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(22a) We want to compute d
dt

2
(h◦α), where α′(t) = u′(t)xu+v′(t)xv. To min-

imize notation, I will not always be explicit in my notation concerning the
dependence on t in the below (it should be clear that everything depends
on t). First, we have

d

dt
(h ◦ α) = (dh)α(t)(α′(t))

= (hu ◦ α(t))u′ + (hv ◦ α(t))v′

Note that (dh)α(t) is the differential form dh evaluated at the point α(t),
which takes as input the tangent vector α′(t). The terms hu ◦ α(t) and
hv ◦ α(t) are functions, which get multiplied with the components u′ and
v′ of the tangent vector α′(t). Do not confuse a differential form dh with
its component functions hu and hv. Differentiating again,

d2

dt2
(h ◦ α) =

d

dt

(
(hu ◦ α(t))u′

)
+
d

dt

(
(hv ◦ α(t))v′

)
= (huu ◦ α)u′2 + (huv ◦ α)u′v′ + (hu ◦ α)u′′

+ (hvu ◦ α)v′u′ + (hvv ◦ α)v′v′ + (hv ◦ α)v′′.

When we evaluate at t = 0, where α(0) = p, then since (dh)p = 0, then
hu(p) = hv(p) = 0. So all the terms with two derivatives of u and v vanish
and so the above reduces to

d2

dt2
(h ◦ α)|t=0 = huu(p)(u′)2 + 2huv(p)u′v′ + hvv(p)(v′)2.

Once you become comfortable with the above objects and their identities,
you rarely will want to keep track of all such notation as above (which I
only did for pedagogical purposes).

(23(c) (This seemed like a bit of an unfair question since to solve it completely
requires a bit of extra knowledge to deal with finicky complications in the
most general case.) Note that B is the complement of the union of the
four surfaces S1,± and S2,±, defined by

S1,± = {p± (k1(p))−1Np : p ∈ S, k1(p) 6= 0}
S2,± = {p± (k1)−2Np : p ∈ S, k2(p) 6= 0}

Indeed, hr can only have nondegenerate critical points if r lies in the above
surfaces by part (a) and (b). It is easy to see that these surfaces are all

1



closed (since S is closed), so that the complement of their union B is open.
The tricky part is showing that B is dense. For this, we want to show
that the union of the above four surfaces cannot contain an open ball. For
this, you can convince yourselves that these are “nice” surfaces, so that
whenever k1(p) and k2(p) varying smoothly, these surfaces will be locally
regular surfaces. In general, these surfaces will self-intersect. Moreover,
k1(p) and k2(p) may only vary continuously at points where they become
equal in value (since they contain a square root in their formula), but at
least they are Holder continuous. From this, one can conclude that the
Lebesgue measure of these four surfaces is zero, so that their union can-
not contain a ball (since a ball has positive measure). This shows that the
complement of these surfaces, B, is dense.

Note: There are well-known continuous space-filling curves which fill up
a square or cube. Thus, it is possible to map a surface (only in a very
bad way) continuously onto a ball. The point is to show that the above
surfaces do not do this, since principal curvatures and normal curvatures
vary in a mild way (Holder continuous is enough).

p. 187, 7(a) One direction is clear. If w is differentiable and f is differentiable,
then so is w(f) by the chain-rule. The other direction needs work. Let
φ : Ũ → U ⊂ S be a local parametrization of S, where Ũ ⊂ R2 has
coordinates (u, v). Define f1 : U → R so that (f1 ◦ φ)(u, v) = u. Likewise,
define f2 : U → R so that (f2 ◦ φ)(u, v) = v. In other words, f1 and
f2 are the coordinate functions on Ũ when we pullback by φ. If w =
a(u, v)xu + b(u, v)xv, then

w(f1) = (df1)(a(u, v)xu + b(u, v)xv)
= d(f1 ◦ φ)(a(u, v)∂u + b(u, v)∂v)
= a(u, v)

since (f1◦φ) = u and so (f1◦φ)u = 1 and (f1◦φ)v = 0. Similarly, w(f1) =
b(u, v). Thus, by hypothesis, if w(f) is differentiable for all differentiable
f , then in particular, w(f1) = a and w(f2) = b are differentiable since f1
and f2 are differentiable. This shows that the components of a and b of w
are differentiable, hence w is differentiable.
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