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28 Global class field theory, the Chebotarev density theorem

Recall that a global field is a field with a product formula whose completions at nontrivial
absolute values are local fields. By the Artin-Whaples theorem (see Problem Set 7), every
such field is either

• a number field : finite extension of Q (characteristic zero);

• a global function field : finite extension of Fq(t) (positive characteristic).

In Lecture 25 we defined the adele ring AK of a global field K as the restricted product

AK :=
∐∏

v
(Kv,Ov) =

{
(av) ∈

∏
Kv : av ∈ Ov for almost all v

}
,

where v ranges over the places of K (equivalence classes of absolute values), Kv denotes
the completion of K at v, and Ov is the valuation ring of Kv if v is nonarchimedean, and
equal to Kv otherwise. As a topological ring, AK is locally compact and Hausdorff. The
field K is canonically embedded in AK via the diagonal map x 7→ (x, x, x, . . .) whose image
is discrete, closed, and cocompact; see Theorem 25.12.

In Lecture 26 we defined the idele group

IK :=
∐∏

(K×v ,O×v ) =
{

(av) ∈
∏

K×v : av ∈ O×v for almost all v
}
,

which coincides with the unit group of AK but has a finer topology (using the restricted
product topology ensures that a 7→ a−1 is continuous, which is not true of the subspace
topology). As a topological group, IK is locally compact and Hausdorff. The multiplicative
group K× is canonically embedded as a discrete subgroup of IK via the diagonal map
x 7→ (x, x, x, . . .), and the idele class group is the quotient CK := IK/K×, which is locally
compact but not compact.

28.1 The idele norm

The idele group IK surjects onto the ideal group IK of invertible fractional ideals of OK
via the surjective homomorphism

ϕ : IK → IK
a 7→

∏
pvp(a),

where vp(a) is the p-adic valuation of the component av ∈ K×v of a = (av) ∈ IK at the
finite place v corresponding to the absolute value ‖ ‖p. We have the following commutative
diagram of exact sequences:

1 K× IK Ck 1

1 PK IK Clk 1

←→ ←→

←� x 7→(x)

←→

←� ϕ

←→

←�

←→ ←→ ←→ ←→

where PK is the subgroup of principal ideals and ClK := IK/PK is the ideal class group.

Andrew V. Sutherland

http://math.mit.edu/classes/18.785/2018fa/LectureNotes25.pdf#theorem.2.12


Definition 28.1. Let L/K is a finite separable extension of global fields. The idele norm
NL/K : IL → IK is defined by NL/K(bw) = (av), where each

av :=
∏
w|v

NLw/Kv(bw)

is a product over places w of L that extend the place v of K and NLw/Kv : Lw → Kv is the
field norm of the corresponding finite separable extension of local fields Lw/Kv.

It follows from Corollary 11.24 and Remark 11.25 that the idele norm NL/K : IL → IK
agrees with the field norm NL/K : L× → K× on the subgroup of principal ideles L× ⊆ IL.
The field norm is also compatible with the ideal norm NL/K : IL → IK (see Proposition 6.6),
and we have the following commutative diagram:

L× IL IL

K× IK IK

←→
←→ NL/K

←→

←→ NL/K ←→ NL/K

←→ ←→

The image of L× in IL under the composition of the maps on the top row is precisely the
group PL of principal ideals, and the image of K× in IK is similarly PK . Taking quotients
yields induced norm maps on the idele and ideal class groups, both of which we also denote
NL/K , and we have a commutative square

CL ClL

CK ClK

←�

←→ NL/K ←→ NL/K

←�

28.2 The Artin homomorphism

We now construct the global Artin homomorphism using the local Artin homomorphisms
we defined in the previous lecture. Let us first fix once and for all a separable closure
Ksep of our global field K, and for each place v of K, a separable closure Ksep

v of the
local field Kv. Let Kab and Kab

v denote maximal abelian extensions within these separable
closures; henceforth all abelian extensions of K and the Kv are assumed to lie in these
maximal abelian extensions.

By Theorem 27.2, each local field Kv is equipped with a local Artin homomorphism

θKv : K×v → Gal(Kab
v /Kv).

For each finite abelian extension L/K and each place w|v of L, composing θKv with the
natural map Gal(Kab

v /Kv)→ Gal(Lw/Kv) yields a surjective homomorphism

θLw/Kv : K×v → Gal(Lw/Kv)

with kernel NLw/Kv(L
×
w). When Kv is nonarchimedean and Lw/Kv is unramified we have

θLw/Kv(πv) = FrobLw/Kv for all uniformizers πv of Kv. Note that by Theorem 11.20, every
finite separable extension of Kv is of the form Lw for some place w|v.
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We now define an embedding of Galois groups

ϕw : Gal(Lw/Kv) ↪→ Gal(L/K)

σ 7→ σ|L

The map ϕw is well defined and injective because every element of Lw can be written as
`x for some ` ∈ L and x ∈ Kv (any K-basis for L spans Lw as a Kv vector space), so
each σ ∈ Gal(Lw/Kv) is uniquely determined by its action on L, which fixes K ⊆ Kv.
If v is archimedean then ϕw(Gal(Lw/Kv)) is either trivial or generated by the involution
corresponding to complex conjugation in Lw ' C. If v is a finite place and q is the prime of L
corresponding to w|v, then ϕw(Gal(Lw/Kv)) is the decomposition group Dq ⊆ Gal(L/K);
this follows from parts (5) and (6) of Theorem 11.23.

More generally, for any place v of K, the Galois group Gal(L/K) acts on the set {w|v},
via ‖α‖σ(w) := ‖σ(α)‖w, and ϕw(Gal(Lw/Kv)) is the stabilizer of w under this action. It
thus makes sense to call ϕw(Gal(Lw/Kv)) the decomposition group of the place w. For w|v
the groups ϕw(Gal(Lw/Kv)) are necessarily conjugate, and in our abelian setting, equal.

Moreover, the composition ϕw ◦θLw/Kv defines a map K×v → Gal(L/K) that is indepen-
dent of the choice of w|v: this is easy to see when v is an unramified nonarchimedean place,
since then ϕw(θLw/Kv(πv)) = Frobv for every uniformizer πv of Kv, and this determines
ϕw ◦ θLw/Kv since the πv generate K×v .

For each place v of K we now embed K×v into the idele group IK via the map

ιv : K×v ↪→ IK
α 7→ (1, 1, . . . , 1, α, 1, 1, . . .),

whose image intersects K× ⊆ IK trivially. This embedding is compatible with the idele
norm in the following sense: if L/K is any finite separable extension and w is a place of L
that extends the place v of K then the diagram

L×w K×v

IL IK

←→
NLw/Kv

←
↩→ ιw ←

↩→ ιv

←→
NL/K

commutes.
Now let L/K be a finite abelian extension. For each place v of K, let us pick a place w

of L extending v and define

θL/K : IK → Gal(L/K)

(av) 7→
∏
v

ϕw(θLw/Kv(av)),

where the product takes place in Gal(L/K). The value of ϕw(θLw/Kv(av)) is independent
of our choice of w|v, as noted above. The product is well defined because av ∈ O×v and v is
unramified in L for almost all v, in which case

ϕw(θLw/Kv(av)) = Frobv(av)v = 1,

It is clear that θL/K is a homomorphism, since each ϕw ◦ θLw/Kv is, and θL/K is continuous
because its kernel is a basic open set

∏
v|DL/K Uv ×

∏
v-DL/K O

×
v of IK .
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If L1 ⊆ L2 are two finite abelian extensions of K, then θL1/K(a) = θL2/K(a)|L1
for all

a ∈ IK . The θL/K form a compatible system of homomorphisms from IK to the inverse

limit lim←−L Gal(L/K) ' Gal(Kab/K), where L ranges over finite abelian extensions of K

in Kab ordered by inclusion. By the universal property of the profinite completion, they
uniquely determine a continuous homomorphism.

Definition 28.2. Let K be a global field. The global Artin homomorphism is the continuous
homomorphism

θK : IK → lim←−
L

Gal(L/K) ' Gal(Kab/K)

defined by the compatible system of homomorphisms θL/K : IK → Gal(L/K), where L

ranges over finite abelian extensions of K in Kab.

The isomorphism Gal(Kab/K) ' lim←−Gal(L/K) is the natural isomorphism between a
Galois group and its profinite completion with respect to the Krull topology (Theorem 26.21)
and is thus canonical, as is the global Artin homomorphism θK : IK → Gal(Kab/K).

Proposition 28.3. Let K be global field. The global Artin homomorphism θK is the unique
continuous homomorphism IK → Gal(Kab/K) with the property that for every finite abelian
extension L/K in Kab and every place w of L lying over a place v of K the diagram

K×v Gal(Lw/Kv)

IK Gal(L/K)

←→
θLw/Kv

←
↩→ ιv ←

↩→ ϕw

←→
θL/K

commutes, where the homomorphism θL/K is defined by θL/K(x) := θK(x)|L.

Proof. That θK has this property follows directly from its construction. Now suppose
θ′K : IK → Gal(Kab/K) has the same property. The idele group IK is generated by the
images of the embeddings K×v , so if θK and θ′K are not identical, then they disagree at a
point a := (1, 1, . . . , 1, av, 1, 1, . . .) in the image of one the embeddings Kv ↪→ IK . We must
have θL/K(a) = θLw/Kv(av) = θ′L/K(a) for every finite abelian extension L/K in Kab and

every place w of L extending v. This implies that θK(a) = θ′K(a), since the image of a
under any homomorphism to Gal(Kab/K) ' lim←−Gal(L/K) is determined by its images in
the Gal(L/K), by Theorem 26.21 and the universal property of the profinite completion.

28.3 The main theorems of global class field theory

In the global version of Artin reciprocity, the idele class group CK := IK/K× plays the role
that the multiplicative group K×v plays in local Artin reciprocity (Theorem 27.2).

Theorem 28.4 (Global Artin Reciprocity). Let K be a global field. The kernel of the
global Artin homomorphism θK contains K×, and we thus have a continuous homomorphism

θK : CK → Gal(Kab/K),

with the property that for every finite abelian extension L/K in Kab the homomorphism

θL/K : CK → Gal(L/K)

obtained by composing θK with the natural map Gal(Kab/K) � Gal(L/K) is surjective with
kernel NL/K(CL), inducing an isomorphism CK/NL/K(CL) ' Gal(L/K).
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Remark 28.5. When K is a number field, θK is surjective but not injective; its kernel
is the connected component of the identity in CK . When K is a global function field,
θK is injective but not surjective; its image consists of automorphisms σ ∈ Gal(Kab/K)
corresponding to integer powers of the Frobenius automorphism of Gal(ksep/k), where k is
the constant field of K (this is precisely the dense image of Z in Ẑ ' Gal(ksep/k)).

We also have a global existence theorem.

Theorem 28.6 (Global Existence Theorem). Let K be a global field. For every finite
index open subgroup H of CK there is a unique finite abelian extension L/K in Kab for
which NL/K(CL) = H.

As with the local Artin homomorphism, taking profinite completions yields an isomor-
phism that allows us to summarize global class field theory in one statement.

Theorem 28.7 (Main theorem of global class field theory). Let K be a global
field. The global Artin homomorphism θK induces a canonical isomorphism

θ̂K : ĈK
∼−→ Gal(Kab/K)

of profinite groups.

We then have an inclusion reversing bijection

{ finite index open subgroups H of CK} ←→ { finite abelian extensions L/K in Kab}
H 7→ (Kab)θK(H)

NL/K(CL)←[ L

and corresponding isomorphisms CK/H ' Gal(L/K), where H = NL/K(CL). We also note
that the global Artin homomorphism is functorial in the following sense.

Theorem 28.8 (Functoriality). Let K be a global field and let L/K be any finite sep-
arable extension (not necessarily abelian). Then the following diagram commutes

CL Gal(Lab/L)

CK Gal(Kab/K).

←→θL

←→ NL/K ←→ res

←→θK

28.4 Relation to ideal-theoretic version of global class field theory

Let K be a number field and let m : MK → Z≥0 be a modulus for K, which we view as
a formal product m =

∏
v v

ev over the places v of K with ev ≤ 1 when v is archimedean
and ev = 0 when v is complex (see Definition 21.2). For each place v we define the open
subgroup

Um
K(v) :=


O×v if v 6 | m, where O×v := K×v when v is infinite),

R>0 if v|m is real, where R>0 ⊆ R× ' O×v := K×v ,

1 + pev if v|m is finite, where p = {x ∈ Ov : |x|v < 1},
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and let Um
K :=

∏
v U

m
K(v) ⊆ IK denote the corresponding open subgroup of IK . The image

U
m
K of Um

K in the idele class group CK = IK/K× is a finite index open subgroup. The idelic
version of a ray class group is the quotient

Cm
K := IK/(Um

KK
×) = CK/U

m
K ,

and we have isomorphisms

Cm
K ' ClmK ' Gal(K(m)/K),

where ClmK is the ray class group for the modulus m (see Definition 21.3), and K(m) is the
corresponding ray class field, which we can now define as the finite abelian extension L/K
for which NL/K(CL) = U

m
K , whose existence is guaranteed by Theorem 28.6.

If L/K is any finite abelian extension, then NL/K(CL) contains U
m
K for some modulus m;

this follows from the fact that the groups U
m
K form a fundamental system of open neighbor-

hoods of the identity. Indeed, the conductor of the extension L/K (see Definition 22.24) is
precisely the minimal modulus m for which this is true. It follows that every finite abelian
extension L/K lies in a ray class field K(m), with Gal(L/K) isomorphic to a quotient of a
ray class group Cm

K .

28.5 The Chebotarev density theorem

We conclude this lecture with a proof of the Chebotarev density theorem, a generalization
of the Frobenius density theorem you proved on Problem Set 10. Recall from Lecture 18
and Problem Set 9 that if S is a set of primes of a number field K, the Dirichlet density
of S is defined by

d(S) := lim
s→1+

∑
p∈S N(p)−s∑
p N(p)−s

= lim
s→1+

∑
p∈S N(p)−s

log 1
s−1

,

whenever this limit exists. As you proved on Problem Set 9, if S has a natural density then
it has a Dirichlet density and the two coincide (and similarly for polar density).

In order to state Chebotarev’s density theorem we need one more definition: a subset C
of a group G is said to be stable under conjugation if στσ−1 ∈ C for all σ ∈ G and τ ∈ C.
Equivalently, C is a union of conjugacy classes of G.

Theorem 28.9 (Chebotarev density theorem). Let L/K be a finite Galois extension
of number fields with Galois group G := Gal(L/K). Let C ⊆ G be stable under conjugation,
and let S be the set of primes p of K unramified in L with Frobp ⊆ C. Then d(S) = #C/#G.

Note that G is not assumed to be abelian, so Frobp is a conjugacy class, not an element.
However, the main difficulty in proving the Chebotarev density theorem (and the only place
where class field theory is used) occurs when G is abelian, in which case Frobp contains a
single element. The main result we need is a corollary of the generalization of Dirichlet’s
theorem on primes in arithmetic progressions to number fields that we proved in Lecture 22,
a special case of which we record below.

Proposition 28.10. Let m be a modulus for a number field K and let ClmK be the corre-
sponding ray class group. For every ray class c ∈ ClmK the Dirichlet density of the set of
primes p of K that lie in c is 1/#ClmK .
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Proof. Apply Corollary 22.22 to the congruence subgroup C = Rm
K .

The Chebotarev density theorem for abelian extensions follows from Proposition 28.10
and the existence of ray class fields, which we now assume.1

Corollary 28.11. Let L/K be a finite abelian extension of number fields with Galois
group G. For every σ ∈ G the Dirichlet density of the set S of primes p of K unrami-
fied in L for which Frobp = {σ} is 1/#G.

Proof. Let m = cond(L/K) be the conductor of the extension L/K; then L is a subfield
of the ray class field K(m) and Gal(L/K) ' ClmK/H for some subgroup H of the ray class
group. For each unramified prime p of K we have Frobp = {σ} if and only if p lies in one
of the ray classes contained in the coset of H in ClmK/H corresponding to σ. The Dirichlet
density of the set of primes in each ray class is 1/#ClmK , by Proposition 28.10, and there
are #H ray classes in each coset of H; thus d(S) = #H/#ClmK = 1/#G.

We now derive the general case from the abelian case.

Proof of the Chebotarev density theorem. It suffices to consider the case where C is a single
conjugacy class, which we now assume; we can reduce to this case by partitioning C into
conjugacy classes and summing Dirichlet densities (as proved on Problem Set 9). Let S be
the set of primes p of K unramified in L for which Frobp is the conjugacy class C.

Let σ ∈ G be a representative of the conjugacy class C, let Hσ := 〈σ〉 ⊆ G be the
subgroup it generates, and let Fσ := LHσ be the corresponding fixed field. Let Tσ be the set
of primes q of Fσ unramified in L for which Frobq = {σ} ⊆ Gal(L/F ) ⊆ Gal(L/K) (note
that the Frobenius class Frobq is a singleton because Gal(L/F ) = H is abelian). We have
d(Tσ) = 1/#Hσ, since L/Fσ is abelian, by Corollary 28.11.

As you proved on Problem Set 9, restricting to degree-1 primes (primes whose residue
field has prime order) does not change Dirichlet densities, so let us replace S and T by their
subsets of degree-1 primes, and define Tσ(p) := {q ∈ Tσ : q|p} for each p ∈ S.

Claim: For each prime p ∈ S we have #Tσ(p) = [G : H].
Proof of claim: Let r be a prime of L lying above q ∈ Tσ(p). Such an r is unramified,

since p is, and we have Frobr = σ, since Frobq = {σ}. It follows that Gal(Fr/Fq) = 〈σ̄〉 ' H.
Therefore fr/q = #H and #{r|q} = 1, since #H = [L : F ] =

∑
r|q er/qfr/q. We have

fr/p = fr/qfq/p = fr/q = #H, since fq/p = 1 for degree-1 primes q|p, and er/p = 1, thus

#G = [L : K] =
∑
r|p

er/pfr/p = #{r|p}#H = #Tσ(p)#H,

so #Tσ(p) = #G/#H = [G : H as claimed.
We now observe that∑

p∈S
N(p)−s =

∑
σ∈C

∑
p∈S

1

[G : H]

∑
q∈Tσ(p)

N(q)−s =
#C

[G : H]

∑
q∈Tσ

N(q)−s

since N(q) = N(p) for each degree-1 prime q lying above a degree-1 prime p, and therefore

d(S) =
#C

[G : H]
d(T ) =

#C#H

[G : H]
=

#C

#G
.

1This assumption is not necessary; indeed Chebotarev proved his density theorem in 1923 without it.
With slightly more work one can derive the general case from the cyclotomic case L = K(ζ), where ζ is a
primitive root of unity, which removes the need to assume the existence of ray class fields; see [4] for details.
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Remark 28.12. The Chebotarev density theorem holds for any global field; the general-
ization to function fields was originally proved by Reichardt [3]; see [2] for a modern proof
(and in fact a stronger result). In the case of number fields (but not function fields!) Cheb-
otarev’s theorem also holds for natural density. This follows from results of Hecke [1] that
actually predate Chebotarev’s work; Hecke showed that the primes lying in any particular
ray class have a natural density.
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[1] Erich Hecke, Über die L-Funktionen und den Dirichletschen Primzahlsatz für einen
beliebigen Zahlkörper , Nachrichten von der Königlichen Gesellschaft der Wissenschaften
zu Göttingen, Mathematisch–Physikalische Klasse (1917) 299–318.

[2] Michiel Kosters, A short proof of a Chebotarev density theorem for function fields,
arXiv:1404.6345.

[3] Hans Reichardt, Der Primdivisorsatz für algebraische Funktionenkörper über einem
endlichen Konstantenkörper , Mathematische Zeitschrift 40 (1936) 713–719.

[4] Peter Stevenhagen and H.W. Lenstra Jr., Chebotarev and his density theorem, Math.
Intelligencer 18 (1996), 26–37.

18.785 Fall 2018, Lecture #28, Page 8

https://eudml.org/doc/58995
https://eudml.org/doc/58995
https://arxiv.org/abs/1404.6345
http://link.springer.com/article/10.1007/BF01218893
http://link.springer.com/article/10.1007/BF01218893
http://www.math.leidenuniv.nl/~hwl/PUBLICATIONS/1996d/art.pdf

	
	Global class field theory, the Chebotarev density theorem
	The idele norm
	The Artin homomorphism
	The main theorems of global class field theory
	Relation to ideal-theoretic version of global class field theory
	The Chebotarev density theorem


