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20 The Kronecker-Weber theorem

In the previous lecture we established a relationship between finite groups of Dirichlet
characters and subfields of cyclotomic fields. Specifically, we showed that there is a one-to-
one-correspondence between finite groups H of primitive Dirichlet characters of conductor
dividing m and subfields K of Q(ζm) under which H can be viewed as the character group
of the finite abelian group Gal(K/Q) and the Dedekind zeta function of K factors as

ζK(s) =
∏
χ∈H

L(s, χ).

Now suppose we are given an arbitrary finite abelian extension K/Q. Does the character
group of Gal(K/Q) correspond to a group of Dirichlet characters, and can we then factor
the Dedekind zeta function ζK(s) as a product of Dirichlet L-functions?

The answer is yes! This is a consequence of the Kronecker-Weber theorem, which states
that every finite abelian extension of Q lies in a cyclotomic field. This theorem was first
stated in 1853 by Kronecker [2], who provided a partial proof for extensions of odd degree.
Weber [7] published a proof 1886 that was believed to address the remaining cases; in fact
Weber’s proof contains some gaps (as noted in [5]), but in any case an alternative proof was
given a few years later by Hilbert [1]. The proof we present here is adapted from [6, Ch. 14]

20.1 Local and global Kronecker-Weber theorems

We now state the (global) Kronecker-Weber theorem.

Theorem 20.1. Every finite abelian extension of Q lies in a cyclotomic field Q(ζm).

There is also a local version.

Theorem 20.2. Every finite abelian extension of Qp lies in a cyclotomic field Qp(ζm).

We first show that the local version implies the global one.

Proposition 20.3. The local Kronecker-Weber theorem implies the global Kronecker-Weber
theorem.

Proof. Let K/Q be a finite abelian extension. For each ramified prime p of Q, pick a prime
p|p and let Kp be the completion of K at p (the fact that K/Q is Galois means that every p|p
is ramified with the same ramification index; it makes no difference which p we pick). We
have Gal(Kp/Qp) ' Dp ⊆ Gal(K/Q), by Theorem 11.23, so Kp is an abelian extension of
Qp and the local Kronecker-Weber theorem implies that Kp ⊆ Qp(ζmp) for some mp ∈ Z≥1.
Let np := vp(mp), put m :=

∏
p p

np (this is a finite product), and let L = K(ζm). We will
show L = Q(ζm), which implies K ⊆ Q(ζm).

The field L = K · Q(ζm) is a compositum of Galois extensions of Q, and is therefore
Galois over Q with Gal(L/Q) isomorphic to a subgroup of Gal(K/Q)×Gal(Q(ζm)/Q), hence
abelian (as recalled below, the Galois group of a compositum K1 · · ·Kr of Galois extensions
Ki/F is isomorphic to a subgroup of the direct product of the Gal(Ki/F )). Let q be a
prime of L lying above a ramified prime p|p; as above, the completion Lq of L at q is a
finite abelian extension of Qp, since L/Q is finite abelian, and we have Lq = Kp · Qp(ζm).
Let Fq be the maximal unramified extension of Qp in Lq. Then Lq/Fq is totally ramified
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and Gal(Lq/Fq) is isomorphic to the inertia group Ip := Iq ⊆ Gal(L/Q), by Theorem 11.23
(the Iq all coincide because L/Q is abelian).

It follows from Corollary 10.20 that Kp ⊆ Fq(ζpnp ), since Kp ⊆ Qp(ζmp) and Qp(ζmp/pnp )
is unramified, and that Lq = Fq(ζpnp ), since Qp(ζm/pnp ) is unramified. Moreover, we have
Fq ∩Qp(ζpnp ) = Qp, since Qp(ζpnp )/Qp is totally ramified, and it follows that

Ip ' Gal(Lq/Fq) ' Gal(Qp(ζpnp )/Qp) ' (Z/pnpZ)×.

Now let I be the group generated by the union of the groups Ip ⊆ Gal(L/Q) for p|m. Since
Gal(L/Q) is abelian, we have

⋃
Ip ⊆

∏
Ip, thus

#I ≤
∏
p|m

#Ip =
∏
p|m

#(Z/pnpZ)× =
∏
p|m

φ(pnp) = φ(m) = [Q(ζm) : Q].

Each inertia fields LIp is unramified at p (see Proposition 7.12), as is LI ⊆ LIp . So LI/Q is
unramified, and therefore LI = Q, by Corollary 14.21. Thus

[L : Q] = [L : LI ] = #I ≤ [Q(ζm) : Q],

and Q(ζm) ⊆ L, so L = Q(ζm) as claimed and K ⊆ L = Q(ζm).

To prove the local Kronecker-Weber theorem we first reduce to the case of cyclic exten-
sions of prime-power degree. Recall that if L1 and L2 are two Galois extensions of a field K
then their compositum L := L1L2 is Galois over K with Galois group

Gal(L/K) ' {(σ1, σ2) : σ1|L1∩L2 = σ2|L1∩L2} ⊆ Gal(L1/K)×Gal(L2/K).

The inclusion on the RHS is an equality if and only if L1 ∩ L2 = K. Conversely, if
Gal(L/K) ' H1 × H2 then by defining L2 := LH1 and L1 := LH2 we have L = L1L2

with L1 ∩ L2 = K, and Gal(L1/K) ' H1 and Gal(L2/K) ' H2.
It follows from the structure theorem for finite abelian groups that we may decompose

any finite abelian extension L/K into a compositum L = L1 · · ·Ln of linearly disjoint cyclic
extensions Li/K of prime-power degree. If each Li lies in a cyclotomic field Q(ζmi), then
so does L. Indeed, L ⊆ Q(ζm1) · · ·Q(ζmn) = Q(ζm), where m := m1 · · ·mn.

To prove the local Kronecker-Weber theorem it thus suffices to consider cyclic extensions
K/Qp of prime power degree `r. There two distinct cases: ` 6= p and ` = p.

20.2 The local Kronecker-Weber theorem for ` 6= p

Proposition 20.4. Let K/Qp be a cyclic extension of degree `r for some prime ` 6= p.
Then K lies in a cyclotomic field Qp(ζm).

Proof. Let F be the maximal unramified extension of Qp in K; then F = Qp(ζn) for some
n ∈ Z≥1, by Corollary 10.19. The extension K/F is totally ramified, and it must be tamely
ramified, since the ramification index is a power of ` 6= p. By Theorem 11.10, we have
K = F (π1/e) for some uniformizer π, with e = [K : F ]. We may assume that π = −pu
for some u ∈ O×F , since F/Qp is unramified: if q|p is the maximal ideal of OF then the
valuation vq extends vp with index eq = 1 (by Theorem 8.20), so vq(−pu) = vp(−p) = 1.
The field K = F (π1/e) lies in the compositum of F ((−p)1/e) and F (u1/e), and we will show
that both fields lie in a cyclotomic extension of Qp.
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The extension F (u1/e)/F is unramified, since vq(disc(xe−u)) = 0 for p - e, so F (u1/e)/Qp

is unramified and F (u1/e) = Qp(ζk) for some k ∈ Z≥1. The field K(u1/e) = K ·Qp(ζk) is a
compositum of abelian extensions, so K(u1/e)/Qp is abelian, and it contains the subexten-
sion Qp((−p)1/e)/Qp, which must be Galois (since it lies in an abelian extension) and totally
ramified (by Theorem 11.5, since it is an Eisenstein extension). The field Qp((−p)1/e) con-
tains ζe (take ratios of roots of xe + p) and is totally ramified, but Qp(ζe)/Qp is unramified
(since p 6 | e), so we must have Qp(ζe) = Qp. Thus e|(p− 1), and by Lemma 20.5 below,

Qp((−p)1/e) ⊆ Qp((−p)1/(p−1)) = Qp(ζp),

It follows that F ((−p)1/e) = F · Qp((−p)1/e) ⊆ Qp(ζn) · Qp(ζp) ⊆ Qp(ζnp). We then have
K ⊆ F (u1/e) · F ((−p)1/e) ⊆ Q(ζk) ·Q(ζnp) ⊆ Q(ζknp) and may take m = knp.

Lemma 20.5. For any prime p we have Qp

(
(−p)1/(p−1)

)
= Qp(ζp).

Proof. Let α = (−p)1/(p−1). Then α is a root of the Eisenstein polynomial xp−1 + p, so the
extension Qp((−p)1/(p−1)) = Qp(α) is totally ramified of degree p−1, and α is a uniformizer
(by Lemma 11.4 and Theorem 11.5). Let π = ζp − 1. The minimal polynomial of π is

f(x) :=
(x+ 1)p − 1

x
= xp−1 + pxp−2 + · · ·+ p,

which is Eisenstein, so Qp(π) = Qp(ζp) is also totally ramified of degree p − 1, and π is a
uniformizer. We have u := −πp−1/p ≡ 1 mod π, so u is a unit in the ring of integers of
Qp(ζp). If we now put g(x) = xp−1 − u then g(1) ≡ 0 mod π and g′(1) = p− 1 6≡ 0 mod π,
so by Hensel’s Lemma 9.15 we can lift 1 to a root β of g(x) in Qp(ζp).

We then have pβp−1 = pu = −πp−1, so (π/β)p−1 + p = 0, and therefore π/β ∈ Qp(ζp) is
a root of the minimal polynomial of α. Since Qp(ζp) is Galois, this implies that α ∈ Qp(ζp),
and since Qp(α) and Qp(ζp) both have degree p− 1, the two fields coincide.

To complete the proof of the local Kronecker-Weber theorem, we need to address the
case ` = p. Before doing so, we first recall some background on Kummer extensions.

20.3 A brief introduction to Kummer theory

Let n be a positive integer and let K be a field of characteristic prime to n that contains a
primitive nth root of unity ζn. While we are specifically interested in the case where K is
a local or global field, in this section K can be any field that satisfies these conditions.

For any a ∈ K, the field L = K( n
√
a) is the splitting field of f(x) = xn − a over K; the

notation n
√
a denotes a particular nth root of a, but it does not matter which root we pick

because all the nth roots of a lie in L (if f(α) = f(β) = 0 then α/β ∈ ζin ∈ K for some
0 ≤ i < n and K(α) = K(β)). The polynomial f(x) is separable, since n is prime to the
characteristic of K, so L is a Galois extension of K, and Gal(L/K) is cyclic, since we have
an injective homomorphism

Gal(L/K) ↪→ 〈ζn〉 ' Z/nZ

σ 7→ σ( n
√
a)

n
√
a

.

This homomorphism is an isomorphism if and only if xn − a is irreducible.
Kummer’s key observation is that the converse holds. In order to prove this we first

recall a basic (but often omitted) lemma from Galois theory, originally due to Dedekind.
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Lemma 20.6. Let L/K be a finite extension of fields. The set AutK(L) is a linearly
independent subset of the L-vector space of functions L→ L.

Proof. Suppose not. Let f := c1σ1 + · · · + crσr = 0 with ci ∈ L, σi ∈ AutK(L), and r
minimal; we must have r > 1, the ci nonzero, and the σi distinct. Choose α ∈ L so
σ1(α) 6= σr(α) (possible since σ1 6= σr). We have f(β) = 0 for all β ∈ L, and the same
applies to f(αβ)− σ1(α)f(β), which yields a shorter relation c′2σ2 + · · ·+ c′rσr = 0, where
c′i = ciσi(α)− ciσ1(α) with c′1 = 0, which is nontrivial because c′r 6= 0, a contradiction.

Corollary 20.7. Let L/K be a cyclic field extension of degree n with Galois group 〈σ〉 and
suppose L contains an nth root of unity ζn. Then σ(α) = ζnα for some α ∈ L.

Proof. The automorphism σ is a linear transformation of L with characteristic polynomial
xn − 1; by Lemma 20.6, this must be its minimal polynomial, since {1, σ1, . . . , σn−1} is
linearly independent. Therefore ζn is eigenvalue of σ, and the lemma follows.

Remark 20.8. Corollary 20.7 is a special case of Hilbert’s Theorem 90, which re-
places ζn with any element u of norm NL/K(u) = 1; see [4, Thm. VI.6.1], for example.

Lemma 20.9. Let K be a field, let n ≥ 1 be prime to the characteristic of K, and assume
ζn ∈ K. If L/K is a cyclic extension of degree n then L = K( n

√
a) for some a ∈ K.

Proof. Let L/K be a cyclic extension of degree n with Gal(L/K) = 〈σ〉. By Corollary 20.7,
there exists an element α ∈ L for which σ(α) = ζnα. We have

σ(αn) = σ(α)n = (ζnα)n = αn,

thus a = αn is invariant under the action of 〈σ〉 = Gal(L/K) and therefore lies in K.
Moreover, the orbit {α, ζnα, . . . , ζn−1n α} of α under the action of Gal(L/K) has order n, so
L = K(α) = K( n

√
a) as desired.

Definition 20.10. Let K be a field with algebraic closure K, let n ≥ 1 be prime to the
characteristic of K, and assume ζn ∈ K. The Kummer pairing is the map

〈·, ·〉 : Gal(K/K)×K× → 〈ζn〉

〈σ, a〉 7→ σ( n
√
a)

n
√
a

where n
√
a is any nth root of a in ∈ K×. If α and β are two nth roots of a, then (α/β)n = 1,

so α/β ∈ 〈ζn〉 ⊆ K is fixed by σ and σ(β)/β = σ(β)/β · σ(α/β)/(α/β) = σ(α)/α, so the
value of 〈σ, a〉 does not depend on the choice of n

√
a. If a ∈ K×n, then 〈σ, a〉 = 1 for all

σ ∈ Gal(K/K), so the Kummer pairing depends only on the image of a in K×/K×n; thus
we may also view it as a pairing on Gal(K/K)×K×/K×n.

Theorem 20.11. Let K be a field, let n ≥ 1 be prime to the characteristic of K with
ζn ∈ K. The Kummer pairing induces an isomorphism

Φ: K×/K×n → Hom
(
Gal(K/K), 〈ζn〉

)
a 7→

(
σ 7→ 〈σ, a〉

)
.
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Proof. For each a ∈ K× − K×n, if we pick an nth root α ∈ K of a then the extension
K(α)/K will be non-trivial and some σ ∈ Gal(K/K) must act nontrivially on α. For this σ
we have 〈σ, a〉 6= 1, so a 6∈ ker Φ; thus Φ is injective.

Now let f : Gal(K/K) → 〈ζn〉 be a homomorphism, and put d := # im f , H := ker f ,

and L := K
H

. Then Gal(L/K) ' Gal(K/K)/H ' Z/dZ, so L/K is a cyclic extension of
degree d, and Lemma 20.9 implies that L = K( d

√
a) for some a ∈ K. If we put e = n/d

and consider the homomorphisms Φ(ame) for m ∈ (Z/dZ)×, these homomorphisms are
all distinct (because the ame are distinct modulo K×n and Φ is injective), and they all
have the same kernel and image as f (their kernels have the same fixed field L because L
contains all the dth roots of a). There are #(Z/dZ)× = #Aut(Z/dZ) distinct isomorphisms
Gal(K/K)/H ' Z/dZ, one of which corresponds to f , and each corresponds to one of the
Φ(ame). It follows that f = Φ(ame) for some m ∈ (Z/dZ)×, thus Φ is surjective.

Given a finite subgroup A of K×/K×n, we can choose a1, . . . , ar ∈ K× so that the
images āi of the ai in K×/K×n form a basis for the abelian group A; this means

A = 〈ā1〉 × · · · × 〈ār〉 ' Z/n1Z× · · · × Z/nrZ,

where ni|n is the order of āi in A. For each ai, the fixed field of the kernel of Φ(āi) is a cyclic
extension of K isomorphic to Li := K( ni

√
ai), as in the proof of Theorem 20.11. The fields

Li are linearly disjoint over K (because the ai correspond to independent generators of A),
and their compositum L = K( n1

√
a1, . . . nr

√
ar) has Galois group Gal(L/K) ' A, an abelian

group whose exponent divides n; such fields L are called n-Kummer extensions of K.
Conversely, given an n-Kummer extension L/K, we can iteratively apply Lemma 20.9

to put L in the form L = K( n1
√
a1, . . . , nr

√
ar) with each ai ∈ K× and ni|n, and the images

of the ai in K×/K×n then generate a subgroup A corresponding to L as above. We thus
have a 1-to-1 correspondence between finite subgroups of K×/K×n and (finite) n-Kummer
extensions of K (this correspondence also extends to infinite subgroups provided we put a
suitable topology on the groups).

So far we have been assuming that K contains all the nth roots of unity. To help handle
situations where this is not necessarily the case, we rely on the following lemma, in which
we restrict to the case that n is a prime (or an odd prime power) so that (Z/nZ)× is cyclic
(the definition of ω in the statement of the lemma does not make sense otherwise).

Lemma 20.12. Let n be a prime (or an odd prime power), let F be a field of characteristic
prime to n, let K = F (ζn), and let L = K( n

√
a) for some a ∈ K×. Define the homomorphism

ω : Gal(K/F ) → (Z/nZ)× by ζ
ω(σ)
n = σ(ζn). If L/F is abelian then σ(a)/aω(σ) ∈ K×n for

all σ ∈ Gal(K/F ).

Proof. Let G = Gal(L/F ), let H = Gal(L/K) ⊆ G, and let A be the subgroup of K×/K×n

generated by a. The Kummer pairing induces a bilinear pairing H × A → 〈ζn〉 that is
compatible with the Galois action of Gal(K/F ) ' G/H. In particular, we have

〈h, aω(σ)〉 = 〈h, a〉ω(σ) = σ(〈h, a〉) = 〈hσ, σ(a)〉 = 〈h, σ(a)〉

for all σ ∈ Gal(K/F ) and h ∈ H; the Galois action on H is by conjugation (lift σ to G
and conjugate there), but it is trivial because G is abelian (so hσ = h). The isomorphism
Φ induced by the Kummer pairing is injective, so aω(σ) ≡ σ(a) mod K×n.
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20.4 The local Kronecker-Weber theorem for ` = p > 2

We are now ready to prove the local Kronecker-Weber theorem in the case ` = p > 2.

Theorem 20.13. Let K/Qp be a cyclic extension of odd degree pr. Then K lies in a
cyclotomic field Qp(ζm).

Proof. There are two obvious candidates for K, namely, the cyclotomic field Qp(ζppr−1),
which by Corollary 10.19 is an unramified extension of degree pr, and the index p−1 subfield
of the cyclotomic field Qp(ζpr+1), which by Corollary 10.20 is a totally ramified extension
of degree pr (the pr+1-cyclotomic polynomial Φpr+1(x) has degree φ(pr+1) = pr(p− 1) and
remains irreducible over Qp). If K is contained in the compositum of these two fields then
K ⊆ Qp(ζm), where m := (pp

r−1)(pr+1) and the theorem holds. Otherwise, the field K(ζm)
is a Galois extension of Qp with

Gal(K(ζm)/Qp) ' Z/prZ× Z/prZ× Z/(p− 1)Z× Z/psZ,

for some s > 0; the first factor comes from the Galois group of Qp(ζppr−1), the second two
factors come from the Galois group of Qp(ζpr+1) (note Qp(ζpr+1)∩Qp(ζppr−1) = Qp), and the
last factor comes from the fact that we are assuming K 6⊆ Qp(ζm), so Gal(K(ζm)/Qp(ζm))
is nontrivial and must have order ps for some s ∈ [1, r].

It follows that the abelian group Gal(K(ζm)/Qp) has a quotient isomorphic to (Z/pZ)3,
and the subfield of K(ζm) corresponding to this quotient is an abelian extension of Qp with
Galois group isomorphic (Z/pZ)3. By Lemma 20.14 below, no such field exists.

To prove that Qp admits no (Z/pZ)3-extensions our strategy is to use Kummer theory
to show that the corresponding subgroup of Qp(ζp)

×/Qp(ζp)
×p given by Theorem 20.11

must have p-rank 2 and therefore cannot exist. For an alternative proof that uses higher
ramification groups instead of Kummer theory, see Problem Set 10.

Lemma 20.14. For p > 2 no extension of Qp has Galois group isomorphic to (Z/pZ)3.

Proof. Suppose for the sake of contradiction that K is an extension of Qp with Galois group
Gal(K/Qp) ' (Z/pZ)3. Then K/Qp is linearly disjoint from Qp(ζp)/Qp, since the order of
G := Gal(Qp(ζp)/Qp) ' (Z/pZ)× is not divisible by p, and Gal(K(ζp)/Qp(ζp)) ' (Z/pZ)3

is a p-Kummer extension. There is thus a subgroup A ⊆ Qp(ζp)
×/Qp(ζp)

×p isomorphic to
(Z/pZ)3, for which K(ζp) = Qp(ζp, A

1/p), where A1/p := { p
√
a : a ∈ A} (here we identify

elements of A by representatives in Qp(ζp)
× that are determined only up to pth powers).

For any a ∈ A, the extension Qp(ζp, p
√
a)/Qp is abelian, so by Lemma 20.12, we have

σ(a)/aω(σ) ∈ Qp(ζp)
×p (1)

for all σ ∈ G, where ω : G
∼−→ (Z/pZ)× is the isomorphism defined by σ(ζp) = ζ

ω(σ)
p .

The field Qp(ζp) is a totally tamely ramified extension of Qp of degree p−1 with residue
field Z/pZ; as shown in the proof of Lemma 20.5, we may take π := ζp− 1 as a uniformizer.
For each a ∈ A we have

vπ(a) = vπ(σ(a)) ≡ ω(σ)vπ(a) mod p,

thus (1 − ω(σ))vπ(a) ≡ 0 mod p, for all σ ∈ G, hence for all ω(σ) ∈ ω(G) = (Z/pZ)×;
for p > 2, this implies vπ(a) ≡ 0 mod p. Now a is determined only up to pth-powers, so
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after multiplying by π−vπ(a) we may assume vπ(a) = 0, and after multiplying by a suitable
power of ζpp−1 = ζp−1, we may assume a ≡ 1 mod π, since the image of ζp−1 generates the
multiplicative group (Z/pZ)× of the residue field.

We may thus assume that A ⊆ U1/U
p
1 , where U1 := {u ≡ 1 mod π}. Each u ∈ U1 can be

written as a power series in π with integer coefficients in [0, p−1] and constant coefficient 1.
We have ζp ∈ U1, since ζp = 1 + π, and ζbp = 1 + bπ +O(π2) for integers b ∈ [0, p− 1].1

For a ∈ A ⊆ U1, we can choose b so that for some integer c ∈ [0, p− 1] and e ∈ Z≥2 we have

a = ζbp(1 + cπe +O(πe+1)).

For σ ∈ G we have

σ(π)

π
=
σ(ζp − 1)

ζp − 1
=
ζ
ω(σ)
p − 1

ζp − 1
= ζω(σ)−1p + · · ·+ ζp + 1 ≡ ω(σ) mod π,

since each term in the sum is congruent to 1 modulo π = (ζp− 1); here we are representing
ω(σ) ∈ (Z/pZ)× as an integer in [1, p− 1]. Thus σ(π) ≡ ω(σ)π mod π and

σ(a) = ζbω(σ)p (1 + cω(σ)eπe +O(πe+1)).

We also have
aω(σ) = ζbω(σ)p (1 + cω(σ)πe +O(πe+1)).

As we showed for a above, any u ∈ U1 can be written as u = ζbpu1 with u1 ≡ 1 mod π2.
Each interior term in the binomial expansion of up1 = (1 +O(π2))p other than leading 1 is a
multiple of pπ2 with vπ(pπ2) = p− 1 + 2 = p+ 1, and it follows that up = up1 ≡ 1 mod πp+1.
Thus every element of Up1 is congruent to 1 modulo πp+1, and as you will show on the
problem set, the converse holds, that is, Up1 = {u ≡ 1 mod πp+1}.

We know from (1) that σ(a)/aω(σ) ∈ Up1 , so σ(a) = aω(σ)(1 +O(πp+1)) and therefore

σ(a) ≡ aω(σ) mod πp+1.

For e ≤ p this is possible only if ω(σ) = ω(σ)e for every σ ∈ G, equivalently, for every
ω(σ) ∈ σ(G) = (Z/pZ)×, but then e ≡ 1 mod (p− 1) and we must have e ≥ p, since e ≥ 2.

We have shown that every a ∈ A is represented by an element ζbp(1+cπp+O(πp+1)) ∈ U1

with b, c ∈ Z, and therefore lies in the subgroup of U1/U
p
1 generated by ζp and (1 + πp),

which is an abelian group of exponent p generated by 2 elements, hence isomorphic to a
subgroup of (Z/pZ)2. But this contradicts A ' (Z/pZ)3.

Remark 20.15. In the proof of Lemma 20.14 above, the elements of Qp(ζp)
×/Qp(ζp)

×p

that lie in A are quite special. For most a ∈ Qp(ζp)
× the extension Qp(ζp, p

√
a)/Qp will

not be abelian, even though the extensions Qp( p
√
a)/Qp(ζp) and Qp(ζp)/Qp both are, and

we typically will not have vπ(a) ≡ 0 mod p (consider a = π). The key point is that we
started with an abelian extension K/Qp, so K(ζp) = K · Qp(ζp) is an abelian extension
containing A1/p; this ensures that for a ∈ A the fields Qp(ζp, p

√
a) are abelian.

Remark 20.16. There is an alternative proof to Lemma 20.14 that is much more explicit.
One can show that for p > 2 the field Qp admits exactly p+ 1 cyclic extensions of degree p:
the unramified extension Qp(ζpp−1) and the extensions Qp[x]/(xp + pxp−1 + p(1 + ap)), for
integers a ∈ [0, p − 1]; see [3, Prop. 2.3.1]. This implies that Qp cannot have a (Z/pZ)3

extension, since this would imply the existence of p2 + p + 1 cyclic extensions of degree p,
one for each index p subgroup of (Z/pZ)3.

1The expression O(πn) denotes a power series in π that is divisible by πn.
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For p = 2 there is an extension of Q2 with Galois group isomorphic to (Z/2Z)3, the
cyclotomic field Q2(ζ24) = Q2(ζ3) · Q2(ζ8), so the proof we used for p > 2 will not work.
However we can apply a completely analogous argument.

Theorem 20.17. Let K/Q2 be a cyclic extension of degree 2r. Then K lies in a cyclotomic
field Q2(ζm).

Proof. The unramified cyclotomic field Q2(ζ22r−1) has Galois group Z/2rZ, and the totally
ramified cyclotomic field Q2(ζ2r+2) has Galois group Z/2Z × Z/2rZ (up to isomorphism).
Let m = (22

r − 1)(2r+2). If K is not contained in Q2(ζm) then

Gal(K(ζm)/Q2) '


Z/2Z× (Z/2rZ)2 × Z/2sZ with 1 ≤ s ≤ r
or

(Z/2rZ)2 × Z/2sZ with 2 ≤ s ≤ r

and thus admits a quotient isomorphic to (Z/2Z)4 or (Z/4Z)3. By Lemma 20.18 below, no
extension of Q2 has either of these Galois groups, thus K must lie in Q2(ζm).

Lemma 20.18. No extension of Q2 has Galois group isomorphic to (Z/2Z)4 or (Z/4Z)3.

Proof. As you proved on Problem Set 4, there are exactly 7 quadratic extensions of Q2; it
follows that no extension of Q2 has Galois group (Z/2Z)4, since this group has 15 subgroups
of index 2 whose fixed fields would yield 15 distinct quadratic extension of Q2.

As you proved on Problem Set 5, there are only finitely many extensions of Q2 of any
fixed degree d, and these can be enumerated by considering Eisenstein polynomials in Q2[x]
of degrees dividing d up to an equivalence relation implied by Krasner’s lemma. One finds
that there are 59 quartic extensions of Q2, of which 12 are cyclic; you can find a list of them
here. It follows that no extension of Q2 has Galois group (Z/4Z)3, since this group has 28
subgroups whose fixed fields would yield 28 distinct cyclic quartic extensions of Q2.
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