p. 229, Problem 10: Let S be a surface of revolution about the z-axis and $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a rotation about the z-axis. We want to show that $\varphi: S \rightarrow S$ is an isometry. This however follows from the simple fact that $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is an isometry and φ maps S to itself. More explicitly, we want to show that if w_{1} and w_{2} are any two tangent vectors at $p \in S$, then $\left\langle w_{1}, w_{2}\right\rangle_{p}=\left\langle(d \varphi)_{p}\left(w_{1}\right),(d \varphi)_{p} w_{2}\right\rangle_{\varphi(p)}$. But $d \varphi=\varphi$, since φ is just given by a (rotation) matrix, and φ is an isometry. Thus, the previous equality holds.

