all t or is in $U-A$ for some t_{0}. But if this happens, and $p=\gamma\left(t_{0}\right)$ then $v(p)=0$, so $\gamma(t)$ has to coincide with the constant curve, $\gamma_{0}(t)=p$, for all t. In neither case can it go off to infinity or off to the boundary of U as $t \rightarrow b$.

One useful application of this result is the following. Suppose v is a vector field on U, and one wants to see what its integral curves look like on some compact set, $A \subseteq U$. Let $\rho \in \mathcal{C}_{0}^{\infty}(U)$ be a bump function which is equal to one on a neighborhood of A. Then the vector field, $w=\rho v$, is compactly supported and hence complete, but it is identical with v on A, so its integral curves on A coincide with the integral curves of v.

If v is complete then for every p, one has an integral curve, γ_{p} : $\mathbb{R} \rightarrow U$ with $\gamma_{p}(0)=p$, so one can define a map

$$
f_{t}: U \rightarrow U
$$

by setting $f_{t}(p)=\gamma_{p}(t)$. If v is \mathcal{C}^{∞}, this mapping is \mathcal{C}^{∞} by the smooth dependence on initial data theorem, and by definition f_{0} is the identity map, i.e., $f_{0}(p)=\gamma_{p}(0)=p$. We claim that the f_{t} 's also have the property

$$
\begin{equation*}
f_{t} \circ f_{a}=f_{t+a} \tag{2.2.4}
\end{equation*}
$$

Indeed if $f_{a}(p)=q$, then by the reparametrization theorem, $\gamma_{q}(t)$ and $\gamma_{p}(t+a)$ are both integral curves of v, and since $q=\gamma_{q}(0)=$ $\gamma_{p}(a)=f_{a}(p)$, they have the same initial point, so

$$
\begin{aligned}
\gamma_{q}(t) & =f_{t}(q)=\left(f_{t} \circ f_{a}\right)(p) \\
& =\gamma_{p}(t+a)=f_{t+a}(p)
\end{aligned}
$$

for all t. Since f_{0} is the identity it follows from (2.2.2) that $f_{t} \circ f_{-t}$ is the identity, i.e.,

$$
f_{-t}=f_{t}^{-1}
$$

so f_{t} is a \mathcal{C}^{∞} diffeomorphism. Hence if v is complete it generates a "one-parameter group", $f_{t},-\infty<t<\infty$, of \mathcal{C}^{∞}-diffeomorphisms.

For v not complete there is an analogous result, but it's trickier to formulate precisely. Roughly speaking v generates a one-parameter group of diffeomorphisms, f_{t}, but these diffeomorphisms are not defined on all of U nor for all values of t. Moreover, the identity (2.2.4) only holds on the open subset of U where both sides are well-defined.

We'll devote the remainder of this section to discussing some "functorial" properties of vector fields. Let U and W be open subsets of \mathbb{R}^{n} and \mathbb{R}^{m}, respectively, and let $\varphi: U \rightarrow W$ be a \mathcal{C}^{∞} map. If v is a \mathcal{C}^{∞}-vector field on U and w a \mathcal{C}^{∞}-vector field on W we will say that v and w are " φ-related" if, for all $p \in U$ and $q=f(p)$

$$
\begin{equation*}
d \varphi_{p}\left(v_{p}\right)=\mathrm{w}_{q} . \tag{2.2.5}
\end{equation*}
$$

Writing

$$
v=\sum_{i=1}^{n} v_{i} \frac{\partial}{\partial x_{i}}, \quad v_{i} \in \mathcal{C}^{\infty}(U)
$$

and

$$
\mathrm{w}=\sum_{j=1}^{m} \mathrm{w}_{j} \frac{\partial}{\partial y_{j}}, \quad \mathrm{w}_{j} \in \mathcal{C}^{\infty}(V)
$$

this equation reduces, in coordinates, to the equation

$$
\begin{equation*}
\mathrm{w}_{i}(q)=\sum \frac{\partial \varphi_{i}}{\partial x_{j}}(p) v_{j}(p) . \tag{2.2.6}
\end{equation*}
$$

In particular, if $m=n$ and φ is a \mathcal{C}^{∞} diffeomorphism, the formula (2.2.6) defines a \mathcal{C}^{∞}-vector field on W, i.e.,

$$
\mathrm{w}=\sum_{j=1}^{n} \mathrm{w}_{i} \frac{\partial}{\partial y_{j}}
$$

is the vector field defined by the equation

$$
\begin{equation*}
\mathrm{w}_{i}=\sum_{j=1}^{n}\left(\frac{\partial \varphi_{i}}{\partial x_{j}} v_{j}\right) \circ f^{-1} . \tag{2.2.7}
\end{equation*}
$$

Hence we've proved
Theorem 2.2.10. If $\varphi: U \rightarrow W$ is a \mathcal{C}^{∞} diffeomorphism and v a \mathcal{C}^{∞}-vector field on U, there exists a unique \mathcal{C}^{∞} vector field, w , on W having the property that v and w are φ-related.

We'll denote this vector field by $\varphi_{*} v$ and call it the push-forward of v by φ.

We'll leave the following assertions about φ-related vector fields as easy exercises.

Theorem 2.2.11. Let If v and w are φ-related, every integral curve

$$
\gamma: I \rightarrow U_{1}
$$

of v gets mapped by φ onto an integral curve, $\varphi \circ \gamma: I \rightarrow U_{2}$, of w.
Corollary 2.2.12. Suppose v and w are complete. Let $f_{t}: U \rightarrow$ $U-\infty<t<\infty$, be the one-parameter group of diffeomorphisms generated by v and $g_{t}: W \rightarrow W$ the one-parameter group generated by w. Then $g_{t} \circ \varphi=\varphi \circ f_{t}$

Hints:

1. Theorem 2.2.11 follows from the chain rule: If $p=\gamma(t)$ and $q=\varphi(p)$

$$
d \varphi_{p}\left(\frac{d}{d t} \gamma(t)\right)=\frac{d}{d t} \varphi(\gamma(t)) .
$$

2. To deduce Corollary 2.2.12 from Theorem 2.2.11 note that for $p \in U, f_{t}(p)$ is just the integral curve, $\gamma_{p}(t)$ of v with initial point $\gamma_{p}(0)=p$.

The notion of φ-relatedness can be very succinctly expressed in terms of the Lie differentiation operation. For $f \in \mathcal{C}^{\infty}(W)$ let $\varphi^{*} f$ be the composition, $f \circ \varphi$, viewed as a \mathcal{C}^{∞} function on U, i.e., for $p \in W$ let $\varphi^{*} f(p)=f(\varphi(p))$. Then

$$
\begin{equation*}
\varphi^{*} L_{w} f=L_{v} \varphi^{*} f \tag{2.2.8}
\end{equation*}
$$

(To see this note that if $\varphi(p)=q$ then at the point p the right hand side is

$$
d f_{q} \circ d \varphi_{p}=
$$

by the chain rule and by definition the left hand side is

$$
d f_{q}(w(q))
$$

Moreover, by definition

$$
w(q)=d \varphi_{p}(v(p))
$$

so the two sides are the same.)

Another easy consequence of the chain rule is:
Theorem 2.2.13. Let V be an open subset of $\mathbb{R}^{k}, \psi: W \rightarrow V$ a \mathcal{C}^{∞} map and u a vector field on V. Then if v and w are φ related and w and u are ψ related, v and u are $\psi \circ \varphi$ related.

Exercises.

1. Let v be a complete vector field on U and $f_{t}: U \rightarrow U$, the one parameter group of diffeomorphisms generated by v. Show that if $\varphi \in C^{1}(U)$

$$
L_{v} \varphi=\left(\frac{d}{d t} f_{t}^{*} \varphi\right)_{t=0} .
$$

2. (a) Let $U=\mathbb{R}^{2}$ and let \mathfrak{v} be the vector field, $x_{1} \partial / \partial x_{2}-$ $x_{2} \partial / \partial x_{1}$. Show that the curve

$$
t \in \mathbb{R} \rightarrow(r \cos (t+\theta), r \sin (t+\theta))
$$

is the unique integral curve of \mathfrak{v} passing through the point, $(r \cos \theta, r \sin \theta)$, at $t=0$.
(b) Let $U=\mathbb{R}^{n}$ and let \mathfrak{v} be the constant vector field: $\sum c_{i} \partial / \partial x_{i}$. Show that the curve

$$
t \in \mathbb{R} \rightarrow a+t\left(c_{1}, \ldots, c_{n}\right)
$$

is the unique integral curve of \mathfrak{v} passing through $a \in \mathbb{R}^{n}$ at $t=0$.
(c) Let $U=\mathbb{R}^{n}$ and let \mathfrak{v} be the vector field, $\sum x_{i} \partial / \partial x_{i}$. Show that the curve

$$
t \in \mathbb{R} \rightarrow e^{t}\left(a_{1}, \ldots, a_{n}\right)
$$

is the unique integral curve of \mathfrak{v} passing through a at $t=0$.
3. Show that the following are one-parameter groups of diffeomorphisms:
(a) $f_{t}: \mathbb{R} \rightarrow \mathbb{R}, \quad f_{t}(x)=x+t$
(b) $f_{t}: \mathbb{R} \rightarrow \mathbb{R}, \quad f_{t}(x)=e^{t} x$
(c) $f_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad f_{t}(x, y)=(\cos t x-\sin t y, \sin t x+\cos t y)$
4. Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear mapping. Show that the series

$$
\exp t A=I+t A+\frac{t^{2}}{2!} A^{2}+\frac{t^{3}}{3!} A^{3}+\cdots
$$

converges and defines a one-parameter group of diffeomorphisms of \mathbb{R}^{n}.
5. (a) What are the infinitesimal generators of the one-parameter groups in exercise 13?
(b) Show that the infinitesimal generator of the one-parameter group in exercise 14 is the vector field

$$
\sum a_{i, j} x_{j} \frac{\partial}{\partial x_{i}}
$$

where $\left[a_{i, j}\right]$ is the defining matrix of A.
6. Let U and V be open subsets of \mathbb{R}^{n} and $f: U \rightarrow V$ a diffeomorphism. If w is a vector field on V, define the pull-back, $f^{*} w$ of w to U to be the vector field

$$
f^{*} w=\left(f_{*}^{-1} w\right) .
$$

Show that if φ is a \mathcal{C}^{∞} function on V

$$
f^{*} L_{w} \varphi=L_{f^{*} w} f^{*} \varphi
$$

Hint: (2.2.9).
7. Let U be an open subset of \mathbb{R}^{n} and v and w vector fields on U. Suppose v is the infinitesimal generator of a one-parameter group of diffeomorphisms

$$
f_{t}: U \rightarrow U, \quad-\infty<t<\infty .
$$

Let $w_{t}=f_{t}^{*} w$. Show that for $\varphi \in \mathcal{C}^{\infty}(U)$

$$
L_{[v, w]} \varphi=L_{\dot{w}} \varphi
$$

where

$$
\dot{w}=\left.\frac{d}{d t} f_{t}^{*} w\right|_{t=0} .
$$

Hint: Differentiate the identity

$$
f_{t}^{*} L_{w} \varphi=L_{w_{t}} f_{t}^{*} \varphi
$$

with respect to t and show that at $t=0$ the derivative of the left hand side is

$$
L_{v} L_{w} \varphi
$$

by exercise 1 and the derivative of the right hand side is

$$
L_{\dot{w}}+L_{w}\left(L_{v} \varphi\right) .
$$

8. Conclude from exercise 7 that

$$
\begin{equation*}
[v, w]=\left.\frac{d}{d t} f_{t}^{*} w\right|_{t=0} \tag{2.2.9}
\end{equation*}
$$

9. Prove the parametrization Theorem 2.2.2

$2.3 k$-forms

One-forms are the bottom tier in a pyramid of objects whose $k^{\text {th }}$ tier is the space of k-forms. More explicitly, given $p \in \mathbb{R}^{n}$ we can, as in §1.5, form the $k^{\text {th }}$ exterior powers

$$
\begin{equation*}
\Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right), \quad k=1,2,3, \ldots, n \tag{2.3.1}
\end{equation*}
$$

of the vector space, $T_{p}^{*} \mathbb{R}^{n}$, and since

$$
\begin{equation*}
\Lambda^{1}\left(T_{p}^{*} \mathbb{R}^{n}\right)=T_{p}^{*} \mathbb{R}^{n} \tag{2.3.2}
\end{equation*}
$$

one can think of a one-form as a function which takes its value at p in the space (2.3.2). This leads to an obvious generalization.

Definition 2.3.1. Let U be an open subset of \mathbb{R}^{n}. $A k$-form, ω, on U is a function which assigns to each point, p, in U an element $\omega(p)$ of the space (2.3.1).

The wedge product operation gives us a way to construct lots of examples of such objects.

Example 1.

Let $\omega_{i}, i=1, \ldots, k$ be one-forms. Then $\omega_{1} \wedge \cdots \wedge \omega_{k}$ is the k-form whose value at p is the wedge product

$$
\begin{equation*}
\omega_{1}(p) \wedge \cdots \wedge \omega_{k}(p) \tag{2.3.3}
\end{equation*}
$$

Notice that since $\omega_{i}(p)$ is in $\Lambda^{1}\left(T_{p}^{*} \mathbb{R}^{n}\right)$ the wedge product (2.3.3) makes sense and is an element of $\Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right)$.

Example 2.

Let $f_{i}, i=1, \ldots, k$ be a real-valued \mathcal{C}^{∞} function on U. Letting $\omega_{i}=d f_{i}$ we get from (2.3.3) a k-form

$$
\begin{equation*}
d f_{1} \wedge \cdots \wedge d f_{k} \tag{2.3.4}
\end{equation*}
$$

whose value at p is the wedge product

$$
\begin{equation*}
\left(d f_{1}\right)_{p} \wedge \cdots \wedge\left(d f_{k}\right)_{p} \tag{2.3.5}
\end{equation*}
$$

Since $\left(d x_{1}\right)_{p}, \ldots,\left(d x_{n}\right)_{p}$ are a basis of $T_{p}^{*} \mathbb{R}^{n}$, the wedge products

$$
\begin{equation*}
\left(d x_{i_{1}}\right)_{p} \wedge \cdots \wedge\left(d x_{1_{k}}\right)_{p}, \quad 1 \leq i_{1}<\cdots<i_{k} \leq n \tag{2.3.6}
\end{equation*}
$$

are a basis of $\Lambda^{k}\left(T_{p}^{*}\right)$. To keep our multi-index notation from getting out of hand, we'll denote these basis vectors by $\left(d x_{I}\right)_{p}$, where $I=$ $\left(i_{1}, \ldots, i_{k}\right)$ and the I 's range over multi-indices of length k which are strictly increasing. Since these wedge products are a basis of $\Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right)$ every element of $\Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right)$ can be written uniquely as a sum

$$
\sum c_{I}\left(d x_{I}\right)_{p}, \quad c_{I} \in \mathbb{R}
$$

and every k-form, ω, on U can be written uniquely as a sum

$$
\begin{equation*}
\omega=\sum f_{I} d x_{I} \tag{2.3.7}
\end{equation*}
$$

where $d x_{I}$ is the k-form, $d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$, and f_{I} is a real-valued function,

$$
f_{I}: U \rightarrow \mathbb{R}
$$

Definition 2.3.2. The k-form (2.3.7) is of class C^{r} if each of the f_{I} 's is in $C^{r}(U)$.

Henceforth we'll assume, unless otherwise stated, that all the k forms we consider are of class \mathcal{C}^{∞}, and we'll denote the space of these k-forms by $\Omega^{k}(U)$.

We will conclude this section by discussing a few simple operations on k-forms.

1. Given a function, $f \in \mathcal{C}^{\infty}(U)$ and a k-form $\omega \in \Omega^{k}(U)$ we define $f \omega \in \Omega^{k}(U)$ to be the k-form

$$
p \in U \rightarrow f(p) \omega_{p} \in \Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right)
$$

2. Given $\omega_{i} \in \Omega^{k}(U), i=1,2$ we define $\omega_{1}+\omega_{2} \in \Omega^{k}(U)$ to be the k-form

$$
p \in U \rightarrow\left(\omega_{1}\right)_{p}+\left(\omega_{2}\right)_{p} \in \Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right) .
$$

(Notice that this sum makes sense since each summand is in $\Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right)$.)
3. Given $\omega_{1} \in \Omega^{k_{1}}(U)$ and $\omega_{2} \in \Omega^{k_{2}}(U)$ we define their wedge product, $\omega_{1} \wedge \omega_{2} \in \Omega^{k_{1}+k_{2}}(u)$ to be the ($k_{1}+k_{2}$)-form

$$
p \in U \rightarrow\left(\omega_{1}\right)_{p} \wedge\left(\omega_{2}\right)_{p} \in \Lambda^{k_{1}+k_{2}}\left(T_{p}^{*} \mathbb{R}^{n}\right)
$$

We recall that $\Lambda^{0}\left(T_{p}^{*} \mathbb{R}^{n}\right)=\mathbb{R}$, so a zero-form is an \mathbb{R}-valued function and a zero form of class \mathcal{C}^{∞} is a \mathcal{C}^{∞} function, i.e.,

$$
\Omega^{0}(U)=\mathcal{C}^{\infty}(U)
$$

A fundamental operation on forms is the " d-operation" which associates to a function $f \in \mathcal{C}^{\infty}(U)$ the 1 -form $d f$. It's clear from the identity (2.1.9) that $d f$ is a 1 -form of class \mathcal{C}^{∞}, so the d-operation can be viewed as a map

$$
\begin{equation*}
d: \Omega^{0}(U) \rightarrow \Omega^{1}(U) \tag{2.3.8}
\end{equation*}
$$

We will show in the next section that an analogue of this map exists for every $\Omega^{k}(U)$.

Exercises.

1. Let $\omega \in \Omega^{2}\left(\mathbb{R}^{4}\right)$ be the 2 -form, $d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{4}$. Compute $\omega \wedge \omega$.
2. Let $\omega_{i} \in \Omega^{1}\left(\mathbb{R}^{3}\right), i=1,2,3$ be the 1 -forms

$$
\begin{aligned}
\omega_{1} & =x_{2} d x_{3}-x_{3} d x_{2} \\
\omega_{2} & =x_{3} d x_{1}-x_{1} d x_{3}
\end{aligned}
$$

and

$$
\omega_{3}=x_{1} d x_{2}-x_{2} d x_{1}
$$

Compute
(a) $\omega_{1} \wedge \omega_{2}$.
(b) $\omega_{2} \wedge \omega_{3}$.
(c) $\omega_{3} \wedge \omega_{1}$.
(d) $\omega_{1} \wedge \omega_{2} \wedge \omega_{3}$.
3. Let U be an open subset of \mathbb{R}^{n} and $f_{i} \in \mathcal{C}^{\infty}(U), i=1, \ldots, n$. Show that

$$
d f_{1} \wedge \cdots \wedge d f_{n}=\operatorname{det}\left[\frac{\partial f_{i}}{\partial x_{j}}\right] d x_{1} \wedge \cdots \wedge d x_{n}
$$

4. Let U be an open subset of \mathbb{R}^{n}. Show that every $(n-1)$-form, $\omega \in \Omega^{n-1}(U)$, can be written uniquely as a sum

$$
\sum_{i=1}^{n} f_{i} d x_{1} \wedge \cdots \wedge{\widehat{d x_{i}}} \wedge \cdots \wedge d x_{n}
$$

where $f_{i} \in \mathcal{C}^{\infty}(U)$ and the "cap" over $d x_{i}$ means that $d x_{i}$ is to be deleted from the product, $d x_{1} \wedge \cdots \wedge d x_{n}$.
5. Let $\mu=\sum_{i=1}^{n} x_{i} d x_{i}$. Show that there exists an $(n-1)$-form, $\omega \in$ $\Omega^{n-1}\left(\mathbb{R}^{n}-\{0\}\right)$ with the property

$$
\mu \wedge \omega=d x_{1} \wedge \cdots \wedge d x_{n}
$$

6. Let J be the multi-index $\left(j_{1}, \ldots, j_{k}\right)$ and let $d x_{J}=d x_{j_{1}} \wedge \cdots \wedge$ $d x_{j_{k}}$. Show that $d x_{J}=0$ if $j_{r}=j_{s}$ for some $r \neq s$ and show that if the j_{r} 's are all distinct

$$
d x_{J}=(-1)^{\sigma} d x_{I}
$$

where $I=\left(i_{1}, \ldots, i_{k}\right)$ is the strictly increasing rearrangement of $\left(j_{1}, \ldots, j_{k}\right)$ and σ is the permutation

$$
j_{1} \rightarrow i_{1}, \ldots, j_{k} \rightarrow i_{k}
$$

7. Let I be a strictly increasing multi-index of length k and J a strictly increasing multi-index of length ℓ. What can one say about the wedge product $d x_{I} \wedge d x_{J}$?

2.4 Exterior differentiation

Let U be an open subset of \mathbb{R}^{n}. In this section we are going to define an operation

$$
\begin{equation*}
d: \Omega^{k}(U) \rightarrow \Omega^{k+1}(U) \tag{2.4.1}
\end{equation*}
$$

This operation is called exterior differentiation and is the fundamental operation in n-dimensional vector calculus.

For $k=0$ we already defined the operation (2.4.1) in $\S 2.1 .1 .$. Before defining it for the higher k 's we list some properties that we will require to this operation to satisfy.

Property I. For ω_{1} and ω_{2} in $\Omega^{k}(U), d\left(\omega_{1}+\omega_{2}\right)=d \omega_{1}+d \omega_{2}$.
Property II. For $\omega_{1} \in \Omega^{k}(U)$ and $\omega_{2} \in \Omega^{\ell}(U)$

$$
\begin{equation*}
d\left(\omega_{1} \wedge \omega_{2}\right)=d \omega_{1} \wedge \omega_{2}+(-1)^{k} \omega_{1} \wedge d \omega_{2} . \tag{2.4.2}
\end{equation*}
$$

Property III. For $\omega \in \Omega^{k}(U)$

$$
\begin{equation*}
d(d \omega)=0 . \tag{2.4.3}
\end{equation*}
$$

Let's point out a few consequences of these properties. First note that by Property III

$$
\begin{equation*}
d(d f)=0 \tag{2.4.4}
\end{equation*}
$$

for every function, $f \in \mathcal{C}^{\infty}(U)$. More generally, given k functions, $f_{i} \in \mathcal{C}^{\infty}(U), i=1, \ldots, k$, then by combining (2.4.4) with (2.4.2) we get by induction on k :

$$
\begin{equation*}
d\left(d f_{1} \wedge \cdots \wedge d f_{k}\right)=0 \tag{2.4.5}
\end{equation*}
$$

Proof. Let $\mu=d f_{2} \wedge \cdots \wedge d f_{k}$. Then by induction on $k, d \mu=0$; and hence by (2.4.2) and (2.4.4)

$$
d\left(d f_{1} \wedge \mu\right)=d\left(d_{1} f\right) \wedge \mu+(-1) d f_{1} \wedge d \mu=0
$$

as claimed.)

In particular, given a multi-index, $I=\left(i_{1}, \ldots, i_{k}\right)$ with $1 \leq i_{r} \leq n$

$$
\begin{equation*}
d\left(d x_{I}\right)=d\left(d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}\right)=0 . \tag{2.4.6}
\end{equation*}
$$

Recall now that every k-form, $\omega \in \Omega^{k}(U)$, can be written uniquely as a sum

$$
\omega=\sum f_{I} d x_{I}, \quad f_{I} \in \mathcal{C}^{\infty}(U)
$$

where the multi-indices, I, are strictly increasing. Thus by (2.4.2) and (2.4.6)

$$
\begin{equation*}
d \omega=\sum d f_{I} \wedge d x_{I} . \tag{2.4.7}
\end{equation*}
$$

This shows that if there exists a " d " with properties I-III, it has to be given by the formula (2.4.7). Hence all we have to show is that the operator defined by this formula has these properties. Property I is obvious. To verify Property II we first note that for I strictly increasing (2.4.6) is a special case of (2.4.7). (Take $f_{I}=1$ and $f_{J}=$ 0 for $J \neq I$.) Moreover, if I is not strictly increasing it is either repeating, in which case $d x_{I}=0$, or non-repeating in which case I^{σ} is strictly increasing for some permutation, $\sigma \in S_{k}$, and

$$
\begin{equation*}
d x_{I}=(-1)^{\sigma} d x_{I^{\sigma}} . \tag{2.4.8}
\end{equation*}
$$

Hence (2.4.7) implies (2.4.6) for all multi-indices I. The same argument shows that for any sum over indices, I, for length k

$$
\sum f_{I} d x_{I}
$$

one has the identity:

$$
\begin{equation*}
d\left(\sum f_{I} d x_{I}\right)=\sum d f_{I} \wedge d x_{I} \tag{2.4.9}
\end{equation*}
$$

(As above we can ignore the repeating I 's, since for these I 's, $d x_{I}=$ 0 , and by (2.4.8) we can make the non-repeating I 's strictly increasing.)

Suppose now that $\omega_{1} \in \Omega^{k}(U)$ and $\omega_{2} \in \Omega^{\ell}(U)$. Writing

$$
\omega_{1}=\sum f_{I} d x_{I}
$$

and

$$
\omega_{2}=\sum g_{J} d x_{J}
$$

with f_{I} and g_{J} in $\mathcal{C}^{\infty}(U)$ we get for the wedge product

$$
\begin{equation*}
\omega_{1} \wedge \omega_{2}=\sum f_{I} g_{J} d x_{I} \wedge d x_{J} \tag{2.4.10}
\end{equation*}
$$

and by (2.4.9)

$$
\begin{equation*}
d\left(\omega_{1} \wedge \omega_{2}\right)=\sum d\left(f_{I} g_{J}\right) \wedge d x_{I} \wedge d x_{J} \tag{2.4.11}
\end{equation*}
$$

(Notice that if $I=\left(i_{1}, \cdots, i_{k}\right)$ and $J=\left(j_{i}, \ldots, i_{\ell}\right), d x_{I} \wedge d x_{J}=$ $d x_{K}, K$ being the multi-index, $\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{\ell}\right)$. Even if I and J are strictly increasing, K won't necessarily be strictly increasing. However in deducing (2.4.11) from (2.4.10) we've observed that this doesn't matter .) Now note that by (2.1.10)

$$
d\left(f_{I} g_{J}\right)=g_{J} d f_{I}+f_{I} d g_{J},
$$

and by the wedge product identities of $\S(? ?)$,

$$
\begin{aligned}
d g_{J} \wedge d x_{I} & =d g_{J} \wedge d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}} \\
& =(-1)^{k} d x_{I} \wedge d g_{J},
\end{aligned}
$$

so the sum (2.4.11) can be rewritten:

$$
\sum d f_{I} \wedge d x_{I} \wedge g_{J} d x_{J}+(-1)^{k} \sum f_{I} d x_{I} \wedge d g_{J} \wedge d x_{J}
$$

or

$$
\left(\sum d f_{I} \wedge d x_{I}\right) \wedge\left(\sum g_{J} d x_{J}\right)+(-1)^{k}\left(\sum d g_{J} \wedge d x_{J}\right)
$$

or finally:

$$
d \omega_{1} \wedge \omega_{2}+(-1)^{k} \omega_{1} \wedge d \omega_{2} .
$$

Thus the "d" defined by (2.4.7) has Property II. Let's now check that it has Property III. If $\omega=\sum f_{I} d x_{I}, f_{I} \in \mathcal{C}^{\infty}(U)$, then by definition, $d \omega=\sum d f_{I} \wedge d x_{I}$ and by (2.4.6) and (2.4.2)

$$
d(d \omega)=\sum d\left(d f_{I}\right) \wedge d x_{I}
$$

so it suffices to check that $d\left(d f_{I}\right)=0$, i.e., it suffices to check (2.4.4) for zero forms, $f \in \mathcal{C}^{\infty}(U)$. However, by (2.1.9)

$$
d f=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} d x_{j}
$$

so by (2.4.7)

$$
\begin{aligned}
d(d f) & =\sum_{j=1}^{n} d\left(\frac{\partial f}{\partial x_{j}}\right) d x_{j} \\
& =\sum_{j=1}^{n}\left(\sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} d x_{i}\right) \wedge d x_{j} \\
& =\sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} d x_{i} \wedge d x_{j} .
\end{aligned}
$$

Notice, however, that in this sum, $d x_{i} \wedge d x_{j}=-d x_{j} \wedge d x_{i}$ and

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}
$$

so the (i, j) term cancels the (j, i) term, and the total sum is zero.

A form, $\omega \in \Omega^{k}(U)$, is said to be closed if $d \omega=0$ and is said to be exact if $\omega=d \mu$ for some $\mu \in \Omega^{k-1}(U)$. By Property III every exact form is closed, but the converse is not true even for 1 -forms. (See §2.1.1., exercise 8). In fact it's a very interesting (and hard) question to determine if an open set, U, has the property: "For $k>0$ every closed k-form is exact." ${ }^{1}$

Some examples of sets with this property are described in the exercises at the end of $\S 2.5$. We will also sketch below a proof of the following result (and ask you to fill in the details).

Lemma 2.4.1 (Poincaré's Lemma.). If ω is a closed form on U of degree $k>0$, then for every point, $p \in U$, there exists a neighborhood of p on which ω is exact.
(See exercises 5 and 6 below.)

Exercises:

1. Compute the exterior derivatives of the forms below.

[^0](a) $x_{1} d x_{2} \wedge d x_{3}$
(b) $x_{1} d x_{2}-x_{2} d x_{1}$
(c) $e^{-f} d f$ where $f=\sum_{i=1}^{n} x_{i}^{2}$
(d) $\sum_{i=1}^{n} x_{i} d x_{i}$
(e) $\sum_{i=1}^{n}(-1)^{i} x_{i} d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{n}$
2. Solve the equation: $d \mu=\omega$ for $\mu \in \Omega^{1}\left(\mathbb{R}^{3}\right)$, where ω is the 2-form
(a) $d x_{2} \wedge d x_{3}$
(b) $x_{2} d x_{2} \wedge d x_{3}$
(c) $\left(x_{1}^{2}+x_{2}^{2}\right) d x_{1} \wedge d x_{2}$
(d) $\cos x_{1} d x_{1} \wedge d x_{3}$
3. Let U be an open subset of \mathbb{R}^{n}.
(a) Show that if $\mu \in \Omega^{k}(U)$ is exact and $\omega \in \Omega^{\ell}(U)$ is closed then $\mu \wedge \omega$ is exact. Hint: The formula (2.4.2).
(b) In particular, $d x_{1}$ is exact, so if $\omega \in \Omega^{\ell}(U)$ is closed $d x_{1} \wedge \omega=$ $d \mu$. What is μ ?
4. Let Q be the rectangle, $\left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{n}, b_{n}\right)$. Show that if ω is in $\Omega^{n}(Q)$, then ω is exact.

Hint: Let $\omega=f d x_{1} \wedge \cdots \wedge d x_{n}$ with $f \in \mathcal{C}^{\infty}(Q)$ and let g be the function

$$
g\left(x_{1}, \ldots, x_{n}\right)=\int_{a_{1}}^{x_{1}} f\left(t, x_{2}, \ldots, x_{n}\right) d t
$$

Show that $\omega=d\left(g d x_{2} \wedge \cdots \wedge d x_{n}\right)$.
5. Let U be an open subset of $\mathbb{R}^{n-1}, A \subseteq \mathbb{R}$ an open interval and (x, t) product coordinates on $U \times A$. We will say that a form, $\mu \in \Omega^{\ell}(U \times A)$ is reduced if it can be written as a sum

$$
\begin{equation*}
\mu=\sum f_{I}(x, t) d x_{I} \tag{2.4.12}
\end{equation*}
$$

(i.e., no terms involving $d t$).
(a) Show that every form, $\omega \in \Omega^{k}(U \times A)$ can be written uniquely as a sum:

$$
\begin{equation*}
\omega=d t \wedge \alpha+\beta \tag{2.4.13}
\end{equation*}
$$

where α and β are reduced.
(b) Let μ be the reduced form (2.4.12) and let

$$
\frac{d \mu}{d t}=\sum \frac{d}{d t} f_{I}(x, t) d x_{I}
$$

and

$$
d_{U} \mu=\sum_{I}\left(\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} f_{I}(x, t) d x_{i}\right) \wedge d x_{I}
$$

Show that

$$
d \mu=d t \wedge \frac{d \mu}{d t}+d_{U} \mu
$$

(c) Let ω be the form (2.4.13). Show that

$$
d \omega=d t \wedge d_{U} \alpha+d t \wedge \frac{d \beta}{d t}+d_{U} \beta
$$

and conclude that ω is closed if and only if

$$
\begin{align*}
\frac{d \beta}{d t} & =d_{U} \alpha \tag{2.4.14}\\
d \beta_{U} & =0
\end{align*}
$$

(d) Let α be a reduced $(k-1)$-form. Show that there exists a reduced $(k-1)$-form, ν, such that

$$
\begin{equation*}
\frac{d \nu}{d t}=\alpha \tag{2.4.15}
\end{equation*}
$$

Hint: Let $\alpha=\sum f_{I}(x, t) d x_{I}$ and $\nu=\sum g_{I}(x, t) d x_{I}$. The equation (2.4.15) reduces to the system of equations

$$
\begin{equation*}
\frac{d}{d t} g_{I}(x, t)=f_{I}(x, t) \tag{2.4.16}
\end{equation*}
$$

Let c be a point on the interval, A, and using freshman calculus show that (2.4.16) has a unique solution, $g_{I}(x, t)$, with $g_{I}(x, c)=0$.
(e) Show that if ω is the form (2.4.13) and ν a solution of (2.4.15) then the form

$$
\begin{equation*}
\omega-d \nu \tag{2.4.17}
\end{equation*}
$$

is reduced.
(f) Let

$$
\left.\gamma=\sum h_{I}(x, t) d x\right) I
$$

be a reduced k-form. Deduce from (2.4.14) that if γ is closed then $\frac{d \gamma}{d t}=0$ and $d_{U} \gamma=0$. Conclude that $h_{I}(x, t)=h_{I}(x)$ and that

$$
\gamma=\sum h_{I}(x) d x_{I}
$$

is effectively a closed k-form on U. Now prove: If every closed k-form on U is exact, then every closed k-form on $U \times A$ is exact. Hint: Let ω be a closed k-form on $U \times A$ and let γ be the form (2.4.17).
6. Let $Q \subseteq \mathbb{R}^{n}$ be an open rectangle. Show that every closed form on Q of degree $k>0$ is exact. Hint: Let $Q=\left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{n}, b_{n}\right)$. Prove this assertion by induction, at the $n^{\text {th }}$ stage of the induction letting $U=\left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{n-1}, b_{n-1}\right)$ and $A=\left(a_{n}, b_{n}\right)$.

2.5 The interior product operation

In $\S 2.1 .1$. we explained how to pair a one-form, ω, and a vector field, v, to get a function, $\iota(v) \omega$. This pairing operation generalizes: If one is given a k-form, ω, and a vector field, v, both defined on an open subset, U, one can define a ($k-1$)-form on U by defining its value at $p \in U$ to be the interior product

$$
\begin{equation*}
\iota(v(p)) \omega(p) \tag{2.5.1}
\end{equation*}
$$

Note that $v(p)$ is in $T_{p} \mathbb{R}^{n}$ and $\omega(p)$ in $\Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right)$, so by definition of interior product (see $\S 1.7$), the expression (2.5.1) is an element of $\Lambda^{k-1}\left(T_{p}^{*} \mathbb{R}^{n}\right)$. We will denote by $\iota(v) \omega$ the $(k-1)$-form on U whose value at p is (2.5.1). From the properties of interior product on vector spaces which we discussed in $\S 1.7$, one gets analogous properties for this interior product on forms. We will list these properties, leaving their verification as an exercise. Let v and ω be vector fields, and ω_{1}
and $\omega_{2} k$-forms, ω a k-form and μ an ℓ-form. Then $\iota(v) \omega$ is linear in ω :

$$
\begin{equation*}
\iota(v)\left(\omega_{1}+\omega_{2}\right)=\iota(v) \omega_{1}+\iota(v) \omega_{2}, \tag{2.5.2}
\end{equation*}
$$

linear in v :

$$
\begin{equation*}
\iota(v+w) \omega=\iota(v) \omega+z(w) \omega \tag{2.5.3}
\end{equation*}
$$

has the derivation property:

$$
\begin{equation*}
\iota(v)(\omega \wedge \mu)=\iota(v) \omega \wedge \mu+(-1)^{k} \omega \wedge \iota(v) \mu \tag{2.5.4}
\end{equation*}
$$

satisfies the identity

$$
\begin{equation*}
\iota(v)(\iota(w) \omega)=-\iota(w)(\iota(v) \omega) \tag{2.5.5}
\end{equation*}
$$

and, as a special case of (2.5.5), the identity,

$$
\begin{equation*}
\iota(v)(\iota(v) \omega)=0 . \tag{2.5.6}
\end{equation*}
$$

Moreover, if ω is "decomposable" i.e., is a wedge product of oneforms

$$
\begin{equation*}
\omega=\mu_{1} \wedge \cdots \wedge \mu_{k} \tag{2.5.7}
\end{equation*}
$$

then

$$
\begin{equation*}
\iota(v) \omega=\sum_{r=1}^{k}(-1)^{r-1}\left(\iota(v) \mu_{r}\right) \mu_{1} \wedge \cdots \widehat{\mu}_{r} \cdots \wedge \mu_{k} \tag{2.5.8}
\end{equation*}
$$

We will also leave for you to prove the following two assertions, both of which are special cases of (2.5.8). If $v=\partial / \partial x_{r}$ and $\omega=d x_{I}=$ $d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$ then

$$
\begin{equation*}
\iota(v) \omega=\sum_{r=1}^{k}(-1)^{r} \delta_{i_{r}}^{i} d x_{I_{r}} \tag{2.5.9}
\end{equation*}
$$

where

$$
\delta_{i_{r}}^{i}= \begin{cases}1 & i=i_{r} \\ 0, & i \neq i_{r}\end{cases}
$$

and $I_{r}=\left(i_{1}, \ldots, \widehat{i}_{r}, \ldots, i_{k}\right)$ and if $v=\sum f_{i} \partial / \partial x_{i}$ and $\omega=d x_{1} \wedge$ $\cdots \wedge d x_{n}$ then

$$
\begin{equation*}
\iota(v) \omega=\sum(-1)^{r-1} f_{r} d x_{1} \wedge \cdots \widehat{d x}_{r} \cdots \wedge d x_{n} \tag{2.5.10}
\end{equation*}
$$

By combining exterior differentiation with the interior product operation one gets another basic operation of vector fields on forms: the Lie differentiation operation. For zero-forms, i.e., for \mathcal{C}^{∞} functions, φ, we defined this operation by the formula (2.1.13). For k-forms we'll define it by the slightly more complicated formula

$$
\begin{equation*}
L_{v} \omega=\iota(v) d \omega+d \iota(v) \omega . \tag{2.5.11}
\end{equation*}
$$

(Notice that for zero-forms the second summand is zero, so (2.5.11) and (2.1.13) agree.) If ω is a k-form the right hand side of (2.5.11) is as well, so L_{v} takes k-forms to k-forms. It also has the property

$$
\begin{equation*}
d L_{v} \omega=L_{v} d \omega \tag{2.5.12}
\end{equation*}
$$

i.e., it "commutes" with d, and the property

$$
\begin{equation*}
L_{v}(\omega \wedge \mu)=L_{v} \omega \wedge \mu+\omega \wedge L_{v} \mu \tag{2.5.13}
\end{equation*}
$$

and from these properties it is fairly easy to get an explicit formula for $L_{v} \omega$. Namely let ω be the k-form

$$
\omega=\sum f_{I} d x_{I}, \quad f_{I} \in \mathcal{C}^{\infty}(U)
$$

and v the vector field

$$
\sum g_{i} \partial / \partial x_{i}, \quad g_{i} \in \mathcal{C}^{\infty}(U)
$$

By (2.5.13)

$$
L_{v}\left(f_{I} d x_{I}\right)=\left(L_{v} f_{I}\right) d x_{I}+f_{I}\left(L_{v} d x_{I}\right)
$$

and

$$
L_{v} d x_{I}=\sum_{r=1}^{k} d x_{i_{1}} \wedge \cdots \wedge L_{v} d x_{i_{r}} \wedge \cdots \wedge d x_{i_{k}}
$$

and by (2.5.12)

$$
L_{v} d x_{i_{r}}=d L_{v} x_{i_{r}}
$$

so to compute $L_{v} \omega$ one is reduced to computing $L_{v} x_{i_{r}}$ and $L_{v} f_{I}$. However by (2.5.13)

$$
L_{v} x_{i_{r}}=g_{i_{r}}
$$

and

$$
L_{v} f_{I}=\sum g_{i} \frac{\partial f_{I}}{\partial x_{i}}
$$

We will leave the verification of (2.5.12) and (2.5.13) as exercises, and also ask you to prove (by the method of computation that we've just sketched) the divergence formula

$$
\begin{equation*}
L_{v}\left(d x_{1} \wedge \cdots \wedge d x_{n}\right)=\sum\left(\frac{\partial g_{i}}{\partial x_{i}}\right) d x_{1} \wedge \cdots \wedge d x_{n} \tag{2.5.14}
\end{equation*}
$$

Exercises:

1. Verify the assertions (2.5.2)-(2.5.7).
2. Show that if ω is the k-form, $d x_{I}$ and v the vector field, $\partial / \partial x_{r}$, then $\iota(v) \omega$ is given by (2.5.9).
3. Show that if ω is the n-form, $d x_{1} \wedge \cdots \wedge d x_{n}$, and v the vector field, $\sum f_{i} \partial / \partial x_{i}, \iota(v) \omega$ is given by (2.5.10).
4. Let U be an open subset of \mathbb{R}^{n} and v a \mathcal{C}^{∞} vector field on U. Show that for $\omega \in \Omega^{k}(U)$

$$
d L_{v} \omega=L_{v} d \omega
$$

and

$$
\iota_{v} L_{v} \omega=L_{v} \iota_{v} \omega .
$$

Hint: Deduce the first of these identities from the identity $d(d \omega)=0$ and the second from the identity $\iota(v)(\iota(v) \omega)=0$.)
5. Given $\omega_{i} \in \Omega^{k_{i}}(U), i=1,2$, show that

$$
L_{v}\left(\omega_{1} \wedge \omega_{2}\right)=L_{v} \omega_{1} \wedge \omega_{2}+\omega_{1} \wedge L_{v} \omega_{2} .
$$

Hint: Plug $\omega=\omega_{1} \wedge \omega_{2}$ into (2.5.11) and use (2.4.2) and (2.5.4)to evaluate the resulting expression.
6. Let v_{1} and v_{2} be vector fields on U and let w be their Lie bracket. Show that for $\omega \in \Omega^{k}(U)$

$$
L_{w} \omega=L_{v_{1}}\left(L_{v_{2}} \omega\right)-L_{v_{2}}\left(L_{v_{1}} \omega\right) .
$$

Hint: By definition this is true for zero-forms and by (2.5.12) for exact one-forms. Now use the fact that every form is a sum of wedge products of zero-forms and one-forms and the fact that L_{v} satisfies the product identity (2.5.13).
7. Prove the divergence formula (2.5.14).
8. (a) Let $\omega=\Omega^{k}\left(\mathbb{R}^{n}\right)$ be the form

$$
\omega=\sum f_{I}\left(x_{1}, \ldots, x_{n}\right) d x_{I}
$$

and \mathfrak{v} the vector field, $\partial / \partial x_{n}$. Show that

$$
L_{\mathfrak{v}} \omega=\sum \frac{\partial}{\partial x_{n}} f_{I}\left(x_{1}, \ldots, x_{n}\right) d x_{I} .
$$

(b) Suppose $\iota(\mathfrak{v}) \omega=L_{\mathfrak{p}} \omega=0$. Show that ω only depends on x_{1}, \ldots, x_{k-1} and $d x_{1}, \ldots, d x_{k-1}$, i.e., is effectively a k-form on \mathbb{R}^{n-1}.
(c) Suppose $\iota(\mathfrak{v}) \omega=d \omega=0$. Show that ω is effectively a closed k-form on \mathbb{R}^{n-1}.
(d) Use these results to give another proof of the Poincaré lemma for \mathbb{R}^{n}. Prove by induction on n that every closed form on \mathbb{R}^{n} is exact.

Hints:

i. Let ω be the form in part (a) and let

$$
g_{I}\left(x_{1}, \ldots, x_{n}\right)=\int_{0}^{x_{n}} f_{I}\left(x_{1}, \ldots, x_{n-1}, t\right) d t
$$

Show that if $\nu=\sum g_{I} d x_{I}$, then $L_{\mathfrak{v}} \nu=\omega$.
ii. Conclude that

$$
\begin{equation*}
\omega-d \iota(\mathfrak{v}) \nu=\iota(\mathfrak{v}) d \nu \tag{*}
\end{equation*}
$$

iii. Suppose $d \omega=0$. Conclude from $\left(^{*}\right.$) and from the formula (2.5.6) that the form $\beta=\iota(\mathfrak{v}) d \nu$ satisfies $d \beta=\iota(\mathfrak{v}) \beta=0$.
iv. By part c, β is effectively a closed form on \mathbb{R}^{n-1}, and by induction, $\beta=d \alpha$. Thus by (${ }^{*}$)

$$
\omega=d \iota(\mathfrak{v}) \nu+d \alpha .
$$

2.6 The pull-back operation on forms

Let U be an open subset of \mathbb{R}^{n}, V an open subset of \mathbb{R}^{m} and f : $U \rightarrow V$ a \mathcal{C}^{∞} map. Then for $p \in U$ and $q=f(p)$, the derivative of f at p

$$
d f_{p}: T_{p} \mathbb{R}^{n} \rightarrow T_{q} \mathbb{R}^{m}
$$

is a linear map, so (as explained in $\S 7$ of Chapter ??) one gets from it a pull-back map

$$
\begin{equation*}
d f_{p}^{*}: \Lambda^{k}\left(T_{q}^{*} \mathbb{R}^{m}\right) \rightarrow \Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right) \tag{2.6.1}
\end{equation*}
$$

In particular, let ω be a k-form on V. Then at $q \in V, \omega$ takes the value

$$
\omega_{q} \in \Lambda^{k}\left(T_{q}^{*} \mathbb{R}^{m}\right)
$$

so we can apply to it the operation (2.7.1), and this gives us an element:

$$
\begin{equation*}
d f_{p}^{*} \omega_{q} \in \Lambda^{k}\left(T_{p}^{*} \mathbb{R}^{n}\right) \tag{2.6.2}
\end{equation*}
$$

In fact we can do this for every point $p \in U$, so this gives us a function,

$$
\begin{equation*}
p \in U \rightarrow\left(d f_{p}\right)^{*} \omega_{q}, \quad q=f(p) . \tag{2.6.3}
\end{equation*}
$$

By the definition of k-form such a function is a k-form on U. We will denote this k-form by $f^{*} \omega$ and define it to be the pull-back of ω by the map f. A few of its basic properties are described below.

1. Let φ be a zero-form, i.e., a function, $\varphi \in \mathcal{C}^{\infty}(V)$. Since

$$
\Lambda^{0}\left(T_{p}^{*}\right)=\Lambda^{0}\left(T_{q}^{*}\right)=\mathbb{R}
$$

the map (2.7.1) is just the identity map of \mathbb{R} onto \mathbb{R} when k is equal to zero. Hence for zero-forms

$$
\begin{equation*}
\left(f^{*} \varphi\right)(p)=\varphi(q), \tag{2.6.4}
\end{equation*}
$$

i.e., $f^{*} \varphi$ is just the composite function, $\varphi \circ f \in \mathcal{C}^{\infty}(U)$.
2. Let $\mu \in \Omega^{1}(V)$ be the 1 -form, $\mu=d \varphi$. By the chain rule (2.6.2) unwinds to:

$$
\begin{equation*}
\left(d f_{p}\right)^{*} d \varphi_{q}=(d \varphi)_{q} \circ d f_{p}=d(\varphi \circ f)_{p} \tag{2.6.5}
\end{equation*}
$$

and hence by (2.6.4)

$$
\begin{equation*}
f^{*} d \varphi=d f^{*} \varphi \tag{2.6.6}
\end{equation*}
$$

3. If ω_{1} and ω_{2} are in $\Omega^{k}(V)$ we get from (2.6.2)

$$
\left(d f_{p}\right)^{*}\left(\omega_{1}+\omega_{2}\right)_{q}=\left(d f_{p}\right)^{*}\left(\omega_{1}\right)_{q}+\left(d f_{p}\right)^{*}\left(\omega_{2}\right)_{q},
$$

and hence by (2.6.3)

$$
f^{*}\left(\omega_{1}+\omega_{2}\right)=f^{*} \omega_{1}+f^{*} \omega_{2} .
$$

4. We observed in § ?? that the operation (2.7.1) commutes with wedge-product, hence if ω_{1} is in $\Omega^{k}(V)$ and ω_{2} is in $\Omega^{\ell}(V)$

$$
d f_{p}^{*}\left(\omega_{1}\right)_{q} \wedge\left(\omega_{2}\right)_{q}=d f_{p}^{*}\left(\omega_{1}\right)_{q} \wedge d f_{p}^{*}\left(\omega_{2}\right)_{q} .
$$

In other words

$$
\begin{equation*}
f^{*} \omega_{1} \wedge \omega_{2}=f^{*} \omega_{1} \wedge f^{*} \omega_{2} . \tag{2.6.7}
\end{equation*}
$$

5. Let W be an open subset of \mathbb{R}^{k} and $g: V \rightarrow W$ a \mathcal{C}^{∞} map. Given a point $p \in U$, let $q=f(p)$ and $w=g(q)$. Then the composition of the map

$$
\left(d f_{p}\right)^{*}: \Lambda^{k}\left(T_{q}^{*}\right) \rightarrow \Lambda^{k}\left(T_{p}^{*}\right)
$$

and the map

$$
\left(d g_{q}\right)^{*}: \Lambda^{k}\left(T_{w}^{*}\right) \rightarrow \Lambda^{k}\left(T_{q}^{*}\right)
$$

is the map

$$
\left(d g_{q} \circ d f_{p}\right)^{*}: \Lambda^{k}\left(T_{w}^{*}\right) \rightarrow \Lambda^{k}\left(T_{p}^{*}\right)
$$

by formula (??) of Chapter 1. However, by the chain rule

$$
\left(d g_{q}\right) \circ(d f)_{p}=d(g \circ f)_{p}
$$

so this composition is the map

$$
d(g \circ f)_{p}^{*}: \Lambda^{k}\left(T_{w}^{*}\right) \rightarrow \Lambda^{k}\left(T_{p}^{*}\right)
$$

Thus if ω is in $\Omega^{k}(W)$

$$
\begin{equation*}
f^{*}\left(g^{*} \omega\right)=(g \circ f)^{*} \omega . \tag{2.6.8}
\end{equation*}
$$

Let's see what the pull-back operation looks like in coordinates. Using multi-index notation we can express every k-form, $\omega \in \Omega^{k}(V)$ as a sum over multi-indices of length k

$$
\begin{equation*}
\omega=\sum \varphi_{I} d x_{I} \tag{2.6.9}
\end{equation*}
$$

the coefficient, φ_{I}, of $d x_{I}$ being in $\mathcal{C}^{\infty}(V)$. Hence by (2.6.4)

$$
f^{*} \omega=\sum f^{*} \varphi_{I} f^{*}\left(d x_{I}\right)
$$

where $f^{*} \varphi_{I}$ is the function of $\varphi \circ f$. What about $f^{*} d x_{I}$? If I is the multi-index, $\left(i_{1}, \ldots, i_{k}\right)$, then by definition

$$
d x_{I}=d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}
$$

so

$$
d^{*} d x_{I}=f^{*} d x_{i} \wedge \cdots \wedge f^{*} d x_{i_{k}}
$$

by (2.6.7), and by (2.6.6)

$$
f^{*} d x_{i}=d f^{*} x_{i}=d f_{i}
$$

where f_{i} is the $i^{\text {th }}$ coordinate function of the map f. Thus, setting

$$
d f_{I}=d f_{i_{1}} \wedge \cdots \wedge d f_{i_{k}}
$$

we get for each multi-index, I,

$$
\begin{equation*}
f^{*} d x_{I}=d f_{I} \tag{2.6.10}
\end{equation*}
$$

and for the pull-back of the form (2.6.9)

$$
\begin{equation*}
f^{*} \omega=\sum f^{*} \varphi_{I} d f_{I} . \tag{2.6.11}
\end{equation*}
$$

We will use this formula to prove that pull-back commutes with exterior differentiation:

$$
\begin{equation*}
d f^{*} \omega=f^{*} d \omega \tag{2.6.12}
\end{equation*}
$$

To prove this we recall that by (2.3.5), $d\left(d f_{I}\right)=0$, hence by (2.3.2) and (2.6.10)

$$
\begin{aligned}
d f^{*} \omega & =\sum d f^{*} \varphi_{I} \wedge d f_{I} \\
& =\sum f^{*} d \varphi_{I} \wedge d f^{*} d x_{I} \\
& =f^{*} \sum d \varphi_{I} \wedge d x_{I} \\
& =f^{*} d \omega
\end{aligned}
$$

A special case of formula (2.6.10) will be needed in Chapter 4: Let U and V be open subsets of \mathbb{R}^{n} and let $\omega=d x_{1} \wedge \cdots \wedge d x_{n}$. Then by (2.6.10)

$$
f^{*} \omega_{p}=\left(d f_{1}\right)_{p} \wedge \cdots \wedge\left(d f_{n}\right)_{p}
$$

for all $p \in U$. However,

$$
\left(d f_{i}\right)_{p}=\sum \frac{\partial f_{i}}{\partial x_{j}}(p)\left(d x_{j}\right)_{p}
$$

and hence by formula (??) of Chapter ??

$$
f^{*} \omega_{p}=\operatorname{det}\left[\frac{\partial f_{i}}{\partial x_{j}}(p)\right]\left(d x_{1} \wedge \cdots \wedge d x_{n}\right)_{p}
$$

In other words

$$
\begin{equation*}
f^{*} d x_{1} \wedge \cdots \wedge d x_{n}=\operatorname{det}\left[\frac{\partial f_{i}}{\partial x_{j}}\right] d x_{1} \wedge \cdots \wedge d x_{n} \tag{2.6.13}
\end{equation*}
$$

We will outline in exercises 4 and 5 below the proof of an important topological property of the pull-back operation. Let U be an open subset of \mathbb{R}^{n}, V an open subset of $\mathbb{R}^{m}, A \subseteq \mathbb{R}$ an open interval containing 0 and 1 and $f_{i}: U \rightarrow V, i=0,1$, a \mathcal{C}^{∞} map.
Definition 2.6.1. $A \mathcal{C}^{\infty}$ map, $F: U \times A \rightarrow V$, is a homotopy between f_{0} and f_{1} if $F(x, 0)=f_{0}(x)$ and $F(x, 1)=f_{1}(x)$.

Thus, intuitively, f_{0} and f_{1} are homotopic if there exists a family of \mathcal{C}^{∞} maps, $f_{t}: U \rightarrow V, f_{t}(x)=F(x, t)$, which "smoothly deform f_{0} into f_{1} ". In the exercises mentioned above you will be asked to verify that for f_{0} and f_{1} to be homotopic they have to satisfy the following criteria.
Theorem 2.6.2. If f_{0} and f_{1} are homotopic then for every closed form, $\omega \in \Omega^{k}(V), f_{1}^{*} \omega-f_{0}^{*} \omega$ is exact.

This theorem is closely related to the Poincaré lemma, and, in fact, one gets from it a slightly stronger version of the Poincaré lemma than that described in exercises 5-6 in §2.3.
Definition 2.6.3. An open subset, U, of \mathbb{R}^{n} is contractable if, for some point $p_{0} \in U$, the identity map

$$
f_{1}: U \rightarrow U, \quad f(p)=p,
$$

is homotopic to the constant map

$$
f_{0}: U \rightarrow U, \quad f_{0}(p)=p_{0} .
$$

From the theorem above it's easy to see that the Poincaré lemma holds for contractable open subsets of \mathbb{R}^{n}. If U is contractable every closed k-form on U of degree $k>0$ is exact. (Proof: Let ω be such a form. Then for the identity $\operatorname{map} f_{0}^{*} \omega=\omega$ and for the constant map, $f_{0}^{*} \omega=0$.)

Exercises.

1. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the map

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} x_{2}, x_{2} x_{3}^{2}, x_{3}^{3}\right) .
$$

Compute the pull-back, $f^{*} \omega$ for
(a) $\omega=x_{2} d x_{3}$
(b) $\omega=x_{1} d x_{1} \wedge d x_{3}$
(c) $\omega=x_{1} d x_{1} \wedge d x_{2} \wedge d x_{3}$
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the map

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}\right) .
$$

Complete the pull-back, $f^{*} \omega$, for
(a) $\omega=x_{2} d x_{2}+x_{3} d x_{3}$
(b) $\omega=x_{1} d x_{2} \wedge d x_{3}$
(c) $\omega=d x_{1} \wedge d x_{2} \wedge d x_{3}$
3. Let U be an open subset of \mathbb{R}^{n}, V an open subset of \mathbb{R}^{m}, f : $U \rightarrow V$ a \mathcal{C}^{∞} map and $\gamma:[a, b] \rightarrow U$ a \mathcal{C}^{∞} curve. Show that for $\omega \in \Omega^{1}(V)$

$$
\int_{\gamma} f^{*} \omega=\int_{\gamma_{1}} \omega
$$

where $\gamma_{1}:[a, b] \rightarrow V$ is the curve, $\gamma_{1}(t)=f(\gamma(t))$. (See § 2.1.1., exercise 7.)
4. Let U be an open subset of $\mathbb{R}^{n}, A \subseteq \mathbb{R}$ an open interval containing the points, 0 and 1 , and (x, t) product coordinates on $U \times A$. Recall (§2.3, exercise 5) that a form, $\mu \in \Omega^{\ell}(U \times A)$ is reduced if it can be written as a sum

$$
\begin{equation*}
\mu=\sum f_{I}(x, t) d x_{I} \tag{2.6.14}
\end{equation*}
$$

(i.e., none of the summands involve " $d t$ "). For a reduced form, μ, let $Q \mu \in \Omega^{\ell}(U)$ be the form

$$
\begin{equation*}
Q \mu=\left(\sum \int_{0}^{1} f_{I}(x, t) d t\right) d x_{I} \tag{2.6.15}
\end{equation*}
$$

and let $\mu_{i} \in \Omega^{\ell}(U), i=0,1$ be the forms

$$
\begin{equation*}
\mu_{0}=\sum f_{I}(x, 0) d x_{I} \tag{2.6.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{1}=\sum f_{I}(x, 1) d x_{I} . \tag{2.6.17}
\end{equation*}
$$

Now recall that every form, $\omega \in \Omega^{k}(U \times A)$ can be written uniquely as a sum

$$
\begin{equation*}
\omega=d t \wedge \alpha+\beta \tag{2.6.18}
\end{equation*}
$$

where α and β are reduced. (See exercise 5 of $\S 2.4$, part a.)
(a) Prove

Theorem 2.6.4. If the form (2.6.18) is closed then

$$
\begin{equation*}
\beta_{0}-\beta_{1}=d Q \alpha \tag{2.6.19}
\end{equation*}
$$

Hint: Formula (2.4.14).
(b) Let ι_{0} and ι_{1} be the maps of U into $U \times A$ defined by $\iota_{0}(x)=$ $(x, 0)$ and $\iota_{1}(x)=(x, 1)$. Show that (2.6.19) can be rewritten

$$
\begin{equation*}
\iota_{0}^{*} \omega-\iota_{1}^{*} \omega=d Q \alpha \tag{2.6.20}
\end{equation*}
$$

5. Let V be an open subset of \mathbb{R}^{m} and $f_{i}: U \rightarrow V, i=0,1, \mathcal{C}^{\infty}$ maps. Suppose f_{0} and f_{1} are homotopic. Show that for every closed form, $\mu \in \Omega^{k}(V), f_{1}^{*} \mu-f_{0}^{*} \mu$ is exact. Hint: Let $F: U \times A \rightarrow V$ be a
homotopy between f_{0} and f_{1} and let $\omega=F^{*} \mu$. Show that ω is closed and that $f_{0}^{*} \mu=\iota_{0}^{*} \omega$ and $f_{1}^{*} \mu=\iota_{1}^{*} \omega$. Conclude from (2.6.20) that

$$
\begin{equation*}
f_{0}^{*} \mu-f_{1}^{*} \mu=d Q \alpha \tag{2.6.21}
\end{equation*}
$$

where $\omega=d t \wedge \alpha+\beta$ and α and β are reduced.
6. Show that if $U \subseteq \mathbb{R}^{n}$ is a contractable open set, then the Poincaré lemma holds: every closed form of degree $k>0$ is exact.
7. An open subset, U, of \mathbb{R}^{n} is said to be star-shaped if there exists a point $p_{0} \in U$, with the property that for every point $p \in U$, the line segment,

$$
t p+(1-t) p_{0}, \quad 0 \leq t \leq 1
$$

joining p to p_{0} is contained in U. Show that if U is star-shaped it is contractable.
8. Show that the following open sets are star-shaped:
(a) The open unit ball

$$
\left\{x \in \mathbb{R}^{n},\|x\|<1\right\} .
$$

(b) The open rectangle, $I_{1} \times \cdots \times I_{n}$, where each I_{k} is an open subinterval of \mathbb{R}.
(c) \mathbb{R}^{n} itself.
(d) Product sets

$$
U_{1} \times U_{2} \subseteq \mathbb{R}^{n}=\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}
$$

where U_{i} is a star-shaped open set in $\mathbb{R}^{n_{i}}$.
9. Let U be an open subset of $\mathbb{R}^{n}, f_{t}: U \rightarrow U, t \in \mathbb{R}$, a oneparameter group of diffeomorphisms and v its infinitesimal generator. Given $\omega \in \Omega^{k}(U)$ show that at $t=0$

$$
\begin{equation*}
\frac{d}{d t} f_{t}^{*} \omega=L_{v} \omega \tag{2.6.22}
\end{equation*}
$$

Here is a sketch of a proof:
(a) Let $\gamma(t)$ be the curve, $\gamma(t)=f_{t}(p)$, and let φ be a zero-form, i.e., an element of $\mathcal{C}^{\infty}(U)$. Show that

$$
f_{t}^{*} \varphi(p)=\varphi(\gamma(t))
$$

and by differentiating this identity at $t=0$ conclude that (2.5.40) holds for zero-forms.
(b) Show that if (2.5.40) holds for ω it holds for $d \omega$. Hint: Differentiate the identity

$$
f_{t}^{*} d \omega=d f_{t}^{*} \omega
$$

at $t=0$.
(c) Show that if (2.5.40) holds for ω_{1} and ω_{2} it holds for $\omega_{1} \wedge \omega_{2}$. Hint: Differentiate the identity

$$
f_{t}^{*}\left(\omega_{1} \wedge \omega_{2}\right)=f_{t}^{*} \omega_{1} \wedge f_{t}^{*} \omega_{2}
$$

at $t=0$.
(d) Deduce (2.5.40) from a, b and c. Hint: Every k-form is a sum of wedge products of zero-forms and exact one-forms.
10. In exercise 9 show that for all t

$$
\begin{equation*}
\frac{d}{d t} f_{t}^{*} \omega=f_{t}^{*} L_{v} \omega=L_{v} f_{t}^{*} \omega \tag{2.6.23}
\end{equation*}
$$

Hint: By the definition of "one-parameter group", $f_{s+t}=f_{s} \circ f_{t}=$ $f_{r} \circ f_{s}$, hence:

$$
f_{s+t}^{*} \omega=f_{t}^{*}\left(f_{s}^{*} \omega\right)=f_{s}^{*}\left(f_{t}^{*} \omega\right) .
$$

Prove the first assertion by differentiating the first of these identities with respect to s and then setting $s=0$, and prove the second assertion by doing the same for the second of these identities.

In particular conclude that

$$
\begin{equation*}
f_{t}^{*} L_{v} \omega=L_{v} f_{t}^{*} \omega . \tag{2.6.24}
\end{equation*}
$$

11. (a) By massaging the result above show that

$$
\begin{equation*}
\frac{d}{d t} f_{t}^{*} \omega=d Q_{t} \omega+Q_{t} d \omega \tag{2.6.25}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{t} \omega=f_{t}^{*} \iota(v) \omega . \tag{2.6.26}
\end{equation*}
$$

Hint: Formula (2.5.11).
(b) Let

$$
Q \omega=\int_{0}^{1} f_{t}^{*} \iota(v) \omega d t
$$

Prove the homotopy indentity

$$
\begin{equation*}
f_{1}^{*} \omega-f_{0}^{*} \omega=d Q \omega+Q d \omega \tag{2.6.27}
\end{equation*}
$$

12. Let U be an open subset of \mathbb{R}^{n}, V an open subset of \mathbb{R}^{m}, v a vector field on U, w a vector field on V and $f: U \rightarrow V$ a \mathcal{C}^{∞} map. Show that if v and w are f-related

$$
\iota(v) f^{*} \omega=f^{*} \iota(w) \omega
$$

Hint: Chapter 1, §1.7, exercise 8.

2.7 Div, curl and grad

The basic operations in 3-dimensional vector calculus: grad, curl and div are, by definition, operations on vector fields. As we'll see below these operations are closely related to the operations

$$
\begin{equation*}
d: \Omega^{k}\left(\mathbb{R}^{3}\right) \rightarrow \Omega^{k+1}\left(\mathbb{R}^{3}\right) \tag{2.7.1}
\end{equation*}
$$

in degrees $k=0,1,2$. However, only two of these operations: grad and div, generalize to n dimensions. (They are essentially the d operations in degrees zero and $n-1$.) And, unfortunately, there is no simple description in terms of vector fields for the other $n-2 d$ operations. This is one of the main reasons why an adequate theory of vector calculus in n-dimensions forces on one the differential form approach that we've developed in this chapter. Even in three dimensions, however, there is a good reason for replacing grad, div and curl by the three operations, (??). A problem that physicists spend a lot of time worrying about is the problem of general covariance: formulating the laws of physics in such a way that they admit as large a set of symmetries as possible, and frequently these formulations involve differential forms. An example is Maxwell's equations, the fundamental laws of electromagnetism. These are usually expressed as identities involving div and curl. However, as we'll explain below, there is an alternative formulation of Maxwell's equations based on the operations (??), and from the point of view of general covariance,
this formulation is much more satisfactory: the only symmetries of \mathbb{R}^{3} which preserve div and curl are translations and rotations, whereas the operations (2.7.1) admit all diffeomorphisms of \mathbb{R}^{3} as symmetries.

To describe how grad, div and curl are related to the operations (??) we first note that there are two ways of converting vector fields into forms. The first makes use of the natural inner product, $B(v, w)=\sum v_{i} w_{i}$, on \mathbb{R}^{n}. From this inner product one gets by \S ??, exercise 9 a bijective linear map:

$$
\begin{equation*}
L: \mathbb{R}^{n} \rightarrow\left(\mathbb{R}^{n}\right)^{*} \tag{2.7.2}
\end{equation*}
$$

with the defining property: $L(v)=\ell \Leftrightarrow \ell(w)=B(v, w)$. Via the identification (2.1.2) B and L can be transferred to $T_{p} \mathbb{R}^{n}$, giving one an inner product, B_{p}, on $T_{p} \mathbb{R}^{n}$ and a bijective linear map

$$
\begin{equation*}
L_{p}: T_{p} \mathbb{R}^{n} \rightarrow T_{p}^{*} \mathbb{R}^{n} \tag{2.7.3}
\end{equation*}
$$

Hence if we're given a vector field, \mathfrak{v}, on U we can convert it into a 1 -form, \mathfrak{v}^{\sharp}, by setting

$$
\begin{equation*}
\mathfrak{v}^{\sharp}(p)=L_{p} \mathfrak{v}(p) \tag{2.7.4}
\end{equation*}
$$

and this sets up a one-one correspondence between vector fields and 1 -forms. For instance

$$
\begin{equation*}
\mathfrak{v}=\frac{\partial}{\partial x_{i}} \Leftrightarrow \mathfrak{v}^{\sharp}=d x_{i}, \tag{2.7.5}
\end{equation*}
$$

(see exercise 3 below) and, more generally,

$$
\begin{equation*}
\mathfrak{v}=\sum f_{i} \frac{\partial}{\partial x_{i}} \Leftrightarrow \mathfrak{v}^{\sharp}=\sum f_{i} d x_{i} . \tag{2.7.6}
\end{equation*}
$$

In particular if f is a \mathcal{C}^{∞} function on U the vector field "grad f " is by definition

$$
\begin{equation*}
\sum \frac{\partial f}{\partial x_{i}} \frac{\partial}{\partial x_{i}} \tag{2.7.7}
\end{equation*}
$$

and this gets converted by (2.7.8) into the 1 -form, $d f$. Thus the "grad" operation in vector calculus is basically just the operation, $d: \Omega^{0}(U) \rightarrow \Omega^{1}(U)$.

The second way of converting vector fields into forms is via the interior product operation. Namely let Ω be the n-form, $d x_{1} \wedge \cdots \wedge$ $d x_{n}$. Given an open subset, U of \mathbb{R}^{n} and a \mathcal{C}^{∞} vector field,

$$
\begin{equation*}
v=\sum f_{i} \frac{\partial}{\partial x_{i}} \tag{2.7.8}
\end{equation*}
$$

on U the interior product of v with Ω is the ($n-1$)-form

$$
\begin{equation*}
\iota(v) \Omega=\sum(-1)^{r-1} f_{r} d x_{1} \wedge \cdots \wedge \widehat{d x}_{r} \cdots \wedge d x_{n} \tag{2.7.9}
\end{equation*}
$$

Moreover, every $(n-1)$-form can be written uniquely as such a sum, so (2.7.8) and (2.7.9) set up a one-one correspondence between vector fields and $(n-1)$-forms. Under this correspondence the d-operation gets converted into an operation on vector fields

$$
\begin{equation*}
v \rightarrow d \iota(v) \Omega . \tag{2.7.10}
\end{equation*}
$$

Moreover, by (2.5.11)

$$
d \iota(v) \Omega=L_{v} \Omega
$$

and by (2.5.14)

$$
L_{v} \Omega=\operatorname{div}(v) \Omega
$$

where

$$
\begin{equation*}
\operatorname{div}(v)=\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{i}} \tag{2.7.11}
\end{equation*}
$$

In other words, this correspondence between ($n-1$)-forms and vector fields converts the d-operation into the divergence operation (2.7.11) on vector fields.

Notice that "div" and "grad" are well-defined as vector calculus operations in n-dimensions even though one usually thinks of them as operations in 3 -dimensional vector calculus. The "curl" operation, however, is intrinsically a 3 -dimensional vector calculus operation. To define it we note that by (2.7.9) every 2 -form, μ, can be written uniquely as an interior product,

$$
\begin{equation*}
\mu=\iota(\mathfrak{w}) d x_{1} \wedge d x_{2} \wedge d x_{3}, \tag{2.7.12}
\end{equation*}
$$

for some vector field \mathfrak{w}, and the left-hand side of this formula determines \mathfrak{w} uniquely. Now let U be an open subset of \mathbb{R}^{3} and \mathfrak{v} a
vector field on U. From \mathfrak{v} we get by (2.7.6) a 1 -form, \mathfrak{v}^{\sharp}, and hence by (2.7.12) a vector field, \mathfrak{w}, satisfying

$$
\begin{equation*}
d \mathfrak{v}^{\sharp}=\iota(\mathfrak{w}) d x_{1} \wedge d x_{2} \wedge d x_{3} . \tag{2.7.13}
\end{equation*}
$$

The "curl" of \mathfrak{v} is defined to be this vector field, in other words,

$$
\begin{equation*}
\operatorname{curl} \mathfrak{v}=\mathfrak{w} \tag{2.7.14}
\end{equation*}
$$

where \mathfrak{v} and \mathfrak{w} are related by (2.7.13).
We'll leave for you to check that this definition coincides with the definition one finds in calculus books. More explicitly we'll leave for you to check that if v is the vector field

$$
\begin{equation*}
v=f_{1} \frac{\partial}{\partial x_{1}}+f_{2} \frac{\partial}{\partial x_{2}}+f_{3} \frac{\partial}{\partial x_{3}} \tag{2.7.15}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{curl} v=g_{1} \frac{\partial}{\partial x_{1}}+g_{2} \frac{\partial}{\partial x_{2}}+g_{3} \frac{\partial}{\partial x_{3}} \tag{2.7.16}
\end{equation*}
$$

where

$$
\begin{align*}
g_{1} & =\frac{\partial f_{2}}{\partial x_{3}}-\frac{\partial f_{3}}{\partial x_{2}} \\
g_{2} & =\frac{\partial f_{3}}{\partial x_{1}}-\frac{\partial f_{1}}{\partial x_{3}} \tag{2.7.17}\\
g_{3} & =\frac{\partial f_{1}}{\partial x_{2}}-\frac{\partial f_{2}}{\partial x_{1}} .
\end{align*}
$$

To summarize: the grad, curl and div operations in 3-dimensions are basically just the three operations (??). The "grad" operation is the operation (??) in degree zero, "curl" is the operation (??) in degree one and "div" is the operation (??) in degree two. However, to define "grad" we had to assign an inner product, B_{p}, to the next tangent space, $T_{p} \mathbb{R}^{n}$, for each p in U; to define "div" we had to equip U with the 3 -form, Ω, and to define "curl", the most complicated of these three operations, we needed the B_{p} 's and Ω. This is why diffeomorphisms preserve the three operations (??) but don't preserve grad, curl and div. The additional structures which one needs to define grad, curl and div are only preserved by translations and rotations.

We will conclude this section by showing how Maxwell's equations, which are usually formulated in terms of div and curl, can be reset into "form" language. (The paragraph below is an abbreviated version of Guillemin-Sternberg, Symplectic Techniques in Physics, §1.20.)

Maxwell's equations assert:

$$
\begin{align*}
\operatorname{div} \mathfrak{v}_{E} & =q \tag{2.7.18}\\
\operatorname{curl} \mathfrak{v}_{E} & =-\frac{\partial}{\partial t} \mathfrak{v}_{M} \tag{2.7.19}\\
\operatorname{div} \mathfrak{v}_{M} & =0 \tag{2.7.20}\\
c^{2} \operatorname{curl} \mathfrak{v}_{M} & =\mathfrak{w}+\frac{\partial}{\partial t} \mathfrak{v}_{E} \tag{2.7.21}
\end{align*}
$$

where \mathfrak{v}_{E} and \mathfrak{v}_{M} are the electric and magnetic fields, q is the scalar charge density, \mathfrak{w} is the current density and c is the velocity of light. (To simplify (2.7.25) slightly we'll assume that our units of spacetime are chosen so that $c=1$.) As above let $\Omega=d x_{1} \wedge d x_{2} \wedge d x_{3}$ and let

$$
\begin{equation*}
\mu_{E}=\iota\left(\mathfrak{v}_{E}\right) \Omega \tag{2.7.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{M}=\iota\left(\mathfrak{v}_{M}\right) \Omega . \tag{2.7.23}
\end{equation*}
$$

We can then rewrite equations (2.7.18) and (2.7.20) in the form

$$
\begin{equation*}
d \mu_{E}=q \Omega \tag{2.7.18'}
\end{equation*}
$$

and

$$
\begin{equation*}
d \mu_{M}=0 . \tag{2.7.20'}
\end{equation*}
$$

What about (2.7.19) and (2.7.21)? We will leave the following "form" versions of these equations as an exercise.

$$
\begin{equation*}
d \mathfrak{v}_{E}^{\sharp}=-\frac{\partial}{\partial t} \mu_{M} \tag{2.7.19'}
\end{equation*}
$$

and

$$
\begin{equation*}
d \mathfrak{v}_{M}^{\sharp}=\iota(\mathfrak{w}) \Omega+\frac{\partial}{\partial t} \mu_{E} \tag{2.7.21'}
\end{equation*}
$$

where the 1 -forms, $\mathfrak{v}_{E}^{\sharp}$ and $\mathfrak{v}_{M}^{\sharp}$, are obtained from \mathfrak{v}_{E} and \mathfrak{v}_{M} by the operation, (2.7.4).

These equations can be written more compactly as differential form identities in $3+1$ dimensions. Let ω_{M} and ω_{E} be the 2 -forms

$$
\begin{equation*}
\omega_{M}=\mu_{M}-\mathfrak{v}_{E}^{\sharp} \wedge d t \tag{2.7.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{E}=\mu_{E}-\mathfrak{v}_{M}^{\sharp} \wedge d t \tag{2.7.25}
\end{equation*}
$$

and let Λ be the 3 -form

$$
\begin{equation*}
\Lambda=q \Omega+\iota(\mathfrak{w}) \Omega \wedge d t \tag{2.7.26}
\end{equation*}
$$

We will leave for you to show that the four equations (2.7.18) (2.7.21) are equivalent to two elegant and compact (3+1)-dimensional identities

$$
\begin{equation*}
d \omega_{M}=0 \tag{2.7.27}
\end{equation*}
$$

and

$$
\begin{equation*}
d \omega_{E}=\Lambda \tag{2.7.28}
\end{equation*}
$$

Exercises.

1. Verify that the "curl" operation is given in coordinates by the formula (2.7.17).
2. Verify that the Maxwell's equations, (2.7.18) and (2.7.19) become the equations (2.7.20) and (2.7.21) when rewritten in differential form notation.
3. Show that in $(3+1)$-dimensions Maxwell's equations take the form (2.7.17)-(2.7.18).
4. Let U be an open subset of \mathbb{R}^{3} and v a vector field on U. Show that if v is the gradient of a function, its curl has to be zero.
5. If U is simply connected prove the converse: If the curl of v vanishes, v is the gradient of a function.
6. Let $w=\operatorname{curl} v$. Show that the divergence of w is zero.
7. Is the converse statment true? Suppose the divergence of w is zero. Is $w=\operatorname{curl} v$ for some vector field v ?

2.8 Symplectic geometry and classical mechanics

In this section we'll describe some other applications of the theory of differential forms to physics. Before describing these applications, however, we'll say a few words about the geometric ideas that are involved. Let $x_{1}, \ldots, x_{2 n}$ be the standard coordinate functions on $\mathbb{R}^{2 n}$ and for $i=1, \ldots, n$ let $y_{i}=x_{i+n}$. The two-form

$$
\begin{equation*}
\omega=\sum_{i=1}^{n} d x_{i} \wedge j y_{i} \tag{2.8.1}
\end{equation*}
$$

is known as the Darboux form. From the identity

$$
\begin{equation*}
\omega=-d\left(\sum y_{i} d x_{i}\right) . \tag{2.8.2}
\end{equation*}
$$

it follows that ω is exact. Moreover computing the n-fold wedge product of ω with itself we get

$$
\begin{aligned}
\omega^{n} & =\left(\sum_{i_{i}=1}^{n} d x_{i_{1}} \wedge d y_{i_{1}}\right) \wedge \cdots \wedge\left(\sum_{i_{n}=1}^{n} d x_{i_{n}} \wedge d y_{i_{n}}\right) \\
& =\sum_{i_{1}, \ldots ., i_{n}} d x_{i_{1}} \wedge d y_{i_{1}} \wedge \cdots \wedge d x_{i_{n}} \wedge d y_{i_{n}}
\end{aligned}
$$

We can simplify this sum by noting that if the multi-index, $I=$ i_{1}, \ldots, i_{n}, is repeating the wedge product

$$
\begin{equation*}
d x_{i_{1}} \wedge d y_{i_{1}} \wedge \cdots \wedge d x_{i_{n}} \wedge d x_{i_{n}} \tag{2.8.3}
\end{equation*}
$$

involves two repeating $d x_{i_{1}}$'s and hence is zero, and if I is nonrepeating we can permute the factors and rewrite (2.8.3) in the form

$$
d x_{1} \wedge d y_{1} \wedge \cdots \wedge d x_{n} \wedge d y_{n}
$$

(See §1.6, exercise 5.) Hence since these are exactly n ! non-repeating multi-indices

$$
\omega^{n}=n!d x_{1} \wedge d y_{1} \wedge \cdots \wedge d x_{n} \wedge d y_{n}
$$

i.e.,

$$
\begin{equation*}
\frac{1}{n!} \omega^{n}=\Omega \tag{2.8.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega=d x_{1} \wedge d y_{1} \wedge \cdots \wedge d x_{n} \wedge d y_{n} \tag{2.8.5}
\end{equation*}
$$

is the symplectic volume form on $\mathbb{R}^{2 n}$.
Let U and V be open subsets of $\mathbb{R}^{2 n}$. A diffeomorphism $f: U \rightarrow V$ is said to be a symplectic diffeomorphism (or symplectomorphism for short) if $f^{*} \omega=\omega$. In particular let

$$
\begin{equation*}
f_{t}: U \rightarrow U, \quad-\infty<t<\infty \tag{2.8.6}
\end{equation*}
$$

be a one-parameter group of diffeomorphisms and let v be the vector field generating (2.8.6). We will say that v is a symplectic vector field if the diffeomorphisms, (2.8.6) are symplectomorphisms, i.e., for all t,

$$
\begin{equation*}
f_{t}^{*} \omega=\omega . \tag{2.8.7}
\end{equation*}
$$

Let's see what such vector fields have to look like. Note that by

$$
\begin{equation*}
\frac{d}{d t} f_{t}^{*} \omega=f_{t}^{*} L_{v} \omega \tag{2.6.23}
\end{equation*}
$$

hence if $f_{t}^{*} \omega=\omega$ for all t, the left hand side of (2.8.8) is zero, so

$$
f_{t}^{*} L_{v} \omega=0 .
$$

In particular, for $t=0, f_{t}$ is the identity map so $f_{t}^{*} L_{v} \omega=L_{v} \omega=0$. Conversely, if $L_{v} \omega=0$, then $f_{t}^{*} L_{v} \omega=0$ so by (2.8.8) $f_{t}^{*} \omega$ doesn't depend on t. However, since $f_{t}^{*} \omega=\omega$ for $t=0$ we conclude that $f_{t}^{*} \omega=\omega$ for all t. Thus to summarize we've proved
Theorem 2.8.1. Let $f_{t}: U \rightarrow U$ be a one-parameter group of diffeomorphisms and v the infinitesmal generator of this group. Then v is symplectic of and only if $L_{v} \omega=0$.

There is an equivalent formulation of this result in terms of the interior product, $\iota(v) \omega$. By (2.5.11)

$$
L_{v} \omega=d \iota(v) \omega+\iota(v) d \omega .
$$

But by (2.8.2) $d \omega=0$ so

$$
L_{v} \omega=d \iota(v) \omega .
$$

Thus we've shown
Theorem 2.8.2. The vector field v is symplectic if and only if $\iota(v) \omega$ is closed.

If $\iota(v) \omega$ is not only closed but is exact we'll say that v is a Hamiltonian vector field. In other words v is Hamiltonian if

$$
\begin{equation*}
\iota(v) \omega=d H \tag{2.8.9}
\end{equation*}
$$

for some \mathcal{C}^{∞} functions, $H \in \mathcal{C}^{\infty}(U)$.
Let's see what this condition looks like in coordinates. Let

$$
\begin{equation*}
v=\sum f_{i} \frac{\partial}{\partial x_{i}}+g_{i} \frac{\partial}{\partial y_{i}} . \tag{2.8.10}
\end{equation*}
$$

Then

$$
\begin{aligned}
\iota(v) \omega= & \sum_{i, j} f_{i} \iota\left(\frac{\partial}{\partial x_{i}}\right) d x_{j} \wedge d y_{j} \\
& +\sum_{i, j} g_{i} \iota\left(\frac{\partial}{\partial y_{i}}\right) d x_{j} \wedge d y_{i} .
\end{aligned}
$$

But

$$
\iota\left(\frac{\partial}{\partial x_{i}}\right) d x_{j}= \begin{cases}1 & i=i \\ 0 & i \neq j\end{cases}
$$

and

$$
\iota\left(\frac{\partial}{\partial x_{i}}\right) d y_{j}=0
$$

so the first summand above is

$$
\sum f_{i} d y_{i}
$$

and a similar argument shows that the second summand is

$$
-\sum g_{i} d x_{i}
$$

Hence if v is the vector field (2.8.10)

$$
\begin{equation*}
\iota(v) \omega=\sum f_{i} d y_{i}-g_{i} d x_{i} . \tag{2.8.11}
\end{equation*}
$$

Thus since

$$
d H=\sum \frac{\partial H}{\partial x_{i}} d x_{i}+\frac{\partial H}{\partial y_{i}} d y_{i}
$$

we get from (2.8.9)-(2.8.11)

$$
\begin{equation*}
f_{i}=\frac{\partial H}{\partial y_{i}} \text { and } g_{i}=-\frac{\partial H}{\partial x_{i}} \tag{2.8.12}
\end{equation*}
$$

so v has the form:

$$
\begin{equation*}
v=\sum \frac{\partial H}{\partial y_{i}} \frac{\partial}{\partial x_{i}}-\frac{\partial H}{\partial x_{i}} \frac{\partial}{\partial y_{i}} . \tag{2.8.13}
\end{equation*}
$$

In particular if $\gamma(t)=(x(t), y(t))$ is an integral curve of v it has to satisfy the system of differential equations

$$
\begin{align*}
\frac{d x_{i}}{d t} & =\frac{\partial H}{\partial y_{i}}(x(t), y(t)) \tag{2.8.14}\\
\frac{d y_{i}}{d t} & =-\frac{\partial H}{\partial x_{i}}(x(t), y(t))
\end{align*}
$$

The formulas (2.8.10) and (2.8.11) exhibit an important property of the Darboux form, ω. Every one-form on U can be written uniquely as a sum

$$
\sum f_{i} d y_{i}-g_{i} d x_{i}
$$

with f_{i} and g_{i} in $\mathcal{C}^{\infty}(U)$ and hence (2.8.10) and (2.8.11) imply
Theorem 2.8.3. The map, $v \rightarrow \iota(v) \omega$, sets up a one-one correspondence between vector field and one-forms.

In particular for every \mathcal{C}^{∞} function, H, we get by correspondence a unique vector field, $v=v_{H}$, with the property (2.8.9).

We next note that by (??)

$$
L_{v} H=\iota(v) d H=\iota(v)(\iota(v) \omega)=0 .
$$

Thus

$$
\begin{equation*}
L_{v} H=0 \tag{2.8.15}
\end{equation*}
$$

i.e., H is an integral of motion of the vector field, v. In particular if the function, $H: U \rightarrow \mathbb{R}$, is proper, then by Theorem ?? the vector field, v, is complete and hence by Theorem 2.8.1 generates a one-parameter group of symplectomorphisms.

One last comment before we discuss the applications of these results to classical mechanics. If the one-parameter group (2.8.6) is a group of symplectomorphisms then $f_{t}^{*} \omega^{n}=f_{t}^{*} \omega \wedge \cdots \wedge f_{t}^{*} \omega=\omega^{n}$ so by (2.8.4)

$$
\begin{equation*}
f_{t}^{*} \Omega=\Omega \tag{2.8.16}
\end{equation*}
$$

where Ω is the symplectic volume form (2.8.5).
The application we want to make of these ideas concerns the description, in Newtonian mechanics, of a physical system consisting of N interacting point-masses. The configuration space of such a system is

$$
\mathbb{R}^{n}=\mathbb{R}^{3} \times \cdots \times \mathbb{R}^{3} \quad(N \text { copies })
$$

with position coordinates, x_{1}, \ldots, x_{n} and the phase space is $\mathbb{R}^{2 n}$ with position coordinates x_{1}, \ldots, x_{n} and momentum coordinates, y_{1}, \ldots, y_{n}. The kinetic energy of this system is a quadratic function of the momentum coordinates

$$
\begin{equation*}
\frac{1}{2} \sum \frac{1}{m_{i}} y_{i}^{2}, \tag{2.8.17}
\end{equation*}
$$

and for simplicity we'll assume that the potential energy is a function, $V\left(x_{1}, \ldots, x_{n}\right)$, of the position coordinates alone, i.e., it doesn't depend on the momenta and is time-independent as well. Let

$$
\begin{equation*}
H=\frac{1}{2} \sum \frac{1}{m_{i}} y_{i}^{2}+V\left(x_{1}, \ldots, x_{n}\right) \tag{2.8.18}
\end{equation*}
$$

be the total energy of the system. We'll show below that Newton's second law of motion in classical mechanics reduces to the assertion: the trajectories in phase space of the system above are just the integral curves of the Hamiltonian vector field, v_{H}.

Proof. For the function (2.8.18) the equations (2.8.14) become

$$
\begin{align*}
\frac{d x_{i}}{d t} & =\frac{1}{m_{i}} y_{i} \tag{2.8.19}\\
\frac{d y_{i}}{d t} & =-\frac{\partial V}{\partial x_{i}}
\end{align*}
$$

The first set of equation are essentially just the definitions of momenta, however, if we plug them into the second set of equations we get

$$
\begin{equation*}
m_{i} \frac{d^{2} x_{i}}{d t^{2}}=-\frac{\partial V}{\partial x_{i}} \tag{2.8.20}
\end{equation*}
$$

and interpreting the term on the right as the force exerted on the $i^{\text {th }}$ point-mass and the term on the left as mass times acceleration this equation becomes Newton's second law.

In classical mechanics the equations (2.8.14) are known as the Hamilton-Jacobi equations. For a more detailed account of their role in classical mechanics we highly recommend Arnold's book, Mathematical Methods of Classical Mechanics. Historically these equations came up for the first time, not in Newtonian mechanics, but in gemometric optics and a brief description of their origins there and of their relation to Maxwell's equations can be found in the bookl we cited above, Symplectic Techniques in Physics.

We'll conclude this chapter by mentioning a few implications of the Hamiltonian description (2.8.14) of Newton's equations (2.8.20).

1. Conservation of energy. By (2.8.15) the energy function (2.8.18) is constant along the integral curves of v, hence the energy of the system (2.8.14) doesn't change in time.
2. Noether's principle. Let $\gamma_{t}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ be a one-parameter group of diffeomorphisms of phase space and w its infinitesmal generator. The γ_{t} 's are called a symmetry of the system above if
(a) They preserve the function (2.8.18)
and
(b) the vector field w is Hamiltonian.

The condition (b) means that

$$
\begin{equation*}
\iota(w) \omega=d G \tag{2.8.21}
\end{equation*}
$$

for some \mathcal{C}^{∞} function, G, and what Noether's principle asserts is that this function is an integral of motion of the system (2.8.14), i.e., satisfies $L_{v} G=0$. In other words stated more succinctly: symmetries of the system (2.8.14) give rise to integrals of motion.
3. Poincaré recurrence. An important theorem of Poincaré asserts that if the function $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ defined by (2.8.18) is proper then every trajectory of the system (2.8.14) returns arbitrarily close to its initial position at some positive time, t_{0}, and, in fact, does this not just once but does so infinitely often. We'll sketch a proof of this theorem, using (2.8.16), in the next chapter.

Exercises.

1. Let v_{H} be the vector field (2.8.13). Prove that $\operatorname{div}\left(v_{H}\right)=0$.
2. Let U be an open subset of $\mathbb{R}^{m}, f_{t}: U \rightarrow U$ a one-parameter group of diffeomorphisms of U and v the infinitesmal generator of this group. Show that if α is a k-form on U then $f_{t}^{*} \alpha=\alpha$ for all t if and only if $L_{v} \alpha=0$ (i.e., generalize to arbitrary k-forms the result we proved above for the Darboux form).
3. The harmonic oscillator. Let H be the function $\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+\right.$ y_{i}^{2}) where the m_{i} 's are positive constants.
(a) Compute the integral curves of v_{H}.
(b) Poincaré recurrence. Show that if $(x(t), y(t))$ is an integral curve with initial point $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ and U an arbitrarily small neighborhood of $\left(x_{0}, y_{0}\right)$, then for every $c>0$ there exists a $t>c$ such that $(x(t), y(t)) \in U$.
4. Let U be an open subset of $\mathbb{R}^{2 n}$ and let $H_{i}, i=1,2$, be in $\mathcal{C}^{\infty}(U)_{i}$. Show that

$$
\begin{equation*}
\left[v_{H_{1}}, v_{H_{2}}\right]=v_{H} \tag{2.8.22}
\end{equation*}
$$

where

$$
\begin{equation*}
H=\sum_{i=1}^{n} \frac{\partial H_{1}}{\partial x_{i}} \frac{\partial H_{2}}{\partial y_{i}}-\frac{\partial H_{2}}{\partial x_{i}} \frac{\partial H_{1}}{\partial y_{i}} . \tag{2.8.23}
\end{equation*}
$$

5. The expression (2.8.23) is known as the Poisson bracket of H_{1} and H_{2} and is denoted by $\left\{H_{1}, H_{2}\right\}$. Show that it is anti-symmetric

$$
\left\{H_{1}, H_{2}\right\}=-\left\{H_{2}, H_{1}\right\}
$$

and satisfies Jacobi's identity

$$
0=\left\{H_{1},\left\{H_{2}, H_{3}\right\}\right\}+\left\{H_{2},\left\{H_{3}, H_{1}\right\}\right\}+\left\{H_{3},\left\{H_{1}, H_{2}\right\}\right\} .
$$

6. Show that

$$
\begin{equation*}
\left\{H_{1}, H_{2}\right\}=L_{v_{H_{1}}} H_{2}=-L_{v_{H_{2}}} H_{1} . \tag{2.8.24}
\end{equation*}
$$

7. Prove that the following three properties are equivalent.
(a) $\left\{H_{1}, H_{2}\right\}=0$.
(b) H_{1} is an integral of motion of v_{2}.
(c) H_{2} is an integral of motion of v_{1}.
8. Verify Noether's principle.
9. Conservation of linear momentum. Suppose the potential, V in (2.8.18) is invariant under the one-parameter group of translations

$$
T_{t}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}+t, \ldots, x_{n}+t\right) .
$$

(a) Show that the function (2.8.18) is invariant under the group of diffeomorphisms

$$
\gamma_{t}(x, y)=\left(T_{t} x, y\right) .
$$

(b) Show that the infinitesmal generator of this group is the Hamiltonian vector field v_{G} where $G=\sum_{i=1}^{n} y_{i}$.
(c) Conclude from Noether's principle that this function is an integral of the vector field v_{H}, i.e., that "total linear moment" is conserved.
(d) Show that "total linear momentum" is conserved if V is the Coulomb potential

$$
\sum_{i \neq j} \frac{m_{i}}{\left|x_{i}-x_{j}\right|}
$$

10. Let $R_{t}^{i}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ be the rotation which fixes the variables, $\left(x_{k}, y_{k}\right), k \neq i$ and rotates $\left(x_{i}, y_{i}\right)$ by the angle, t :

$$
R_{t}^{i}\left(x_{i}, y_{i}\right)=\left(\cos t x_{i}+\sin t y_{i},-\sin t x_{i}+\cos t y_{i}\right) .
$$

(a) Show that $R_{t}^{i},-\infty<t<\infty$, is a one-parameter group of symplectomorphisms.
(b) Show that its generator is the Hamiltonian vector field, $v_{H_{i}}$, where $H_{i}=\left(x_{i}^{2}+y_{i}^{2}\right) / 2$.
(c) Let H be the "harmonic oscillator" Hamiltonian in exercise 3. Show that the R_{t}^{j},s preserve H.
(d) What does Noether's principle tell one about the classical mechanical system with energy function H ?
11. Show that if U is an open subset of $\mathbb{R}^{2 n}$ and v is a symplectic vector field on U then for every point, $p_{0} \in U$, there exists a neighborhood, U_{0}, of p_{0} on which v is Hamiltonian.
12. Deduce from exercises 4 and 11 that if v_{1} and v_{2} are symplectic vector fields on an open subset, U, of $\mathbb{R}^{2 n}$ their Lie bracket, $\left[v_{1}, v_{2}\right.$], is a Hamiltonian vector field.
13. Let α be the one-form, $\sum_{i=1}^{n} y_{i} d x_{i}$.
(a) Show that $\omega=-d \alpha$.
(b) Show that if α_{1} is any one-form on $\mathbb{R}^{2 n}$ with the property, $\omega=-d \alpha_{1}$, then

$$
\alpha=\alpha_{1}+F
$$

for some \mathcal{C}^{∞} function F.
(c) Show that $\alpha=\iota(w) \omega$ where w is the vector field

$$
-\sum y_{i} \frac{\partial}{\partial y_{i}}
$$

14. Let U be an open subset of $\mathbb{R}^{2 n}$ and v a vector field on U. Show that v has the property, $L_{v} \alpha=0$, if and only if

$$
\begin{equation*}
\iota(v) \omega=d \iota(v) \alpha \tag{2.8.25}
\end{equation*}
$$

In particular conclude that if $L_{v} \alpha=0$ then v is Hamiltonian. Hint: (2.8.2).
15. Let H be the function

$$
\begin{equation*}
H(x, y)=\sum f_{i}(x) y_{i} \tag{2.8.26}
\end{equation*}
$$

where the f_{i} 's are \mathcal{C}^{∞} functions on \mathbb{R}^{n}. Show that

$$
\begin{equation*}
L_{v_{H}} \alpha=0 . \tag{2.8.27}
\end{equation*}
$$

16. Conversely show that if H is any \mathcal{C}^{∞} function on $\mathbb{R}^{2 n}$ satisfying (2.8.27) it has to be a function of the form (2.8.26). Hints:
(a) Let v be a vector field on $\mathbb{R}^{2 n}$ satisfying $L_{v} \alpha=0$. By the previous exercise $v=v_{H}$, where $H=\iota(v) \alpha$.
(b) Show that H has to satisfy the equation

$$
\sum_{i=1}^{n} y_{i} \frac{\partial H}{\partial y_{i}}=H
$$

(c) Conclude that if $H_{r}=\frac{\partial H}{\partial y_{r}}$ then H_{r} has to satisfy the equation

$$
\sum_{i=1}^{n} y_{i} \frac{\partial}{\partial y_{i}} H_{r}=0
$$

(d) Conclude that H_{r} has to be constant along the rays $(x, t y)$, $0 \leq t<\infty$.
(e) Conclude finally that H_{r} has to be a function of x alone, i.e., doesn't depend on y.
17. Show that if $v_{\mathbb{R}^{n}}$ is a vector field

$$
\sum f_{i}(x) \frac{\partial}{\partial x_{i}}
$$

on configuration space there is a unique lift of $v_{\mathbb{R}^{n}}$ to phase space

$$
v=\sum f_{i}(x) \frac{\partial}{\partial x_{i}}+g_{i}(x, y) \frac{\partial}{\partial y_{i}}
$$

satisfying $L_{v} \alpha=0$.

[^0]: ${ }^{1}$ For $k=0, d f=0$ doesn't imply that f is exact. In fact "exactness" doesn't make much sense for zero forms since there aren't any "-1" forms. However, if $f \in \mathcal{C}^{\infty}(U)$ and $d f=0$ then f is constant on connected components of U. (See § 2.1.1., exercise 2.)

