Description

These problems are related to the material covered in Lectures 7–9. Your solutions are to be written in LaTeX and submitted as a pdf-file named SurnamePset4.pdf (replace Surname with your surname) via e-mail to drew@math.mit.edu by noon on the date due. Collaboration is permitted/encouraged, but you must identify your collaborators, and any references consulted other than the lecture notes. If there are none, write Sources consulted: none at the top of your problem set. The first person to spot each typo/error in the problem set or lecture notes will receive 1-5 points of extra credit.

Instructions: First do the warm up problems (especially if you have not seen p-adic fields before!), then pick any combination of problems 1–5 that sum to 96 points. Finally, complete the survey problem 6 (worth 4 points).

Problem 0.

These are warm up problems that do not need to be turned in.

(a) Give an example of a metric on a field that is not induced by an absolute value.

(b) Prove that the completion \hat{k} of a field k at one of its absolute values $| |$ satisfies the following universal property: every topological field embedding of k into a complete field k' extends uniquely to an embedding of \hat{k} into k' that is an isomorphism if and only if k is dense in k'.

(c) Compute the 3-adic expansions of $1/4$, $-5/6$ and $\sqrt{7}$ in \mathbb{Q}_3.

(d) Let X be a metric space defined by a nonarchimedean absolute value. Verify that (1) every point in an open ball is a center, (2) two open balls are either disjoint or concentric, (3) every open ball is closed and every closed ball is open, (4) all triangles are isosceles, (5) X is totally disconnected.

(e) Show that every $\alpha \in \mathbb{Q}_p^\times$ can be written uniquely in the form $\alpha = p^ru$ for some $r \in \mathbb{Z}$ and $u \in \mathbb{Z}_p^\times$.

Problem 1. Quadratic reciprocity (32 points)

Recall that for an odd prime p the Legendre symbol $(\frac{\cdot}{p}) : \mathbb{Z} \to \{-1, 0, 1\}$ defined by

$$
\left(\frac{n}{p} \right) := \begin{cases}
-1 & \text{if n is not a square modulo p;} \\
0 & \text{if n is divisible by p;} \\
1 & \text{if n is a nonzero square modulo p.}
\end{cases}
$$

Gauss’s theorem of quadratic reciprocity states that for odd primes $p \neq q$:

$$
(1) \quad \left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = (-1)^{(\frac{p-1)(q-1)}{4}}; \quad (2) \quad \left(\frac{-1}{p} \right) = (-1)^{\frac{p-1}{2}}; \quad (3) \quad \left(\frac{2}{p} \right) = (-1)^{\frac{p^2-1}{8}}.
$$

For any integer $n > 1$, let ζ_n denote a primitive nth root of unity.
Problem 2. Weak approximation (32 points)

Let k be a field and for $n \in \mathbb{Z}_{\geq 1}$ let S_n and W_n denote the following statements:

S_n: Given inequivalent nontrivial absolute values $|\,|_1, \ldots, |\,|_n$ on k, there is an $x \in k^\times$ for which $|x|_1 > 1$ and $|x|_i < 1$ for $1 < i \leq n$.

W_n: Given inequivalent nontrivial absolute values $|\,|_1, \ldots, |\,|_n$ on k, there is a sequence (x_1, x_2, \ldots) of elements $x_j \in k$ that converges to 1 with respect to $|\,|_1$ and to 0 with respect to $|\,|_i$ for $1 < i \leq n$.

(a) Prove that S_n implies W_n.

(b) Prove that S_n holds for all $n \geq 1$.

(c) Prove the Weak Approximation Theorem:

Given inequivalent nontrivial absolute values $|\,|_1, \ldots, |\,|_n$ on k, $a_1, \ldots, a_n \in k$, and $\epsilon_1, \ldots, \epsilon_n \in \mathbb{R}_{>0}$ there exists $x \in k$ such that $|x - a_i|_i < \epsilon_i$ for $i = 1, \ldots, n$.

(d) Let $|\,|_1$ and $|\,|_2$ be absolute values on k. Prove that the topologies on k induced by $|\,|_1$ and $|\,|_2$ coincide if and only if $|\,|_1 \sim |\,|_2$.

Problem 3. n-adic rings (64 points)

For any integer $n > 1$ define the n-adic valuation $v_n(x)$ of nonzero $x \in \mathbb{Q}$ to be the unique integer k for which $x = \frac{s}{t}n^k$, with $n \nmid a$, gcd$(a, b) = 1$ and gcd$(b, n) = 1$, and let $v_n(0) = \infty$. Now define the function $|\,|_n: \mathbb{Q} \to \mathbb{R}_{\geq 0}$ by

$$|x|_n = n^{-v_n(x)},$$

where $|0|_n = n^{-\infty}$ is understood to be 0.

(a) Prove that $|\,|_n$ is an absolute value if and only if n is prime, but that $|\,|_n$ always satisfies the nonarchimedean triangle inequality $|x + y|_n \leq \max(|x|_n, |y|_n)$; in particular, $d_n(x, y) := |x - y|_n$ is a nonarchimedean metric.
Let \(A_k = \mathbb{Z}/n^k\mathbb{Z} \) and consider the inverse system consisting of the sequence of rings \((A_k)\) with morphisms \(A_{k+1} \to A_k \) given by reduction modulo \(n^k \). Define the ring of \(n \)-adic integers as the inverse limit \(\mathbb{Z}_n := \varprojlim A_k \).

(b) Compute the first three terms of the 10-adic expansions of \(-7\), \(1/3\), and \(\sqrt[3]{3} \) in \(\mathbb{Z}_{10} \) (as with the \(p \)-adic expansion defined in Lecture 8, each term is a decimal digit).

(c) For \(n = p \) prime prove the fraction field of \(\mathbb{Z}_p \) is (canonically isomorphic to) \(\mathbb{Q}_p \), the completion of \(\mathbb{Q} \) with respect to \(|\cdot|_p \), and that \(\mathbb{Z}_p \) is its valuation ring.

(d) Prove that \(\mathbb{Z}_n \) is an integral domain if and only if \(n \) is a prime power.

In view of (d), we cannot construct the fraction field of \(\mathbb{Z}_n \) in general, but we can still define \(\mathbb{Q}_n \) as the completion \(\mathbb{Q} \) with respect to the metric \(d_n(x, y) := |x - y|_n \).

(e) Extend \(|\cdot|_n \) to \(\mathbb{Q}_n \), show that \(d(x, y) := |x - y|_n \) is a metric on \(\mathbb{Q}_n \).

Is \(\mathbb{Q}_n \) a topological ring?

(g) For \(n = p^e \) a prime power, prove that \(\mathbb{Q}_n \simeq \mathbb{Q}_p \) (as topological fields).

(h) Prove that in general we have a ring isomorphism \(\mathbb{Q}_n \simeq \prod_{|p|n} \mathbb{Q}_p \).

Problem 4. Quadratic extensions of \(\mathbb{Q}_p \) (32 points)

(a) Let \(p \equiv 3 \mod 4 \) be prime, and let \(\mathfrak{p} \) be the prime of \(\mathbb{Q}(i) \) lying above \(p \). Let \(\mathbb{Q}_p(i) \) denote the extension of \(\mathbb{Q}_p \) obtained by adjoining a square-root of \(-1\), and let \(\mathbb{Q}(i)_p \) denote the completion of \(\mathbb{Q}(i) \) at the absolute value \(|\cdot|_p \). Show that \(\mathbb{Q}_p(i)_p \) has a unique absolute value extending the \(p \)-adic absolute value \(|x|_p := p^{-v_p(x)} \), and that \(\mathbb{Q}_p(i)_p \) and \(\mathbb{Q}(i)_p \) are isomorphic local fields. Are their absolute values the same?

(b) Let \(p \) be an odd prime. Prove that \(\mathbb{Q}_p \) has exactly 3 distinct quadratic extensions; describe them explicitly, determine which are ramified, and compute their residue fields (the quotient of the ring of integers by its unique maximal ideal).

(c) Prove that \(\mathbb{Q}_2 \) has exactly 7 distinct quadratic extensions; describe them explicitly, determine which are ramified, and compute their residue fields.

(d) Prove that for every positive integer \(n \) there exists a global number field (finite extension of \(\mathbb{Q} \)) with Galois group isomorphic to \((\mathbb{Z}/2\mathbb{Z})^n \), but that for local number fields (finite extensions of \(\mathbb{Q}_p \) for some prime \(p \)) this occurs only for \(n \leq 3 \).

Problem 5. Roots of unity in \(\mathbb{Q}_p \) (32 points)

Let \(\mathbb{Q}_p^\times = \{ x \in \mathbb{Q}_p^\times : x \in \mathbb{Q}_p^\times \} \) denote the set of \(n \)th powers in \(\mathbb{Q}_p^\times \).

(a) Prove that \(\mathbb{Q}_p^\times / \mathbb{Q}_p^{\times 2} \simeq (\mathbb{Z}/2\mathbb{Z})^2 \) when \(p \) is odd, and \(\mathbb{Q}_2^\times / \mathbb{Q}_2^{\times 2} \simeq (\mathbb{Z}/2\mathbb{Z})^3 \). (Hint: use Hensel’s lemmas).

(b) Determine the structure of \(\mathbb{Q}_p^\times / \mathbb{Q}_p^{\times n} \) for all primes \(p \) and odd primes \(n \).
Let \(\mu_{n,p} = \{ x \in \mathbb{Q}_p^\times : x^n = 1 \} \) denote the set of \(n \)th roots of unity in \(\mathbb{Q}_p \).

(c) Prove that \(\mu_{n,p} \) is a cyclic group of order \(\gcd(n, p - 1) \) whenever \(p \nmid n \), and that \(\mu_{p,p} \) is trivial when \(p \) is odd.

(d) Prove that the roots of unity in \(\mathbb{Q}_p \) form a cyclic subgroup of \(\mathbb{Z}_p^\times \) that has order \(p - 1 \) when \(p \) is odd, and order 2 when \(p = 2 \).

Problem 6. Survey (4 points)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10 according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”), and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount of time you spent on each problem to the nearest half hour.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Interest</th>
<th>Difficulty</th>
<th>Time Spent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem 5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please rate each of the following lectures that you attended, according to the quality of the material (1 = “useless”, 10 = “fascinating”), the quality of the presentation (1 = “epic fail”, 10 = “perfection”), the pace (1 = “way too slow”, 10 = “way too fast”, 5 = “just right”) and the novelty of the material to you (1 = “old hat”, 10 = “all new”).

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture Topic</th>
<th>Material</th>
<th>Presentation</th>
<th>Pace</th>
<th>Novelty</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/1</td>
<td>Completions and valuation rings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/3</td>
<td>Local fields, Hensel’s lemmas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please feel free to record any additional comments you have on the problem sets and the lectures, in particular, ways in which they might be improved.