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9 Local fields and Hensel’s lemmas

In this lecture we introduce the notion of a local field ; these are precisely the fields that arise
as completions of a global field (finite extensions of Q or Fq(t)), but they can be defined in
a more intrinsic way. In later lectures we will see that global fields can also be defined in a
more intrinsic way, as fields whose completions are local fields and which admit a suitable
product formula.

9.1 Local fields

Definition 9.1. A local field is a field with a nontrivial absolute value | | that is locally
compact under the topology induced by | |.

Recall that a topological space is locally compact if every point has a compact neigh-
borhood.1 The topology induced by | | is given by the metric d(x, y) := |x − y|. A metric
space is locally compact if and only if every point lies in a compact closed ball.

Example 9.2. Under the standard archimedean absolute value both R and C are local
fields but Q is not. Indeed no closed ball in Q is compact, since it is missing limit points
(all irrational real numbers), and in a metric space a compact set must contains all its limit
points. Finite fields are not local fields because they have no nontrivial absolute values.

Our first goal is to classify local fields by showing that they are precisely the fields we get
by completing a global field. As in the previous lecture, we use B<r(x) := {y : |y − x| < r}
to denote the open ball of radius r ∈ R>0 about x, and B≤r(x) := {y : |y−x| ≤ r} to denote
a closed ball. Open balls are always open sets and closed balls are always closed sets, but
in a nonarchimedean metric space, open balls are both open and closed, as are closed balls.

Remark 9.3. For nonarchimedean metric spaces whose metric is induced by a discrete
valuation, every open ball of radius r is also a closed ball of some radius s ≤ r, but we need
not have s = r; in particular, the closure of B<r(x) (which is already closed) need not be
equal to B≤r(x), it could be strictly contained in B≤r(x). The key point is that not every
r ∈ R≥0 actually arises as a distance, only countably many do.

Lemma 9.4. Let K be a field with a nontrivial absolute value | |. Then K is a local field
if and only if every (equivalently, any) closed ball in K is compact.

Proof. Suppose K is a local field. Then 0 ∈ K lies in a compact closed ball B≤s(0). Let
us fix α ∈ K× with |α| > 1 (such an α exists because | | is nontrivial). The map x 7→ αx
is continuous and | | is multiplicative, so B≤|α|ns(0) is compact for every n ∈ Z>0 (recall
that the continuous image of a compact set is compact). We thus have compact balls
about 0 of arbitrarily large radii, implying that every closed ball B≤r(0) is a closed subset
of a compact set, hence compact. For every z ∈ K the translation map x 7→ x + z is
continuous, so every closed ball B≤r(z) is compact. This proves the forward implication,
and the reverse implication follows immediately from the definition of local compactness.
For the parenthetical, replace B≤s(0) in the argument above by any closed ball.

Corollary 9.5. Let K be a local field with absolute value | |. Then K is complete.

1Weaker definitions of locally compact are sometimes used, but they all imply this one, and for Hausdorff
spaces these weaker definitions are all equivalent to the one given here.
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Proof. Suppose not. Then there is a Cauchy sequence (xn) in K that converges to a limit
x ∈ K̂ − K. Pick N ∈ Z>0 so that |xn − x| < 1/2 for all n ≥ N (here we are using the
extension of | | to K̂), and consider the closed ball S := B≤1(xN ) in K, which is compact
by Lemma 9.4. The Cauchy sequence (xn)n≥N in S has a convergent subsequence whose
limit lies in S ⊆ K, since S is compact and therefore sequentially compact (because K is a
metric space). But this limit must be equal to x 6∈ K, a contradiction.

Proposition 9.6. Let K be a field with absolute value | |v induced by a discrete valuation v
with valuation ring A and uniformizer π. Then K is a local field if and only if K is complete
and the residue field A/πA is finite.

Proof. If K is a local field then K is complete, by Corollary 9.5, and the valuation ring

A = {x ∈ K : v(x) ≥ 0} = {x ∈ K : |x|v ≤ 1} = B≤1(0)

is a closed ball, hence compact, by Lemma 9.4. The cosets x+πA of the subgroup πA ⊆ A
are open balls B<1(x), since y ∈ x + πA if and only if |x − y|v ≤ |π|v < 1. The collection
{x+πA : x ∈ A} of cosets of πA is an open cover of A by disjoint sets which must be finite,
since A is compact; thus A/πA is finite.

Now suppose that K is complete and A/πA is finite. The valuation ring A ⊆ K is also
complete, and Proposition 8.11 gives an isomorphism of topological rings

A = Â ' lim←−
n

A

πnA
.

Each quotient A/πnA is finite, since A/πA is finite, and therefore compact; it follows that
the inverse limit, and therefore A, is compact, by Proposition 8.10. Lemma 9.4 implies that
K is a local field, since it contains a compact closed ball B≤1(0) = A and | |v is nontrivial
(recall that discrete valuations surject onto Z and are thus non-trivial by definition).

Corollary 9.7. Let L be a global field with a nontrivial absolute value | |v. Then the
completion Lv of L with respect to | |v is a local field.

Proof. Let L/K be a finite extension with K = Q or K = Fq(t) and A = Z or A = Fq[t],
so that K = FracA. Then A is a Dedekind domain, as is its integral closure B in L, by
Theorem 5.25 (and Remark 5.26 in the case that L/K is inseparable).2

If | |v is archimedean, then K = Q and the completion of L with respect to | |v must
contain the completion of Q with respect to the restriction of | |v to Q, which must be
isomorphic to R (as shown on Problem Set 1, every archimedean absolute value on Q is
equivalent to the usual Euclidean absolute value). Thus Lv is a finite extension of R and
must be isomorphic to either R or C (as a topological field), both of which are local fields.

We now assume that | |v is nonarchimedean. We claim that in this case | |v is induced
by a discrete valuation. Let C := {x ∈ L : |x|v ≤ 1} be the valuation ring of L with respect
to | |v, and let m := {x ∈ L : |x|v < 1} be its maximal ideal, which is nonzero because | |v
is nontrivial. The restriction of | |v to K is a nonarchimedean absolute value, and from the
classification of absolute values on Q and Fq(t) proved on Problem Set 1, we can assume it
is induced by a discrete valuation on A; in particular, |x|v ≤ 1 for all x ∈ A, and therefore

2In fact, we can always choose K so that L/K is separable: if L has positive characteristic p, let Fq be
the algebraic closure of Fp in L, choose a separating transcendental element t, and put K := Fq(t). Such a t
exists because Fq is perfect and L/Fq is finitely generated, see [3, Thm. 7.20].
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A ⊆ C. Like all valuation rings (discrete or not), C is integrally closed in its fraction field L,
and C contains A, so C contains B, since B is the integral closure of A in L. The ideal
q = m ∩ B is maximal, and the DVR Bq lies in C and must equal C, since there are no
intermediate rings between a DVR and its fraction field (we cannot have C = L because C
is not a field). It follows that the absolute value induced by vq is equivalent to | |v, since
they have the same valuation rings. By choosing 0 < c < 1 appropriately, we can assume
that | · |v = cvq(·) is induced by vq, which proves the claim.

The residue field Bq/qBq ' B/q is finite, since B/q is a finite extension of the finite
field A/p, where p = q ∩ A. If we now consider the completion Lv with valuation ring Bv,
we can take any uniformizer π for q ⊆ B ⊆ Bv as a uniformizer for Bv, and we have

B

q
' Bq

qBq
=

Bq

πBq
' Bv
πBv

,

so Bv/πBv is finite. Thus Lv is a complete field with an absolute value induced by a discrete
valuation and finite residue field, and therefore a local field, by Proposition 9.6.

In order to classify all local fields we require the following result from topology (here
nondiscrete simply means that not every set is open).

Proposition 9.8. A locally compact topological vector space over a nondiscrete locally com-
pact field has finite dimension.

Proof. See [4, Prop. 4-13.iv].

Theorem 9.9. Let L be a local field. If L is archimedean then it is isomorphic to R or C;
otherwise, L is isomorphic to a finite extension of Qp or Fq((t)).

Proof. Let L be a local field with nontrivial absolute value | |; then L is complete, by
Corollary 9.5. If L has characteristic zero then the prime field of L is Q, and L contains
the completion of Q with respect to the restriction of | | to Q. By Ostrowski’s theorem, the
restriction of | | to Q is equivalent to either the standard archimedean absolute value, in
which case the completion is R, or it is equivalent to a p-adic absolute value, in which case
the completion is Qp (which, by definition, is the completion of Q with respect to the p-adic
absolute value). Thus L contains a subfield K isomorphic to R or to Qp for some prime p.

If L has positive characteristic p then the prime field of L is Fp, and L must contain a
transcendental element s, since no algebraic extension of Fp has a nontrivial absolute value
(if |α| > 1 for some algebraic α ∈ L, then the restriction of | | to the finite field Fp(α) is
nontrivial, but this is impossible). It follows that L contains Fp(s) and therefore contains
the completion of Fp(s) with respect to | |. Every completion of Fp(s) is isomorphic to
Fq((t)) for some q a power of p and t transcendental over Fq (see Problem Set 5). Thus L
contains a subfield K isomorphic to Fq((t)).

If K is archimedean then K = R is a local field, and if K is nonarchimedean then
K = Qp or K = Fq((t)) is a complete field with a discrete valuation and finite residue field,
hence a local field by Proposition 9.6. The field K is therefore locally compact, and it is
nondiscrete because its absolute value is nontrivial. Proposition 9.8 implies that L has finite
degree over K. If K is archimedean then K = R, and L must be R or C; otherwise, L is a
finite extension of Qp or Fq((t)) as claimed.
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9.2 Hensel’s lemmas

Definition 9.10. Let R be a (commutative) ring, and let f(x) =
∑
fix

i ∈ R[x] be a
polynomial. The (formal) derivative f ′ of f is the polynomial f ′(x) :=

∑
ifix

i−1 ∈ R[x].

Note that the canonical ring homomorphism Z→ R defined by 1 7→ 1 allows us to view
the integers i = 1 + 1 + · · ·+ 1 as elements of R (the map Z→ R will be injective only when
R has characteristic zero, but it is well defined in any case). It is easy to verify that for all
a, b ∈ R and f, g ∈ R[x] the formal derivative satisfies the usual identities:

(af + bg)′ = af ′ + bg′, (linearity)

(fg)′ = f ′g + fg′, (Leibniz rule)

(f ◦ g)′ = (f ′ ◦ g)g′, (chain rule)

When the characteristic of R is positive, we may have deg f ′ < deg f − 1. Indeed, if R has
characteristic p > 0 and g(x) = f(xp) for some f ∈ R[x], then g′ = f ′(xp)pxp−1 = 0.

Lemma 9.11. Let R be a ring, let f =
∑
fix

i ∈ R[x] be a polynomial, and let a ∈ R. Then
f(x) = f(a) + f ′(a)(x− a) + g(x)(x− a)2 for a unique g ∈ R[x].

Proof. We have

f(x) = f(a+ (x− a)) =
∑
i≥0

fi(a+ (x− a))i =
∑
i≥0

fi
∑

0≤j≤i

(
i

j

)
aj(x− a)i−j

= f(a) +
∑
i≥1

fi
∑

0≤j<i

(
i

j

)
aj(x− a)i−j

= f(a) + f ′(a)(x− a) +
∑
i≥2

fi
∑

0≤j≤i−2

(
i

j

)
aj(x− a)i−j

= f(a) + f ′(a)(x− a) + g(x)(x− a)2,

where g(x) =
∑

i≥2 fi
∑

0≤j≤i−2
(
i
j

)
aj(x− a)i−2−j ∈ R[x].

Remark 9.12. The lemma can be viewed as giving the first two terms of a formal Taylor
expansion of f(x) about a. Note that the binomial coefficients

(
i
j

)
are integers, hence well

defined elements of R under the canonical homomorphism Z→ R, even when j! is divisible
by the characteristic of R. In the usual Taylor expansion

f(x) =

∞∑
i=0

f (i)(a)

i!
(x− a)i

used in characteristic zero, if f is a polynomial then f (i)(a) is necessarily a multiple of i!,
so f (i)(a)/i! is always a well defined element of R, even in positive characteristic.

Corollary 9.13. Let R be a ring, f ∈ R[x], and a ∈ R. Then f(a) = f ′(a) = 0 if and only
if a is (at least) a double root of f , that is, f(x) = (x− a)2g(x) for some g ∈ R[x].

Definition 9.14. Let f ∈ R[x] be a polynomial over a ring R and let a ∈ R. If f(a) = 0
and f ′(a) 6= 0 then a is a simple root of f .
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If R is a ring and I is an R-ideal, by a lift of an element r̄ of the quotient R/I, we mean
a preimage of r̄ under the quotient map R� R/I.

Lemma 9.15 (Hensel’s Lemma I). Let A be a complete DVR with maximal ideal p and
residue field k := A/p. Suppose f ∈ A[x] is a monic polynomial whose reduction to k[x] has
a simple root ā ∈ k. Then ā can be lifted to a root of f in A.

Proof. We work in the fraction field K of A. Let a0 be any lift of ā to A; the element a0
is not necessarily a root of f , but it is a root modulo p. We will show that a0 is the first
term of a Cauchy sequence (an) in which each an is a root of f modulo p2

n
. To simplify

the notation we fix 0 < c < 1 and define the absolute value | · | := cvp(·). The fact that ā is
a simple root implies that f(a0) ∈ p but f ′(a0) 6∈ p, so |f(a0)| ≤ c < 1 and |f ′(a0)| = 1. We
now define

ε :=
|f(a0)|
|f ′(a0)|2

< 1.

In what follows we will only use ε < 1, which will allow our proof to work in cases where ā
is not necessarily a simple root (in particular, we won’t assume |f ′(a0)| = 1).

For each n ≥ 0 we define

an+1 := an − f(an)/f ′(an).

We will prove by induction on n that

(a) |an| ≤ 1 (an ∈ A);

(b) |an − a0| ≤ ε < 1 (an ≡ a0 mod p, so an is a lift of ā);

(c) |f ′(an)| = |f ′(a0)| (with (d) this ensures f ′(an)|f(an), so an+1 is well defined);

(d) |f(an)| ≤ ε2n |f ′(a0)|2 (|f(an)| and therefore f(an) converges rapidly to 0).

The case n = 0 is clear. We now assume (a), (b), (c), (d) for n and prove them for n+ 1:

(a) |an+1−an| = |f(an)/f ′(an)| ≤ ε2n |f ′(a0)|2/|f ′(a0)| = ε2
n |f ′(a0)| ≤ ε2

n
, by (c) and (d),

therefore |an+1| = |an+1 − an + an| ≤ max(|an+1 − an|, |an|) ≤ 1, by (a).

(b) |an+1 − a0| ≤ max(|an+1 − an|, |an − a0|) ≤ max(ε2
n
, ε) = ε (as above and using (b)).

(c) Applying Lemma 9.11 to f ′(x) at an and substituting an+1 for x yields

f ′(an+1) = f ′(an)− f ′′(an)
f(an)

f ′(an)
+ g(an+1)

(
f(an)

f ′(an)

)2

,

where we have used an+1 − an = −f(an)/f ′(an). We have f ′′(an), g(an+1) ∈ A, so
|f ′′(an)|, |g(an+1)| ≤ 1, and |f(an)/f ′(an)| = |f(an)|/|f ′(a0)| ≤ ε2

n |f ′(a0)|, by (d), so
the absolute values of the last two terms on the RHS are strictly smaller than the first
term |f ′(an)| = |f ′(a0)|. Therefore |f ′(an+1)| = |f ′(an)| = |f ′(a0)|.

(d) Applying Lemma 9.11 to f(x) and substituting an+1 for x yields

f(an+1) = f(an)− f ′(an)
f(an)

f ′(an)
+ h(an+1)

(
f(an)

f ′(an)

)2

= h(an+1)

(
f(an)

f ′(an)

)2

,

for some h ∈ A[x]. We have |h(an+1)| ≤ 1, so (c) and (d) imply

|f(an+1)| ≤ |f(an)|2/|f ′(an)|2 = |f(an)|2/|f ′(a0)|2 ≤ ε2
n+1 |f ′(a0)|2.

which completes our inductive proof.
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We have |an+1 − an| ≤ ε2
n → 0 as n → ∞, and for a nonarchimedean absolute value

this implies that (an) is Cauchy. Thus a := limn→∞ an ∈ A, since A is complete. We have
f(a) = limn→∞ f(an) = 0, so a is a root of f , and |a − a0| = limn→∞ |an − a0| < 1, so
a ≡ a0 mod p is a lift of ā.

Our proof of Lemma 9.15 did not actually use the assumption that f is monic, nor did
it actually require ā to be a simple root. Let us record the (apparently stronger) form of
Hensel’s lemma that what we actually proved.

Lemma 9.16 (Hensel’s Lemma II). Let A be a complete DVR. Let f ∈ A[x], and suppose
a0 ∈ A satisfies

|f(a0)| < |f ′(a0)|2

(so in particular, f ′(a0) divides f(a0)), and for n ≥ 0 define

an+1 := an − f(an)/f ′(an).

The sequence (an) is well-defined and converges to the unique root a ∈ A of f for which

|a− a0| ≤ ε := |f(a0)|/|f ′(a0)|2.

Moreover, |f(an)| ≤ ε2n|f ′(a0)|2 for all n ≥ 0.

Lemma 9.16 can be viewed as a nonarchimedean version of Newton’s method for finding
(or more closely approximating) a root of a polynomial given an initial approximation. Like
Newton’s method, the recurrence in Lemma 9.16 converges quadratically, meaning that we
double the precision of our approximation with each iteration. But Lemma 9.16 is better
than Newton’s method, for two reasons: (1) in the most common scenario the residue field
is finite, which makes finding an initial approximation very easy, and (2) once we have an
initial approximation with ε < 1, convergence is guaranteed.

Remark 9.17. In Lemmas 9.15 and 9.16 it is not actually necessary for A to be complete
(or an integral domain). A local ring A for which Lemma 9.15 holds is called a henselian
ring (this is a definition). One can show that Lemma 9.16 necessarily also holds in any
henselian ring, as do many other forms of “Hensel’s Lemma”, including Lemma 9.19 below.
In general, any condition that holds for a local ring if and only if it is a henselian ring may
be called “Hensel’s Lemma”; see [5, Lemma 10.148.3] for more than a dozen candidates.
One can define the henselization of a noetherian local ring R as the minimal extension of R
that is henselian (as usual, it is minimal in the sense of satisfying a universal property, and
this forces it to be unique up to isomorphism). When R is a DVR its henselization is simply
R̂ ∩Ksep, where K is the fraction field of R. Loosely speaking, in henselian rings, Cauchy
sequences that converge (in the completion) to the root of a polynomial are required to
converge, but not every Cauchy sequence needs to converge.

Example 9.18. Let A = Z5 and f(x) = x2 − 6 ∈ Z5[x]. Then f̄(x) = x2 − 1 ∈ F5[x] has
ā = 1 as a simple root. By Lemma 9.15 there is a unique a ∈ Z5 such that a2 − 6 = 0 and
a ≡ 1 mod 5. We could also have chosen ā = −1, which would give another distinct root of
f(x), which must be −a. Thus Z5 contains two distinct square roots of 6.

Now let A = Z2 and f(x) = x2− 17. Then f̄(x) = x2− 1 = (x− 1)2 has no simple roots
(note f̄ ′ = 0). But if we let a0 = 1, then f(a0) = −16 and |f(a0)| = 1/16, while f ′(a0) = 2
and |f ′(a0)| = 1/2. We thus have |f(a0)| < |f ′(a0)|2 and can apply Lemma 9.16 to get a
square root of 17 in Z2.
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There is a another version of Hensel’s Lemma that we need, which is arguably the most
powerful (of course they are all equivalent by definition, but this version is most easily seen
to imply all the others).

Lemma 9.19 (Hensel’s lemma III). Let A be a complete DVR with maximal ideal p and
residue field k, let f ∈ A[x] have image f̄ in k[x], and suppose f̄ = ḡh̄ for some coprime
ḡ, h̄ ∈ k[x]. Then there exist polynomials g, h ∈ A[x] for which f = gh with g ≡ ḡ mod p
and h ≡ h̄ mod p such that deg g = deg ḡ.

Proof. See [2, Theorem II.4.6] or [5, Lemma 10.148.3].

This form of Hensel’s lemma has the following useful corollary, which is itself another
form Hensel’s lemma in the sense that it characterizes henselian fields (see Remark 9.17).3

Lemma 9.20 (Hensel-Kürschák lemma). Let A be a complete DVR with fraction field K,
and let f ∈ K[x] be an irreducible polynomial whose leading and constant coefficients lie
in A. Then f ∈ A[x].

Proof. Let p = (π) be the maximal ideal of A, let k := A/p, and write f =
∑n

i=0 fix
i with

fn 6= 0. We must have n > 0 and f0 6= 0, since f is irreducible. Let m := min{vp(fi)}.
Suppose for the sake of contradiction that m < 0, and let g := π−mf =

∑n
i=0 gix

i ∈ A[x].
Then g is an irreducible polynomial in A[x] with g0, gn ∈ p, since m < 0 and f0, fn ∈ A,
and gi is a unit for some 0 < i < n, by the minimality of m. The reduction ḡ of g to k[x]
has positive degree and constant term 0, and is therefore divisible by x. If we let ū := xd

be the largest power of x dividing ḡ, then 0 < d ≤ deg ḡ < n and v̄ := ḡ/xd ∈ k[x] is
coprime to ū (possibly deg v̄ = 0). Lemma 9.19 implies that g = uv for some u, v ∈ A[x]
with 0 < deg u = deg ū < n. But this means g is not irreducible, a contradiction.

Corollary 9.21. Let A be a complete DVR with fraction field K, and let L/K be a finite
extension of degree n. Then α ∈ L is integral over A if and only if NL/K(α) ∈ A.

Proof. Let f =
∑d

i=0 fix
i ∈ K[x] be the minimal polynomial of α. If α is integral over A

then f ∈ A[x], by Proposition 1.28, and NL/K(α) = (−1)nf(0)e ∈ A, where e = [L : K(α)],
by Proposition 4.51. Conversely, if NL/K(α) = (−1)nf(0)e ∈ A, then f(0) ∈ A, since
f(0) ∈ K is a root of xe − (−1)nNL/K(α) ∈ A[x] and A is integrally closed. The constant
coefficient of f thus lies in A, as does its leading coefficient (it is monic), so f ∈ A[x], by
Lemma 9.20, and α is therefore integral over A.
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