p. 212, Problem 12: Suppose we had a closed minimal surface $S \subset \mathbb{R}^{3}$. Then there exists a point $p \in S$ which is of maximal distance from the origin. We claim that K_{p}, the Gaussian curvature of S at p, is positive. This is a contradiction, since for a minimal surface, we have $H=\frac{1}{2}\left(k_{1}+k_{2}\right)=0$, which implies $K=k_{1} k_{2}=$ $-k_{1}^{2} \leq 0$ identically.

To prove the claim, let $\mathbf{x}(u, v)=(x(u, v), y(u, v), z(u, v))$ be any parametrization of S near p. Then $f(u, v)=\frac{1}{2}\|\mathbf{x}(u, v)\|^{2}$ achieves a maximum at p. It follows that at p, we have

$$
\begin{array}{r}
\partial_{u} f=\mathbf{x} \cdot \mathbf{x}_{u}=0 \\
\partial_{v} f=\mathbf{x} \cdot \mathbf{x}_{v}=0 .
\end{array}
$$

Consequently, at p, \mathbf{x} is perpendicular to the tangent plane spanned by \mathbf{x}_{u} and \mathbf{x}_{v}, i.e. $\mathbf{x}(0,0)$ is parallel to the normal N_{p} at p. If we differentiate the above again, since f is a maximum, we get

$$
\begin{aligned}
0 & >\partial_{u u} f=\mathbf{x}_{u} \cdot \mathbf{x}_{u}+\mathbf{x} \cdot \mathbf{x}_{u u} . \\
0 & >\partial_{v v f}=\mathbf{x}_{v} \cdot \mathbf{x}_{v}+\mathbf{x} \cdot \mathbf{x}_{v v} .
\end{aligned}
$$

This implies

$$
\begin{aligned}
& \mathbf{x} \cdot \mathbf{x}_{u u}<-\mathbf{x}_{u} \cdot \mathbf{x}_{u}<0 \\
& \mathbf{x} \cdot \mathbf{x}_{v v}<-\mathbf{x}_{v} \cdot \mathbf{x}_{v}<0 .
\end{aligned}
$$

Since at $p, \mathbf{x}=N_{p}$, the left-hand side of the above quantities are precisely $I I_{p}\left(\mathbf{x}_{u}, \mathbf{x}_{u}\right)$ and $I I_{p}\left(\mathbf{x}_{v}, \mathbf{x}_{v}\right)$, respectively, both of which are negative. In particular, they have the same sign. This implies $K_{p}>0$.

