## Appendix C Good covers and convexity theorems.

Let X be an n dimensional submanifold of  $\mathbb{R}^N$ . Our goal in this appendix is to prove that X admits a good cover. To do so we'll need some basic facts about "convexity". Let U be an open set in  $\mathbb{R}^n$  and  $\phi$  a  $C^\infty$  function on U. Definition  $\phi$  is convex if the matrix

(C1) 
$$\left[\frac{\partial^2 \phi}{\partial x_i \partial x_j}(p)\right], \qquad 1 \le i, j \le n$$

is positive definite for all  $p \in U$ 

Suppose now that U itself is convex and that  $\phi$  is a convex function on U which has as image the half open interval [0,a) and is a proper mapping of U onto [0,a) (In other words for  $0 \le c \le a$  the set,  $\phi \le c$  is compact.)

Theorem 5.8.4. For 0 < c < q the set,  $U_c : \phi < C$  is convex

*Proof.* For  $p, q \in Bd\ U_c$ ,  $p \neq q$  let  $f(t) = \phi\left(\left((1-t)p + tq\right)\right), 0 \leq t \leq 1$ . We claim

$$(C2) \qquad \qquad \frac{d^2f}{dt^2}(t) > 0$$

and

(C3) 
$$\frac{df}{dt}(0) < 0 < \frac{\partial f}{\partial t}(1)$$

*Proof.* To prove (C2) we note that

$$\frac{d^2f}{dt^2}(t) = \sum \frac{\partial^2Q}{\partial x_i \partial x_j} \left( ((1-t)p + tq) \right) (p_i - q_i)(p_j - q_j)$$

and that the right hand side is positive because of the positive definiteness of (C1).

To prove (C3) we note that  $\frac{df}{dt}$  is strictly increasing by (C2). Hence " $\frac{df}{dt}(0)>0$ " would imply " $\frac{df}{dt}(t)>0$ " for all t and hence would imply "f strictly increasing". But  $f(0)=f(1)=\phi(p)=\phi(q)=c$ .

(A similar argument shows that  $\frac{df}{dt}(1) > 0$ .)

Since  $\frac{df}{dt}$  is strictly increasing it follows from (C3) that  $\frac{df}{dt}(t_0) = 0$  for some  $0 < t_0 < 1$  and that  $\frac{df}{dt}$  is less than 0 on the interval,  $0 < t < t_0$ , and greater than 0 on the interval  $t_0 < t < 1$ . Therefore, since f(0) = f(1) = c, f(t) < c for all 0 < t < 1; so  $\phi < c$  on the line segment, (1 - t)p + tq, 0 < t < 1. Hence  $U_c$  is convex.

Coming back to the manifold,  $X \subseteq \mathbb{R}^N$  let p be a point on X and let  $L_p = T_p X$ . We will denote by  $\pi_p$  the orthogonal projection

$$\pi_p: X \to L_p + p,$$

i.e. for  $q \in X$  and  $x = \pi_p(q)$  q - x is orthogonal to  $L_p$  (it's easy to see that  $\pi_p$  is defined by this condition.) We will prove that this projection has the following convexity property.

**Theorem 5.8.5.** There exists a positive constant, c(p), such that if q is any point on X satisfying  $|p-q|^2 < c(p)$  and c is less than c(p) the set

(C4) 
$$U(q,c) = \{ q' \in X, |q' - q| < c \}$$

gets mapped diffeomorphically by  $\pi_p$  onto a convex open set in  $L_p + p$ .

*Proof.* We can without loss of generality assume that p=0 and that  $L=\mathbb{R}^n=\mathbb{R}^n\times\{0\}$  in  $\mathbb{R}^n\times\mathbb{R}^k=\mathbb{R}^N$ , where k=N-n. Thus X can be described, locally over a convex neighborhood, U, of the origin in  $\mathbb{R}^n$  as the graph of a  $C^\infty$  function,  $f:(U,0)\to(\mathbb{R}^k,0)$  and since  $\mathbb{R}^n\times\{0\}$  is tangent to X at  $\{0\}$ 

(C5) 
$$\frac{\partial f}{\partial x_i}(0) = 0, \qquad i = 1, \dots, n$$

Given  $q = (x_q, f(x_q)) \in X$  let  $\phi_q : u \to \mathbb{R}$  be the function

(C6) 
$$\phi_q(x) = |x - x_q|^2 + |f(x) - f(x_q)|^2$$

Then, by (C4),  $\pi_p(U(q,c))$  is just the set,  $\phi_q < c$ ; so to prove the theorem it suffices to prove that if c(p) is sufficiently small and c < c(p) this set is convex. However at q = 0,

$$\frac{\partial^2 Q_q}{\partial x_i \partial x_j}(x_q) = \delta_{ij}$$

by (C5) and (C6) and hence by continuity  $\phi_q$  is convex on the set  $|x|^2 < \delta$  provided that that  $\delta$  and |q| are sufficiently small. Hence if c(p) is sufficiently small,  $\pi_p(U(q,c))$  is convex for c < c(p).

We will now use theorem 2 to prove that X admits a good cover: For every  $p \in X$  let  $\epsilon(p) = \sqrt{c(p)}/3$  and let  $U_p$  be the set of points,  $q \in X$ , with  $|p-q| < \epsilon(p)$ . We claim

**Theorem 5.8.6.** The  $U_p$ 's are a good cover of X.

Proof. Suppose that the intersection,

$$(C7) U_{p_1} \cap \ldots \cap U_{p_k}$$

is non-empty and that

$$\epsilon(p_1) \ge \epsilon(p_2) \ge \cdots \ge \epsilon(p_k)$$

Then, if p is a point in this intersection,  $|p-p_i|$  and  $|p-p_1|$  are less than  $\epsilon(p_1)$  and hence  $|p_i-p_1|$  is less than  $2\epsilon(p_1)$ . Moreover, if q is in  $U_{p_i}$ ,  $|q-p_i|$  is less than  $\epsilon(p_1)$ , so  $|q-p_1|$  is less than  $3\epsilon(p_1)$  and hence  $|q-p_1|^2$  is less than  $\epsilon(p_1)$ . Therefore the set  $U_{p_i}$  is contained in  $U(p_1, \epsilon(p_1))$  and consequently by theorem 2 is mapped diffeomorphically onto a convex open subset of  $L_{p_1}+p_1$  by the projection  $\pi_{p_1}$ . Consequently the intersection, (C7) is mapped diffeomorphically onto a convex open subset of  $L_{p_1}+p_1$  by  $\pi_{p_1}$ .