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Chapter 2

Differential Forms

2.1.1. Vector fields and one-forms

The goal of this chapter is to generalize to n dimensions the basic
operations of three dimensional vector calculus: div, curl and grad.
The “div”, and “grad” operations have fairly straight-forward gener-
alizations, but the “curl” operation is more subtle. For vector fields
it doesn’t have any obvious generalization, however, if one replaces
vector fields by a closely related class of objects, differential forms,
then not only does it have a natural generalization but it turns out
that div, curl and grad are all special cases of a general operation on
differential forms called exterior differentiation.

In this section we will discuss the simplest, easiest to understand,
examples of differential forms: differential one-forms, and show that
they can be regarded as dual objects to vector fields. We begin by
fixing some notation.

Given p ∈ R
n we define the tangent space to R

n at p to be the set
of pairs

(2.1.1) TpR
n = {(p, v)} ; v ∈ R

n .

The identification

(2.1.2) TpR
n → R

n , (p, v) → v

makes TpR
n into a vector space. More explicitly, for v, v1 and v2 ∈ R

n

and λ ∈ R we define the addition and scalar multiplication operations
on TpR

n by the recipes

(p, v1) + (p, v2) = (p, v1 + v2)

and

λ(p, v) = (p, λv) .
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Let U be an open subset of R
n and ϕ : U → R

m a C1 map. We
recall that the derivative

Dϕ(p) : R
n → R

m

of ϕ at p is the linear map associated with the m× n matrix

[
∂ϕi

∂xj
(p)

]
.

It will be useful to have a “base-pointed” version of this definition
as well. Namely, if q = ϕ(p) we will define

dϕp : TpR
n → TqR

m

to be the map

(2.1.3) dϕp(p, v) = (q,Dϕ(p)v) .

It’s clear from the way we’ve defined vector space structures on TpR
n

and TqR
m that this map is linear.

Suppose that the image of ϕ is contained in an open set, V , and
suppose ψ : V → R

k is a C1 map. Then the “base-pointed”” version
of the chain rule asserts that

(2.1.4) dψq ◦ dϕp = d(ψ ◦ ϕ)p .

(This is just an alternative way of writing Dψ(q)Dϕ(p) = D(ψ ◦
ϕ)(p).)

Another important vector space for us will be the vector space dual
of TpR

n: the cotangent space to R
n at p. This space we’ll denote by

T ∗
p R

n, i.e., we’ll set
T ∗

p R
n =: (TpR

n)∗ .

Elements of this vector space come up in vector calculus as deriva-
tives of functions. Namely if U is an open subset of R

n and f : U → R

a C∞ function, the linear map

dfp : TpR
n → TaR , a = f(p) ,

composed with the map

TaR → R , (a, c) → c
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gives one a linear map of TpR
n into R. (To avoid creating an excessive

amount of fussy notation we’ll continue to denote this map by dfp.)
Since it is a linear map, it is by definition an element of T ∗

p R
n, and

we’ll call this element the derivative of f at p.

Example. Let f = xi, the ith coordinate function on R
n. Then the

derivatives

(2.1.5) (dxi)p i = 1, . . . , n

are a basis of the vector space, T ∗
p R

n. We will leave the verification
of this as an exercise. (Hint: Let

δi
j =

{
1, i = j
0, i = j

and let

ei = (δi
1, . . . , δ

i
n) i = 1, . . . , n ,

a “one” in the ith slot and zeroes in the remaining slots. These are the
standard basis vectors of R

n, and from the formula, (Dxi)pej = δi
j

it is easy to see that the (dxi)p’s are the basis of T ∗
p R

n dual to the
basis, (p, ei), i = 1, . . . , n of TpR

n.) To have a consistent notation for
these two sets of basis vectors we’ll introduce the notation

(2.1.6) (p, ei) =

(
∂

∂xi

)

p

.

(Some other notation which will be useful is the following. If U is
an open subset of R

n and p a point of U we’ll frequently write TpU
for TpR

n and T ∗
pU for T ∗

p R
n when we want to emphasize that the

phenomenon we’re studying is taking place in U .)
We will now explain what we mean by the terms: vector field and

one-form.

Definition 2.1.1. A vector field, v, on U is a mapping which assigns
to each p ∈ U an element, v(p) of T ∗

pU .

Thus v(p) is a pair (p, v(p)) where v(p) is an element of R
n. From

the coordinates, vi(p), of v(p) we get functions

vi : U → R , p→ vi(p)
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and we’ll say that v is a C∞ vector field if these are C∞ functions.
Note that by (2.1.6)

(2.1.7) v(p) =
∑

vi(p)

(
∂

∂xi

)

p

.

Examples.

1. The vector field, (
∂

∂xi

)

p

This vector field we’ll denote by ∂
∂xi

.

2. Sums of vector fields: Let v1 and v2 be vector fields on U . Then
v1 + v2 is the vector field,

p ∈ U → v1(p) + v2(p) .

3. The multiple of a vector field by a function: Given a vector
field, v on U and a function f : U → R fv is the vector field

p ∈ U → f(p)v(p) .

4. The vector field defined by (2.1.7): By 1–3, we can write this
vector field as the sum

(2.1.8) v =
∑

vi
∂

∂xi
.

The definition of one-form is more or less identical with the defi-
nition of vector field except that we now require our “mapping” to
take its values in T ∗

pU rather than TpU .

Definition 2.1.2. A one-form, µ, on U is a mapping which assigns
to each p ∈ U and element µ(p) of T ∗

pU

Examples.

1. Let f be a C∞ function on U . Then, for each p, the derivative,
dfp, is an element of T ∗

pU and hence the mapping

df : p ∈ U → dfp

is a one-form on U . We’ll call df the exterior derivative of f .
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2. In particular for each coordinate function, xi, we get a one-form
dxi.

3. If µ1 and µ2 are one-forms on U , their sum, µ1 + µ2, is the
one-form

p ∈ U → (µ1)p + (µ2)p .

4. If f is a C∞ function on U and µ a one-form, the multiple of µ
by f , fµ, is the one-form

p ∈ U → f(p)µp .

5. Given a one-form, µ, and a point p ∈ U we can write µp as a
sum

µp =
∑

fi(p)(dxi)p , fi(p) ∈ R ,

since the (dxi)p’s are a basis of T ∗
pU . Hence

µ =
∑

fi dxi

where the fi’s are the functions, p ∈ U → fi(p). We’ll say that µ is
C∞ if the fi’s are C∞.

Exercise: Show that the one-form, df , in Example 1 is given by

(2.1.9) df =
∑ ∂x

∂xi
dxi .

Remark.

Superficially the definitions (2.1.1) and (2.1.2) look similar. How-
ever, we’ll learn by the end of this chapter that the objects they
define have very different properties. In fact we’ll see an inkling of
this difference in the definition (2.1.11) below.

Let V be an open subset if R
n and ϕ : U → V a C∞ map. Then

for p ∈ U and q ∈ ϕ(p) we have a map

dϕp : TpU → TqV )

and hence a transpose map

(2.1.10) (dϕp)
∗ : T ∗

q V → T ∗
pU .
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Thus if ν is a one-form on V , we can define a one-form, ϕ∗ν, on U
by setting

(2.1.11) ϕ∗νp = (dϕ)∗pνq

for all p ∈ U . The form defined by this recipe is called the pull-back
of ν by ϕ. In particular, if f is a C∞ function on V and ν = df

(ϕ∗ df)p = (dϕp)
∗ dfq

= (dfq) ◦ dϕp = d(f ◦ ϕ)p

by (2.1.11) and the chain rule. Hence if we define ϕ∗f (the “pull-back
of f by ϕ”) to be the function, f ◦ ϕ, we get from this computation
the formula

(2.1.12) ϕ∗ df = dϕ∗f .

More generally let

ν =
m∑

i=1

fi dxi ,

fi ∈ C∞(V ), be any C∞ one-form on U . The by (2.1.11)

(ϕ∗ν)p =
∑

fi(q)d(xi ◦ ϕ)p .

Exercise: Deduce from this that

(2.1.13) ϕ∗ν =
∑

ϕ∗fi dϕi

where ϕi = xi ◦ ϕ , i = 1, . . . , n, is the ith coordinate of ϕ.
Remark.

The pull-back operation (2.1.11) and its generalization to k-forms
(see §2.6) will play a fundamental role in what follows. No analogue
of this operation exists for vector fields, but in the next section we’ll
show that there is a weak substitution: a “push-forward operation”,
ϕ∗v, for vector fields on U . This operation, however, can only be
defined if m = n and ϕ is a diffeomorphism.

Another important operation on one-forms is the interior product
operation. Let v be a vector field on U . Then, given a one-form, µ,
on U , we can define a function

ι(v)µ : U → R
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by setting

(2.1.14) ι(v)µ(p) = µp(v(p)) .

Notice that the right hand side makes sense since v(p) is in TpU and
µp in its vector space dual, T ∗

pU . We’ll leave for you to check that if

v =
∑

vi
∂

∂xi

and

µ =
∑

fi dxi

the function, ι(v)µ is just the function,
∑
vifi. Hence if v and µ are

C∞, this function is as well. In particular, for f ∈ C∞(U)

(2.1.15) ι(v) df =
∑

vi
∂f

∂xi
.

Definition 2.1.3. The expression (2.1.15) is called the Lie deriva-
tive of f by v and denoted Lvf .

Exercise:

Check that for fi ∈ C∞(U), i = 1, 2

(2.1.16) Lv(f1f2) = f2Lvf + f1Lvf2 .

Exercises for §2.1

1. Verify that the co-vectors, (2.1.5) are a basis of T ∗
pU .

2. Verify (2.1.9).

3. Verify (2.1.13).

4. Verify (2.1.16).

5. Let U be an open subset of R
n and v1 and v2 vector fields on U .

Show that there is a unique vector field, w, on U with the property

Lwϕ = Lv1
(Lv2

ϕ) − Lv2
(Lv1

ϕ)

for all ϕ ∈ C∞(U).
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6. The vector field w in exercise 5 is called the Lie bracket of
the vector fields v1 and v2 and is denoted [v1, v2]. Verify that “Lie
bracket” satisfies the identities

[v1, v2] = −[v2, v1]

and

[v1[v2, v3]] + [v2[v3, v1]] + [v3[v1, v2]] = 0 .

Hint: Prove analogous identities for Lv1
, Lv2

and Lv3
.

7. Let v1 = ∂/∂xi and v2 =
∑
gj∂/∂xj . Show that

[v1, v2] =
∑ ∂

∂xi
gi

∂

∂xj
.

8. Let v1 and v2 be vector field and f a C∞ function. Show that

[v1, fv2] = Lv1
fv2 + f [v1, v2] .

9. Let U be an open subset of R
n and let γ : [a, b] → U, t →

(γ1(t), . . . , γn(t)) be a C1 curve. Given ω =
∑
fidx1 ∈ Ω1(U), define

the line integral of ω over γ to be the integral

∫

γ

ω =

n∑

i=1

∫ b

a

fi(γ(t))
dγi

dt
dt .

Show that if ω = df for some f ∈ C∞(U)

∫

γ

ω(γ(b)) − f(γ(a)) .

In particular conclude that if γ is a closed curve, i.e., γ(a) = γ(b),
this integral is zero.

10. Let

ω =
x1dx2 − x2dx1

x2
1 + x2

2

∈ Ω1(R2 − {0}) ,

and let γ : [0, 2π] → R
2 − {0} be the closed curve, t → (cos t sin t).

Compute the line integral,
∫
γ
ω, and show that it’s not zero. Conclude

that ω can’t be “d” of a function, f ∈ C∞(R2 − {0}).
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11. Let f be the function

f(x2, x2) =






arctan x2

x1
x1 > 0

π
2 , x1 = 0 x2 > 0
arctan x2

x1
+ π x1 < 0

where, we recall: −π
2 arctan < π

2 . Show that this function is C∞ and
that df is the 1-form, ω, in the previous exercise. Why doesn’t this
contradict what you proved in exercise 16?

2.2 Integral curves of vector fields

In this section we’ll discuss some properties of vector fields which
we’ll need for the manifold segment of these notes. We’ll begin by
generalizing to n-dimensions the calculus notion of an “integral curve”
of a vector field. Let U be an open subset of R

n and let

v =
∑

fi
∂

∂xi

be a C∞ vector field on U .

Definition 2.2.1. A C1 curve γ : (a, b) → U , γ(t) = (γ(t), . . . γn(t)),
is an integral curve of v if, for all a < t < b and p = γ(t)

(
p,
dγ

dt
(t)

)
= v(p)

i.e., the condition for γ(t) to be an integral curve of v is that it satisfy
the system of differential equations

(2.2.1)
dγi

dt
(t) = vi(γ(t)) , i = 1, . . . , n .

We will quote without proof a number of basic facts about systems
of ordinary differential equations of the type (2.2.1). (A source for
these results that we highly recommend is Birkoff-Rota, Ordinary
Differential Equations, Chapter 6.)

Theorem 2.2.2. (Existence).
Given a point p0 ∈ U and b ∈ R, there exists an interval I =

(b− T, b+ T ), a neighborhood, U0, of p0 in U and for every p ∈ U0

an integral curve, γp : I → U with γp(b) = p.
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Theorem 2.2.3. (Uniqueness).
Let γi : Ii → U , i = 1, 2, be integral curves. If a ∈ I1 ∩ I2 and

γ1(a) = γ2(a) then γ1 ≡ γ2 on I1 ∩ I2 and the curve γ : I1 ∪ I2 → U
defined by

γ(t) =

{
γ1(t) , t ∈ I1
γ2(t) , t ∈ I2

is an integral curve.

Theorem 2.2.4. (Smooth dependence on initial data).
Let V be an open subset of U , I ⊆ R an open interval, a ∈ I a point

in this interval and h : V × I → U a mapping with the properties:

(i) h(p, a) = p.

(ii) For all p ∈ V the curve

γp : I → U γp(t) = h(p.t)

is an integral curve of v.

Then the mapping, h is C∞.

One important feature of the system (2.2.1) is that it is an au-
tonomous system of differential equations: the function, vi(x), is a
function of x alone, it doesn’t depend on t. One consequence of this
is the following:

Theorem 2.2.5. Let I = (a, b) and for c ∈ R let Ic = (a− c, b− c).
Then if γ : I → U is an integral curve, the reparametrized curve

(2.2.2) γc : Ic → U , γc(t) = γ(t+ c)

is an integral curve.

We recall that a C1-function ϕ : U → R is an integral of the system
(2.1.10) if for every integral curve γ(t), the function t → ϕ(γ(t)) is
constant. This is true if and only if for all t and p = γ(t)

0 =
d

dt
ϕ(γ(t)) = (Dϕ)p

(
dγ

dt

)
= (Dϕ)p(v)

where (p, v) = v(p). But by (2.1.6) the term on the right is Lvϕ(p).
Hence we conclude
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Theorem 2.2.6. ϕ ∈ C1(U) is an integral of the system (2.2.1) if
and only if
Lvϕ = 0.

We’ll say that v is complete if, for every p ∈ U , there exists an
integral curve, γ : R → U with γ(0) = p, i.e., for every p there exists
an integral curve that starts at p and exists for all time. To see what
“completeness” involves, we recall that an integral curve

γ : [0, b) → U ,

with γ(0) = p, is called maximal if it can’t be extended to an interval
[0, b′), b′ > b. We claim that for such integral curves either

i. b = +∞
or

ii. |γ(t)| → +∞ as t→ b
or

iii. the limit set of

{γ(t) , 0 ≤ t, b}

contains points on the boundary of U .

Proof. Suppose that none of these assertions are true. Then there
exists a sequence, 0 < ti < t, i = 1, 2, . . ., such that ti → b and
γ(ti) → p0 ∈ U . Let U0 be a neighborhood of p0 with the properties
described in the existence theorem 2.2.2. Then for i large γ(ti) is in
U0 and ǫ = b− ti < T . Thus letting p = γ(ti), there exists an integral
curve of v,

γp(t) ,−T + b < t < T + b

with γp(b) = p. By reparametrization the curve

(2.2.3) γp(t+ ǫ) , −T + b− ǫ < t < T + b− ǫ

is an integral curve of v. Moreover, γp(ti + ǫ) = γp(b) = p, so by
the uniqueness theorem 2.2.3 the curve (2.2.9) coincides with γ(t)
on the interval −T + b < t < b and hence γ(t) can be extended
to the interval 0 < t < b + T − ǫ by setting it equal to (2.2.9) on
b ≤ t < b+ T − ǫ. This contradicts the maximality of γ and proves
the theorem.
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Hence if we can exclude ii. and iii. we’ll have shown that an integral
curve with γ(0) = p exists for all positive time. A simple criterion
for excluding ii. and iii. is the following.

Lemma 2.2.7. The scenarios ii. and iii. can’t happen if there exists
a proper C1-function, ϕ : U → R with Lvϕ = 0.

Proof. Lvϕ = 0 implies that ϕ is constant on γ(t), but if ϕ(p) = c
this implies that the curve, γ(t), lies on the compact subset, ϕ−1(c),
of U ; hence it can’t “run off to infinity” as in scenario ii. or “run off
to the boundary” as in scenario iii.

Applying a similar argument to the interval (−b, 0] we conclude:

Theorem 2.2.8. Suppose there exists a proper C1-function, ϕ : U →
R with the property Lvϕ = 0. Then v is complete.

Example.

Let U = R
2 and let v be the vector field

v = x3 ∂

∂y
− y

∂

∂x
.

Then ϕ(x, y) = 2y2+x4 is a proper function with the property above.
Another hypothesis on v which excludes ii. and iii. is the following.

We’ll define the support of v to be the closure of the set

{q ∈ U , v(q) 6= 0} ,

and will say that v is compactly supported if this set is compact. We
will prove

Theorem 2.2.9. If v is compactly supported it is complete.

Proof. Notice first that if v(p) = 0, the constant curve, γ0(t) = p,
−∞ < t <∞, satisfies the equation

d

dt
γ0(t) = 0 = v(p) ,

so it is an integral curve of v. Hence if γ(t), −a < t < b, is any
integral curve of v with the property, γ(t0) = p, for some t0, it has
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to coincide with γ0 on the interval, −a < t < b, and hence has to be
the constant curve, γ(t) = p, on this interval.

Now suppose the support, A, of v is compact. Then either γ(t) is
in A for all t or is in U − A for some t0. But if this happens, and
p = γ(t0) then v(p) = 0, so γ(t) has to coincide with the constant
curve, γ0(t) = p, for all t. In neither case can it go off to infinity or
off to the boundary of U as t→ b.

One useful application of this result is the following. Suppose v is
a vector field on U , and one wants to see what its integral curves
look like on some compact set, A ⊆ U . Let ρ ∈ C∞

0 (U) be a bump
function which is equal to one on a neighborhood of A. Then the
vector field, w = ρv, is compactly supported and hence complete,
but it is identical with v on A, so its integral curves on A coincide
with the integral curves of v.

If v is complete then for every p, one has an integral curve, γp :
R → U with γp(0) = p, so one can define a map

ft : U → U

by setting ft(p) = γp(t). If v is C∞, this mapping is C∞ by the
smooth dependence on initial data theorem, and by definition f0 is
the identity map, i.e., f0(p) = γp(0) = p. We claim that the ft’s also
have the property

(2.2.4) ft ◦ fa = ft+a .

Indeed if fa(p) = q, then by the reparametrization theorem, γq(t)
and γp(t + a) are both integral curves of v, and since q = γq(0) =
γp(a) = fa(p), they have the same initial point, so

γq(t) = ft(q) = (ft ◦ fa)(p)

= γp(t+ a) = ft+a(p)

for all t. Since f0 is the identity it follows from (2.2.2) that ft ◦ f−t

is the identity, i.e.,

f−t = f−1
t ,

so ft is a C∞ diffeomorphism. Hence if v is complete it generates a
“one-parameter group”, ft, −∞ < t <∞, of C∞-diffeomorphisms.
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For v not complete there is an analogous result, but it’s trickier to
formulate precisely. Roughly speaking v generates a one-parameter
group of diffeomorphisms, ft, but these diffeomorphisms are not de-
fined on all of U nor for all values of t. Moreover, the identity (2.2.4)
only holds on the open subset of U where both sides are well-defined.

We’ll devote the remainder of this section to discussing some “func-
torial” properties of vector fields. Let U and W be open subsets of
R

n and R
m, respectively, and let ϕ : U →W be a C∞ map. If v is a

C∞-vector field on U and w a C∞-vector field on W we will say that
v and w are “ϕ-related” if, for all p ∈ U and q = f(p)

(2.2.5) dϕp(vp) = wq .

Writing

v =

n∑

i=1

vi
∂

∂xi
, vi ∈ C∞(U)

and

w =

m∑

j=1

wj
∂

∂yj
, wj ∈ C∞(V )

this equation reduces, in coordinates, to the equation

(2.2.6) wi(q) =
∑ ∂ϕi

∂xj
(p)vj(p) .

In particular, if m = n and ϕ is a C∞ diffeomorphism, the formula
(2.2.6) defines a C∞-vector field on W , i.e.,

w =
n∑

j=1

wi
∂

∂yj

is the vector field defined by the equation

(2.2.7) wi =

n∑

j=1

(
∂ϕi

∂xj
vj

)
◦ f−1 .

Hence we’ve proved

Theorem 2.2.10. If ϕ : U → W is a C∞ diffeomorphism and v a
C∞-vector field on U , there exists a unique C∞ vector field, w, on W
having the property that v and w are ϕ-related.
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We’ll denote this vector field by ϕ∗v and call it the push-forward
of v by ϕ.

We’ll leave the following assertions about ϕ-related vector fields
as easy exercises.

Theorem 2.2.11. Let If v and w are ϕ-related, every integral curve

γ : I → U1

of v gets mapped by ϕ onto an integral curve, ϕ ◦ γ : I → U2, of w.

Corollary 2.2.12. Suppose v and w are complete. Let ft : U →
U − ∞ < t < ∞, be the one-parameter group of diffeomorphisms
generated by v and gt : W → W the one-parameter group generated
by w. Then gt ◦ ϕ = ϕ ◦ ft

Hints:

1. Theorem 2.2.11 follows from the chain rule: If p = γ(t) and
q = ϕ(p)

dϕp

(
d

dt
γ(t)

)
=

d

dt
ϕ(γ(t)) .

2. To deduce Corollary 2.2.12 from Theorem 2.2.11 note that for
p ∈ U , ft(p) is just the integral curve, γp(t) of v with initial point
γp(0) = p.

The notion of ϕ-relatedness can be very succinctly expressed in
terms of the Lie differentiation operation. For f ∈ C∞(W ) let ϕ∗f
be the composition, f ◦ ϕ, viewed as a C∞ function on U , i.e., for
p ∈W let ϕ∗f(p) = f(ϕ(p)). Then

(2.2.8) ϕ∗Lwf = Lvϕ
∗f .

(To see this note that if ϕ(p) = q then at the point p the right hand
side is

dfq ◦ dϕp =

by the chain rule and by definition the left hand side is

dfq(w(q)) .

Moreover, by definition

w(q) = dϕp(v(p))

so the two sides are the same.)
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Another easy consequence of the chain rule is:

Theorem 2.2.13. Let V be an open subset of R
k, ψ : W → V a C∞

map and u a vector field on V . Then if v and w are ϕ related and w
and u are ψ related, v and u are ψ ◦ ϕ related.

Exercises.

1. Let v be a complete vector field on U and ft : U → U , the one
parameter group of diffeomorphisms generated by v. Show that if
ϕ ∈ C1(U)

Lvϕ =

(
d

dt
f∗t ϕ

)

t=0

.

2. (a) Let U = R
2 and let v be the vector field, x1∂/∂x2 −

x2∂/∂x1. Show that the curve

t ∈ R → (r cos(t+ θ) , r sin(t+ θ))

is the unique integral curve of v passing through the point, (r cos θ, r sin θ),
at t = 0.

(b) Let U = R
n and let v be the constant vector field:

∑
ci∂/∂xi.

Show that the curve

t ∈ R → a+ t(c1, . . . , cn)

is the unique integral curve of v passing through a ∈ R
n at t = 0.

(c) Let U = R
n and let v be the vector field,

∑
xi∂/∂xi. Show that

the curve

t ∈ R → et(a1, . . . , an)

is the unique integral curve of v passing through a at t = 0.

3. Show that the following are one-parameter groups of diffeomor-
phisms:

(a) ft : R → R , ft(x) = x+ t

(b) ft : R → R , ft(x) = etx

(c) ft : R
2 → R

2 , ft(x, y) = (cos t x− sin t y , sin t x+ cos t y)
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4. Let A : R
n → R

n be a linear mapping. Show that the series

exp tA = I + tA+
t2

2!
A2 +

t3

3!
A3 + · · ·

converges and defines a one-parameter group of diffeomorphisms of
R

n.

5. (a) What are the infinitesimal generators of the one-parameter
groups in exercise 13?

(b) Show that the infinitesimal generator of the one-parameter group
in exercise 14 is the vector field

∑
ai,jxj

∂

∂xi

where [ai,j] is the defining matrix of A.

6. Let U and V be open subsets of R
n and f : U → V a diffeo-

morphism. If w is a vector field on V , define the pull-back, f∗w of
w to U to be the vector field

f∗w = (f−1
∗ w) .

Show that if ϕ is a C∞ function on V

f∗Lwϕ = Lf∗wf
∗ϕ .

Hint: (2.2.9).

7. Let U be an open subset of R
n and v and w vector fields on U .

Suppose v is the infinitesimal generator of a one-parameter group of
diffeomorphisms

ft : U → U , −∞ < t <∞ .

Let wt = f∗t w. Show that for ϕ ∈ C∞(U)

L[v,w]ϕ = L ·

w
ϕ

where

·
w =

d

dt
f∗t w |t=0 .
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Hint: Differentiate the identity

f∗t Lwϕ = Lwt
f∗t ϕ

with respect to t and show that at t = 0 the derivative of the left
hand side is

LvLwϕ

by exercise 1 and the derivative of the right hand side is

L ·

w
+ Lw(Lvϕ) .

8. Conclude from exercise 7 that

(2.2.9) [v,w] =
d

dt
f∗t w |t=0 .

9. Prove the parametrization Theorem 2.2.2

2.3 k-forms

One-forms are the bottom tier in a pyramid of objects whose kth tier
is the space of k-forms. More explicitly, given p ∈ R

n we can, as in
§1.5, form the kth exterior powers

(2.3.1) Λk(T ∗
p R

n) , k = 1, 2, 3, . . . , n

of the vector space, T ∗
p R

n, and since

(2.3.2) Λ1(T ∗
p R

n) = T ∗
p R

n

one can think of a one-form as a function which takes its value at p
in the space (2.3.2). This leads to an obvious generalization.

Definition 2.3.1. Let U be an open subset of R
n. A k-form, ω, on

U is a function which assigns to each point, p, in U an element ω(p)
of the space (2.3.1) .

The wedge product operation gives us a way to construct lots of
examples of such objects.

Example 1.
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Let ωi, i = 1, . . . , k be one-forms. Then ω1 ∧ · · · ∧ωk is the k-form
whose value at p is the wedge product

(2.3.3) ω1(p) ∧ · · · ∧ ωk(p) .

Notice that since ωi(p) is in Λ1(T ∗
p R

n) the wedge product (2.3.3)

makes sense and is an element of Λk(T ∗
p R

n).

Example 2.

Let fi, i = 1, . . . , k be a real-valued C∞ function on U . Letting
ωi = dfi we get from (2.3.3) a k-form

(2.3.4) df1 ∧ · · · ∧ dfk

whose value at p is the wedge product

(2.3.5) (df1)p ∧ · · · ∧ (dfk)p .

Since (dx1)p, . . . , (dxn)p are a basis of T ∗
p R

n, the wedge products

(2.3.6) (dxi1)p ∧ · · · ∧ (dx1k
)p , 1 ≤ i1 < · · · < ik ≤ n

are a basis of Λk(T ∗
p ). To keep our multi-index notation from getting

out of hand, we’ll denote these basis vectors by (dxI)p, where I =
(i1, . . . , ik) and the I’s range over multi-indices of length k which
are strictly increasing. Since these wedge products are a basis of
Λk(T ∗

p R
n) every element of Λk(T ∗

p R
n) can be written uniquely as a

sum ∑
cI(dxI)p , cI ∈ R

and every k-form, ω, on U can be written uniquely as a sum

(2.3.7) ω =
∑

fI dxI

where dxI is the k-form, dxi1 ∧ · · · ∧ dxik , and fI is a real-valued
function,

fI : U → R .

Definition 2.3.2. The k-form (2.3.7) is of class Cr if each of the
fI ’s is in Cr(U).

Henceforth we’ll assume, unless otherwise stated, that all the k-
forms we consider are of class C∞, and we’ll denote the space of
these k-forms by Ωk(U).

We will conclude this section by discussing a few simple operations
on k-forms.
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1. Given a function, f ∈ C∞(U) and a k-form ω ∈ Ωk(U) we define
fω ∈ Ωk(U) to be the k-form

p ∈ U → f(p)ωp ∈ Λk(T ∗
p R

n) .

2. Given ωi ∈ Ωk(U), i = 1, 2 we define ω1 + ω2 ∈ Ωk(U) to be
the k-form

p ∈ U → (ω1)p + (ω2)p ∈ Λk(T ∗
p R

n) .

(Notice that this sum makes sense since each summand is in Λk(T ∗
p R

n).)

3. Given ω1 ∈ Ωk1(U) and ω2 ∈ Ωk2(U) we define their wedge
product, ω1 ∧ ω2 ∈ Ωk1+k2(u) to be the (k1 + k2)-form

p ∈ U → (ω1)p ∧ (ω2)p ∈ Λk1+k2(T ∗
p R

n) .

We recall that Λ0(T ∗
p R

n) = R, so a zero-form is an R-valued function
and a zero form of class C∞ is a C∞ function, i.e.,

Ω0(U) = C∞(U) .

A fundamental operation on forms is the “d-operation” which as-
sociates to a function f ∈ C∞(U) the 1-form df . It’s clear from the
identity (2.1.9) that df is a 1-form of class C∞, so the d-operation
can be viewed as a map

(2.3.8) d : Ω0(U) → Ω1(U) .

We will show in the next section that an analogue of this map exists
for every Ωk(U).

Exercises.

1. Let ω ∈ Ω2(R4) be the 2-form, dx1 ∧ dx2 + dx3 ∧ dx4. Compute
ω ∧ ω.

2. Let ωi ∈ Ω1(R3), i = 1, 2, 3 be the 1-forms

ω1 = x2 dx3 − x3 dx2

ω2 = x3 dx1 − x1 dx3

and

ω3 = x1 dx2 − x2 dx1 .

Compute
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(a) ω1 ∧ ω2.

(b) ω2 ∧ ω3.

(c) ω3 ∧ ω1.

(d) ω1 ∧ ω2 ∧ ω3.

3. Let U be an open subset of R
n and fi ∈ C∞(U), i = 1, . . . , n.

Show that

df1 ∧ · · · ∧ dfn = det

[
∂fi

∂xj

]
dx1 ∧ · · · ∧ dxn .

4. Let U be an open subset of R
n. Show that every (n− 1)-form,

ω ∈ Ωn−1(U), can be written uniquely as a sum

n∑

i=1

fi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

where fi ∈ C∞(U) and the “cap” over dxi means that dxi is to be
deleted from the product, dx1 ∧ · · · ∧ dxn.

5. Let µ =

n∑

i=1

xidxi. Show that there exists an (n− 1)-form, ω ∈

Ωn−1(Rn − {0}) with the property

µ ∧ ω = dx1 ∧ · · · ∧ dxn .

6. Let J be the multi-index (j1, . . . , jk) and let dxJ = dxj1 ∧ · · · ∧
dxjk

. Show that dxJ = 0 if jr = js for some r 6= s and show that if
the jr’s are all distinct

dxJ = (−1)σ dxI

where I = (i1, . . . , ik) is the strictly increasing rearrangement of
(j1, . . . , jk) and σ is the permutation

j1 → i1, . . . , jk → ik .

7. Let I be a strictly increasing multi-index of length k and J a
strictly increasing multi-index of length ℓ. What can one say about
the wedge product dxI ∧ dxJ?



22

2.4 Exterior differentiation

Let U be an open subset of R
n. In this section we are going to define

an operation

(2.4.1) d : Ωk(U) → Ωk+1(U) .

This operation is called exterior differentiation and is the fundamen-
tal operation in n-dimensional vector calculus.

For k = 0 we already defined the operation (2.4.1) in §2.1.1.. Be-
fore defining it for the higher k’s we list some properties that we will
require to this operation to satisfy.

Property I. For ω1 and ω2 in Ωk(U), d(ω1 + ω2) = dω1 + dω2.

Property II. For ω1 ∈ Ωk(U) and ω2 ∈ Ωℓ(U)

(2.4.2) d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)kω1 ∧ dω2 .

Property III. For ω ∈ Ωk(U)

(2.4.3) d(dω) = 0 .

Let’s point out a few consequences of these properties. First note
that by Property III

(2.4.4) d(df) = 0

for every function, f ∈ C∞(U). More generally, given k functions,
fi ∈ C∞(U), i = 1, . . . , k, then by combining (2.4.4) with (2.4.2) we
get by induction on k:

(2.4.5) d(df1 ∧ · · · ∧ dfk) = 0 .

Proof. Let µ = df2 ∧ · · · ∧ dfk. Then by induction on k, dµ = 0; and
hence by (2.4.2) and (2.4.4)

d(df1 ∧ µ) = d(d1f) ∧ µ+ (−1) df1 ∧ dµ = 0 ,

as claimed.)
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In particular, given a multi-index, I = (i1, . . . , ik) with 1 ≤ ir ≤ n

(2.4.6) d(dxI) = d(dxi1 ∧ · · · ∧ dxik) = 0 .

Recall now that every k-form, ω ∈ Ωk(U), can be written uniquely
as a sum

ω =
∑

fI dxI , fI ∈ C∞(U)

where the multi-indices, I, are strictly increasing. Thus by (2.4.2)
and (2.4.6)

(2.4.7) dω =
∑

dfI ∧ dxI .

This shows that if there exists a “d” with properties I—III, it has to
be given by the formula (2.4.7). Hence all we have to show is that
the operator defined by this formula has these properties. Property I
is obvious. To verify Property II we first note that for I strictly
increasing (2.4.6) is a special case of (2.4.7). (Take fI = 1 and fJ =
0 for J 6= I.) Moreover, if I is not strictly increasing it is either
repeating, in which case dxI = 0, or non-repeating in which case Iσ

is strictly increasing for some permutation, σ ∈ Sk, and

(2.4.8) dxI = (−1)σ dxIσ .

Hence (2.4.7) implies (2.4.6) for all multi-indices I. The same argu-
ment shows that for any sum over indices, I, for length k

∑
fIdxI

one has the identity:

(2.4.9) d(
∑

fI dxI) =
∑

dfI ∧ dxI .

(As above we can ignore the repeating I’s, since for these I’s, dxI =
0, and by (2.4.8) we can make the non-repeating I’s strictly increas-
ing.)

Suppose now that ω1 ∈ Ωk(U) and ω2 ∈ Ωℓ(U). Writing

ω1 =
∑

fI dxI

and

ω2 =
∑

gJ dxJ
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with fI and gJ in C∞(U) we get for the wedge product

ω1 ∧ ω2 =
∑

fIgJ dxI ∧ dxJ(2.4.10)

and by (2.4.9)

d(ω1 ∧ ω2) =
∑

d(fIgJ) ∧ dxI ∧ dxJ .(2.4.11)

(Notice that if I = (i1, · · · , ik) and J = (ji, . . . , iℓ), dxI ∧ dxJ =
dxK , K being the multi-index, (i1, . . . , ik, j1, . . . , jℓ). Even if I and
J are strictly increasing, K won’t necessarily be strictly increasing.
However in deducing (2.4.11) from (2.4.10) we’ve observed that this
doesn’t matter .) Now note that by (2.1.10)

d(fIgJ) = gJ dfI + fI dgJ ,

and by the wedge product identities of §(??),

dgJ ∧ dxI = dgJ ∧ dxi1 ∧ · · · ∧ dxik

= (−1)k dxI ∧ dgJ ,

so the sum (2.4.11) can be rewritten:

∑
dfI ∧ dxI ∧ gJ dxJ + (−1)k

∑
fI dxI ∧ dgJ ∧ dxJ ,

or
(∑

dfI ∧ dxI

)
∧
(∑

gJ dxJ

)
+ (−1)k

(∑
dgJ ∧ dxJ

)
,

or finally:
dω1 ∧ ω2 + (−1)kω1 ∧ dω2 .

Thus the “d” defined by (2.4.7) has Property II. Let’s now check that
it has Property III. If ω =

∑
fI dxI , fI ∈ C∞(U), then by definition,

dω =
∑

dfI ∧ dxI and by (2.4.6) and (2.4.2)

d(dω) =
∑

d(dfI) ∧ dxI ,

so it suffices to check that d(dfI) = 0, i.e., it suffices to check (2.4.4)
for zero forms, f ∈ C∞(U). However, by (2.1.9)

df =

n∑

j=1

∂f

∂xj
dxj
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so by (2.4.7)

d(df) =
n∑

j=1

d

(
∂f

∂xj

)
dxj

=

n∑

j=1

(
n∑

i=1

∂2f

∂xi∂xj
dxi

)
∧ dxj

=
∑

i,j

∂2f

∂xi∂xj
dxi ∧ dxj .

Notice, however, that in this sum, dxi ∧ dxj = −dxj ∧ dxi and

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

so the (i, j) term cancels the (j, i) term, and the total sum is zero.

A form, ω ∈ Ωk(U), is said to be closed if dω = 0 and is said to be
exact if ω = dµ for some µ ∈ Ωk−1(U). By Property III every exact
form is closed, but the converse is not true even for 1-forms. (See
§2.1.1., exercise 8). In fact it’s a very interesting (and hard) question
to determine if an open set, U , has the property: “For k > 0 every
closed k-form is exact.”1

Some examples of sets with this property are described in the
exercises at the end of §2.5. We will also sketch below a proof of the
following result (and ask you to fill in the details).

Lemma 2.4.1 (Poincaré’s Lemma.). If ω is a closed form on U of
degree k > 0, then for every point, p ∈ U , there exists a neighborhood
of p on which ω is exact.

(See exercises 5 and 6 below.)

Exercises:

1. Compute the exterior derivatives of the forms below.

1For k = 0, df = 0 doesn’t imply that f is exact. In fact “exactness” doesn’t make
much sense for zero forms since there aren’t any “−1” forms. However, if f ∈ C∞(U)
and df = 0 then f is constant on connected components of U . (See § 2.1.1., exercise 2.)
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(a) x1 dx2 ∧ dx3

(b) x1 dx2 − x2 dx1

(c) e−f df where f =
∑n

i=1 x
2
i

(d)
∑n

i=1 xi dxi

(e)
∑n

i=1(−1)ixi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

2. Solve the equation: dµ = ω for µ ∈ Ω1(R3), where ω is the
2-form

(a) dx2 ∧ dx3

(b) x2 dx2 ∧ dx3

(c) (x2
1 + x2

2) dx1 ∧ dx2

(d) cos x1 dx1 ∧ dx3

3. Let U be an open subset of R
n.

(a) Show that if µ ∈ Ωk(U) is exact and ω ∈ Ωℓ(U) is closed then
µ ∧ ω is exact. Hint: The formula (2.4.2).

(b) In particular, dx1 is exact, so if ω ∈ Ωℓ(U) is closed dx1 ∧ ω =
dµ. What is µ?

4. Let Q be the rectangle, (a1, b1)× · · · × (an, bn). Show that if ω
is in Ωn(Q), then ω is exact.

Hint: Let ω = f dx1 ∧ · · · ∧ dxn with f ∈ C∞(Q) and let g be the
function

g(x1, . . . , xn) =

∫ x1

a1

f(t, x2, . . . , xn) dt .

Show that ω = d(g dx2 ∧ · · · ∧ dxn).

5. Let U be an open subset of R
n−1, A ⊆ R an open interval

and (x, t) product coordinates on U × A. We will say that a form,
µ ∈ Ωℓ(U ×A) is reduced if it can be written as a sum

(2.4.12) µ =
∑

fI(x, t) dxI ,

(i.e., no terms involving dt).
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(a) Show that every form, ω ∈ Ωk(U ×A) can be written uniquely
as a sum:

(2.4.13) ω = dt ∧ α+ β

where α and β are reduced.

(b) Let µ be the reduced form (2.4.12) and let

dµ

dt
=
∑ d

dt
fI(x, t) dxI

and

dUµ =
∑

I

(
n∑

i=1

∂

∂xi
fI(x, t) dxi

)
∧ dxI .

Show that

dµ = dt ∧
dµ

dt
+ dUµ .

(c) Let ω be the form (2.4.13). Show that

dω = dt ∧ dUα+ dt ∧
dβ

dt
+ dUβ

and conclude that ω is closed if and only if

dβ

dt
= dUα(2.4.14)

dβU = 0 .

(d) Let α be a reduced (k − 1)-form. Show that there exists a re-
duced (k − 1)-form, ν, such that

(2.4.15)
dν

dt
= α .

Hint: Let α =
∑
fI(x, t) dxI and ν =

∑
gI(x, t) dxI . The equa-

tion (2.4.15) reduces to the system of equations

(2.4.16)
d

dt
gI(x, t) = fI(x, t) .

Let c be a point on the interval, A, and using freshman calculus show
that (2.4.16) has a unique solution, gI(x, t), with gI(x, c) = 0.
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(e) Show that if ω is the form (2.4.13) and ν a solution of (2.4.15)
then the form

(2.4.17) ω − dν

is reduced.

(f) Let

γ =
∑

hI(x, t) dx)I

be a reduced k-form. Deduce from (2.4.14) that if γ is closed then
dγ

dt
= 0 and dUγ = 0. Conclude that hI(x, t) = hI(x) and that

γ =
∑

hI(x) dxI

is effectively a closed k-form on U . Now prove: If every closed k-form
on U is exact, then every closed k-form on U ×A is exact. Hint: Let
ω be a closed k-form on U ×A and let γ be the form (2.4.17).

6. Let Q ⊆ R
n be an open rectangle. Show that every closed form

on Q of degree k > 0 is exact. Hint: Let Q = (a1, b1)× · · ·× (an, bn).
Prove this assertion by induction, at the nth stage of the induction
letting U = (a1, b1) × · · · × (an−1, bn−1) and A = (an, bn).

2.5 The interior product operation

In §2.1.1. we explained how to pair a one-form, ω, and a vector field,
v, to get a function, ι(v)ω. This pairing operation generalizes: If one
is given a k-form, ω, and a vector field, v, both defined on an open
subset, U , one can define a (k − 1)-form on U by defining its value
at p ∈ U to be the interior product

(2.5.1) ι(v(p))ω(p) .

Note that v(p) is in TpR
n and ω(p) in Λk(T ∗

p R
n), so by definition

of interior product (see §1.7), the expression (2.5.1) is an element of
Λk−1(T ∗

p R
n). We will denote by ι(v)ω the (k− 1)−form on U whose

value at p is (2.5.1). From the properties of interior product on vector
spaces which we discussed in §1.7, one gets analogous properties for
this interior product on forms. We will list these properties, leaving
their verification as an exercise. Let v and ω be vector fields, and ω1
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and ω2 k-forms, ω a k-form and µ an ℓ-form. Then ι(v)ω is linear in
ω:

(2.5.2) ι(v)(ω1 + ω2) = ι(v)ω1 + ι(v)ω2 ,

linear in v:

(2.5.3) ι(v + w)ω = ι(v)ω + z(w)ω ,

has the derivation property:

(2.5.4) ι(v)(ω ∧ µ) = ι(v)ω ∧ µ+ (−1)kω ∧ ι(v)µ

satisfies the identity

(2.5.5) ι(v)(ι(w)ω) = −ι(w)(ι(v)ω)

and, as a special case of (2.5.5), the identity,

(2.5.6) ι(v)(ι(v)ω) = 0 .

Moreover, if ω is “decomposable” i.e., is a wedge product of one-
forms

ω = µ1 ∧ · · · ∧ µk ,(2.5.7)

then

ι(v)ω =
k∑

r=1

(−1)r−1(ι(v)µr)µ1 ∧ · · · µ̂r · · · ∧ µk .(2.5.8)

We will also leave for you to prove the following two assertions, both
of which are special cases of (2.5.8). If v = ∂/∂xr and ω = dxI =
dxi1 ∧ · · · ∧ dxik then

ι(v)ω =

k∑

r=1

(−1)rδi
ir dxIr

(2.5.9)

where

δi
ir

=

{
1 i = ir

0 , i 6= ir
.
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and Ir = (i1, . . . , îr, . . . , ik) and if v =
∑
fi ∂/∂xi and ω = dx1 ∧

· · · ∧ dxn then

(2.5.10) ι(v)ω =
∑

(−1)r−1fr dx1 ∧ · · · d̂xr · · · ∧ dxn .

By combining exterior differentiation with the interior product op-
eration one gets another basic operation of vector fields on forms: the
Lie differentiation operation. For zero-forms, i.e., for C∞ functions,
ϕ, we defined this operation by the formula (2.1.13). For k-forms
we’ll define it by the slightly more complicated formula

(2.5.11) Lvω = ι(v) dω + dι(v)ω .

(Notice that for zero-forms the second summand is zero, so (2.5.11)
and (2.1.13) agree.) If ω is a k-form the right hand side of (2.5.11)
is as well, so Lv takes k-forms to k-forms. It also has the property

(2.5.12) dLvω = Lv dω

i.e., it “commutes” with d, and the property

(2.5.13) Lv(ω ∧ µ) = Lvω ∧ µ+ ω ∧ Lvµ

and from these properties it is fairly easy to get an explicit formula
for Lvω. Namely let ω be the k-form

ω =
∑

fI dxI , fI ∈ C∞(U)

and v the vector field
∑

gi ∂/∂xi , gi ∈ C∞(U) .

By (2.5.13)

Lv(fI dxI) = (LvfI) dxI + fI(Lv dxI)

and

Lv dxI =

k∑

r=1

dxi1 ∧ · · · ∧ Lv dxir ∧ · · · ∧ dxik ,

and by (2.5.12)
Lv dxir = dLvxir
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so to compute Lvω one is reduced to computing Lvxir and LvfI .
However by (2.5.13)

Lvxir = gir

and

LvfI =
∑

gi
∂fI

∂xi
.

We will leave the verification of (2.5.12) and (2.5.13) as exercises,
and also ask you to prove (by the method of computation that we’ve
just sketched) the divergence formula

(2.5.14) Lv(dx1 ∧ · · · ∧ dxn) =
∑(

∂gi

∂xi

)
dx1 ∧ · · · ∧ dxn .

Exercises:

1. Verify the assertions (2.5.2)—(2.5.7).

2. Show that if ω is the k-form, dxI and v the vector field, ∂/∂xr,
then ι(v)ω is given by (2.5.9).

3. Show that if ω is the n-form, dx1 ∧ · · · ∧ dxn, and v the vector
field,

∑
fi ∂/∂xi, ι(v)ω is given by (2.5.10).

4. Let U be an open subset of R
n and v a C∞ vector field on U .

Show that for ω ∈ Ωk(U)

dLvω = Lv dω

and

ιvLvω = Lvιvω .

Hint: Deduce the first of these identities from the identity d(dω) = 0
and the second from the identity ι(v)(ι(v)ω) = 0 .)

5. Given ωi ∈ Ωki(U), i = 1, 2, show that

Lv(ω1 ∧ ω2) = Lvω1 ∧ ω2 + ω1 ∧ Lvω2 .

Hint: Plug ω = ω1 ∧ ω2 into (2.5.11) and use (2.4.2) and (2.5.4)to
evaluate the resulting expression.
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6. Let v1 and v2 be vector fields on U and let w be their Lie
bracket. Show that for ω ∈ Ωk(U)

Lwω = Lv1
(Lv2

ω) − Lv2
(Lv1

ω) .

Hint: By definition this is true for zero-forms and by (2.5.12) for
exact one-forms. Now use the fact that every form is a sum of wedge
products of zero-forms and one-forms and the fact that Lv satisfies
the product identity (2.5.13).

7. Prove the divergence formula (2.5.14).

8. (a) Let ω = Ωk(Rn) be the form

ω =
∑

fI(x1, . . . , xn) dxI

and v the vector field, ∂/∂xn. Show that

Lvω =
∑ ∂

∂xn
fI(x1, . . . , xn) dxI .

(b) Suppose ι(v)ω = Lvω = 0. Show that ω only depends on
x1, . . . , xk−1 and dx1, . . . , dxk−1, i.e., is effectively a k-form on R

n−1.

(c) Suppose ι(v)ω = dω = 0. Show that ω is effectively a closed
k-form on R

n−1.

(d) Use these results to give another proof of the Poincaré lemma
for R

n. Prove by induction on n that every closed form on R
n is

exact.

Hints:

i. Let ω be the form in part (a) and let

gI(x1, . . . , xn) =

∫ xn

0
fI(x1, . . . , xn−1, t) dt .

Show that if ν =
∑
gI dxI , then Lvν = ω.

ii. Conclude that

(*) ω − dι(v)ν = ι(v) dν .

iii. Suppose dω = 0. Conclude from (*) and from the formula (2.5.6)
that the form β = ι(v) dν satisfies dβ = ι(v)β = 0.

iv. By part c, β is effectively a closed form on R
n−1, and by induc-

tion, β = dα. Thus by (*)

ω = dι(v)ν + dα .
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2.6 The pull-back operation on forms

Let U be an open subset of R
n, V an open subset of R

m and f :
U → V a C∞ map. Then for p ∈ U and q = f(p), the derivative of f
at p

dfp : TpR
n → TqR

m

is a linear map, so (as explained in §7 of Chapter ??) one gets from
it a pull-back map

(2.6.1) df∗p : Λk(T ∗
q R

m) → Λk(T ∗
p R

n) .

In particular, let ω be a k-form on V . Then at q ∈ V , ω takes the
value

ωq ∈ Λk(T ∗
q R

m) ,

so we can apply to it the operation (2.7.1), and this gives us an
element:

(2.6.2) df∗pωq ∈ Λk(T ∗
p R

n) .

In fact we can do this for every point p ∈ U , so this gives us a
function,

(2.6.3) p ∈ U → (dfp)
∗ωq , q = f(p) .

By the definition of k-form such a function is a k-form on U . We will
denote this k-form by f∗ω and define it to be the pull-back of ω by
the map f . A few of its basic properties are described below.

1. Let ϕ be a zero-form, i.e., a function, ϕ ∈ C∞(V ). Since

Λ0(T ∗
p ) = Λ0(T ∗

q ) = R

the map (2.7.1) is just the identity map of R onto R when k is equal
to zero. Hence for zero-forms

(2.6.4) (f∗ϕ)(p) = ϕ(q) ,

i.e., f∗ϕ is just the composite function, ϕ ◦ f ∈ C∞(U).

2. Let µ ∈ Ω1(V ) be the 1-form, µ = dϕ. By the chain rule (2.6.2)
unwinds to:

(2.6.5) (dfp)
∗dϕq = (dϕ)q ◦ dfp = d(ϕ ◦ f)p

and hence by (2.6.4)

(2.6.6) f∗ dϕ = df∗ϕ .
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3. If ω1 and ω2 are in Ωk(V ) we get from (2.6.2)

(dfp)
∗(ω1 + ω2)q = (dfp)

∗(ω1)q + (dfp)
∗(ω2)q ,

and hence by (2.6.3)

f∗(ω1 + ω2) = f∗ω1 + f∗ω2 .

4. We observed in § ?? that the operation (2.7.1) commutes with
wedge-product, hence if ω1 is in Ωk(V ) and ω2 is in Ωℓ(V )

df∗p (ω1)q ∧ (ω2)q = df∗p (ω1)q ∧ df
∗
p (ω2)q .

In other words

(2.6.7) f∗ω1 ∧ ω2 = f∗ω1 ∧ f
∗ω2 .

5. Let W be an open subset of R
k and g : V → W a C∞ map.

Given a point p ∈ U , let q = f(p) and w = g(q). Then the composi-
tion of the map

(dfp)
∗ : Λk(T ∗

q ) → Λk(T ∗
p )

and the map
(dgq)

∗ : Λk(T ∗
w) → Λk(T ∗

q )

is the map
(dgq ◦ dfp)

∗ : Λk(T ∗
w) → Λk(T ∗

p )

by formula (??) of Chapter 1. However, by the chain rule

(dgq) ◦ (df)p = d(g ◦ f)p

so this composition is the map

d(g ◦ f)∗p : Λk(T ∗
w) → Λk(T ∗

p ) .

Thus if ω is in Ωk(W )

(2.6.8) f∗(g∗ω) = (g ◦ f)∗ω .

Let’s see what the pull-back operation looks like in coordinates.
Using multi-index notation we can express every k-form, ω ∈ Ωk(V )
as a sum over multi-indices of length k

(2.6.9) ω =
∑

ϕI dxI ,
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the coefficient, ϕI , of dxI being in C∞(V ). Hence by (2.6.4)

f∗ω =
∑

f∗ϕIf
∗(dxI)

where f∗ϕI is the function of ϕ ◦ f . What about f∗ dxI? If I is the
multi-index, (i1, . . . , ik), then by definition

dxI = dxi1 ∧ · · · ∧ dxik

so

d∗ dxI = f∗ dxi ∧ · · · ∧ f∗ dxik

by (2.6.7), and by (2.6.6)

f∗ dxi = df∗xi = dfi

where fi is the ith coordinate function of the map f . Thus, setting

dfI = dfi1 ∧ · · · ∧ dfik ,

we get for each multi-index, I,

(2.6.10) f∗ dxI = dfI

and for the pull-back of the form (2.6.9)

(2.6.11) f∗ω =
∑

f∗ϕI dfI .

We will use this formula to prove that pull-back commutes with
exterior differentiation:

(2.6.12) d f∗ω = f∗ dω .

To prove this we recall that by (2.3.5), d( dfI) = 0, hence by (2.3.2)
and (2.6.10)

d f∗ω =
∑

d f∗ϕI ∧ dfI

=
∑

f∗ dϕI ∧ df∗ dxI

= f∗
∑

dϕI ∧ dxI

= f∗ dω .
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A special case of formula (2.6.10) will be needed in Chapter 4: Let
U and V be open subsets of R

n and let ω = dx1 ∧ · · · ∧ dxn. Then
by (2.6.10)

f∗ωp = (df1)p ∧ · · · ∧ (dfn)p

for all p ∈ U . However,

(dfi)p =
∑ ∂fi

∂xj
(p)(dxj)p

and hence by formula (??) of Chapter ??

f∗ωp = det

[
∂fi

∂xj
(p)

]
(dx1 ∧ · · · ∧ dxn)p .

In other words

(2.6.13) f∗ dx1 ∧ · · · ∧ dxn = det

[
∂fi

∂xj

]
dx1 ∧ · · · ∧ dxn .

We will outline in exercises 4 and 5 below the proof of an important
topological property of the pull-back operation. Let U be an open
subset of R

n, V an open subset of R
m, A ⊆ R an open interval

containing 0 and 1 and fi : U → V , i = 0, 1, a C∞ map.

Definition 2.6.1. A C∞ map, F : U × A → V , is a homotopy
between f0 and f1 if F (x, 0) = f0(x) and F (x, 1) = f1(x).

Thus, intuitively, f0 and f1 are homotopic if there exists a family
of C∞ maps, ft : U → V , ft(x) = F (x, t), which “smoothly deform
f0 into f1”. In the exercises mentioned above you will be asked to
verify that for f0 and f1 to be homotopic they have to satisfy the
following criteria.

Theorem 2.6.2. If f0 and f1 are homotopic then for every closed
form, ω ∈ Ωk(V ), f∗1ω − f∗0ω is exact.

This theorem is closely related to the Poincaré lemma, and, in fact,
one gets from it a slightly stronger version of the Poincaré lemma
than that described in exercises 5–6 in §2.3.

Definition 2.6.3. An open subset, U , of R
n is contractable if, for

some point p0 ∈ U , the identity map

f1 : U → U , f(p) = p ,
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is homotopic to the constant map

f0 : U → U , f0(p) = p0 .

From the theorem above it’s easy to see that the Poincaré lemma
holds for contractable open subsets of R

n. If U is contractable every
closed k-form on U of degree k > 0 is exact. (Proof: Let ω be such a
form. Then for the identity map f∗0ω = ω and for the constant map,
f∗0ω = 0.)

Exercises.

1. Let f : R
3 → R

3 be the map

f(x1, x2, x3) = (x1x2, x2x
2
3, x

3
3) .

Compute the pull-back, f∗ω for

(a) ω = x2 dx3

(b) ω = x1 dx1 ∧ dx3

(c) ω = x1 dx1 ∧ dx2 ∧ dx3

2. Let f : R
2 → R

3 be the map

f(x1, x2) = (x2
1, x

2
2, x1x2) .

Complete the pull-back, f∗ω, for

(a) ω = x2 dx2 + x3 dx3

(b) ω = x1 dx2 ∧ dx3

(c) ω = dx1 ∧ dx2 ∧ dx3

3. Let U be an open subset of R
n, V an open subset of R

m, f :
U → V a C∞ map and γ : [a, b] → U a C∞ curve. Show that for
ω ∈ Ω1(V ) ∫

γ

f∗ω =

∫

γ1

ω

where γ1 : [a, b] → V is the curve, γ1(t) = f(γ(t)). (See § 2.1.1.,
exercise 7.)
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4. Let U be an open subset of R
n, A ⊆ R an open interval con-

taining the points, 0 and 1, and (x, t) product coordinates on U ×A.
Recall (§ 2.3, exercise 5) that a form, µ ∈ Ωℓ(U ×A) is reduced if it
can be written as a sum

(2.6.14) µ =
∑

fI(x, t) dxI

(i.e., none of the summands involve “dt”). For a reduced form, µ, let
Qµ ∈ Ωℓ(U) be the form

(2.6.15) Qµ =

(∑∫ 1

0
fI(x, t) dt

)
dxI

and let µi ∈ Ωℓ(U), i = 0, 1 be the forms

µ0 =
∑

fI(x, 0) dxI(2.6.16)

and

µ1 =
∑

fI(x, 1) dxI .(2.6.17)

Now recall that every form, ω ∈ Ωk(U ×A) can be written uniquely
as a sum

(2.6.18) ω = dt ∧ α+ β

where α and β are reduced. (See exercise 5 of § 2.4, part a.)

(a) Prove

Theorem 2.6.4. If the form (2.6.18) is closed then

(2.6.19) β0 − β1 = dQα .

Hint: Formula (2.4.14).

(b) Let ι0 and ι1 be the maps of U into U × A defined by ι0(x) =
(x, 0) and ι1(x) = (x, 1). Show that (2.6.19) can be rewritten

(2.6.20) ι∗0ω − ι∗1ω = dQα .

5. Let V be an open subset of R
m and fi : U → V , i = 0, 1, C∞

maps. Suppose f0 and f1 are homotopic. Show that for every closed
form, µ ∈ Ωk(V ), f∗1µ− f∗0µ is exact. Hint: Let F : U ×A→ V be a
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homotopy between f0 and f1 and let ω = F ∗µ. Show that ω is closed
and that f∗0µ = ι∗0ω and f∗1µ = ι∗1ω. Conclude from (2.6.20) that

(2.6.21) f∗0µ− f∗1µ = dQα

where ω = dt ∧ α+ β and α and β are reduced.

6. Show that if U ⊆ R
n is a contractable open set, then the

Poincaré lemma holds: every closed form of degree k > 0 is exact.

7. An open subset, U , of R
n is said to be star-shaped if there exists

a point p0 ∈ U , with the property that for every point p ∈ U , the
line segment,

tp+ (1 − t)p0 , 0 ≤ t ≤ 1 ,

joining p to p0 is contained in U . Show that if U is star-shaped it is
contractable.

8. Show that the following open sets are star-shaped:

(a) The open unit ball

{x ∈ R
n , ‖x‖ < 1} .

(b) The open rectangle, I1 × · · · × In, where each Ik is an open
subinterval of R.

(c) R
n itself.

(d) Product sets

U1 × U2 ⊆ R
n = R

n1 × R
n2

where Ui is a star-shaped open set in R
ni .

9. Let U be an open subset of R
n, ft : U → U , t ∈ R, a one-

parameter group of diffeomorphisms and v its infinitesimal generator.
Given ω ∈ Ωk(U) show that at t = 0

(2.6.22)
d

dt
f∗t ω = Lvω .

Here is a sketch of a proof:
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(a) Let γ(t) be the curve, γ(t) = ft(p), and let ϕ be a zero-form,
i.e., an element of C∞(U). Show that

f∗t ϕ(p) = ϕ(γ(t))

and by differentiating this identity at t = 0 conclude that (2.5.40)
holds for zero-forms.

(b) Show that if (2.5.40) holds for ω it holds for dω. Hint: Differ-
entiate the identity

f∗t dω = df∗t ω

at t = 0.

(c) Show that if (2.5.40) holds for ω1 and ω2 it holds for ω1 ∧ ω2.
Hint: Differentiate the identity

f∗t (ω1 ∧ ω2) = f∗t ω1 ∧ f
∗
t ω2

at t = 0.

(d) Deduce (2.5.40) from a, b and c. Hint: Every k-form is a sum
of wedge products of zero-forms and exact one-forms.

10. In exercise 9 show that for all t

(2.6.23)
d

dt
f∗t ω = f∗t Lvω = Lvf

∗
t ω .

Hint: By the definition of “one-parameter group”, fs+t = fs ◦ ft =
fr ◦ fs, hence:

f∗s+tω = f∗t (f∗sω) = f∗s (f∗t ω) .

Prove the first assertion by differentiating the first of these identities
with respect to s and then setting s = 0, and prove the second
assertion by doing the same for the second of these identities.

In particular conclude that

(2.6.24) f∗t Lvω = Lvf
∗
t ω .

11. (a) By massaging the result above show that

d

dt
f∗t ω = dQtω +Qt dω(2.6.25)

where

Qtω = f∗t ι(v)ω .(2.6.26)

Hint: Formula (2.5.11).
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(b) Let

Qω =

∫ 1

0
f∗t ι(v)ω dt .

Prove the homotopy indentity

(2.6.27) f∗1ω − f∗0ω = dQω +Qdω .

12. Let U be an open subset of R
n, V an open subset of R

m, v a
vector field on U , w a vector field on V and f : U → V a C∞ map.
Show that if v and w are f -related

ι(v)f∗ω = f∗ι(w)ω .

Hint: Chapter 1, §1.7, exercise 8.

2.7 Div, curl and grad

The basic operations in 3-dimensional vector calculus: grad, curl and
div are, by definition, operations on vector fields. As we’ll see below
these operations are closely related to the operations

(2.7.1) d : Ωk(R3) → Ωk+1(R3)

in degrees k = 0, 1, 2. However, only two of these operations: grad
and div, generalize to n dimensions. (They are essentially the d-
operations in degrees zero and n − 1.) And, unfortunately, there is
no simple description in terms of vector fields for the other n− 2 d-
operations. This is one of the main reasons why an adequate theory
of vector calculus in n-dimensions forces on one the differential form
approach that we’ve developed in this chapter. Even in three dimen-
sions, however, there is a good reason for replacing grad, div and curl
by the three operations, (??). A problem that physicists spend a lot
of time worrying about is the problem of general covariance: formu-
lating the laws of physics in such a way that they admit as large
a set of symmetries as possible, and frequently these formulations
involve differential forms. An example is Maxwell’s equations, the
fundamental laws of electromagnetism. These are usually expressed
as identities involving div and curl. However, as we’ll explain below,
there is an alternative formulation of Maxwell’s equations based on
the operations (??), and from the point of view of general covariance,
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this formulation is much more satisfactory: the only symmetries of R
3

which preserve div and curl are translations and rotations, whereas
the operations (2.7.1) admit all diffeomorphisms of R

3 as symme-
tries.

To describe how grad, div and curl are related to the opera-
tions (??) we first note that there are two ways of converting vector
fields into forms. The first makes use of the natural inner product,
B(v,w) =

∑
viwi, on R

n. From this inner product one gets by § ??,
exercise 9 a bijective linear map:

(2.7.2) L : R
n → (Rn)∗

with the defining property: L(v) = ℓ ⇔ ℓ(w) = B(v,w). Via the
identification (2.1.2) B and L can be transferred to TpR

n, giving one
an inner product, Bp, on TpR

n and a bijective linear map

(2.7.3) Lp : TpR
n → T ∗

p R
n .

Hence if we’re given a vector field, v, on U we can convert it into a
1-form, v

♯, by setting

(2.7.4) v
♯(p) = Lpv(p)

and this sets up a one–one correspondence between vector fields and
1-forms. For instance

(2.7.5) v =
∂

∂xi
⇔ v

♯ = dxi ,

(see exercise 3 below) and, more generally,

(2.7.6) v =
∑

fi
∂

∂xi
⇔ v

♯ =
∑

fi dxi .

In particular if f is a C∞ function on U the vector field “grad f” is
by definition

(2.7.7)
∑ ∂f

∂xi

∂

∂xi

and this gets converted by (2.7.8) into the 1-form, df . Thus the
“grad” operation in vector calculus is basically just the operation,
d : Ω0(U) → Ω1(U).
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The second way of converting vector fields into forms is via the
interior product operation. Namely let Ω be the n-form, dx1 ∧ · · · ∧
dxn. Given an open subset, U of R

n and a C∞ vector field,

(2.7.8) v =
∑

fi
∂

∂xi

on U the interior product of v with Ω is the (n − 1)-form

(2.7.9) ι(v)Ω =
∑

(−1)r−1frdx1 ∧ · · · ∧ d̂xr · · · ∧ dxn .

Moreover, every (n−1)-form can be written uniquely as such a sum,
so (2.7.8) and (2.7.9) set up a one-one correspondence between vector
fields and (n− 1)-forms. Under this correspondence the d-operation
gets converted into an operation on vector fields

(2.7.10) v → dι(v)Ω .

Moreover, by (2.5.11)
dι(v)Ω = LvΩ

and by (2.5.14)
LvΩ = div(v)Ω

where

(2.7.11) div(v) =
n∑

i=1

∂fi

∂xi
.

In other words, this correspondence between (n−1)-forms and vector
fields converts the d-operation into the divergence operation (2.7.11)
on vector fields.

Notice that “div” and “grad” are well-defined as vector calculus
operations in n-dimensions even though one usually thinks of them
as operations in 3-dimensional vector calculus. The “curl” operation,
however, is intrinsically a 3-dimensional vector calculus operation.
To define it we note that by (2.7.9) every 2-form, µ, can be written
uniquely as an interior product,

(2.7.12) µ = ι(w) dx1 ∧ dx2 ∧ dx3 ,

for some vector field w, and the left-hand side of this formula de-
termines w uniquely. Now let U be an open subset of R

3 and v a
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vector field on U . From v we get by (2.7.6) a 1-form, v
♯, and hence

by (2.7.12) a vector field, w, satisfying

(2.7.13) dv♯ = ι(w) dx1 ∧ dx2 ∧ dx3 .

The “curl” of v is defined to be this vector field, in other words,

(2.7.14) curl v = w ,

where v and w are related by (2.7.13).
We’ll leave for you to check that this definition coincides with the

definition one finds in calculus books. More explicitly we’ll leave for
you to check that if v is the vector field

v = f1
∂

∂x1
+ f2

∂

∂x2
+ f3

∂

∂x3
(2.7.15)

then

curl v = g1
∂

∂x1
+ g2

∂

∂x2
+ g3

∂

∂x3
(2.7.16)

where

g1 =
∂f2

∂x3
−
∂f3

∂x2

g2 =
∂f3

∂x1
−
∂f1

∂x3
(2.7.17)

g3 =
∂f1

∂x2
−
∂f2

∂x1
.

To summarize: the grad, curl and div operations in 3-dimensions
are basically just the three operations (??). The “grad” operation is
the operation (??) in degree zero, “curl” is the operation (??) in de-
gree one and “div” is the operation (??) in degree two. However, to
define “grad” we had to assign an inner product, Bp, to the next tan-
gent space, TpR

n, for each p in U ; to define “div” we had to equip
U with the 3-form, Ω, and to define “curl”, the most complicated
of these three operations, we needed the Bp’s and Ω. This is why
diffeomorphisms preserve the three operations (??) but don’t pre-
serve grad, curl and div. The additional structures which one needs
to define grad, curl and div are only preserved by translations and
rotations.



2.7 Div, curl and grad 45

We will conclude this section by showing how Maxwell’s equa-
tions, which are usually formulated in terms of div and curl, can be
reset into “form” language. (The paragraph below is an abbreviated
version of Guillemin–Sternberg, Symplectic Techniques in Physics,
§1.20.)

Maxwell’s equations assert:

div vE = q(2.7.18)

curl vE = −
∂

∂t
vM(2.7.19)

div vM = 0(2.7.20)

c2curl vM = w +
∂

∂t
vE(2.7.21)

where vE and vM are the electric and magnetic fields, q is the scalar
charge density, w is the current density and c is the velocity of light.
(To simplify (2.7.25) slightly we’ll assume that our units of space–
time are chosen so that c = 1.) As above let Ω = dx1 ∧ dx2 ∧ dx3

and let

µE = ι(vE)Ω(2.7.22)

and

µM = ι(vM )Ω .(2.7.23)

We can then rewrite equations (2.7.18) and (2.7.20) in the form

(2.7.18′) dµE = qΩ

and

(2.7.20′) dµM = 0 .

What about (2.7.19) and (2.7.21)? We will leave the following
“form” versions of these equations as an exercise.

(2.7.19′) dv♯
E = −

∂

∂t
µM

and

(2.7.21′) dv♯
M = ι(w)Ω +

∂

∂t
µE
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where the 1-forms, v
♯
E and v

♯
M , are obtained from vE and vM by

the operation, (2.7.4).
These equations can be written more compactly as differential

form identities in 3 + 1 dimensions. Let ωM and ωE be the 2-forms

ωM = µM − v
♯
E ∧ dt(2.7.24)

and

ωE = µE − v
♯
M ∧ dt(2.7.25)

and let Λ be the 3-form

(2.7.26) Λ = qΩ + ι(w)Ω ∧ dt .

We will leave for you to show that the four equations (2.7.18) —
(2.7.21) are equivalent to two elegant and compact (3+1)-dimensional
identities

dωM = 0(2.7.27)

and

dωE = Λ .(2.7.28)

Exercises.

1. Verify that the “curl” operation is given in coordinates by the
formula (2.7.17).

2. Verify that the Maxwell’s equations, (2.7.18) and (2.7.19) be-
come the equations (2.7.20) and (2.7.21) when rewritten in differen-
tial form notation.

3. Show that in (3 + 1)-dimensions Maxwell’s equations take the
form (2.7.17)–(2.7.18).

4. Let U be an open subset of R
3 and v a vector field on U . Show

that if v is the gradient of a function, its curl has to be zero.

5. If U is simply connected prove the converse: If the curl of v
vanishes, v is the gradient of a function.
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6. Let w = curl v. Show that the divergence of w is zero.

7. Is the converse statment true? Suppose the divergence of w is
zero. Is w = curl v for some vector field v?

2.8 Symplectic geometry and classical mechanics

In this section we’ll describe some other applications of the theory
of differential forms to physics. Before describing these applications,
however, we’ll say a few words about the geometric ideas that are
involved. Let x1, . . . , x2n be the standard coordinate functions on
R

2n and for i = 1, . . . , n let yi = xi+n. The two-form

(2.8.1) ω =
n∑

i=1

dxi ∧ jyi

is known as the Darboux form. From the identity

(2.8.2) ω = −d
(∑

yi dxi

)
.

it follows that ω is exact. Moreover computing the n-fold wedge
product of ω with itself we get

ωn =

(
n∑

ii=1

dxi1 ∧ dyi1

)
∧ · · · ∧

(
n∑

in=1

dxin ∧ dyin

)

=
∑

i1,...,in

dxi1 ∧ dyi1 ∧ · · · ∧ dxin ∧ dyin .

We can simplify this sum by noting that if the multi-index, I =
i1, . . . , in, is repeating the wedge product

(2.8.3) dxi1 ∧ dyi1 ∧ · · · ∧ dxin ∧ dxin

involves two repeating dxi1 ’s and hence is zero, and if I is non-
repeating we can permute the factors and rewrite (2.8.3) in the form

dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn .

(See §1.6, exercise 5.) Hence since these are exactly n! non-repeating
multi-indices

ωn = n! dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn
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i.e.,

1

n!
ωn = Ω(2.8.4)

where

Ω = dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn(2.8.5)

is the symplectic volume form on R
2n.

Let U and V be open subsets of R
2n. A diffeomorphism f : U → V

is said to be a symplectic diffeomorphism (or symplectomorphism for
short) if f∗ω = ω. In particular let

(2.8.6) ft : U → U , −∞ < t <∞

be a one-parameter group of diffeomorphisms and let v be the vector
field generating (2.8.6). We will say that v is a symplectic vector field
if the diffeomorphisms, (2.8.6) are symplectomorphisms, i.e., for all t,

(2.8.7) f∗t ω = ω .

Let’s see what such vector fields have to look like. Note that by
(2.6.23)

(2.8.8)
d

dt
f∗t ω = f∗t Lvω ,

hence if f∗t ω = ω for all t, the left hand side of (2.8.8) is zero, so

f∗t Lvω = 0 .

In particular, for t = 0, ft is the identity map so f∗t Lvω = Lvω = 0.
Conversely, if Lvω = 0, then f∗t Lvω = 0 so by (2.8.8) f∗t ω doesn’t
depend on t. However, since f∗t ω = ω for t = 0 we conclude that
f∗t ω = ω for all t. Thus to summarize we’ve proved

Theorem 2.8.1. Let ft : U → U be a one-parameter group of dif-
feomorphisms and v the infinitesmal generator of this group. Then v
is symplectic of and only if Lvω = 0.

There is an equivalent formulation of this result in terms of the
interior product, ι(v)ω. By (2.5.11)

Lvω = dι(v)ω + ι(v) dω .
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But by (2.8.2) dω = 0 so

Lvω = dι(v)ω .

Thus we’ve shown

Theorem 2.8.2. The vector field v is symplectic if and only if ι(v)ω
is closed.

If ι(v)ω is not only closed but is exact we’ll say that v is a Hamil-
tonian vector field. In other words v is Hamiltonian if

(2.8.9) ι(v)ω = dH

for some C∞ functions, H ∈ C∞(U).
Let’s see what this condition looks like in coordinates. Let

(2.8.10) v =
∑

fi
∂

∂xi
+ gi

∂

∂yi
.

Then

ι(v)ω =
∑

i,j

fiι

(
∂

∂xi

)
dxj ∧ dyj

+
∑

i,j

giι

(
∂

∂yi

)
dxj ∧ dyi .

But

ι

(
∂

∂xi

)
dxj =

{
1 i = i

0 i 6= j

and

ι

(
∂

∂xi

)
dyj = 0

so the first summand above is

∑
fi dyi

and a similar argument shows that the second summand is

−
∑

gi dxi .
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Hence if v is the vector field (2.8.10)

(2.8.11) ι(v)ω =
∑

fi dyi − gi dxi .

Thus since

dH =
∑ ∂H

∂xi
dxi +

∂H

∂yi
dyi

we get from (2.8.9)–(2.8.11)

(2.8.12) fi =
∂H

∂yi
and gi = −

∂H

∂xi

so v has the form:

(2.8.13) v =
∑ ∂H

∂yi

∂

∂xi
−
∂H

∂xi

∂

∂yi
.

In particular if γ(t) = (x(t) , y(t)) is an integral curve of v it has
to satisfy the system of differential equations

dxi

dt
=

∂H

∂yi
(x(t) , y(t))(2.8.14)

dyi

dt
= −

∂H

∂xi
(x(t) , y(t)) .

The formulas (2.8.10) and (2.8.11) exhibit an important property of
the Darboux form, ω. Every one-form on U can be written uniquely
as a sum ∑

fi dyi − gi dxi

with fi and gi in C∞(U) and hence (2.8.10) and (2.8.11) imply

Theorem 2.8.3. The map, v → ι(v)ω, sets up a one-one correspon-
dence between vector field and one-forms.

In particular for every C∞ function, H, we get by correspondence
a unique vector field, v = vH , with the property (2.8.9).

We next note that by (??)

LvH = ι(v) dH = ι(v)(ι(v)ω) = 0 .

Thus

(2.8.15) LvH = 0
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i.e., H is an integral of motion of the vector field, v. In particular
if the function, H : U → R, is proper, then by Theorem ?? the
vector field, v, is complete and hence by Theorem 2.8.1 generates a
one-parameter group of symplectomorphisms.

One last comment before we discuss the applications of these re-
sults to classical mechanics. If the one-parameter group (2.8.6) is a
group of symplectomorphisms then f∗t ω

n = f∗t ω ∧ · · · ∧ f∗t ω = ωn so
by (2.8.4)

(2.8.16) f∗t Ω = Ω

where Ω is the symplectic volume form (2.8.5).
The application we want to make of these ideas concerns the de-

scription, in Newtonian mechanics, of a physical system consisting of
N interacting point-masses. The configuration space of such a system
is

R
n = R

3 × · · · × R
3 (N copies)

with position coordinates, x1, . . . , xn and the phase space is R
2n

with position coordinates x1, . . . , xn and momentum coordinates,
y1, . . . , yn. The kinetic energy of this system is a quadratic function
of the momentum coordinates

(2.8.17)
1

2

∑ 1

mi
y2

i ,

and for simplicity we’ll assume that the potential energy is a func-
tion, V (x1, . . . , xn), of the position coordinates alone, i.e., it doesn’t
depend on the momenta and is time-independent as well. Let

(2.8.18) H =
1

2

∑ 1

mi
y2

i + V (x1, . . . , xn)

be the total energy of the system. We’ll show below that Newton’s
second law of motion in classical mechanics reduces to the assertion:
the trajectories in phase space of the system above are just the integral
curves of the Hamiltonian vector field, vH .

Proof. For the function (2.8.18) the equations (2.8.14) become

dxi

dt
=

1

mi
yi(2.8.19)

dyi

dt
= −

∂V

∂xi
.
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The first set of equation are essentially just the definitions of mo-
menta, however, if we plug them into the second set of equations we
get

(2.8.20) mi
d2xi

dt2
= −

∂V

∂xi

and interpreting the term on the right as the force exerted on the ith

point-mass and the term on the left as mass times acceleration this
equation becomes Newton’s second law.

In classical mechanics the equations (2.8.14) are known as the
Hamilton–Jacobi equations. For a more detailed account of their role
in classical mechanics we highly recommend Arnold’s book, Mathe-
matical Methods of Classical Mechanics. Historically these equations
came up for the first time, not in Newtonian mechanics, but in gemo-
metric optics and a brief description of their origins there and of their
relation to Maxwell’s equations can be found in the bookl we cited
above, Symplectic Techniques in Physics.

We’ll conclude this chapter by mentioning a few implications of
the Hamiltonian description (2.8.14) of Newton’s equations (2.8.20).

1. Conservation of energy. By (2.8.15) the energy function (2.8.18)
is constant along the integral curves of v, hence the energy of the
system (2.8.14) doesn’t change in time.

2. Noether’s principle. Let γt : R
2n → R

2n be a one-parameter
group of diffeomorphisms of phase space and w its infinitesmal gen-
erator. The γt’s are called a symmetry of the system above if

(a) They preserve the function (2.8.18)

and

(b) the vector field w is Hamiltonian.

The condition (b) means that

(2.8.21) ι(w)ω = dG

for some C∞ function, G, and what Noether’s principle asserts is that
this function is an integral of motion of the system (2.8.14), i.e., sat-
isfies LvG = 0. In other words stated more succinctly: symmetries
of the system (2.8.14) give rise to integrals of motion.
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3. Poincaré recurrence. An important theorem of Poincaré asserts
that if the function H : R

2n → R defined by (2.8.18) is proper then
every trajectory of the system (2.8.14) returns arbitrarily close to
its initial position at some positive time, t0, and, in fact, does this
not just once but does so infinitely often. We’ll sketch a proof of this
theorem, using (2.8.16), in the next chapter.

Exercises.

1. Let vH be the vector field (2.8.13). Prove that div(vH) = 0.

2. Let U be an open subset of R
m, ft : U → U a one-parameter

group of diffeomorphisms of U and v the infinitesmal generator of
this group. Show that if α is a k-form on U then f∗t α = α for all t if
and only if Lvα = 0 (i.e., generalize to arbitrary k-forms the result
we proved above for the Darboux form).

3. The harmonic oscillator. Let H be the function
∑n

i=1mi(x
2
i +

y2
i ) where the mi’s are positive constants.

(a) Compute the integral curves of vH .

(b) Poincaré recurrence. Show that if (x(t), y(t)) is an integral curve
with initial point (x0, y0) = (x(0), y(0)) and U an arbitrarily small
neighborhood of (x0, y0), then for every c > 0 there exists a t > c
such that (x(t), y(t)) ∈ U .

4. Let U be an open subset of R
2n and let Hi, i = 1, 2, be in

C∞(U)i. Show that

[vH1
, vH2

] = vH(2.8.22)

where

H =
n∑

i=1

∂H1

∂xi

∂H2

∂yi
−
∂H2

∂xi

∂H1

∂yi
.(2.8.23)

5. The expression (2.8.23) is known as the Poisson bracket of H1

and H2 and is denoted by {H1,H2}. Show that it is anti-symmetric

{H1,H2} = −{H2,H1}
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and satisfies Jacobi’s identity

0 = {H1, {H2,H3}} + {H2, {H3,H1}} + {H3, {H1,H2}} .

6. Show that

(2.8.24) {H1,H2} = LvH1
H2 = −LvH2

H1 .

7. Prove that the following three properties are equivalent.

(a) {H1,H2} = 0.

(b) H1 is an integral of motion of v2.

(c) H2 is an integral of motion of v1.

8. Verify Noether’s principle.

9. Conservation of linear momentum. Suppose the potential, V in
(2.8.18) is invariant under the one-parameter group of translations

Tt(x1, . . . , xn) = (x1 + t, . . . , xn + t) .

(a) Show that the function (2.8.18) is invariant under the group of
diffeomorphisms

γt(x, y) = (Ttx, y) .

(b) Show that the infinitesmal generator of this group is the Hamil-
tonian vector field vG where G =

∑n
i=1 yi.

(c) Conclude from Noether’s principle that this function is an in-
tegral of the vector field vH , i.e., that “total linear moment” is con-
served.

(d) Show that “total linear momentum” is conserved if V is the
Coulomb potential ∑

i6=j

mi

|xi − xj|
.

10. Let Ri
t : R

2n → R
2n be the rotation which fixes the variables,

(xk, yk), k 6= i and rotates (xi, yi) by the angle, t:

Ri
t(xi, yi) = (cos t xi + sin t yi , − sin t xi + cos t yi) .



2.8 Symplectic geometry and classical mechanics 55

(a) Show that Ri
t, −∞ < t < ∞, is a one-parameter group of

symplectomorphisms.

(b) Show that its generator is the Hamiltonian vector field, vHi
,

where Hi = (x2
i + y2

i )/2.

(c) Let H be the “harmonic oscillator” Hamiltonian in exercise 3.
Show that the Rj

t ’s preserve H.

(d) What does Noether’s principle tell one about the classical me-
chanical system with energy function H?

11. Show that if U is an open subset of R
2n and v is a symplec-

tic vector field on U then for every point, p0 ∈ U , there exists a
neighborhood, U0, of p0 on which v is Hamiltonian.

12. Deduce from exercises 4 and 11 that if v1 and v2 are symplectic
vector fields on an open subset, U , of R

2n their Lie bracket, [v1, v2],
is a Hamiltonian vector field.

13. Let α be the one-form,
∑n

i=1 yi dxi.

(a) Show that ω = − dα.

(b) Show that if α1 is any one-form on R
2n with the property,

ω = −dα1, then
α = α1 + F

for some C∞ function F .

(c) Show that α = ι(w)ω where w is the vector field

−
∑

yi
∂

∂yi
.

14. Let U be an open subset of R
2n and v a vector field on U . Show

that v has the property, Lvα = 0, if and only if

(2.8.25) ι(v)ω = dι(v)α .

In particular conclude that if Lvα = 0 then v is Hamiltonian. Hint: (2.8.2).

15. Let H be the function

(2.8.26) H(x, y) =
∑

fi(x)yi ,

where the fi’s are C∞ functions on R
n. Show that

(2.8.27) LvH
α = 0 .
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16. Conversely show that if H is any C∞ function on R
2n satisfying

(2.8.27) it has to be a function of the form (2.8.26). Hints:

(a) Let v be a vector field on R
2n satisfying Lvα = 0. By the

previous exercise v = vH , where H = ι(v)α.

(b) Show that H has to satisfy the equation

n∑

i=1

yi
∂H

∂yi
= H .

(c) Conclude that if Hr = ∂H
∂yr

then Hr has to satisfy the equation

n∑

i=1

yi
∂

∂yi
Hr = 0 .

(d) Conclude that Hr has to be constant along the rays (x, ty),
0 ≤ t <∞.

(e) Conclude finally thatHr has to be a function of x alone, i.e., doesn’t
depend on y.

17. Show that if vRn is a vector field

∑
fi(x)

∂

∂xi

on configuration space there is a unique lift of vRn to phase space

v =
∑

fi(x)
∂

∂xi
+ gi(x, y)

∂

∂yi

satisfying Lvα = 0.


