Appendix C Good covers and conve;{ity
theorems.

Let X be an n dimensional submanifold of RY. Our goal in this appendix is
to prove that X admits a good cover. To do so we’ll need some basic facts
about “convexity”. Let U be an open set in R" and ¢ a € function on U.
Definition ¢ is convex if the matrix

& g
©) o], 1sisa

is positive definite for all p € U

Suppose now that U itself is convex and that ¢ is a convex function on U
which has as image the half open interval [0,a) and is a proper mapping of
U onto [0,a) (In other words for 0 < ¢ < a the set, ¢ < c is compact.)

Theorem 5.8.4. For 0 < ¢ < q the set, U, : ¢ < C is convex

Proof. For p,q € BdUs, p# qlet £(£) = ¢ (1 - t)p+1g)),0 <t < 1.
We claim

g f

(C2) EEE_Q"(t) >0
and

df af
(C3) 0)<0<8t()
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Proof. To prove (C2) we note that
tg (t 3 (1 = t)p+t9)) (7 — a:)(ps — 05)

and that the right hand side is positive because of the positive definiteness
of (C1). O
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To prove (C3) we note that 4 is strictly increasing by (C2). Hence
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¢ f(O) > 0” would imply ¢ df (t) > 0” for all ¢ and hence would imply “f

strlctly increasing”. But f(0) = f(1) = ¢(p) = ¢(q) = c.
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d
(A similar argument shows that a{(l) >0.)
d d,
Since a{ is strictly increasing it follows from (C3) that Eft-(to) = 0 for
d

some 0 < tp < 1 and that Eé is less than 0 on the interval, 0 < t < #g, and
greater than 0 on the interval ¢y < ¢ < 1. Therefore, since f(0) = f(1) = ¢,
f(t) < cforall 0 <t <1;s0¢ < con the line segment, (1 — t)p + tg,
0 <t < 1. Hence U, is convex.

Coming back to the manifold, X C RY let p be a point on X and let
L, =T,X . We will denote by m, the orthogonal projection

mp: X = Ly, +p,

Le. for g € X and z = my(q) ¢ — « is orthogonal to L, (it’s easy to see that
mp is defined by this condition.) We will prove that this projection has the
following convexity property.

Theorem 5.8.5. There exists a positive constant, c(p), such that if g is any
point on X satisfying |p — q|* < c(p) and c is less than c(p) the set

(C4) Ulg,e)={d € X,|¢ — q| < ¢}
gets mapped diffeomorphically by m, onto a conver open set in Ly, + p.

Proof. We can without loss of generality assume that p = 0 and that L =
R™ = R"x {0} in R"xR¥F = RV, where k = N —n. Thus X can be described,
locally over a convex neighborhood, U, of the origin in R™ as the graph of a
C function, f : (U,0) — (R¥,0) and since R™ x {0} is tangent to X at {0}
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(C5) (0) =0, i=1,...,n

Given ¢ = (zg4, f(xq)) € X let ¢y : u — R be the function
(Ce) bo(z) = [z — mq[z + |f(z) - f(xq)’g

Then, by (C4), m,(U(g,c)) is just the set, ¢, < c; so to prove the theorem
it suffices to prove that if ¢(p) is sufficiently small and ¢ < ¢(p) this set is
convex. However at g = 0,
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(zq) = &y
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by (C5) and (C6) and hence by continuity ¢, is convex on the set |z)® < &
provided that that § and |g| are sufficiently small. Hence if ¢(p) is sufficiently
small, m,(U(g,c)) is convex for ¢ < ¢(p).

We will now use theorem 2 to prove that X admits a good cover:  For
every p € X let €(p) = v/c(p)/3 and let U, be the set of points, g € X, with
lp — q| < e(p). We claim

Theorem 5.8.6. The Uy’s are a good cover of X.

Proof. Suppose that the intersection,
(C7) Upy NN,
is non-empty and that

e(p1) > €(p2) > -+~ = €(pk)
O

Then, if p is a point in this intersection, |p — p;| and |p — p1| are less than
¢(p1) and hence |p; — p1| is less than 2¢(p1). Moreover, if g is in Up,, g —pi| is
less than €(p1), so |g — pi| is less than 3¢(p;) and hence |g — py|? is less than
¢(p1) . Therefore the set Up, is contained in U(p1,c(p1)) and consequently
by theorem 2 is mapped diffeomorphically onto a convex open subset of
Ly, +p1 by the projection mp,. Consequently the intersection, (C7) is mapped
diffeomorphically onto a convex open subset of Ly, + p1 by mp, .
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