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CHAPTER 1

MULTILINEAR ALGEBRA

1.1 Background

We will list below some definitions and theorems that are part of
the curriculum of a standard theory-based sophomore level course
in linear algebra. (Such a course is a prerequisite for reading these
notes.) A vector space is a set, V , the elements of which we will refer
to as vectors. It is equipped with two vector space operations:
Vector space addition. Given two vectors, v1 and v2, one can add
them to get a third vector, v1 + v2.
Scalar multiplication. Given a vector, v, and a real number, λ, one
can multiply v by λ to get a vector, λv.

These operations satisfy a number of standard rules: associativ-
ity, commutativity, distributive laws, etc. which we assume you’re
familiar with. (See exercise 1 below.) In addition we’ll assume you’re
familiar with the following definitions and theorems.

1. The zero vector. This vector has the property that for every
vector, v, v+ 0 = 0+ v = v and λv = 0 if λ is the real number, zero.

2. Linear independence. A collection of vectors, vi, i = 1, . . . , k, is
linearly independent if the map

(1.1.1) R
k → V , (c1, . . . , ck) → c1v1 + · · · + ckvk

is 1 − 1.

3. The spanning property. A collection of vectors, vi, i = 1, . . . , k,
spans V if the map (1.1.1) is onto.

4. The notion of basis. The vectors, vi, in items 2 and 3 are a basis
of V if they span V and are linearly independent; in other words, if
the map (1.1.1) is bijective. This means that every vector, v, can be
written uniquely as a sum

(1.1.2) v =
∑

civi .
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5. The dimension of a vector space. If V possesses a basis, vi,
i = 1, . . . , k, V is said to be finite dimensional, and k is, by definition,
the dimension of V . (It is a theorem that this definition is legitimate:
every basis has to have the same number of vectors.) In this chapter
all the vector spaces we’ll encounter will be finite dimensional.

6. A subset, U , of V is a subspace if it’s vector space in its own
right, i.e., for v, v1 and v2 in U and λ in R, λv and v1 + v2 are in U .

7. Let V and W be vector spaces. A map, A : V → W is linear if,
for v, v1 and v2 in V and λ ∈ R

A(λv) = λAv(1.1.3)

and

A(v1 + v2) = Av1 +Av2 .(1.1.4)

8. The kernel of A. This is the set of vectors, v, in V which get
mapped by A into the zero vector in W . By (1.1.3) and (1.1.4) this
set is a subspace of V . We’ll denote it by “KerA”.

9. The image of A. By (1.1.3) and (1.1.4) the image of A, which
we’ll denote by “ImA”, is a subspace of W . The following is an
important rule for keeping track of the dimensions of KerA and
ImA.

(1.1.5) dimV = dim KerA+ dim ImA .

Example 1. The map (1.1.1) is a linear map. The vi’s span V if its
image is V and the vi’s are linearly independent if its kernel is just
the zero vector in R

k.

10. Linear mappings and matrices. Let v1, . . . , vn be a basis of V
and w1, . . . , wm a basis of W . Then by (1.1.2) Avj can be written
uniquely as a sum,

(1.1.6) Avj =

m∑

i=1

ci,jwi , ci,j ∈ R .

The m × n matrix of real numbers, [ci,j ], is the matrix associated
with A. Conversely, given such an m × n matrix, there is a unique
linear map, A, with the property (1.1.6).
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11. An inner product on a vector space is a map

B : V × V → R

having the three properties below.

(a) For vectors, v, v1, v2 and w and λ ∈ R

B(v1 + v2, w) = B(v1, w) +B(v2, w)

and

B(λv,w) = λB(v,w) .

(b) For vectors, v and w,

B(v,w) = B(w, v) .

(c) For every vector, v

B(v, v) ≥ 0 .

Moreover, if v 6= 0, B(v, v) is positive.

Notice that by property (b), property (a) is equivalent to

B(w, λv) = λB(w, v)

and

B(w, v1 + v2) = B(w, v1) +B(w, v2) .

The items on the list above are just a few of the topics in linear al-
gebra that we’re assuming our readers are familiar with. We’ve high-
lighted them because they’re easy to state. However, understanding
them requires a heavy dollop of that indefinable quality “mathe-
matical sophistication”, a quality which will be in heavy demand in
the next few sections of this chapter. We will also assume that our
readers are familiar with a number of more low-brow linear algebra
notions: matrix multiplication, row and column operations on matri-
ces, transposes of matrices, determinants of n×n matrices, inverses
of matrices, Cramer’s rule, recipes for solving systems of linear equa-
tions, etc. (See §1.1 and 1.2 of Munkres’ book for a quick review of
this material.)
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Exercises.

1. Our basic example of a vector space in this course is R
n equipped

with the vector addition operation

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

and the scalar multiplication operation

λ(a1, . . . , an) = (λa1, . . . , λan) .

Check that these operations satisfy the axioms below.

(a) Commutativity: v + w = w + v.

(b) Associativity: u+ (v + w) = (u+ v) + w.

(c) For the zero vector, 0 = (0, . . . , 0), v + 0 = 0 + v.

(d) v + (−1)v = 0.

(e) 1v = v.

(f) Associative law for scalar multiplication: (ab)v = a(bv).

(g) Distributive law for scalar addition: (a+ b)v = av + bv.

(h) Distributive law for vector addition: a(v + w) = av + aw.

2. Check that the standard basis vectors of R
n: e1 = (1, 0, . . . , 0),

e2 = (0, 1, 0, . . . , 0), etc. are a basis.

3. Check that the standard inner product on R
n

B((a1, . . . , an), (b1, . . . , bn)) =
n∑

i=1

aibi

is an inner product.

1.2 Quotient spaces and dual spaces

In this section we will discuss a couple of items which are frequently,
but not always, covered in linear algebra courses, but which we’ll
need for our treatment of multilinear algebra in §§1.1.3 – 1.1.8.
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The quotient spaces of a vector space

Let V be a vector space and W a vector subspace of V . A W -coset
is a set of the form

v +W = {v + w , w ∈W} .

It is easy to check that if v1 − v2 ∈ W , the cosets, v1 + W and
v2 + W , coincide while if v1 − v2 6∈ W , they are disjoint. Thus the
W -cosets decompose V into a disjoint collection of subsets of V . We
will denote this collection of sets by V/W .

One defines a vector addition operation on V/W by defining the
sum of two cosets, v1 +W and v2 +W to be the coset

(1.2.1) v1 + v2 +W

and one defines a scalar multiplication operation by defining the
scalar multiple of v +W by λ to be the coset

(1.2.2) λv +W .

It is easy to see that these operations are well defined. For instance,
suppose v1 + W = v′1 + W and v2 + W = v′2 + W . Then v1 − v′1
and v2 − v′2 are in W ; so (v1 + v2) − (v′1 + v′2) is in W and hence
v1 + v2 +W = v′1 + v′2 +W .

These operations make V/W into a vector space, and one calls
this space the quotient space of V by W .

We define a mapping

(1.2.3) π : V → V/W

by setting π(v) = v + W . It’s clear from (1.2.1) and (1.2.2) that
π is a linear mapping, and that it maps V to V/W . Moreover, for
every coset, v +W , π(v) = v +W ; so the mapping, π, is onto. Also
note that the zero vector in the vector space, V/W , is the zero coset,
0+W = W . Hence v is in the kernel of π if v+W = W , i.e., v ∈W .
In other words the kernel of π is W .

In the definition above, V and W don’t have to be finite dimen-
sional, but if they are, then

(1.2.4) dimV/W = dimV − dimW .

by (1.1.5).
The following, which is easy to prove, we’ll leave as an exercise.
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Proposition 1.2.1. Let U be a vector space and A : V → U a linear
map. If W ⊂ KerA there exists a unique linear map, A# : V/W → U
with property, A = A# ◦ π.

The dual space of a vector space

We’ll denote by V ∗ the set of all linear functions, ℓ : V → R. If ℓ1
and ℓ2 are linear functions, their sum, ℓ1 + ℓ2, is linear, and if ℓ is
a linear function and λ is a real number, the function, λℓ, is linear.
Hence V ∗ is a vector space. One calls this space the dual space of V .

Suppose V is n-dimensional, and let e1, . . . , en be a basis of V .
Then every vector, v ∈ V , can be written uniquely as a sum

v = c1e1 + · · · + cnen ci ∈ R .

Let

(1.2.5) e∗i (v) = ci .

If v = c1e1 + · · · + cnen and v′ = c′1e1 + · · · + c′nen then v + v′ =
(c1 + c′1)e1 + · · · + (cn + c′n)en, so

e∗i (v + v′) = ci + c′i = e∗i (v) + e∗i (v
′) .

This shows that e∗i (v) is a linear function of v and hence e∗i ∈ V ∗.

Claim: e∗i , i = 1, . . . , n is a basis of V ∗.

Proof. First of all note that by (1.2.5)

(1.2.6) e∗i (ej) =

{
1 , i = j
0 , i 6= j

.

If ℓ ∈ V ∗ let λi = ℓ(ei) and let ℓ′ =
∑
λie

∗
i . Then by (1.2.6)

(1.2.7) ℓ′(ej) =
∑

λie
∗
i (ej) = λj = ℓ(ej) ,

i.e., ℓ and ℓ′ take identical values on the basis vectors, ej. Hence
ℓ = ℓ′.

Suppose next that
∑
λie

∗
i = 0. Then by (1.2.6), λj = (

∑
λie

∗
i )(ej) =

0 for all j = 1, . . . , n. Hence the e∗j ’s are linearly independent.
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Let V and W be vector spaces and A : V → W , a linear map.
Given ℓ ∈ W ∗ the composition, ℓ ◦ A, of A with the linear map,
ℓ : W → R, is linear, and hence is an element of V ∗. We will denote
this element by A∗ℓ, and we will denote by

A∗ : W ∗ → V ∗

the map, ℓ→ A∗ℓ. It’s clear from the definition that

A∗(ℓ1 + ℓ2) = A∗ℓ1 +A∗ℓ2

and that

A∗λℓ = λA∗ℓ ,

i.e., that A∗ is linear.

Definition. A∗ is the transpose of the mapping A.

We will conclude this section by giving a matrix description of
A∗. Let e1, . . . , en be a basis of V and f1, . . . , fm a basis of W ; let
e∗1, . . . , e

∗
n and f∗1 , . . . , f

∗
m be the dual bases of V ∗ and W ∗. Suppose A

is defined in terms of e1, . . . , en and f1, . . . , fm by the m×n matrix,
[ai,j], i.e., suppose

Aej =
∑

ai,jfi .

Claim. A∗ is defined, in terms of f∗1 , . . . , f
∗
m and e∗1, . . . , e

∗
n by the

transpose matrix, [aj,i].

Proof. Let

A∗f∗i =
∑

cj,ie
∗
j .

Then

A∗f∗i (ej) =
∑

k

ck,ie
∗
k(ej) = cj,i

by (1.2.6). On the other hand

A∗f∗i (ej) = f∗i (Aej) = f∗i

(∑
ak,jfk

)
=

∑

k

ak,jf
∗
i (fk) = ai,j

so ai,j = cj,i.
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Exercises.

1. Let V be an n-dimensional vector space and W a k-dimensional
subspace. Show that there exists a basis, e1, . . . , en of V with the
property that e1, . . . , ek is a basis of W . Hint: Induction on n − k.
To start the induction suppose that n− k = 1. Let e1, . . . , en−1 be a
basis of W and en any vector in V −W .

2. In exercise 1 show that the vectors fi = π(ek+i), i = 1, . . . , n−k
are a basis of V/W .

3. In exercise 1 let U be the linear span of the vectors, ek+i, i =
1, . . . , n− k.

Show that the map

U → V/W , u→ π(u) ,

is a vector space isomorphism, i.e., show that it maps U bijectively
onto V/W .

4. Let U , V and W be vector spaces and let A : V → W and
B : U → V be linear mappings. Show that (AB)∗ = B∗A∗.

5. Let V = R
2 and let W be the x1-axis, i.e., the one-dimensional

subspace
{(x1, 0) ; x1 ∈ R}

of R
2.

(a) Show that the W -cosets are the lines, x2 = a, parallel to the
x1-axis.

(b) Show that the sum of the cosets, “x2 = a” and “x2 = b” is the
coset “x2 = a+ b”.

(c) Show that the scalar multiple of the coset, “x2 = c” by the
number, λ, is the coset, “x2 = λc”.

6. (a) Let (V ∗)∗ be the dual of the vector space, V ∗. For every
v ∈ V , let µv : V ∗ → R be the function, µv(ℓ) = ℓ(v). Show that
the µv is a linear function on V ∗, i.e., an element of (V ∗)∗, and show
that the map

(1.2.8) µ : V → (V ∗)∗ v → µv

is a linear map of V into (V ∗)∗.
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(b) Show that the map (1.2.8) is bijective. (Hint: dim(V ∗)∗ =
dimV ∗ = dimV , so by (1.1.5) it suffices to show that (1.2.8) is
injective.) Conclude that there is a natural identification of V with
(V ∗)∗, i.e., that V and (V ∗)∗ are two descriptions of the same object.

7. Let W be a vector subspace of V and let

W⊥ = {ℓ ∈ V ∗ , ℓ(w) = 0 if w ∈W} .

Show that W⊥ is a subspace of V ∗ and that its dimension is equal to
dimV −dimW . (Hint: By exercise 1 we can choose a basis, e1, . . . , en
of V such that e1, . . . ek is a basis of W . Show that e∗k+1, . . . , e

∗
n is a

basis of W⊥.) W⊥ is called the annihilator of W in V ∗.

8. Let V and V ′ be vector spaces and A : V → V ′ a linear map.
Show that if W is the kernel of A there exists a linear map, B :
V/W → V ′, with the property: A = B ◦ π, π being the map (1.2.3).
In addition show that this linear map is injective.

9. Let W be a subspace of a finite-dimensional vector space, V .
From the inclusion map, ι : W⊥ → V ∗, one gets a transpose map,

ι∗ : (V ∗)∗ → (W⊥)∗

and, by composing this with (1.2.8), a map

ι∗ ◦ µ : V → (W⊥)∗ .

Show that this map is onto and that its kernel is W . Conclude from
exercise 8 that there is a natural bijective linear map

ν : V/W → (W⊥)∗

with the property ν ◦π = ι∗ ◦µ. In other words, V/W and (W⊥)∗ are
two descriptions of the same object. (This shows that the “quotient
space” operation and the “dual space” operation are closely related.)

10. Let V1 and V2 be vector spaces and A : V1 → V2 a linear map.
Verify that for the transpose map: A∗ : V ∗

2 → V ∗
1

KerA∗ = (ImA)⊥

and

ImA∗ = (KerA)⊥ .
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11. (a) Let B : V × V → R be an inner product on V . For v ∈ V
let

ℓv : V → R

be the function: ℓv(w) = B(v,w). Show that ℓv is linear and show
that the map

(1.2.9) L : V → V ∗ , v → ℓv

is a linear mapping.

(b) Prove that this mapping is bijective. (Hint: Since dimV =
dimV ∗ it suffices by (1.1.5) to show that its kernel is zero. Now note
that if v 6= 0 ℓv(v) = B(v, v) is a positive number.) Conclude that if
V has an inner product one gets from it a natural identification of
V with V ∗.

12. Let V be an n-dimensional vector space and B : V × V → R

an inner product on V . A basis, e1, . . . , en of V is orthonormal is

(1.2.10) B(ei, ej) =

{
1 i = j
0 i 6= j

(a) Show that an orthonormal basis exists. Hint: By induction let
ei, i = 1, . . . , k be vectors with the property (1.2.10) and let v be a
vector which is not a linear combination of these vectors. Show that
the vector

w = v −
∑

B(ei, v)ei

is non-zero and is orthogonal to the ei’s. Now let ek+1 = λw, where

λ = B(w,w)−
1

2 .

(b) Let e1, . . . en and e′1, . . . e
′
n be two orthogonal bases of V and let

(1.2.11) e′j =
∑

ai,jei .

Show that

(1.2.12)
∑

ai,jai,k =

{
1 j = k
0 j 6= k

(c) Let A be the matrix [ai,j]. Show that (1.2.12) can be written
more compactly as the matrix identity

(1.2.13) AAt = I

where I is the identity matrix.
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(d) Let e1, . . . , en be an orthonormal basis of V and e∗1, . . . , e
∗
n the

dual basis of V ∗. Show that the mapping (1.2.9) is the mapping,
Lei = e∗i , i = 1, . . . n.
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1.3 Tensors

Let V be an n-dimensional vector space and let V k be the set of all
k-tuples, (v1, . . . , vk), vi ∈ V . A function

T : V k → R

is said to be linear in its ith variable if, when we fix vectors, v1, . . . , vi−1,
vi+1, . . . , vk, the map

(1.3.1) v ∈ V → T (v1, . . . , vi−1, v, vi+1, . . . , vk)

is linear in V . If T is linear in its ith variable for i = 1, . . . , k it is said
to be k-linear, or alternatively is said to be a k-tensor. We denote
the set of all k-tensors by Lk(V ). We will agree that 0-tensors are
just the real numbers, that is L0(V ) = R.

Let T1 and T2 be functions on V k. It is clear from (1.3.1) that if
T1 and T2 are k-linear, so is T1 + T2. Similarly if T is k-linear and λ
is a real number, λT is k-linear. Hence Lk(V ) is a vector space. Note
that for k = 1, “k-linear” just means “linear”, so L1(V ) = V ∗.

Let I = (i1, . . . ik) be a sequence of integers with 1 ≤ ir ≤ n,
r = 1, . . . , k. We will call such a sequence a multi-index of length k.
For instance the multi-indices of length 2 are the square arrays of
pairs of integers

(i, j) , 1 ≤ i, j ≤ n

and there are exactly n2 of them.

Exercise.

Show that there are exactly nk multi-indices of length k.

Now fix a basis, e1, . . . , en, of V and for T ∈ Lk(V ) let

(1.3.2) TI = T (ei1 , . . . , eik)

for every multi-index I of length k.

Proposition 1.3.1. The TI ’s determine T , i.e., if T and T ′ are
k-tensors and TI = T ′

I for all I, then T = T ′.
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Proof. By induction on n. For n = 1 we proved this result in § 1.1.
Let’s prove that if this assertion is true for n− 1, it’s true for n. For
each ei let Ti be the (k − 1)-tensor

(v1, . . . , vn−1) → T (v1, . . . , vn−1, ei) .

Then for v = c1e1 + · · · cnen

T (v1, . . . , vn−1, v) =
∑

ciTi(v1, . . . , vn−1) ,

so the Ti’s determine T . Now apply induction.

The tensor product operation

If T1 is a k-tensor and T2 is an ℓ-tensor, one can define a k+ℓ-tensor,
T1 ⊗ T2, by setting

(T1 ⊗ T2)(v1, . . . , vk+ℓ) = T1(v1, . . . , vk)T2(vk+1, . . . , vk+ℓ) .

This tensor is called the tensor product of T1 and T2. We note that
if T1 or T2 is a 0-tensor, i.e., scalar, then tensor product with it
is just scalar multiplication by it, that is a ⊗ T = T ⊗ a = aT
(a ∈ R , T ∈ Lk(V )).

Similarly, given a k-tensor, T1, an ℓ-tensor, T2 and an m-tensor,
T3, one can define a (k + ℓ+m)-tensor, T1 ⊗ T2 ⊗ T3 by setting

T1 ⊗ T2 ⊗ T3(v1, . . . , vk+ℓ+m)(1.3.3)

= T1(v1, . . . , vk)T2(vk+1, . . . , vk+ℓ)T3(vk+ℓ+1, . . . , vk+ℓ+m) .

Alternatively, one can define (1.3.3) by defining it to be the tensor
product of T1 ⊗ T2 and T3 or the tensor product of T1 and T2 ⊗ T3.
It’s easy to see that both these tensor products are identical with
(1.3.3):

(1.3.4) (T1 ⊗ T2) ⊗ T3 = T1 ⊗ (T2 ⊗ T3) = T1 ⊗ T2 ⊗ T3 .

We leave for you to check that if λ is a real number

(1.3.5) λ(T1 ⊗ T2) = (λT1) ⊗ T2 = T1 ⊗ (λT2)

and that the left and right distributive laws are valid: For k1 = k2,

(1.3.6) (T1 + T2) ⊗ T3 = T1 ⊗ T3 + T2 ⊗ T3
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and for k2 = k3

(1.3.7) T1 ⊗ (T2 + T3) = T1 ⊗ T2 + T1 ⊗ T3 .

A particularly interesting tensor product is the following. For i =
1, . . . , k let ℓi ∈ V ∗ and let

(1.3.8) T = ℓ1 ⊗ · · · ⊗ ℓk .

Thus, by definition,

(1.3.9) T (v1, . . . , vk) = ℓ1(v1) . . . ℓk(vk) .

A tensor of the form (1.3.9) is called a decomposable k-tensor. These
tensors, as we will see, play an important role in what follows. In
particular, let e1, . . . , en be a basis of V and e∗1, . . . , e

∗
n the dual basis

of V ∗. For every multi-index, I, of length k let

e∗I = e∗i1 ⊗ · · · ⊗ e∗ik .

Then if J is another multi-index of length k,

e∗I(ej1 , . . . , ejk
) =

{
1 , I = J
0 , I 6= J

(1.3.10)

by (1.2.6), (1.3.8) and (1.3.9). From (1.3.10) it’s easy to conclude

Theorem 1.3.2. The e∗I ’s are a basis of Lk(V ).

Proof. Given T ∈ Lk(V ), let

T ′ =
∑

TIe
∗
I

where the TI ’s are defined by (1.3.2). Then

(1.3.11) T ′(ej1 , . . . , ejk
) =

∑
TIe

∗
I(ej1 , . . . , ejk

) = TJ

by (1.3.10); however, by Proposition 1.3.1 the TJ ’s determine T , so
T ′ = T . This proves that the e∗I ’s are a spanning set of vectors for
Lk(V ). To prove they’re a basis, suppose

∑
CIe

∗
I = 0

for constants, CI ∈ R. Then by (1.3.11) with T ′ = 0, CJ = 0, so the
e∗I ’s are linearly independent.

As we noted above there are exactly nk multi-indices of length k
and hence nk basis vectors in the set, {e∗I}, so we’ve proved

Corollary. dimLk(V ) = nk.



1.3 Tensors 15

The pull-back operation

Let V and W be finite dimensional vector spaces and let A : V →W
be a linear mapping. If T ∈ Lk(W ), we define

A∗T : V k → R

to be the function

(1.3.12) A∗T (v1, . . . , vk) = T (Av1, . . . , Avk) .

It’s clear from the linearity of A that this function is linear in its
ith variable for all i, and hence is k-tensor. We will call A∗T the
pull-back of T by the map, A.

Proposition 1.3.3. The map

(1.3.13) A∗ : Lk(W ) → Lk(V ) , T → A∗T ,

is a linear mapping.

We leave this as an exercise. We also leave as an exercise the
identity

(1.3.14) A∗(T1 ⊗ T2) = A∗T1 ⊗A∗T2

for T1 ∈ Lk(W ) and T2 ∈ Lm(W ). Also, if U is a vector space and
B : U → V a linear mapping, we leave for you to check that

(1.3.15) (AB)∗T = B∗(A∗T )

for all T ∈ Lk(W ).

Exercises.

1. Verify that there are exactly nk multi-indices of length k.

2. Prove Proposition 1.3.3.

3. Verify (1.3.14).

4. Verify (1.3.15).
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5. Let A : V → W be a linear map. Show that if ℓi, i = 1, . . . , k
are elements of W ∗

A∗(ℓ1 ⊗ · · · ⊗ ℓk) = A∗ℓ1 ⊗ · · · ⊗A∗ℓk .

Conclude that A∗ maps decomposable k-tensors to decomposable
k-tensors.

6. Let V be an n-dimensional vector space and ℓi, i = 1, 2, ele-
ments of V ∗. Show that ℓ1 ⊗ ℓ2 = ℓ2 ⊗ ℓ1 if and only if ℓ1 and ℓ2
are linearly dependent. (Hint: Show that if ℓ1 and ℓ2 are linearly
independent there exist vectors, vi, i =, 1, 2 in V with property

ℓi(vj) =

{
1, i = j
0, i 6= j

.

Now compare (ℓ1⊗ ℓ2)(v1, v2) and (ℓ2 ⊗ ℓ1)(v1, v2).) Conclude that if
dimV ≥ 2 the tensor product operation isn’t commutative, i.e., it’s
usually not true that ℓ1 ⊗ ℓ2 = ℓ2 ⊗ ℓ1.

7. Let T be a k-tensor and v a vector. Define Tv : V k−1 → R to
be the map

(1.3.16) Tv(v1, . . . , vk−1) = T (v, v1, . . . , vk−1) .

Show that Tv is a (k − 1)-tensor.

8. Show that if T1 is an r-tensor and T2 is an s-tensor, then if
r > 0,

(T1 ⊗ T2)v = (T1)v ⊗ T2 .

9. Let A : V → W be a linear map mapping v ∈ V to w ∈ W .
Show that for T ∈ Lk(W ), A∗(Tw) = (A∗T )v.
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1.4 Alternating k-tensors

We will discuss in this section a class of k-tensors which play an
important role in multivariable calculus. In this discussion we will
need some standard facts about the “permutation group”. For those
of you who are already familiar with this object (and I suspect most
of you are) you can regard the paragraph below as a chance to re-
familiarize yourselves with these facts.

Permutations

Let
∑

k be the k-element set: {1, 2, . . . , k}. A permutation of order k
is a bijective map, σ :

∑
k →

∑
k. Given two permutations, σ1 and

σ2, their product, σ1σ2, is the composition of σ1 and σ2, i.e., the map,

i→ σ1(σ2(i)) ,

and for every permutation, σ, one denotes by σ−1 the inverse per-
mutation:

σ(i) = j ⇔ σ−1(j) = i .

Let Sk be the set of all permutations of order k. One calls Sk the
permutation group of

∑
k or, alternatively, the symmetric group on

k letters.

Check:

There are k! elements in Sk.

For every 1 ≤ i < j ≤ k, let τ = τi,j be the permutation

τ(i) = j

τ(j) = i(1.4.1)

τ(ℓ) = ℓ , ℓ 6= i, j .

τ is called a transposition, and if j = i+ 1, τ is called an elementary
transposition.

Theorem 1.4.1. Every permutation can be written as a product of
finite number of transpositions.
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Proof. Induction on k: “k = 2” is obvious. The induction step: “k−1”
implies “k”: Given σ ∈ Sk, σ(k) = i⇔ τikσ(k) = k. Thus τikσ is, in
effect, a permutation of

∑
k−1. By induction, τikσ can be written as

a product of transpositions, so

σ = τik(τikσ)

can be written as a product of transpositions.

Theorem 1.4.2. Every transposition can be written as a product of
elementary transpositions.

Proof. Let τ = τij , i < j. With i fixed, argue by induction on j.
Note that for j > i+ 1

τij = τj−1,jτi,j−1τj−1,j .

Now apply induction to τi,j−1.

Corollary. Every permutation can be written as a product of ele-
mentary transpositions.

The sign of a permutation

Let x1, . . . , xk be the coordinate functions on R
k. For σ ∈ Sk we

define

(1.4.2) (−1)σ =
∏

i<j

xσ(i) − xσ(j)

xi − xj

.

Notice that the numerator and denominator in this expression are
identical up to sign. Indeed, if p = σ(i) < σ(j) = q, the term, xp−xq

occurs once and just once in the numerator and one and just one
in the denominator; and if q = σ(i) > σ(j) = p, the term, xp − xq,
occurs once and just once in the numerator and its negative, xq −xp,
once and just once in the numerator. Thus

(1.4.3) (−1)σ = ±1 .
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Claim:

For σ, τ ∈ Sk

(1.4.4) (−1)στ = (−1)σ(−1)τ .

Proof. By definition,

(−1)στ =
∏

i<j

xστ(i) − xστ(j)

xi − xj

.

We write the right hand side as a product of

(1.4.5)
∏

i<j

xτ(i) − xτ(j)

xi − xj

= (−1)τ

and

(1.4.6)
∏

i<j

xστ(i) − xστ(j)

xτ(i) − xτ(j)

For i < j, let p = τ(i) and q = τ(j) when τ(i) < τ(j) and let p = τ(j)
and q = τ(i) when τ(j) < τ(i). Then

xστ(i) − xστ(j)

xτ(i) − xτ(j)
=
xσ(p) − xσ(q)

xp − xq

(i.e., if τ(i) < τ(j), the numerator and denominator on the right
equal the numerator and denominator on the left and, if τ(j) < τ(i)
are negatives of the numerator and denominator on the left). Thus
(1.4.6) becomes

∏

p<q

xσ(p) − xσ(q)

xp − xq

= (−1)σ .

We’ll leave for you to check that if τ is a transposition, (−1)τ = −1
and to conclude from this:

Proposition 1.4.3. If σ is the product of an odd number of trans-
positions, (−1)σ = −1 and if σ is the product of an even number of
transpositions (−1)σ = +1.
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Alternation

Let V be an n-dimensional vector space and T ∈ L∗(v) a k-tensor.
If σ ∈ Sk, let T σ ∈ L∗(V ) be the k-tensor

(1.4.7) T σ(v1, . . . , vk) = T (vσ−1(1), . . . , vσ−1(k)) .

Proposition 1.4.4. 1. If T = ℓ1 ⊗ · · · ⊗ ℓk, ℓi ∈ V ∗, then T σ =
ℓσ(1) ⊗ · · · ⊗ ℓσ(k).

2. The map, T ∈ Lk(V ) → T σ ∈ Lk(V ) is a linear map.

3. T στ = (T σ)τ .

Proof. To prove 1, we note that by (1.4.7)

(ℓ1 ⊗ · · · ⊗ ℓk)
σ(v1, . . . , vk)

= ℓ1(vσ−1(1)) · · · ℓk(vσ−1(k)) .

Setting σ−1(i) = q, the ith term in this product is ℓσ(q)(vq); so the
product can be rewritten as

ℓσ(1)(v1) . . . ℓσ(k)(vk)

or

(ℓσ(1) ⊗ · · · ⊗ ℓσ(k))(v1, . . . , vk) .

The proof of 2 we’ll leave as an exercise.

Proof of 3: Let T = ℓ1 ⊗ · · · ⊗ ℓk. Then

T σ = ℓσ(1) ⊗ · · · ⊗ ℓσ(k)

= ℓ′1 ⊗ · · · ⊗ ℓ′k

where ℓ′j = ℓσ(j). Thus

(T σ)τ = ℓ′τ(1) ⊗ · · · ⊗ ℓ′τ(k) .

But if τ(i) = j, ℓ′
τ(j) = ℓσ(τ(j)). Hence

(T σ)τ = ℓστ(1) ⊗ · · · ⊗ ℓστ(k)

= T στ .
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Definition 1.4.5. T ∈ Lk(V ) is alternating if T σ = (−1)σT for all
σ ∈ Sk.

We will denote by Ak(V ) the set of all alternating k-tensors in
Lk(V ). By item 2 of Proposition 1.4.4 this set is a vector subspace
of Lk(V ).

It is not easy to write down simple examples of alternating k-
tensors; however, there is a method, called the alternation operation,
for constructing such tensors: Given T ∈ L∗(V ) let

(1.4.8) AltT =
∑

τ∈Sk

(−1)τT τ .

We claim

Proposition 1.4.6. For T ∈ Lk(V ) and σ ∈ Sk,

1. (Alt T )σ = (−1)σAltT

2. if T ∈ Ak(V ) , AltT = k!T .

3. AltT σ = (Alt T )σ

4. the map

Alt : Lk(V ) → Lk(V ) , T → Alt (T )

is linear.

Proof. To prove 1 we note that by Proposition (1.4.4):

(Alt T )σ =
∑

(−1)τ (T τσ)

= (−1)σ
∑

(−1)τσT τσ .

But as τ runs over Sk, τσ runs over Sk, and hence the right hand
side is (−1)σAlt (T ).

Proof of 2. If T ∈ Ak

AltT =
∑

(−1)τT τ

=
∑

(−1)τ (−1)τT

= k!T .
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Proof of 3.

AltT σ =
∑

(−1)τT τσ = (−1)σ
∑

(−1)τσT τσ

= (−1)σAltT = (AltT )σ .

Finally, item 4 is an easy corollary of item 2 of Proposition 1.4.4.

We will use this alternation operation to construct a basis for
Ak(V ). First, however, we require some notation:

Let I = (i1, . . . , ik) be a multi-index of length k.

Definition 1.4.7. 1. I is repeating if ir = is for some r 6= s.

2. I is strictly increasing if i1 < i2 < · · · < ir.

3. For σ ∈ Sk, I
σ = (iσ(1), . . . , iσ(k)) .

Remark: If I is non-repeating there is a unique σ ∈ Sk so that Iσ

is strictly increasing.
Let e1, . . . , en be a basis of V and let

e∗I = e∗i1 ⊗ · · · ⊗ e∗ik

and

ψI = Alt (e∗I) .

Proposition 1.4.8. 1. ψIσ = (−1)σψI .

2. If I is repeating, ψI = 0.

3. If I and J are strictly increasing,

ψI(ej1 , . . . , ejk
) =

{
1 I = J
0 I 6= J

.

Proof. To prove 1 we note that (e∗I)
σ = e∗Iσ ; so

Alt (e∗Iσ) = Alt (e∗I)
σ = (−1)σAlt (e∗I) .
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Proof of 2: Suppose I = (i1, . . . , ik) with ir = is for r 6= s. Then if
τ = τir,is , e

∗
I = e∗Ir so

ψI = ψIr = (−1)τψI = −ψI .

Proof of 3: By definition

ψI(ej1 , . . . , ejk
) =

∑
(−1)τe∗Iτ (ej1 , . . . , ejk

) .

But by (1.3.10)

e∗Iτ (ej1 , . . . , ejk
) =

{
1 if Iτ = J
0 if Iτ 6= J

.(1.4.9)

Thus if I and J are strictly increasing, Iτ is strictly increasing if and
only if Iτ = I, and (1.4.9) is non-zero if and only if I = J .

Now let T be in Ak. By Proposition 1.3.2,

T =
∑

aJe
∗
J , aJ ∈ R .

Since

k!T = Alt (T )

T =
1

k!

∑
aJAlt (e∗J) =

∑
bJψJ .

We can discard all repeating terms in this sum since they are zero;
and for every non-repeating term, J , we can write J = Iσ, where I
is strictly increasing, and hence ψJ = (−1)σψI .

Conclusion:

We can write T as a sum

(1.4.10) T =
∑

cIψI ,

with I’s strictly increasing.
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Claim.

The cI ’s are unique.

Proof. For J strictly increasing

(1.4.11) T (ej1 , . . . , ejk
) =

∑
cIψI(ej1 , . . . , ejk

) = cJ .

By (1.4.10) the ψI ’s, I strictly increasing, are a spanning set of vec-
tors for Ak(V ), and by (1.4.11) they are linearly independent, so
we’ve proved

Proposition 1.4.9. The alternating tensors, ψI , I strictly increas-
ing, are a basis for Ak(V ).

Thus dimAk(V ) is equal to the number of strictly increasing multi-
indices, I, of length k. We leave for you as an exercise to show that
this number is equal to

(1.4.12)

(
n

k

)
=

n!

(n− k)!k!
= “ n choose k”

if 1 ≤ k ≤ n.

Hint: Show that every strictly increasing multi-index of length k
determines a k element subset of {1, . . . , n} and vice-versa.

Note also that if k > n every multi-index

I = (i1, . . . , ik)

of length k has to be repeating: ir = is for some r 6= s since the ip’s
lie on the interval 1 ≤ i ≤ n. Thus by Proposition 1.4.6

ψI = 0

for all multi-indices of length k > 0 and

(1.4.13) Ak = {0} .
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Exercises.

1. Show that there are exactly k! permutations of order k. Hint: In-
duction on k: Let σ ∈ Sk, and let σ(k) = i, 1 ≤ i ≤ k. Show that
τikσ leaves k fixed and hence is, in effect, a permutation of

∑
k−1.

2. Prove that if τ ∈ Sk is a transposition, (−1)τ = −1 and deduce
from this Proposition 1.4.3.

3. Prove assertion 2 in Proposition 1.4.4.

4. Prove that dimAk(V ) is given by (1.4.12).

5. Verify that for i < j − 1

τi,j = τj−1,jτi,j−1, τj−1,j .

6. For k = 3 show that every one of the six elements of S3 is either
a transposition or can be written as a product of two transpositions.

7. Let σ ∈ Sk be the “cyclic” permutation

σ(i) = i+ 1 , i = 1, . . . , k − 1

and σ(k) = 1. Show explicitly how to write σ as a product of trans-
positions and compute (−1)σ. Hint: Same hint as in exercise 1.

8. In exercise 7 of Section 3 show that if T is in Ak, Tv is in Ak−1.
Show in addition that for v,w ∈ V and T ∈ Ak, (Tv)w = −(Tw)v.

9. Let A : V → W be a linear mapping. Show that if T is in
Ak(W ), A∗T is in Ak(V ).

10. In exercise 9 show that if T is in Lk(W ), Alt (A∗T ) = A∗(Alt (T )),
i.e., show that the “Alt ” operation commutes with the pull-back op-
eration.
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1.5 The space, Λk(V ∗)

In § 1.4 we showed that the image of the alternation operation, Alt :
Lk(V ) → Lk(V ) is Ak(V ). In this section we will compute the kernel
of Alt .

Definition 1.5.1. A decomposable k-tensor ℓ1 ⊗ · · · ⊗ ℓk, ℓi ∈ V ∗,
is redundant if for some index, i, ℓi = ℓi+1.

Let Ik be the linear span of the set of reductant k-tensors.
Note that for k = 1 the notion of redundant doesn’t really make

sense; a single vector ℓ ∈ L1(V ∗) can’t be “redundant” so we decree

I1(V ) = {0} .

Proposition 1.5.2. If T ∈ Ik, Alt (T ) = 0.

Proof. Let T = ℓk⊗· · ·⊗ℓk with ℓi = ℓi+1. Then if τ = τi,i+1, T
τ = T

and (−1)τ = −1. Hence Alt (T ) = Alt (T τ ) = Alt (T )τ = −Alt (T );
so Alt (T ) = 0.

To simplify notation let’s abbreviate Lk(V ), Ak(V ) and Ik(V ) to
Lk, Ak and Ik.

Proposition 1.5.3. If T ∈ Ir and T ′ ∈ Ls then T ⊗ T ′ and T ′ ⊗ T
are in Ir+s.

Proof. We can assume that T and T ′ are decomposable, i.e., T =
ℓ1⊗· · ·⊗ℓr and T ′ = ℓ′1⊗· · ·⊗ℓ′s and that T is redundant: ℓi = ℓi+1.
Then

T ⊗ T ′ = ℓ1 ⊗ · · · ℓi−1 ⊗ ℓi ⊗ ℓi ⊗ · · · ℓr ⊗ ℓ′1 ⊗ · · · ⊗ ℓ′s

is redundant and hence in Ir+s. The argument for T ′ ⊗ T is similar.

Proposition 1.5.4. If T ∈ Lk and σ ∈ Sk, then

(1.5.1) T σ = (−1)σT + S

where S is in Ik.
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Proof. We can assume T is decomposable, i.e., T = ℓ1 ⊗ · · · ⊗ ℓk.
Let’s first look at the simplest possible case: k = 2 and σ = τ1,2.
Then

T σ − (−)σT = ℓ1 ⊗ ℓ2 + ℓ2 ⊗ ℓ1

= ((ℓ1 + ℓ2) ⊗ (ℓ1 + ℓ2) − ℓ1 ⊗ ℓ1 − ℓ2 ⊗ ℓ2)/2 ,

and the terms on the right are redundant, and hence in I2. Next
let k be arbitrary and σ = τi,i+1. If T1 = ℓ1 ⊗ · · · ⊗ ℓi−2 and T2 =
ℓi+2 ⊗ · · · ⊗ ℓk. Then

T − (−1)σT = T1 ⊗ (ℓi ⊗ ℓi+1 + ℓi+1 ⊗ ℓi) ⊗ T2

is in Ik by Proposition 1.5.3 and the computation above.
The general case: By Theorem 1.4.2, σ can be written as a product
of m elementary transpositions, and we’ll prove (1.5.1) by induction
on m.

We’ve just dealt with the case m = 1.
The induction step: “m− 1” implies “m”. Let σ = τβ where β is a
product of m− 1 elementary transpositions and τ is an elementary
transposition. Then

T σ = (T β)τ = (−1)τT β + · · ·

= (−1)τ (−1)βT + · · ·

= (−1)σT + · · ·

where the “dots” are elements of Ik, and the induction hypothesis
was used in line 2.

Corollary. If T ∈ Lk, the

(1.5.2) Alt (T ) = k!T +W ,

where W is in Ik.

Proof. By definition Alt (T ) =
∑

(−1)σT σ, and by Proposition 1.5.4,
T σ = (−1)σT +Wσ, with Wσ ∈ Ik. Thus

Alt (T ) =
∑

(−1)σ(−1)σT +
∑

(−1)σWσ

= k!T +W

where W =
∑

(−1)σWσ.
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Corollary. Ik is the kernel of Alt .

Proof. We’ve already proved that if T ∈ Ik, Alt (T ) = 0. To prove
the converse assertion we note that if Alt (T ) = 0, then by (1.5.2)

T = − 1
k!W .

with W ∈ Ik .

Putting these results together we conclude:

Theorem 1.5.5. Every element, T , of Lk can be written uniquely
as a sum, T = T1 + T2 where T1 ∈ Ak and T2 ∈ Ik.

Proof. By (1.5.2), T = T1 + T2 with

T1 = 1
k!Alt (T )

and

T2 = − 1
k!W .

To prove that this decomposition is unique, suppose T1 + T2 = 0,
with T1 ∈ Ak and T2 ∈ Ik. Then

0 = Alt (T1 + T2) = k!T1

so T1 = 0, and hence T2 = 0.

Let

(1.5.3) Λk(V ∗) = Lk(V ∗)/Ik(V ∗) ,

i.e., let Λk = Λk(V ∗) be the quotient of the vector space Lk by the
subspace, Ik, of Lk. By (1.2.3) one has a linear map:

(1.5.4) π : Lk → Λk , T → T + Ik

which is onto and has Ik as kernel. We claim:

Theorem 1.5.6. The map, π, maps Ak bijectively onto Λk.

Proof. By Theorem 1.5.5 every Ik coset, T + Ik, contains a unique
element, T1, of Ak. Hence for every element of Λk there is a unique
element of Ak which gets mapped onto it by π.
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Remark. Since Λk and Ak are isomorphic as vector spaces many
treatments of multilinear algebra avoid mentioning Λk, reasoning
that Ak is a perfectly good substitute for it and that one should,
if possible, not make two different definitions for what is essentially
the same object. This is a justifiable point of view (and is the point
of view taken by Spivak and Munkres1). There are, however, some
advantages to distinguishing between Ak and Λk, as we’ll see in § 1.6.

Exercises.

1. A k-tensor, T , ∈ Lk(V ) is symmetric if T σ = T for all σ ∈ Sk.
Show that the set, Sk(V ), of symmetric k tensors is a vector subspace
of Lk(V ).

2. Let e1, . . . , en be a basis of V . Show that every symmetric 2-
tensor is of the form ∑

aije
∗
i ⊗ e∗j

where ai,j = aj,i and e∗1, . . . , e
∗
n are the dual basis vectors of V ∗.

3. Show that if T is a symmetric k-tensor, then for k ≥ 2, T is
in Ik. Hint: Let σ be a transposition and deduce from the identity,
T σ = T , that T has to be in the kernel of Alt .

4. Warning: In general Sk(V ) 6= Ik(V ). Show, however, that if
k = 2 these two spaces are equal.

5. Show that if ℓ ∈ V ∗ and T ∈ Ik−2, then ℓ⊗ T ⊗ ℓ is in Ik.

6. Show that if ℓ1 and ℓ2 are in V ∗ and T is in Ik−2, then ℓ1 ⊗
T ⊗ ℓ2 + ℓ2 ⊗ T ⊗ ℓ1 is in Ik.

7. Given a permutation σ ∈ Sk and T ∈ Ik, show that T σ ∈ Ik.

8. Let W be a subspace of Lk having the following two properties.

(a) For S ∈ S2(V ) and T ∈ Lk−2, S ⊗ T is in W.

(b) For T in W and σ ∈ Sk, T
σ is in W.

1and by the author of these notes in his book with Alan Pollack, “Differential Topol-
ogy”
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Show that W has to contain Ik and conclude that Ik is the small-
est subspace of Lk having properties a and b.

9. Show that there is a bijective linear map

α : Λk → Ak

with the property

(1.5.5) απ(T ) =
1

k!
Alt (T )

for all T ∈ Lk, and show that α is the inverse of the map of Ak onto
Λk described in Theorem 1.5.6 (Hint: §1.2, exercise 8).

10. Let V be an n-dimensional vector space. Compute the dimen-
sion of Sk(V ). Some hints:

(a) Introduce the following symmetrization operation on tensors
T ∈ Lk(V ):

Sym(T ) =
∑

τ∈Sk

T τ .

Prove that this operation has properties 2, 3 and 4 of Proposi-
tion 1.4.6 and, as a substitute for property 1, has the property:
(SymT )σ = SymT .

(b) Let ϕI = Sym(e∗I), e
∗
I = e∗i1 ⊗ · · · ⊗ e∗in . Prove that {ϕI , I

non-decreasing} form a basis of Sk(V ).

(c) Conclude from (b) that dimSk(V ) is equal to the number of
non-decreasing multi-indices of length k: 1 ≤ i1 ≤ i2 ≤ · · · ≤ ℓk ≤ n.

(d) Compute this number by noticing that

(i1, . . . , in) → (i1 + 0, i2 + 1, . . . , ik + k − 1)

is a bijection between the set of these non-decreasing multi-indices
and the set of increasing multi-indices 1 ≤ j1 < · · · < jk ≤ n+ k− 1.
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1.6 The wedge product

The tensor algebra operations on the spaces, Lk(V ), which we dis-
cussed in Sections 1.2 and 1.3, i.e., the “tensor product operation”
and the “pull-back” operation, give rise to similar operations on the
spaces, Λk. We will discuss in this section the analogue of the tensor
product operation. As in § 4 we’ll abbreviate Lk(V ) to Lk and Λk(V )
to Λk when it’s clear which “V ” is intended.

Given ωi ∈ Λki , i = 1, 2 we can, by (1.5.4), find a Ti ∈ Lki with
ωi = π(Ti). Then T1 ⊗ T2 ∈ Lk1+k2 . Let

(1.6.1) ω1 ∧ ω2 = π(T1 ⊗ T2) ∈ Λk1+k2 .

Claim.

This wedge product is well defined, i.e., doesn’t depend on our choices
of T1 and T2.

Proof. Let π(T1) = π(T ′
1) = ω1. Then T ′

1 = T1 +W1 for some W1 ∈
Ik1, so

T ′
1 ⊗ T2 = T1 ⊗ T2 +W1 ⊗ T2 .

But W1 ∈ Ik1 implies W1 ⊗ T2 ∈ Ik1+k2 and this implies:

π(T ′
1 ⊗ T2) = π(T1 ⊗ T2) .

A similar argument shows that (1.6.1) is well-defined independent of
the choice of T2.

More generally let ωi ∈ Λki , i = 1, 2, 3, and let ωi = π(Ti), Ti ∈
Lki . Define

ω1 ∧ ω2 ∧ ω3 ∈ Λk1+k2+k3

by setting
ω1 ∧ ω2 ∧ ω3 = π(T1 ⊗ T2 ⊗ T3) .

As above it’s easy to see that this is well-defined independent of the
choice of T1, T2 and T3. It is also easy to see that this triple wedge
product is just the wedge product of ω1∧ω2 with ω3 or, alternatively,
the wedge product of ω1 with ω2 ∧ ω3, i.e.,

(1.6.2) ω1 ∧ ω2 ∧ ω3 = (ω1 ∧ ω2) ∧ ω3 = ω1 ∧ (ω2 ∧ ω3).
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We leave for you to check:
For λ ∈ R

(1.6.3) λ(ω1 ∧ ω2) = (λω1) ∧ ω2 = ω1 ∧ (λω2)

and verify the two distributive laws:

(ω1 + ω2) ∧ ω3 = ω1 ∧ ω3 + ω2 ∧ ω3(1.6.4)

and

ω1 ∧ (ω2 + ω3) = ω1 ∧ ω2 + ω1 ∧ ω3 .(1.6.5)

As we noted in § 1.4, Ik = {0} for k = 1, i.e., there are no non-zero
“redundant” k tensors in degree k = 1. Thus

(1.6.6) Λ1(V ∗) = V ∗ = L1(V ∗).

A particularly interesting example of a wedge product is the fol-
lowing. Let ℓi ∈ V ∗ = Λ1(V ∗), i = 1, . . . , k. Then if T = ℓ1 ⊗ · · · ⊗ ℓk

(1.6.7) ℓ1 ∧ · · · ∧ ℓk = π(T ) ∈ Λk(V ∗) .

We will call (1.6.7) a decomposable element of Λk(V ∗).
We will prove that these elements satisfy the following wedge prod-

uct identity. For σ ∈ Sk:

(1.6.8) ℓσ(1) ∧ · · · ∧ ℓσ(k) = (−1)σℓ1 ∧ · · · ∧ ℓk .

Proof. For every T ∈ Lk, T = (−1)σT + W for some W ∈ Ik by
Proposition 1.5.4. Therefore since π(W ) = 0

(1.6.9) π(T σ) = (−1)σπ(T ) .

In particular, if T = ℓ1 ⊗ · · · ⊗ ℓk, T
σ = ℓσ(1) ⊗ · · · ⊗ ℓσ(k), so

π(T σ) = ℓσ(1) ∧ · · · ∧ ℓσ(k) = (−1)σπ(T )

= (−1)σℓ1 ∧ · · · ∧ ℓk .

In particular, for ℓ1 and ℓ2 ∈ V ∗

(1.6.10) ℓ1 ∧ ℓ2 = −ℓ2 ∧ ℓ1
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and for ℓ1, ℓ2 and ℓ3 ∈ V ∗

(1.6.11) ℓ1 ∧ ℓ2 ∧ ℓ3 = −ℓ2 ∧ ℓ1 ∧ ℓ3 = ℓ2 ∧ ℓ3 ∧ ℓ1 .

More generally, it’s easy to deduce from (1.6.8) the following result
(which we’ll leave as an exercise).

Theorem 1.6.1. If ω1 ∈ Λr and ω2 ∈ Λs then

(1.6.12) ω1 ∧ ω2 = (−1)rsω2 ∧ ω1 .

Hint: It suffices to prove this for decomposable elements i.e., for
ω1 = ℓ1 ∧ · · · ∧ ℓr and ω2 = ℓ′1 ∧ · · · ∧ ℓ′s. Now make rs applications
of (1.6.10).

Let e1, . . . , en be a basis of V and let e∗1, . . . , e
∗
n be the dual basis

of V ∗. For every multi-index, I, of length k,

(1.6.13) e∗i1 ∧ · · · e∗ik = π(e∗I) = π(e∗i1 ⊗ · · · ⊗ e∗ik) .

Theorem 1.6.2. The elements (1.6.13), with I strictly increasing,
are basis vectors of Λk.

Proof. The elements

ψI = Alt (e∗I) , I strictly increasing,

are basis vectors of Ak by Proposition 3.6; so their images, π(ψI),
are a basis of Λk. But

π(ψI) = π
∑

(−1)σ(e∗I)
σ

=
∑

(−1)σπ(e∗I)
σ

=
∑

(−1)σ(−1)σπ(e∗I)

= k!π(e∗I) .

Exercises:

1. Prove the assertions (1.6.3), (1.6.4) and (1.6.5).

2. Verify the multiplication law, (1.6.12) for wedge product.
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3. Given ω ∈ Λr let ωk be the k-fold wedge product of ω with
itself, i.e., let ω2 = ω ∧ ω, ω3 = ω ∧ ω ∧ ω, etc.

(a) Show that if r is odd then for k > 1, ωk = 0.

(b) Show that if ω is decomposable, then for k > 1, ωk = 0.

4. If ω and µ are in Λ2r prove:

(ω + µ)k =

k∑

ℓ=0

(
k

ℓ

)
ωℓ ∧ µk−ℓ .

Hint: As in freshman calculus prove this binomial theorem by induc-
tion using the identity:

(
k
ℓ

)
=

(
k−1
ℓ−1

)
+

(
k−1

ℓ

)
.

5. Let ω be an element of Λ2. By definition the rank of ω is k if
ωk 6= 0 and ωk+1 = 0. Show that if

ω = e1 ∧ f1 + · · · + ek ∧ fk

with ei, fi ∈ V ∗, then ω is of rank ≤ k. Hint: Show that

ωk = k!e1 ∧ f1 ∧ · · · ∧ ek ∧ fk .

6. Given ei ∈ V ∗, i = 1, . . . , k show that e1 ∧ · · · ∧ ek 6= 0 if and
only if the ei’s are linearly independent. Hint: Induction on k.
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1.7 The interior product

We’ll describe in this section another basic product operation on the
spaces, Λk(V ∗). As above we’ll begin by defining this operator on
the Lk(V )’s. Given T ∈ Lk(V ) and v ∈ V let ιvT be the be the
(k − 1)-tensor which takes the value
(1.7.1)

ιvT (v1, . . . , vk−1) =

k∑

r=1

(−1)r−1T (v1, . . . , vr−1, v, vr, . . . , vk−1)

on the k − 1-tuple of vectors, v1, . . . , vk−1, i.e., in the rth summand
on the right, v gets inserted between vr−1 and vr. (In particular
the first summand is T (v, v1, . . . , vk−1) and the last summand is
(−1)k−1T (v1, . . . , vk−1, v).) It’s clear from the definition that if v =
v1 + v2

ιvT = ιv1
T + ιv2

T ,(1.7.2)

and if T = T1 + T2

ιvT = ιvT1 + ιvT2 ,(1.7.3)

and we will leave for you to verify by inspection the following two
lemmas:

Lemma 1.7.1. If T is the decomposable k-tensor ℓ1 ⊗ · · · ⊗ ℓk then

(1.7.4) ιvT =
∑

(−1)r−1ℓr(v)ℓ1 ⊗ · · · ⊗ ℓ̂r ⊗ · · · ⊗ ℓk

where the “cap” over ℓr means that it’s deleted from the tensor prod-
uct ,

and

Lemma 1.7.2. If T1 ∈ Lp and T2 ∈ Lq

(1.7.5) ιv(T1 ⊗ T2) = ιvT1 ⊗ T2 + (−1)pT1 ⊗ ιvT2 .

We will next prove the important identity

(1.7.6) ιv(ιvT ) = 0 .

Proof. It suffices by linearity to prove this for decomposable tensors
and since (1.7.6) is trivially true for T ∈ L1, we can by induction
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assume (1.7.6) is true for decomposible tensors of degree k − 1. Let
ℓ1 ⊗ · · · ⊗ ℓk be a decomposable tensor of degree k. Setting T =
ℓ1 ⊗ · · · ⊗ ℓk−1 and ℓ = ℓk we have

ιv(ℓ1 ⊗ · · · ⊗ ℓk) = ιv(T ⊗ ℓ)

= ιvT ⊗ ℓ+ (−1)k−1ℓ(v)T

by (1.7.5). Hence

ιv(ιv(T ⊗ ℓ)) = ιv(ιvT ) ⊗ ℓ+ (−1)k−2ℓ(v)ιvT

+(−1)k−1ℓ(v)ιvT .

But by induction the first summand on the right is zero and the two
remaining summands cancel each other out.

From (1.7.6) we can deduce a slightly stronger result: For v1, v2 ∈
V

(1.7.7) ιv1
ιv2

= −ιv2
ιv1

.

Proof. Let v = v1 + v2. Then ιv = ιv1
+ ιv2

so

0 = ιvιv = (ιv1
+ ιv2

)(ιv1
+ ιv2

)

= ιv1
ιv1

+ ιv1
ιv2

+ ιv2
ιv1

+ ιv2
ιv2

= ιv1
ιv2

+ ιv2
ιv1

since the first and last summands are zero by (1.7.6).

We’ll now show how to define the operation, ιv, on Λk(V ∗). We’ll
first prove

Lemma 1.7.3. If T ∈ Lk is redundant then so is ιvT .

Proof. Let T = T1 ⊗ ℓ⊗ ℓ⊗ T2 where ℓ is in V ∗, T1 is in Lp and T2

is in Lq. Then by (1.7.5)

ιvT = ιvT1 ⊗ ℓ⊗ ℓ⊗ T2

+(−1)pT1 ⊗ ιv(ℓ⊗ ℓ) ⊗ T2

+(−1)p+2T1 ⊗ ℓ⊗ ℓ⊗ ιvT2 .
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However, the first and the third terms on the right are redundant
and

ιv(ℓ⊗ ℓ) = ℓ(v)ℓ− ℓ(v)ℓ

by (1.7.4).

Now let π be the projection (1.5.4) of Lk onto Λk and for ω =
π(T ) ∈ Λk define

(1.7.8) ιvω = π(ιvT ) .

To show that this definition is legitimate we note that if ω = π(T1) =
π(T2), then T1 −T2 ∈ Ik, so by Lemma 1.7.3 ιvT1 − ιvT2 ∈ Ik−1 and
hence

π(ιvT1) = π(ιvT2) .

Therefore, (1.7.8) doesn’t depend on the choice of T .
By definition ιv is a linear mapping of Λk(V ∗) into Λk−1(V ∗).

We will call this the interior product operation. From the identities
(1.7.2)–(1.7.8) one gets, for v, v1, v2 ∈ V ω ∈ Λk, ω1 ∈ Λp and
ω2 ∈ Λ2

ι(v1+v2)ω = ιv1
ω + ιv2

ω(1.7.9)

ιv(ω1 ∧ ω2) = ιvω1 ∧ ω2 + (−1)pω1 ∧ ιvω2(1.7.10)

ιv(ιvω) = 0(1.7.11)

and

ιv1
ιv2
ω = −ιv2

ιv1
ω .(1.7.12)

Moreover if ω = ℓ1 ∧ · · · ∧ ℓk is a decomposable element of Λk one
gets from (1.7.4)

(1.7.13) ιvω =
k∑

r=1

(−1)r−1ℓr(v)ℓ1 ∧ · · · ∧ ℓ̂r ∧ · · · ∧ ℓk .

In particular if e1, . . . , en is a basis of V , e∗1, . . . , e
∗
n the dual basis of

V ∗ and ωI = e∗i1 ∧ · · · ∧ e∗ik , 1 ≤ i1 < · · · < ik ≤ n, then ι(ej)ωI = 0
if j /∈ I and if j = ir

(1.7.14) ι(ej)ωI = (−1)r−1ωIr

where Ir = (i1, . . . , îr, . . . , ik) (i.e., Ir is obtained from the multi-
index I by deleting ir).
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Exercises:

1. Prove Lemma 1.7.1.

2. Prove Lemma 1.7.2.

3. Show that if T ∈ Ak, iv = kTv where Tv is the tensor (1.3.16).
In particular conclude that ivT ∈ Ak−1. (See §1.4, exercise 8.)

4. Assume the dimension of V is n and let Ω be a non-zero element
of the one dimensional vector space Λn. Show that the map

(1.7.15) ρ : V → Λn−1 , v → ιvΩ ,

is a bijective linear map. Hint: One can assume Ω = e∗1 ∧ · · · ∧ e∗n
where e1, . . . , en is a basis of V . Now use (1.7.14) to compute this
map on basis elements.

5. (The cross-product.) Let V be a 3-dimensional vector space, B
an inner product on V and Ω a non-zero element of Λ3. Define a map

V × V → V

by setting

(1.7.16) v1 × v2 = ρ−1(Lv1 ∧ Lv2)

where ρ is the map (1.7.15) and L : V → V ∗ the map (1.2.9). Show
that this map is linear in v1, with v2 fixed and linear in v2 with v1
fixed, and show that v1 × v2 = −v2 × v1.

6. For V = R
3 let e1, e2 and e3 be the standard basis vectors and

B the standard inner product. (See §1.1.) Show that if Ω = e∗1∧e
∗
2∧e

∗
3

the cross-product above is the standard cross-product:

e1 × e2 = e3

e2 × e3 = e1(1.7.17)

e3 × e1 = e2 .

Hint: If B is the standard inner product Lei = e∗i .

Remark 1.7.4. One can make this standard cross-product look even
more standard by using the calculus notation: e1 = î, e2 = ĵ and
e3 = k̂
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1.8 The pull-back operation on Λk

Let V and W be vector spaces and let A be a linear map of V into
W . Given a k-tensor, T ∈ Lk(W ), the pull-back, A∗T , is the k-tensor

(1.8.1) A∗T (v1, . . . , vk) = T (Av1, . . . , Avk)

in Lk(V ). (See § 1.3, equation 1.3.12.) In this section we’ll show how
to define a similar pull-back operation on Λk.

Lemma 1.8.1. If T ∈ Ik(W ), then A∗T ∈ Ik(V ).

Proof. It suffices to verify this when T is a redundant k-tensor, i.e., a
tensor of the form

T = ℓ1 ⊗ · · · ⊗ ℓk

where ℓr ∈W ∗ and ℓi = ℓi+1 for some index, i. But by (1.3.14)

A∗T = A∗ℓ1 ⊗ · · · ⊗A∗ℓk

and the tensor on the right is redundant since A∗ℓi = A∗ℓi+1.

Now let ω be an element of Λk(W ∗) and let ω = π(T ) where T is
in Lk(W ). We define

(1.8.2) A∗ω = π(A∗T ) .

Claim:

The left hand side of (1.8.2) is well-defined.

Proof. If ω = π(T ) = π(T ′), then T = T ′ + S for some S ∈ Ik(W ),
and A∗T ′ = A∗T +A∗S. But A∗S ∈ Ik(V ), so

π(A∗T ′) = π(A∗T ) .

Proposition 1.8.2. The map

A∗ : Λk(W ∗) → Λk(V ∗) ,

mapping ω to A∗ω is linear. Moreover,



40 Chapter 1. Multilinear algebra

(i) If ωi ∈ Λki(W ), i = 1, 2, then

(1.8.3) A∗(ω1 ∧ ω2) = A∗ω1 ∧A
∗ω2 .

(ii) If U is a vector space and B : U → V a linear map, then
for ω ∈ Λk(W ∗),

(1.8.4) B∗A∗ω = (AB)∗ω .

We’ll leave the proof of these three assertions as exercises. Hint:
They follow immediately from the analogous assertions for the pull-
back operation on tensors. (See (1.3.14) and (1.3.15).)

As an application of the pull-back operation we’ll show how to
use it to define the notion of determinant for a linear mapping. Let
V be a n-dimensional vector space. Then dim Λn(V ∗) =

(
n
n

)
= 1;

i.e., Λn(V ∗) is a one-dimensional vector space. Thus if A : V → V
is a linear mapping, the induced pull-back mapping:

A∗ : Λn(V ∗) → Λn(V ∗) ,

is just “multiplication by a constant”. We denote this constant by
det(A) and call it the determinant of A, Hence, by definition,

(1.8.5) A∗ω = det(A)ω

for all ω in Λn(V ∗). From (1.8.5) it’s easy to derive a number of basic
facts about determinants.

Proposition 1.8.3. If A and B are linear mappings of V into V ,
then

(1.8.6) det(AB) = det(A) det(B) .

Proof. By (1.8.4) and

(AB)∗ω = det(AB)ω

= B∗(A∗ω) = det(B)A∗ω

= det(B) det(A)ω ,

so, det(AB) = det(A) det(B).
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Proposition 1.8.4. If I : V → V is the identity map, Iv = v for
all v ∈ V , det(I) = 1.

We’ll leave the proof as an exercise. Hint: I∗ is the identity map
on Λn(V ∗).

Proposition 1.8.5. If A : V → V is not onto, det(A) = 0.

Proof. LetW be the image of A. Then if A is not onto, the dimension
of W is less than n, so Λn(W ∗) = {0}. Now let A = IWB where IW
is the inclusion map of W into V and B is the mapping, A, regarded
as a mapping from V to W . Thus if ω is in Λn(V ∗), then by (1.8.4)

A∗ω = B∗I∗Wω

and since I∗Wω is in Λn(W ) it is zero.

We will derive by wedge product arguments the familiar “matrix
formula” for the determinant. Let V and W be n-dimensional vector
spaces and let e1, . . . , en be a basis for V and f1, . . . , fn a basis for
W . From these bases we get dual bases, e∗1, . . . , e

∗
n and f∗1 , . . . , f

∗
n,

for V ∗ and W ∗. Moreover, if A is a linear map of V into W and
[ai,j] the n×n matrix describing A in terms of these bases, then the
transpose map, A∗ : W ∗ → V ∗, is described in terms of these dual
bases by the n× n transpose matrix, i.e., if

Aej =
∑

ai,jfi ,

then

A∗f∗j =
∑

aj,ie
∗
i .

(See § 2.) Consider now A∗(f∗1 ∧ · · · ∧ f∗n). By (1.8.3)

A∗(f∗1 ∧ · · · ∧ f∗n) = A∗f∗1 ∧ · · · ∧A∗f∗n

=
∑

(a1,k1
e∗k1

) ∧ · · · ∧ (an,kn
e∗kn

)

the sum being over all k1, . . . , kn, with 1 ≤ kr ≤ n. Thus,

A∗(f∗1 ∧ · · · ∧ f∗n) =
∑

a1,k1
. . . an,kn

e∗k1
∧ · · · ∧ e∗kn

.
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If the multi-index, k1, . . . , kn, is repeating, then e∗k1
∧· · ·∧e∗kn

is zero,
and if it’s not repeating then we can write

ki = σ(i) i = 1, . . . , n

for some permutation, σ, and hence we can rewrite A∗(f∗1 ∧ · · · ∧ f∗n)
as the sum over σ ∈ Sn of

∑
a1,σ(1) · · · an,σ(n) (e∗1 ∧ · · · ∧ e∗n)σ .

But
(e∗1 ∧ · · · ∧ e∗n)σ = (−1)σe∗1 ∧ · · · ∧ e∗n

so we get finally the formula

(1.8.7) A∗(f∗1 ∧ · · · ∧ f∗n) = det[ai,j]e
∗
1 ∧ · · · ∧ e∗n

where

(1.8.8) det[ai,j ] =
∑

(−1)σa1,σ(1) · · · an,σ(n)

summed over σ ∈ Sn. The sum on the right is (as most of you know)
the determinant of [ai,j].

Notice that if V = W and ei = fi, i = 1, . . . , n, then ω = e∗1∧· · ·∧
e∗n = f∗1 ∧ · · · ∧ f∗n, hence by (1.8.5) and (1.8.7),

(1.8.9) det(A) = det[ai,j] .

Exercises.

1. Verify the three assertions of Proposition 1.8.2.

2. Deduce from Proposition 1.8.5 a well-known fact about deter-
minants of n×n matrices: If two columns are equal, the determinant
is zero.

3. Deduce from Proposition 1.8.3 another well-known fact about
determinants of n × n matrices: If one interchanges two columns,
then one changes the sign of the determinant.

Hint: Let e1, . . . , en be a basis of V and let B : V → V be the
linear mapping: Bei = ej, Bej = ei and Beℓ = eℓ, ℓ 6= i, j. What is
B∗(e∗1 ∧ · · · ∧ e∗n)?
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4. Deduce from Propositions 1.8.3 and 1.8.4 another well-known
fact about determinants of n × n matrix. If [bi,j ] is the inverse of
[ai,j], its determinant is the inverse of the determinant of [ai,j ].

5. Extract from (1.8.8) a well-known formula for determinants of
2 × 2 matrices:

det

[
a11 , a12

a21 , a22

]
= a11a22 − a12a21 .

6. Show that if A = [ai,j ] is an n× n matrix and At = [aj,i] is its
transpose detA = detAt. Hint: You are required to show that the
sums

∑
(−1)σa1,σ(1) . . . an,σ(n) σ ∈ Sn

and

∑
(−1)σaσ(1),1 . . . aσ(n),n σ ∈ Sn

are the same. Show that the second sum is identical with
∑

(−1)τaτ(1),1 . . . aτ(n),n

summed over τ = σ−1 ∈ Sn.

7. Let A be an n× n matrix of the form

A =

[
B ∗
0 C

]

where B is a k × k matrix and C the ℓ × ℓ matrix and the bottom
ℓ× k block is zero. Show that

detA = detB detC .

Hint: Show that in (1.8.8) every non-zero term is of the form

(−1)στ b1,σ(1) . . . bk,σ(k)c1,τ(1) . . . cℓ,τ(ℓ)

where σ ∈ Sk and τ ∈ Sℓ.

8. Let V and W be vector spaces and let A : V → W be a linear
map. Show that if Av = w then for ω ∈ Λp(w∗),

A∗ι(w)ω = ι(v)A∗ω .

(Hint: By (1.7.10) and proposition 1.8.2 it suffices to prove this for
ω ∈ Λ1(W ∗), i.e., for ω ∈W ∗.)
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1.9 Orientations

We recall from freshman calculus that if ℓ ⊆ R
2 is a line through the

origin, then ℓ−{0} has two connected components and an orientation
of ℓ is a choice of one of these components (as in the figure below).

✡
✡

✡
✡✣

• 0

ℓ

More generally, if L is a one-dimensional vector space then L−{0}
consists of two components: namely if v is an element of L− [0}, then
these two components are

L1 = {λv λ > 0}

and

L2 = {λv, λ < 0} .

An orientation of L is a choice of one of these components. Usu-
ally the component chosen is denoted L+, and called the positive
component of L − {0} and the other component, L−, the negative
component of L − {0}.

Definition 1.9.1. A vector, v ∈ L, is positively oriented if v is in
L+.

More generally still let V be an n-dimensional vector space. Then
L = Λn(V ∗) is one-dimensional, and we define an orientation of V
to be an orientation of L. One important way of assigning an orien-
tation to V is to choose a basis, e1, . . . , en of V . Then, if e∗1, . . . , e

∗
n is

the dual basis, we can orient Λn(V ∗) by requiring that e∗1∧· · ·∧e∗n be
in the positive component of Λn(V ∗). If V has already been assigned
an orientation we will say that the basis, e1, . . . , en, is positively ori-
ented if the orientation we just described coincides with the given
orientation.

Suppose that e1, . . . , en and f1, . . . , fn are bases of V and that

(1.9.1) ej =
∑

ai,j,fi .
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Then by (1.7.7)

f∗1 ∧ · · · ∧ f∗n = det[ai,j ]e
∗
1 ∧ · · · ∧ e∗n

so we conclude:

Proposition 1.9.2. If e1, . . . , en is positively oriented, then f1, . . . , fn

is positively oriented if and only if det[ai,j ] is positive.

Corollary 1.9.3. If e1, . . . , en is a positively oriented basis of V , the
basis: e1, . . . , ei−1,−ei, ei+1, . . . , en is negatively oriented.

Now let V be a vector space of dimension n > 1 and W a sub-
space of dimension k < n. We will use the result above to prove the
following important theorem.

Theorem 1.9.4. Given orientations on V and V/W , one gets from
these orientations a natural orientation on W .

Remark What we mean by “natural’ will be explained in the course
of the proof.

Proof. Let r = n − k and let π be the projection of V onto V/W
. By exercises 1 and 2 of §2 we can choose a basis e1, . . . , en of V
such that er+1, . . . , en is a basis of W and π(e1), . . . , π(er) a basis
of V/W . Moreover, replacing e1 by −e1 if necessary we can assume
by Corollary 1.9.3 that π(e1), . . . , π(er) is a positively oriented basis
of V/W and replacing en by −en if necessary we can assume that
e1, . . . , en is a positively oriented basis of V . Now assign to W the
orientation associated with the basis er+1, . . . , en.

Let’s show that this assignment is “natural” (i.e., doesn’t depend
on our choice of e1, . . . , en). To see this let f1, . . . , fn be another
basis of V with the properties above and let A = [ai,j ] be the matrix
(1.9.1) expressing the vectors e1, . . . , en as linear combinations of the
vectors f1, . . . fn. This matrix has to have the form

(1.9.2) A =

[
B C
0 D

]

whereB is the r×rmatrix expressing the basis vectors π(e1), . . . , π(er)
of V/W as linear combinations of π(f1), . . . , π(fr) and D the k × k
matrix expressing the basis vectors er+1, . . . , en of W as linear com-
binations of fr+1, . . . , fn. Thus

det(A) = det(B) det(D) .
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However, by Proposition 1.9.2, detA and detB are positive, so detD
is positive, and hence if er+1, . . . , en is a positively oriented basis of
W so is fr+1, . . . , fn.

As a special case of this theorem suppose dimW = n − 1. Then
the choice of a vector v ∈ V − W gives one a basis vector, π(v),
for the one-dimensional space V/W and hence if V is oriented, the
choice of v gives one a natural orientation on W .

Next let Vi, i = 1, 2 be oriented n-dimensional vector spaces and
A : V1 → V2 a bijective linear map. A is orientation-preserving if,
for ω ∈ Λn(V ∗

2 )+, A∗ω is in Λn(V ∗
+)+. For example if V1 = V2 then

A∗ω = det(A)ω so A is orientation preserving if and only if det(A) >
0. The following proposition we’ll leave as an exercise.

Proposition 1.9.5. Let Vi, i = 1, 2, 3 be oriented n-dimensional
vector spaces and Ai : Vi → Vi+1, i = 1, 2 bijective linear maps.
Then if A1 and A2 are orientation preserving, so is A2 ◦ A1.

Exercises.

1. Prove Corollary 1.9.3.

2. Show that the argument in the proof of Theorem 1.9.4 can be
modified to prove that if V and W are oriented then these orienta-
tions induce a natural orientation on V/W .

3. Similarly show that if W and V/W are oriented these orienta-
tions induce a natural orientation on V .

4. Let V be an n-dimensional vector space and W ⊂ V a k-
dimensional subspace. Let U = V/W and let ι : W → V and
π : V → U be the inclusion and projection maps. Suppose V and U
are oriented. Let µ be in Λn−k(U∗)+ and let ω be in Λn(V ∗)+. Show
that there exists a ν in Λk(V ∗) such that π∗µ ∧ ν = ω. Moreover
show that ι∗ν is intrinsically defined (i.e., doesn’t depend on how
we choose ν) and sits in the positive part, Λk(W ∗)+, of Λk(W ).

5. Let e1, . . . , en be the standard basis vectors of R
n. The standard

orientation of R
n is, by definition, the orientation associated with

this basis. Show that if W is the subspace of R
n defined by the
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equation, x1 = 0, and v = e1 6∈W then the natural orientation of W
associated with v and the standard orientation of R

n coincide with
the orientation given by the basis vectors, e2, . . . , en of W .

6. Let V be an oriented n-dimensional vector space and W an
n−1-dimensional subspace. Show that if v and v′ are in V −W then
v′ = λv + w, where w is in W and λ ∈ R − {0}. Show that v and v′

give rise to the same orientation of W if and only if λ is positive.

7. Prove Proposition 1.9.5.

8. A key step in the proof of Theorem 1.9.4 was the assertion that
the matrix A expressing the vectors, ei, as linear combinations of the
vectors, fi, had to have the form (1.9.2). Why is this the case?

9. (a) Let V be a vector space, W a subspace of V and A : V →
V a bijective linear map which maps W onto W . Show that one gets
from A a bijective linear map

B : V/W → V/W

with property

πA = Bπ ,

π being the projection of V onto V/W .

(b) Assume that V , W and V/W are compatibly oriented. Show
that if A is orientation-preserving and its restriction to W is orien-
tation preserving then B is orientation preserving.

10. Let V be a oriented n-dimensional vector space, W an (n− 1)-
dimensional subspace of V and i : W → V the inclusion map. Given
ω ∈ Λb(V )+ and v ∈ V − W show that for the orientation of W
described in exercise 5, i∗(ιvω) ∈ Λn−1(W )+.

11. Let V be an n-dimensional vector space, B : V × V → R an
inner product and e1, . . . , en a basis of V which is positively oriented
and orthonormal. Show that the “volume element”

vol = e∗1 ∧ · · · ∧ e∗n ∈ Λn(V ∗)

is intrinsically defined, independent of the choice of this basis. Hint:
(1.2.13) and (1.8.7).
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12. (a) Let V be an oriented n-dimensional vector space and B an
inner product on V . Fix an oriented orthonormal basis, e1, . . . , en,
of V and let A : V → V be a linear map. Show that if

Aei = vi =
∑

aj,iej

and bi,j = B(vi, vj), the matrices A = [ai,j ] and B = [bi,j] are related
by: B = A+A.

(b) Show that if ν is the volume form, e∗1 ∧ · · · ∧ e∗n, and A is orien-
tation preserving

A∗ν = (detB)
1

2 ν .

(c) By Theorem 1.5.6 one has a bijective map

Λn(V ∗) ∼= An(V ) .

Show that the element, Ω, of An(V ) corresponding to the form, ν,
has the property

|Ω(v1, . . . , vn)|2 = det([bi,j ])

where v1, . . . , vn are any n-tuple of vectors in V and bi,j = B(vi, vj).


