18.950 - Pset #6

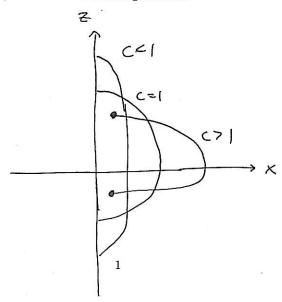
November 2, 2010

- (7a) The equation $\varphi'' + K\varphi = \varphi$ is just rearrangement of Equation 9 on p. 162. One can solve for $\psi(v)$ in terms of $\phi(v)$ using the relation $(\phi')^2 + (\psi')^2 = 1$, thus obtaining $\psi(v) = \int \sqrt{1 (\varphi')^2} dv$, where the limits of integration are such that the integral makes sense.
- (7b) From (7a), we need to solve the equation $\varphi'' + \varphi = 0$. The general solution to this equation is $\varphi(v) = A \cos v + B \sin v$. Since the surface in question is given parametrically by $S(u,v) = (\varphi(v)\cos u, \varphi(v)\sin u, \psi(v))$, in order to intersect the xy-axis perpendicularly, we need the tangent vector dS/dv to be parallel to the z-axis whenever S intersects the xy-plane. Observe that since ψ is monotone in v, this happens for a unique $v = v_0$, i.e. the v_0 for which $\psi(v_0) = 0$. Without loss of generality, let $v_0 = 0$. The surface thus intersects the xy-plane in the curve S(u,0), $0 \le u \le 2\pi$.

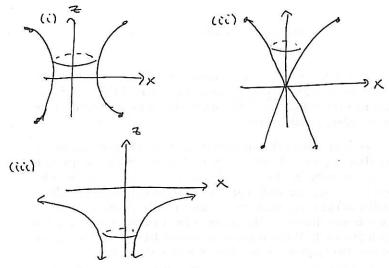
So we require (dS/dv)(u,0)=0 to be zero for all $0 \le u \le 2\pi$. Since this must hold for all u, it follows that we need $\varphi'(0)=0$. It follows that $\varphi(v)=C\cos v$ for some C. It now follows that

$$\psi(v) = \int_0^v \sqrt{1 - C^2 \sin^2(w)} dw.$$

In order for the integral defining ψ to make sense, we need v such that $-1/C \le \sin v \le 1/C$. For $C \le 1$, this poses no restriction v, but for C > 1, then v cannot be arbitrary (in particular, $\psi(v)$ never achieves the value of zero). We have the following sketches:



(7c) With K=-1, we have to solve $\varphi''-\varphi=0$. The general solution is $\varphi(v)=Ae^v+Be^{-v}$. There are three cases: A,B>0, A and B have opposite sign, or exactly one of A or B is zero. In either of these cases, by shifting and/or reflecting v (i.e. replacing v with $\pm v+v_0$ for some constant v_0), we can assume we that φ is of the form $C \cosh v$, $C \sin v$, or Ce^v , respectively. We have the following sketches:



- (7d) There are two ways to see this. One can check the defining property of the pseudosphere in Exercise 6(a) (using $(\varphi')^2 + (\psi')^2 \equiv 1$). Alternatively, since the pseudosphere has constant K = -1, it has to be one of the above three cases, and from the sketches, we see that only in the third case is a surface infinite in extent.
- (7e) In this case, $\varphi''=0$, so $\varphi(v)=av+b$, with $|a|\leq 1$. (i) If a=0, then $b\neq 0$ necessarily for S to be a surface. In this case, we get a cylinder. (ii) If |a|<1, then $\psi(v)=\sqrt{1-a^2}v$ is nonzero and we get a cone. (iii) If |a|=1, then $\psi\equiv 0$, and we get a plane.